1
|
Jamal N, Hollabaugh W, Scott L, Takkouche S. Unravelling the ties that bind: The intersection of obesity, osteoarthritis, and inflammatory pathways with emphasis on glucagon-like peptide-1 agonists. Clin Obes 2024:e12700. [PMID: 39152660 DOI: 10.1111/cob.12700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024]
Abstract
This narrative review article explores the complex interplay between obesity, osteoarthritis, and their associated inflammatory cascades, offering a deeper understanding of the underlying of mechanisms of inflammation and potential therapeutic interventions targeting both diseases. Through examination of the shared inflammatory pathway of obesity and osteoarthritis, our objective is to directly elucidate the relationship between these two conditions, highlighting the promising role of glucagon-like peptide-1 agonists in modulating inflammation and its therapeutic implications for patients with obesity and osteoarthritis.
Collapse
Affiliation(s)
- Naadir Jamal
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William Hollabaugh
- Department of Orthopaedic Surgery, Division of Sports Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Leon Scott
- Department of Orthopaedic Surgery, Division of Sports Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sahar Takkouche
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Zhang Y, He X, Yin D, Zhang Y. Redefinition of Synovial Fibroblasts in Rheumatoid Arthritis. Aging Dis 2024:AD.2024.0514. [PMID: 39122458 DOI: 10.14336/ad.2024.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
The breakdown of immune tolerance and the rise in autoimmunity contribute to the onset of rheumatoid arthritis (RA), driven by significant changes in immune components. Recent advances in single-cell and spatial transcriptome profiling have revealed shifts in cell distribution and composition, expanding our understanding beyond molecular-level changes in inflammatory cytokines, autoantibodies, and autoantigens in RA. Surprisingly, synovial fibroblasts (SFs) play an active immunopathogenic role rather than remaining passive bystanders in RA, with notable alterations in their subpopulation distribution and composition. This study examines these changes in SF heterogeneity, assesses their impact on RA progression, and elucidates the immune characteristics and functions of SF subsets in the RA autoimmunity, encompassing both intrinsic and adaptive immunity. Additionally, this review discusses therapeutic strategies targeting immune SF subsets, highlighting the potential of future interventions in SF phenotypic reprogramming. Overall, this review redefines the role of SFs in RA and suggests targeting SF phenotypic reprogramming and its upstream molecules as a promising therapeutic approach to restore immune balance and modulate immune tolerance in RA.
Collapse
Affiliation(s)
- Yinci Zhang
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Xiong He
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Dongdong Yin
- First Affiliated Hospital of Medical School, Anhui University of Science and Technology, Huainan, China
| | - Yihao Zhang
- Department of health inspection and quarantine, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Cant AJ, Chandra A, Munro E, Rao VK, Lucas CL. PI3Kδ Pathway Dysregulation and Unique Features of Its Inhibition by Leniolisib in Activated PI3Kδ Syndrome and Beyond. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:69-78. [PMID: 37777067 PMCID: PMC10872751 DOI: 10.1016/j.jaip.2023.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway regulates diverse cellular processes, with finely tuned PI3Kδ activity being crucial for immune cell development and function. Genetic hyperactivation of PI3Kδ causes the inborn error of immunity activated phosphoinositide 3-kinase δ syndrome (APDS). Several PI3Kδ inhibitors have been investigated as treatment options for APDS, but only leniolisib has shown both efficacy and tolerability. In contrast, severe immune-mediated adverse events such as colitis, neutropenia, and hepatotoxicity have been observed with other PI3Kδ inhibitors, particularly those indicated for hematological malignancies. We propose that leniolisib is distinguished from other PI3Kδ inhibitors due to its structure, specific inhibitory properties selectively targeting the δ isoform without overinhibition of the δ or γ isoforms, and the precise match between APDS mechanism of disease and drug mechanism of action.
Collapse
Affiliation(s)
- Andrew J Cant
- Paediatric Immunology, Infectious Diseases & Allergy Department, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Anita Chandra
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - V Koneti Rao
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn.
| |
Collapse
|
4
|
Lee BT, Baker LA, Momen M, Terhaar H, Binversie EE, Sample SJ, Muir P. Identification of genetic variants associated with anterior cruciate ligament rupture and AKC standard coat color in the Labrador Retriever. BMC Genom Data 2023; 24:60. [PMID: 37884875 PMCID: PMC10605342 DOI: 10.1186/s12863-023-01164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Canine anterior cruciate ligament (ACL) rupture is a common complex disease. Prevalence of ACL rupture is breed dependent. In an epidemiological study, yellow coat color was associated with increased risk of ACL rupture in the Labrador Retriever. ACL rupture risk variants may be linked to coat color through genetic selection or through linkage with coat color genes. To investigate these associations, Labrador Retrievers were phenotyped as ACL rupture case or controls and for coat color and were single nucleotide polymorphism (SNP) genotyped. After filtering, ~ 697 K SNPs were analyzed using GEMMA and mvBIMBAM for multivariate association. Functional annotation clustering analysis with DAVID was performed on candidate genes. A large 8 Mb region on chromosome 5 that included ACSF3, as well as 32 additional SNPs, met genome-wide significance at P < 6.07E-7 or Log10(BF) = 3.0 for GEMMA and mvBIMBAM, respectively. On chromosome 23, SNPs were located within or near PCCB and MSL2. On chromosome 30, a SNP was located within IGDCC3. SNPs associated with coat color were also located within ADAM9, FAM109B, SULT1C4, RTDR1, BCR, and RGS7. DZIP1L was associated with ACL rupture. Several significant SNPs on chromosomes 2, 3, 7, 24, and 26 were located within uncharacterized regions or long non-coding RNA sequences. This study validates associations with the previous ACL rupture candidate genes ACSF3 and DZIP1L and identifies novel candidate genes. These variants could act as targets for treatment or as factors in disease prediction modeling. The study highlighted the importance of regulatory SNPs in the disease, as several significant SNPs were located within non-coding regions.
Collapse
Affiliation(s)
- B T Lee
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - L A Baker
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - M Momen
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - H Terhaar
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - E E Binversie
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - S J Sample
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America
| | - Peter Muir
- Department of Surgical Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI, 53706, United States of America.
| |
Collapse
|
5
|
Zhang R, Deng X, Liu Q, Zhang X, Bai X, Weng S, Chen M. Global research trends and hotspots of PI3K/Akt signaling pathway in the field of osteoarthritis: A bibliometric study. Medicine (Baltimore) 2023; 102:e33489. [PMID: 37058031 PMCID: PMC10101318 DOI: 10.1097/md.0000000000033489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023] Open
Abstract
The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway has gradually become a new target for the treatment of osteoarthritis (OA). Numerous studies of PI3K/Akt signaling in OA have been published in the past few years. By analyzing these research characteristics and qualities, we aimed to reveal the current research focus and emerging trends in PI3K/Akt signaling in OA. We searched the Web of Science database for relevant articles concerning the PI3K/Akt signaling pathway in OA published from inception to October 31, 2022. The following data were extracted: author name, article title, keywords, topic, publication country/region, institution, publication journal, journal impact factor, number of times cited, and H-index. VOSviewer and Excel 2019 were used to conduct the bibliometric study and visualize the analysis. A total of 374 publications were included in this study. In all selected articles, "orthopedics" was the dominant topic (252 of 374, 67.38%). The most productive year was 2021. Frontiers in Pharmacology published the most articles. The People's Republic of China has published the most articles worldwide. The top 5 keywords were "OA," "expression," "apoptosis," "chondrocytes," and "inflammation." The keywords "autophagy," "mitochondrial dysfunction," "inflammatory response," "cartilage degeneration," and "network pharmacology" have increased in recent years. Our study showed a growing trend in published articles related to the PI3K/Akt signaling pathway in OA. Inflammatory response, cartilage degeneration, and apoptosis remain central topics in the field. Research on autophagy, mitochondrial dysfunction, and network pharmacology is on the rise, and the focus on PI3K/Akt will continue to increase.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Orthopedic, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqin Deng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Quan Liu
- Department of Orthopedic, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xintian Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xinxin Bai
- Department of Orthopedic, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Min Chen
- Department of Orthopedic, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
6
|
Dual PI3Kδγ inhibition demonstrates potent anticancer effects in diffuse large B-cell lymphoma models: Discovery and preclinical characterization of LL-00084282. Biochem Biophys Res Commun 2022; 637:267-275. [DOI: 10.1016/j.bbrc.2022.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
|
7
|
Ainsworth RI, Hammaker D, Nygaard G, Ansalone C, Machado C, Zhang K, Zheng L, Carrillo L, Wildberg A, Kuhs A, Svensson MND, Boyle DL, Firestein GS, Wang W. Systems-biology analysis of rheumatoid arthritis fibroblast-like synoviocytes implicates cell line-specific transcription factor function. Nat Commun 2022; 13:6221. [PMID: 36266270 PMCID: PMC9584907 DOI: 10.1038/s41467-022-33785-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Rheumatoid arthritis (RA) is an immune-mediated disease affecting diarthrodial joints that remains an unmet medical need despite improved therapy. This limitation likely reflects the diversity of pathogenic pathways in RA, with individual patients demonstrating variable responses to targeted therapies. Better understanding of RA pathogenesis would be aided by a more complete characterization of the disease. To tackle this challenge, we develop and apply a systems biology approach to identify important transcription factors (TFs) in individual RA fibroblast-like synoviocyte (FLS) cell lines by integrating transcriptomic and epigenomic information. Based on the relative importance of the identified TFs, we stratify the RA FLS cell lines into two subtypes with distinct phenotypes and predicted active pathways. We biologically validate these predictions for the top subtype-specific TF RARα and demonstrate differential regulation of TGFβ signaling in the two subtypes. This study characterizes clusters of RA cell lines with distinctive TF biology by integrating transcriptomic and epigenomic data, which could pave the way towards a greater understanding of disease heterogeneity.
Collapse
Affiliation(s)
- Richard I Ainsworth
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Deepa Hammaker
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gyrid Nygaard
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Cecilia Ansalone
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Camilla Machado
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kai Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Lina Zheng
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Lucy Carrillo
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andre Wildberg
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Amanda Kuhs
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mattias N D Svensson
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - David L Boyle
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gary S Firestein
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Baicalein Induces Apoptosis of Rheumatoid Arthritis Synovial Fibroblasts through Inactivation of the PI3K/Akt/mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3643265. [PMID: 36118088 PMCID: PMC9473868 DOI: 10.1155/2022/3643265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
Purpose Rheumatoid arthritis (RA) shows abnormal proliferation, apoptosis, and invasion in fibroblast-like synoviocytes (FLSs). Baicalein (BAI), extracted from Scutellaria baicalensis, is used as an anticancer drug through inducing cancer cells apoptosis. However, the mechanism of BAI in RA progression still remains unknown. Here, we demonstrated that BAI inhibited FLS proliferation and migration, whereas it enhanced apoptosis via the PI3K/Akt/mTOR pathway in vitro. Methods Cell viability and colony formation were analyzed by MTT and plate colony formation assays in SW982 cells, respectively. Apoptosis was detected by flow cytometry and western blotting. Epithelial-mesenchymal transition (EMT), MMP family proteins (MMP2/9), and the PI3K/Akt/mTOR pathway were detected by western blot. Cell migration was detected by scratch healing assay under BAI treatment in SW982 cells. Results BAI dose-dependently inhibited cell viability and colony forming in SW982 cells. BAI upregulated apoptotic proteins and downregulated EMT-related proteins, resulting in enhanced cell apoptosis and inhibited cell migration in SW982 cells. BAI also dose-dependently inhibited the phosphorylation of PI3K, Akt, and mTOR. Conclusions These results indicated that BAI inhibited FLSs proliferation and EMT, whereas induced cell apoptosis through blocking the PI3K/Akt/mTOR pathway, supporting clinical application for RA progression.
Collapse
|
9
|
Shen C, Xu M, Xu S, Zhang S, Lin W, Li H, Zeng S, Qiu Q, Liang L, Xiao Y, Xu H. Myricitrin inhibits fibroblast-like synoviocyte-mediated rheumatoid synovial inflammation and joint destruction by targeting AIM2. Front Pharmacol 2022; 13:905376. [PMID: 36120327 PMCID: PMC9471193 DOI: 10.3389/fphar.2022.905376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the effect and underlying mechanism of Myricitrin (Myr) in regulating fibroblast-like synoviocyte (FLS)-mediated synovitis and joint destruction in RA. Methods: FLSs were isolated from synovial tissues from patients with RA. Gene expression was measured using quantitative RT-qPCR. Protein expression was detected by immunohistochemistry or Western blot. Cell apoptosis was performed by an Annexin-PI staining assay. EdU incorporation was used to assess the proliferation of RA FLS. Transwell assay was used to characterize the cell migration and invasion ability of RA FLS. The potential target of Myr was identified by RNA sequencing analysis. The in vivo effect of Myr was assessed in a collagen-induced arthritis (CIA) model. Results: Myr treatment inhibited the lamellipodia formation, migration, and invasion, but not the apoptosis and proliferation, of RA FLSs. Myr also reduced the expression of CCL2, IL-6, IL-8, MMP-1, MMP-3, and MMP-13 induced by TNF-α. The RNA-seq results indicated that AIM2 may be a target gene of Myr in RA FLSs. Furthermore, compared to healthy controls, AIM2 expression showed higher levels in synovial tissues and FLSs from RA patients. AIM2 knockdown also inhibited RA FLS migration, invasion, cytokine, and MMP expression. In addition, either Myr treatment or AIM2 knockdown reduced the phosphorylation of AKT induced by TNF-α stimulation. Importantly, Myr administration relieved arthritis symptoms and inhibited AIM2 expression in the synovium of CIA mice. Conclusion: Our results indicate that Myr exerts an anti-inflammatory and anti-invasion effect in RA FLSs and provide evidence of the therapeutic potential of Myr for RA.
Collapse
Affiliation(s)
- Chuyu Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meilin Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siqi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuoyang Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shan Zeng
- Department of Rheumatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qian Qiu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Youjun Xiao, ; Hanshi Xu,
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Youjun Xiao, ; Hanshi Xu,
| |
Collapse
|
10
|
Arunsi UO, Chioma OE, Etusim PE, Owumi SE. Indigenous Nigeria medicinal herbal remedies: A potential source for therapeutic against rheumatoid arthritis. Exp Biol Med (Maywood) 2022; 247:1148-1178. [PMID: 35708153 PMCID: PMC9335509 DOI: 10.1177/15353702221102901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating disease associated with locomotion impairment, and conventional therapeutic drugs are not optimal for managing RA. There is an avalanche of medications used for the management of RA. Still, studies have shown that they are associated with severe side effects, including hepatotoxicity, retinopathy, and cardiotoxicity disorders of the central nervous system (CNS), skin, blood, and infections. Complementary and alternative medicine (CAM) is currently gaining attention as a novel panacea for managing debilitating diseases, such as RA. Nigerian folk herbal remedies are replete with a plethora of curative medicine, albeit unvalidated scientifically but with seemingly miraculous provenance. Studies of the identification of bioactive compounds present in these botanicals using advanced spectral analytical techniques have enhanced our understanding of the role of Nigerian herbal remedies in the treatment and management of RA. Interestingly, experimental studies abound that the bioactive compounds present in the extracts of plant botanicals protected animals from the development of RA in different experimental models and reduced the toxicity associated with conventional therapeutics. Validated mechanisms of RA amelioration in human and animal models include suppression of the expression of NF-κB, IL-1β, TNF-α, IL-6, IL-8, IL-17, IL-23, chemokines, TGF-β, RANKL, RANK, iNOS, arginase, COX-2, VEGFA, VEGFR, NFATC1, and TRAP in the synoviocytes. Decreased ROS, NO, MDA, carbonyl groups, and PGE2 in the synovial fluid increased the expression of PPARα/γ; antioxidant and anti-inflammatory molecules also improve RA etiology. In this mini-review, we discuss the global burden of RA, the novel role of plant-based botanicals as potential therapeutics against signaling pathways in RA. Also addressed is the possible repurposing/reprofiling of plant botanicals to increase their therapeutic index among RA patients that patronize traditional healers in Nigeria with a global projection.
Collapse
Affiliation(s)
- Uche O Arunsi
- Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK,Department of Biochemistry, Faculty of Biological and Physical Sciences, Abia State University, Uturu, 440001, Nigeria
| | - Ogbuka E Chioma
- Department of Social and Environmental Forestry, Faculty of Renewable Natural Resources, University of Ibadan, Ibadan 200005, Nigeria
| | - Paschal E Etusim
- Department of Animal and Environmental Biology, Faculty of Biological and Physical Sciences, Abia State University, Uturu 200, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan 200005, Nigeria,Solomon Owumi.
| |
Collapse
|
11
|
Discovery and pre-clinical characterization of a selective PI3Kδ inhibitor, LL-00071210 in rheumatoid arthritis. Eur J Pharmacol 2022; 927:175054. [PMID: 35636524 DOI: 10.1016/j.ejphar.2022.175054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022]
Abstract
PI3Kδ plays a critical role in adaptive immune cell activation and function. Suppression of PI3Kδ has been shown to counter excessive triggering of immune responses which has led to delineating the role of this isoform in the pathophysiology of autoimmune disorders. In the current study, we have described preclinical characterization of PI3Kδ specific inhibitor LL-00071210 in various rheumatoid arthritis models. LL-00071210 displayed excellent in vitro potency in biochemical and cellular assay against PI3Kδ with IC50 values of 24.6 nM and 9.4 nM, respectively. LL-00071210 showed higher selectivity over PI3Kγ and PI3Kβ as compared to available PI3K inhibitors. LL-00071210 had good stability in liver microsomes and plasma across species and showed low clearance, low-to-moderate Vss, with bioavailability of >50% in preclinical species. LL-00071210 demonstrated excellent in vivo efficacy in adjuvant-induced and collagen-induced arthritis models. Co-administration of LL-00071210 and methotrexate at subtherapeutic dose regimen in collagen induced arthritis model led to additive effects, indicating the combination potential of LL-00071210 along with available disease modifying anti-rheumatic drugs (DMARD). In conclusion, we have described a specific PI3Kδ inhibitor with ∼100-fold selectivity over other PI3K isoforms. LL-00071210 has good drug-like properties and thus warrants testing in the clinic for the treatment of autoimmune diseases.
Collapse
|
12
|
Ansalone C, Ainsworth RI, Nygaard G, Ai R, Prideaux EB, Hammaker D, Perumal NB, Weichert K, Tung F, Kodandapani L, Sauder JM, Mertsching EC, Benschop RJ, Boyle DL, Wang W, Firestein GS. Caspase-8 Variant G Regulates Rheumatoid Arthritis Fibroblast-Like Synoviocyte Aggressive Behavior. ACR Open Rheumatol 2022; 4:288-299. [PMID: 34963199 PMCID: PMC8992463 DOI: 10.1002/acr2.11384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Fibroblast-like synoviocytes (FLS) play a pivotal role in rheumatoid arthritis (RA) by contributing to synovial inflammation and progressive joint damage. An imprinted epigenetic state is associated with the FLS aggressive phenotype. We identified CASP8 (encoding for caspase-8) as a differentially marked gene and evaluated its pathogenic role in RA FLSs. METHODS RA FLS lines were obtained from synovial tissues at arthroplasty and used at passage 5-8. Caspase-8 was silenced using small interfering RNA, and its effect was determined in cell adhesion, migration and invasion assays. Quantitative reverse transcription PCR and western blot were used to assess gene and protein expression, respectively. A caspase-8 selective inhibitor was used determine the role of enzymatic activity on FLS migration and invasion. Caspase-8 isoform transcripts and epigenetic marks in FLSs were analyzed in FLS public databases. Crystal structures of caspase-8B and G were determined. RESULTS Caspase-8 deficiency in RA FLSs reduced cell adhesion, migration, and invasion independent of its catalytic activity. Epigenetic and transcriptomic analyses of RA FLSs revealed that a specific caspase-8 isoform, variant G, is the dominant isoform expressed (~80% of total caspase-8) and induced by PDGF. The crystal structures of caspase-8 variant G and B were identical except for a unique unstructured 59 amino acid N-terminal domain in variant G. Selective knockdown of caspase-8G was solely responsible for the effects of caspase-8 on calpain activity and cell invasion in FLS. CONCLUSION Blocking caspase-8 variant G could decrease cell invasion in diseases like RA without the potential deleterious effects of nonspecific caspase-8 inhibition.
Collapse
Affiliation(s)
| | | | - Gyrid Nygaard
- University of California San DiegoLa JollaCalifornia
| | - Rizi Ai
- University of California San DiegoLa JollaCalifornia
| | | | | | | | | | | | | | | | | | | | | | - Wei Wang
- University of California San DiegoLa JollaCalifornia
| | | |
Collapse
|
13
|
Sandhu G, Thelma BK. New Druggable Targets for Rheumatoid Arthritis Based on Insights From Synovial Biology. Front Immunol 2022; 13:834247. [PMID: 35265082 PMCID: PMC8899708 DOI: 10.3389/fimmu.2022.834247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease characterized by chronic inflammation and destruction of multiple small joints which may lead to systemic complications. Altered immunity via pathogenic autoantibodies pre-date clinical symptom development by several years. Incompletely understood range of mechanisms trigger joint-homing, leading to clinically evident articular disease. Advances in therapeutic approaches and understanding pathogenesis have improved prognosis and likely remission. However, partial/non-response to conventional and biologic therapies witnessed in a subset of patients highlights the need for new therapeutics. It is now evident that joint disease chronicity stems from recalcitrant inflammatory synovial environment, majorly maintained by epigenetically and metabolically reprogrammed synoviocytes. Therefore, interference with effector functions of activated cell types seems a rational strategy to reinstate synovial homeostasis and complement existing anti-inflammatory interventions to mitigate chronic RA. Presenting this newer aspect of fibroblast-like synoviocytes and myeloid cells underlying the altered synovial biology in RA and its potential for identification of new druggable targets is attempted in this review. Major leads from i) molecular insights of pathogenic cell types from hypothesis free OMICS approaches; ii) hierarchy of their dysregulated signaling pathways; and iii) knowledge of druggability of molecular nodes in these pathways are highlighted. Development of such synovial biology-directed therapeutics hold promise for an enriched drug repertoire for RA.
Collapse
Affiliation(s)
| | - B. K. Thelma
- Department of Genetics, University of Delhi, New Delhi, India
| |
Collapse
|
14
|
Craig M, Geng B, Wigby K, Phillips SA, Bakhoum C, Naheedy J, Cernelc-Kohan M. Activated phosphoinositide 3-kinase δ syndrome associated with nephromegaly, growth hormone deficiency, bronchiectasis: a case report. Allergy Asthma Clin Immunol 2022; 18:15. [PMID: 35189965 PMCID: PMC8862239 DOI: 10.1186/s13223-022-00655-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background Activated phosphoinositide 3-kinase (PI3K) δ syndrome (APDS) is a rare form of primary immunodeficiency with 243 known cases reported in the literature. Known findings associated with the condition include recurrent sinusitis and bronchitis, bronchiectasis, immune cytopenias, mild developmental delay, splenomegaly, and lymphadenopathy. We report the case of a child with APDS accompanied by unique clinical features: nephromegaly and growth hormone deficiency with associated pituitary anatomic abnormality. Case presentation The patient is a nine-year-old boy with a heterozygous de novo variant in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit δ (p.E1021K), previously reported in association with APDS. Our patient, who had no family history of immunodeficiency, exhibits classic findings of this syndrome but also has unique features that extend the phenotypic spectrum of this disorder. At 5 years of age, the patient showed marked growth deceleration and was demonstrated to have growth hormone (GH) deficiency with associated pituitary anatomic abnormality. He started GH therapy with an excellent response. He additionally has bilateral nephromegaly of unclear etiology, microscopic hematuria and proteinuria, asthma, and has developed left hip pain with arthrocentesis consistent with oligoarticular juvenile idiopathic arthritis. At age nine, the patient was referred to genetics and whole exome sequencing revealed APDS. Though there was initial concern that GH may increase risk for malignancy as GH signals through the PI3K pathway, he was allowed to continue treatment as the PI3K pathway was considered constitutively active at baseline. Conclusions Our patient’s unique presentation adds to the clinical information regarding APDS, demonstrates the utility of genetic testing and illustrates the importance of a multidisciplinary collaborative approach in managing this complex syndrome. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-022-00655-5.
Collapse
|
15
|
Ward SG. The Role of PI3K Isoforms in Autoimmune Disease. Curr Top Microbiol Immunol 2022; 436:337-347. [PMID: 36243851 DOI: 10.1007/978-3-031-06566-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aberrant overactivation of the immune system can give rise to chronic and persistent self-attack, culminating in autoimmune disease. This is currently managed therapeutically using potent immunosuppressive and anti-inflammatory drugs. Class I phosphoinositide-3-kinases (PI3Ks) have been identified as ideal therapeutic targets for autoimmune diseases given their wide-ranging roles in immunological processes. Although progress has been hampered by issues such as poor drug tolerance and drug resistance, several PI3K inhibitors have now received regulatory approval with many others in development, including several intended to suppress the immune response in autoimmune and inflammatory diseases. This chapter reviews the evidence for contribution of aberrant PI3K activity to a range of autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis and type I diabetes) and possible therapeutic application of isoform-specific PI3K inhibitors as immunosuppressive drugs.
Collapse
Affiliation(s)
- Stephen G Ward
- Department of Pharmacy and Pharmacology and Bath Centre for Therapeutic Innovation, University of Bath, Claverton Down, Bath, B2 7AY, UK.
| |
Collapse
|
16
|
Kim JW, Choe JY, Park SH. Metformin and its therapeutic applications in autoimmune inflammatory rheumatic disease. Korean J Intern Med 2022; 37:13-26. [PMID: 34879473 PMCID: PMC8747910 DOI: 10.3904/kjim.2021.363] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Metformin is a first-line therapeutic agent for type 2 diabetes. Apart from its glucose-lowering effect, metformin is attracting interest regarding possible therapeutic benefits in various other conditions. As metformin regulates cell metabolism, proliferation, growth, and autophagy, it may also modulate immune cell functions. Given that metformin acts on multiple intracellular signaling pathways, including adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation, and that AMPK and its downstream intracellular signaling control the activation and differentiation of T and B cells and inflammatory responses, metformin may exert immunomodulatory and anti- inflammatory effects. The efficacy of metformin has been investigated in preclinical and clinical studies on rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, Sjögren's syndrome, scleroderma, ankylosing spondylitis, and gout. In this review, we discuss the potential mechanisms through which metformin exerts its therapeutic effects in these diseases, focusing particularly on rheumatoid arthritis and osteoarthritis.
Collapse
Affiliation(s)
- Ji-Won Kim
- Division of Rheumatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu,
Korea
| | - Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu,
Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| |
Collapse
|
17
|
Stergiou IE, Chatzis L, Papanikolaou A, Giannouli S, Tzioufas AG, Voulgarelis M, Kapsogeorgou EK. Akt Signaling Pathway Is Activated in the Minor Salivary Glands of Patients with Primary Sjögren's Syndrome. Int J Mol Sci 2021; 22:ijms222413441. [PMID: 34948236 PMCID: PMC8709495 DOI: 10.3390/ijms222413441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is an autoimmune exocrinopathy of mainly the salivary and lacrimal glands associated with high prevalence of lymphoma. Akt is a phosphoinositide-dependent serine/threonine kinase, controlling numerous pathological processes, including oncogenesis and autoimmunity. Herein, we sought to examine its implication in pSS pathogenesis and related lymphomagenesis. The expression of the entire and activated forms of Akt (partially and fully activated: phosphorylated at threonine-308 (T308) and serine-473 (S473), respectively), and two of its substrates, the proline-rich Akt-substrate of 40 kDa (PRAS40) and FoxO1 transcription factor has been immunohistochemically examined in minor salivary glands (MSG) of pSS patients (n = 29; including 9 with pSS-associated lymphoma) and sicca-complaining controls (sicca-controls; n = 10). The entire and phosphorylated Akt, PRAS40, and FoxO1 molecules were strongly, uniformly expressed in the MSG epithelia and infiltrating mononuclear cells of pSS patients, but not sicca-controls. Morphometric analysis revealed that the staining intensity of the fully activated phospho-Akt-S473 in pSS patients (with or without lymphoma) was significantly higher than sicca-controls. Akt pathway activation was independent from the extent or proximity of infiltrates, as well as other disease features, including lymphoma. Our findings support that the Akt pathway is specifically activated in MSGs of pSS patients, revealing novel therapeutic targets.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
| | - Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
| | | | - Stavroula Giannouli
- Hematology Unit, Second Department of Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
| | - Michael Voulgarelis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
| | - Efstathia K. Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (L.C.); (A.G.T.); (M.V.)
- Correspondence: ; Tel.: +30-210-746-2670
| |
Collapse
|
18
|
Umar S, Palasiewicz K, Volin MV, Romay B, Rahat R, Tetali C, Arami S, Guma M, Ascoli C, Sweiss N, Zomorrodi RK, O'Neill LAJ, Shahrara S. Metabolic regulation of RA macrophages is distinct from RA fibroblasts and blockade of glycolysis alleviates inflammatory phenotype in both cell types. Cell Mol Life Sci 2021; 78:7693-7707. [PMID: 34705053 PMCID: PMC8739866 DOI: 10.1007/s00018-021-03978-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/10/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
Recent studies have shown the significance of metabolic reprogramming in immune and stromal cell function. Yet, the metabolic reconfiguration of RA macrophages (MΦs) is incompletely understood during active disease and in crosstalk with other cell types in experimental arthritis. This study elucidates a distinct regulation of glycolysis and oxidative phosphorylation in RA MΦs compared to fibroblast (FLS), although PPP (Pentose Phosphate pathway) is similarly reconfigured in both cell types. 2-DG treatment showed a more robust impact on impairing the RA M1 MΦ-mediated inflammatory phenotype than IACS-010759 (IACS, complexli), by reversing ERK, AKT and STAT1 signaling, IRF8/3 transcription and CCL2 or CCL5 secretion. This broader inhibitory effect of 2-DG therapy on RA M1 MΦs was linked to dysregulation of glycolysis (GLUT1, PFKFB3, LDHA, lactate) and oxidative PPP (NADP conversion to NADPH), while both compounds were ineffective on oxidative phosphorylation. Distinctly, in RA FLS, 2-DG and IACS therapies constrained LPS/IFNγ-induced AKT and JNK signaling, IRF5/7 and fibrokine expression. Disruption of RA FLS metabolic rewiring by 2-DG or IACS therapy was accompanied by a reduction of glycolysis (HIF1α, PFKFB3) and suppression of citrate or succinate buildup. We found that 2-DG therapy mitigated CIA pathology by intercepting joint F480+iNOS+MΦ, Vimentin+ fibroblast and CD3+T cell trafficking along with downregulation of IRFs and glycolytic intermediates. Surprisingly, IACS treatment was inconsequential on CIA swelling, cell infiltration, M1 and Th1/Th17 cytokines (IFN-γ/IL-17) and joint glycolytic mediators. Collectively, our results indicate that blockade of glycolysis is more effective than inhibition of complex 1 in CIA, in part due to its effectiveness on the MΦ inflammatory phenotype.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Bianca Romay
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Rani Rahat
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Chandana Tetali
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Shiva Arami
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology, San Diego, School of Medicine, University of California, La Jolla, CA, USA
- VA Medical Center, San Diego, CA, USA
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep, and Allergy, The University of Illinois at Chicago, Chicago, IL, USA
| | - Nadera Sweiss
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA.
| |
Collapse
|
19
|
Shen C, Kuang Y, Xu S, Li R, Wang J, Zou Y, Wang C, Xu S, Liang L, Lin C, Xiao Y, Xu H. Nitidine chloride inhibits fibroblast like synoviocytes-mediated rheumatoid synovial inflammation and joint destruction by targeting KCNH1. Int Immunopharmacol 2021; 101:108273. [PMID: 34700130 DOI: 10.1016/j.intimp.2021.108273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Nitidine chloride (NC), a natural small molecular compound from traditional Chinese herbal medicine zanthoxylum nitidum, has been shown to exhibit anti-tumor effect. However, its role in autoimmune diseases such as rheumatoid arthritis (RA) is unknown. Here, we investigate the effect of NC in controlling fibroblast-like synoviocytes (FLS)-mediated synovial inflammation and joint destruction in RA and further explore its underlying mechanism(s). METHODS FLSs were separated from synovial tissues obtained from patients with RA. Protein expression was analyzed by Western blot or immunohistochemistry. Gene expression was measured using quantitative RT-PCR. ELISA was used to measure the levels of cytokines and MMPs. Cell proliferation was detected using EdU incorporation. Migration and invasion were evaluated by Boyden chamber assay. RNA sequencing analysis was used to identify the target of NC. Collagen-induced arthritis (CIA) model was used to evaluate the in vivo effect of NC. RESULTS NC treatment reduced the proliferation, migration, invasion, and lamellipodia formation but not apoptosis of RA FLSs. We also demonstrated the inhibitory effect of NC on TNF-α-induced expression and secretion of IL-6, IL-8, CCL-2, MMP-1 and MMP-13. Furthermore, we identified KCNH1, a gene that encodes ether-à-go-go-1 channel, as a novel targeting gene of NC in RA FLSs. KCNH1 expression was increased in FLSs and synovial tissues from patients with RA compared to healthy controls. KCNH1 knockdown or NC treatment decreased the TNF-α-induced phosphorylation of AKT. Interestingly, NC treatment ameliorated the severity of arthritis and reduced synovial KCNH1 expression in mice with CIA. CONCLUSIONS Our data demonstrate that NC treatment inhibits aggressive and inflammatory actions of RA FLSs by targeting KCNH1 and sequential inhibition of AKT phosphorylation. Our findings suggest that NC might control FLS-mediated rheumatoid synovial inflammation and joint destruction, and be a novel therapeutic agent for RA.
Collapse
Affiliation(s)
- Chuyu Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Kuang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shudi Xu
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Ruiru Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingnan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaoyao Zou
- Department of Rheumatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Siqi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changsong Lin
- Department of Rheumatology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Vanhaesebroeck B, Perry MWD, Brown JR, André F, Okkenhaug K. PI3K inhibitors are finally coming of age. Nat Rev Drug Discov 2021; 20:741-769. [PMID: 34127844 PMCID: PMC9297732 DOI: 10.1038/s41573-021-00209-1] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 01/08/2023]
Abstract
Overactive phosphoinositide 3-kinase (PI3K) in cancer and immune dysregulation has spurred extensive efforts to develop therapeutic PI3K inhibitors. Although progress has been hampered by issues such as poor drug tolerance and drug resistance, several PI3K inhibitors have now received regulatory approval - the PI3Kα isoform-selective inhibitor alpelisib for the treatment of breast cancer and inhibitors mainly aimed at the leukocyte-enriched PI3Kδ in B cell malignancies. In addition to targeting cancer cell-intrinsic PI3K activity, emerging evidence highlights the potential of PI3K inhibitors in cancer immunotherapy. This Review summarizes key discoveries that aid the clinical translation of PI3Kα and PI3Kδ inhibitors, highlighting lessons learnt and future opportunities.
Collapse
Affiliation(s)
| | - Matthew W D Perry
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jennifer R Brown
- CLL Center, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Fabrice André
- Institut Gustave Roussy, INSERM U981, Université Paris Saclay, Paris, France
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Abdel-Dayem SIA, Khalil MNA, Abdelrahman EH, El-Gohary HM, Kamel AS. Sesquiterpene lactones; Damsin and neoambrosin suppress cytokine-mediated inflammation in complete Freund's adjuvant rat model via shutting Akt/ERK1/2/STAT3 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113407. [PMID: 32979413 DOI: 10.1016/j.jep.2020.113407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGIAL RELEVANCE Although Damsissa (Ambrosia maritima) is traditionally used as anti-inflammatory and diuretic, the biological activity and mechanism of action of its major constituents are to be elucidated. AIM to decipher the anti-arthritic potential of damsin (DMS) and neoambrosin (NMS) and to unfold their molecular signaling in complete Freund's adjuvant (CFA)-induced arthritis model. MATERIALS AND METHODS the right hind paw was inoculated with CFA (0.1 ml) at day 0 and 7 while treatments were started from the 14th day and continued for 2 weeks. Rats were randomly assigned into 4 groups; normal group (NRML), CFA-induced arthritis group, CFA-induced arthritis treated with DMS and NMS (10 mg/kg/day) as 3rd and 4th group; respectively. RESULTS Throughout experimental period, treatments ameliorated the increase of paw volume, knee joint diameter and nociception tests as reflected in open field arena. Also, DSM and NMS suppressed phosphorylation of Akt, STAT-3, ERK1/2 which was further mirrored by inactivation of GSK3β and downregulation of MCP-1 together with CCN1 and NF-kβ in hind paw tissue. Concomitantly, inflammation markers; TNF-α, IL-6, -12 were lowered as confirmed microscopically during examination of hind paw tissue. CONCLUSION DSM and NMS-induced suppression of NF-kβ subdues clinical features of RA most probably through repression of Akt/ERK1/2/STAT3 pathway. Therefore, DMS and NMS can serve as safe and effective treatment for rheumatoid arthritis, one of the most disabling chronic, inflammatory and painful autoimmune disease.
Collapse
Affiliation(s)
- Shymaa I A Abdel-Dayem
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Mohammed N A Khalil
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt; Pharmacognosy Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11361, Egypt.
| | - Enas H Abdelrahman
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Hamida M El-Gohary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Ahmed S Kamel
- Pharmacology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| |
Collapse
|
22
|
Ahmed AA, El Shahaway AA, Hussien SA. Activated PI3K-delta syndrome in an Egyptian pediatric cohort with primary immune deficiency. Allergol Immunopathol (Madr) 2020; 48:686-693. [PMID: 32349894 DOI: 10.1016/j.aller.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Activated Phospho-Inositide 3 (PI3) Kinases Delta syndrome (APDS) can underlie primary immune deficiency. The prevalence and phenotypic characterization of these patients are not well described in Egypt. OBJECTIVES To describe patients with APDS in hospitalized children with recurrent respiratory tract infections with suspected primary immune deficiency. METHODS 79 patients were included in the study. E1021K and E525K mutations of PI3K δ chain gene were screened by Sanger sequencing technique. RESULTS one patient was heterozygous to E1021K mutation; a female child was diagnosed clinically as Combined Immune Deficiency with CD4 and B lymphopenia and markedly deficient IgG and increased IgM. The E525K mutation was not detected in our cohort. CONCLUSIONS Screening for APDS in patients with recurrent respiratory tract infections with undefined antibody deficiency or combined immune deficiency with or without bronchiectasis is required. These patients need great attention to benefit from the available treatment. Further studies on the Egyptian population are recommended to increase the knowledge about the prevalence and phenotypic characterization of this disease in Egypt.
Collapse
Affiliation(s)
- Alshymaa A Ahmed
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig City, Al Sharqia Governorate, Egypt.
| | - Alia A El Shahaway
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Zagazig University, Zagazig City, Al Sharqia Governorate, Egypt.
| | - Sameh A Hussien
- Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig City, Al Sharqia Governorate, Egypt.
| |
Collapse
|
23
|
Masoumi M, Bashiri H, Khorramdelazad H, Barzaman K, Hashemi N, Sereshki HA, Sahebkar A, Karami J. Destructive Roles of Fibroblast-like Synoviocytes in Chronic Inflammation and Joint Damage in Rheumatoid Arthritis. Inflammation 2020; 44:466-479. [PMID: 33113036 DOI: 10.1007/s10753-020-01371-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/06/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022]
Abstract
Fibroblast-like synoviocytes (FLSs) are important non-immune cells located mostly in the inner layer of the synovium. Indeed, these cells are specialized mesenchymal cells, implicated in collagen homeostasis of the articular joint and provide extracellular matrix (ECM) materials for cartilage and contribute to joint destruction via multiple mechanisms. RA FLS interactions with immune and non-immune cells lead to the development and organization of tertiary structures such as ectopic lymphoid-like structures (ELSs), tertiary lymphoid organs (TLOs), and secretion of proinflammatory cytokines. The interaction of RA FLS cells with immune and non-immune cells leads to stimulation and activation of effector immune cells. Pathological role of RA FLS cells has been reported for many years, while molecular and cellular mechanisms are not completely understood yet. In this review, we tried to summarize the latest findings about the role of FLS cells in ELS formation, joint destruction, interactions with immune and non-immune cells, as well as potential therapeutic options in rheumatoid arthritis (RA) treatment. Our study revealed data about interactions between RA FLS and immune/non-immune cells as well as the role of RA FLS cells in joint damage, ELS formation, and neoangiogenesis, which provide useful information for developing new approaches for RA treatment.
Collapse
Affiliation(s)
- Maryam Masoumi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Hamidreza Bashiri
- Department of Rheumatology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Khadijeh Barzaman
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nader Hashemi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hale Abdoli Sereshki
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Jafar Karami
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
24
|
Roy E, Byrareddy SN, Reid SP. Role of MicroRNAs in Bone Pathology during Chikungunya Virus Infection. Viruses 2020; 12:E1207. [PMID: 33114216 PMCID: PMC7690852 DOI: 10.3390/v12111207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus, transmitted by mosquitoes, which causes Chikungunya fever with symptoms of fever, rash, headache, and joint pain. In about 30%-40% of cases, the infection leads to polyarthritis and polyarthralgia. Presently, there are no treatment strategies or vaccine for Chikungunya fever. Moreover, the mechanism of CHIKV induced bone pathology is not fully understood. The modulation of host machinery is known to be essential in establishing viral pathogenesis. MicroRNAs (miRNAs) are small non-coding RNAs that regulate major cellular functions by modulating gene expression. Fascinatingly, recent reports have indicated the role of miRNAs in regulating bone homeostasis and altered expression of miRNAs in bone-related pathological diseases. In this review, we summarize the altered expression of miRNAs during CHIKV pathogenesis and the possible role of miRNAs during bone homeostasis in the context of CHIKV infection. A holistic understanding of the different signaling pathways targeted by miRNAs during bone remodeling and during CHIKV-induced bone pathology may lead to identification of useful biomarkers or therapeutics.
Collapse
Affiliation(s)
- Enakshi Roy
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA;
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - St Patrick Reid
- Department of Pathology & Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5900, USA;
| |
Collapse
|
25
|
Masoumi M, Mehrabzadeh M, Mahmoudzehi S, Mousavi MJ, Jamalzehi S, Sahebkar A, Karami J. Role of glucose metabolism in aggressive phenotype of fibroblast-like synoviocytes: Latest evidence and therapeutic approaches in rheumatoid arthritis. Int Immunopharmacol 2020; 89:107064. [PMID: 33039953 DOI: 10.1016/j.intimp.2020.107064] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/10/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
Glucose metabolism is considerably increased in inflamed joints of rheumatoid arthritis (RA) patients at early stages. Fibroblast-like synoviocytes (FLSs) activation and subsequent joint damage are linked with metabolic alterations, especially glucose metabolism. It has been shown that glucose metabolism is elevated in aggressive phenotype of FLS cells. In this regard, glycolytic blockers are able to reduce aggressiveness of the FLS cells resulting in decreased joint damage in various arthritis models. Besides, metabolic changes in immune and non-immune cells such as FLS can provide important targets for therapeutic intervention. Glycolytic enzymes such as hexokinase 2 (HK2), phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB), and phosphoglycerate kinase (PGK) play essential roles in aggressive behavior of FLS cells. It has been documented that the HK2 enzyme is significantly upregulated in RA FLS cells, compared with osteoarthritis (OA) FLS cells. The HK2 is expressed in a few tissues and upregulated in the inflamed synovium of RA patients that makes it a potential target for RA treatment. Furthermore, HK2 has different roles in each cellular compartment, which offers another level of specificity and provides a specific target to reduce deleterious effects of inhibiting the enzyme in RA without affecting glycolysis in normal cells. Thus, targeting the HK2 enzyme might be an attractive potential selective target for arthritis therapy and safer than global glycolysis inhibition. Therefore, this review was aimed to summarize the current knowledge about glucose metabolism of FLS cells and suggest novel biomarkers, which are potential candidates for RA treatment.
Collapse
Affiliation(s)
- Maryam Masoumi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Mehrabzadeh
- Department of Medical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Salman Mahmoudzehi
- Department of Medical Laboratory Sciences, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirous Jamalzehi
- Department of Medical Laboratory Sciences, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Halal Research Center of IRI, FDA, Tehran, Iran.
| | - Jafar Karami
- Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Julià A, Ávila G, Celis R, Sanmartí R, Ramírez J, Marsal S, Cañete JD. Lower peripheral helper T cell levels in the synovium are associated with a better response to anti-TNF therapy in rheumatoid arthritis. Arthritis Res Ther 2020; 22:196. [PMID: 32843099 PMCID: PMC7446220 DOI: 10.1186/s13075-020-02287-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background The mechanisms by which only some rheumatoid arthritis (RA) patients respond favorably to TNF blockade are still poorly characterized. The goal of this study was to identify biological features that explain this differential response using a multilevel transcriptome analysis of the synovial membrane. Methods Synovial samples from 11 patients on anti-TNF therapy were obtained by arthroscopy at baseline and week 20. Analysis of the synovial transcriptome was performed at the gene, pathway, and cell-type levels. Newly characterized pathogenic cell types in RA, peripheral helper T cells (TPH), and CD34-THY1+ fibroblasts were estimated using a cell-type deconvolution approach. TPH association was validated using immunofluorescence. External validation was performed on an independent dataset. Results After multiple-test correction, 16 and 4 genes were differentially expressed at baseline and week 20, respectively. At the pathway level, 86 and 17 biological processes were significantly enriched at baseline and week 20, respectively. Longitudinal expression changes were associated with a drastic decrease of innate immune activity (P < 5e−30), and an activation of the bone and cartilage regeneration processes (P < 5e−10). Cell-type deconvolution revealed a significant association between low TPH cells at baseline and a better response (P = 0.026). Lower TPH cells were maintained in good responders up to week 20 (P = 0.032). Immunofluorescent analyses confirmed the accuracy of the cell-type estimation (r2 = 0.58, P = 0.005) and an association with response. TPH association with anti-TNF response was validated in an independent sample of RA patients (P = 0.0040). Conclusions A lower abundance in the synovial membrane of the pathogenic T cell type newly associated with RA, peripheral helper T lymphocyte, is associated with a good response to anti-TNF therapy. Major changes in the myeloid cell compartment were also observed in response to therapy. The results of this study could help develop more effective therapies aimed at treating the pathogenic mechanisms in RA that are currently not well targeted by anti-TNF agents.
Collapse
Affiliation(s)
- Antonio Julià
- Rheumatology Research Group, Vall d'Hebron Research Institute, Vall Hebron University Hospital, Pg Vall Hebron 119-120, 08035, Barcelona, Spain.
| | - Gabriela Ávila
- Rheumatology Research Group, Vall d'Hebron Research Institute, Vall Hebron University Hospital, Pg Vall Hebron 119-120, 08035, Barcelona, Spain
| | - Raquel Celis
- Rheumatology Department, Hospital Clínic de Barcelona i IDIBAPS, Barcelona, Spain
| | - Raimon Sanmartí
- Rheumatology Department, Hospital Clínic de Barcelona i IDIBAPS, Barcelona, Spain
| | - Julio Ramírez
- Rheumatology Department, Hospital Clínic de Barcelona i IDIBAPS, Barcelona, Spain
| | - Sara Marsal
- Rheumatology Research Group, Vall d'Hebron Research Institute, Vall Hebron University Hospital, Pg Vall Hebron 119-120, 08035, Barcelona, Spain
| | - Juan D Cañete
- Rheumatology Department, Hospital Clínic de Barcelona i IDIBAPS, Barcelona, Spain
| |
Collapse
|
27
|
Li X, Li M. Estrogen downregulates TAK1 expression in human fibroblast-like synoviocytes and in a rheumatoid arthritis model. Exp Ther Med 2020; 20:1764-1769. [PMID: 32742406 DOI: 10.3892/etm.2020.8848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 05/15/2020] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor β-activated kinase-1 (TAK1), a member of the mitogen-activated protein kinase family, plays a key role in the pathogenesis and progression of rheumatoid arthritis (RA). Estrogen has been previously reported to delay arthritis progression. However, the exact association between TAK1 and estrogen remains elusive. The present study demonstrated that TAK1 was upregulated in synoviocytes of patients with RA compared with patients with osteoarthritis and healthy controls. In addition, TAK1 was also expressed in cultured fibroblast-like synoviocytes (FLS), and its levels decreased significantly in 17β-estradiol (E2)-treated cells in a dose-dependent manner. Furthermore, administration of E2 significantly decreased TAK1 expression and attenuated the development of collagen-induced arthritis (CIA). Taken together, the findings of the present study suggested that E2 mediates a decrease of TAK1 in both FLS and CIA, which subsequently results in a suppression of the pathological process of CIA. Therefore, estrogen may serve as a potential therapeutic agent for the treatment of RA by targeting TAK1.
Collapse
Affiliation(s)
- Xi Li
- Department of Sports Medicine and Joint Surgery, The People's Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Miao Li
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
28
|
Chellapandian D, Chitty-Lopez M, Leiding JW. Precision Therapy for the Treatment of Primary Immunodysregulatory Diseases. Immunol Allergy Clin North Am 2020; 40:511-526. [DOI: 10.1016/j.iac.2020.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Rheumatoid Arthritis and CLOVES Syndrome: A Tricky Diagnosis. Diagnostics (Basel) 2020; 10:diagnostics10070467. [PMID: 32660056 PMCID: PMC7400073 DOI: 10.3390/diagnostics10070467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 02/02/2023] Open
Abstract
The PI3K/AKT/mTOR signaling pathway is significantly activated in rheumatoid arthritis. In addition, somatic activating mutations of the PI3K/AKT/mTOR pathway may result in PIK3CA-related overgrowth spectrum diseases, including CLOVES (Congenital Lipomatous Overgrowth, Vascular malformation, Epidermal nevi, Skeletal abnormalities/Scoliosis) syndrome. We describe the case of a young female patient, with anti-citrullinated peptide antibodies-positive rheumatoid arthritis, referred for persistent finger pain and stiffness. Examination revealed discrete macrodactyly involving two fingers, scoliosis, asymmetrical calves, venectasias, a shoulder nevus and triangular feet with a “sandal gap” between two toes. These mild dysmorphic features with early-onset and the history of surgeries for thoracic lipoma and venous malformation were strongly suggestive of CLOVES syndrome. Confirmatory mutation analysis was not performed, as blood or saliva testing is not contributive for tissue-specific localized effects in the PIK3CA-related overgrowth spectrum. Nevertheless, lack of detection of a PIK3CA mutation does not exclude the diagnosis in patients fulfilling clinical criteria. Due to the patient’s wish to plan a pregnancy, therapy consisted in sulfasalazine and hydroxychloroquine, along with orthotic correction of leg length discrepancy. Overgrowth syndromes and arthritis may share common pathways. Mild macrodactyly should be differentiated from dactylitis. Diagnosing patients with minimal dysmorphic features within the PI3K-related overgrowth spectrum may help design better care strategies, in the quest for personalized medicine.
Collapse
|
30
|
Svensson MND, Zoccheddu M, Yang S, Nygaard G, Secchi C, Doody KM, Slowikowski K, Mizoguchi F, Humby F, Hands R, Santelli E, Sacchetti C, Wakabayashi K, Wu DJ, Barback C, Ai R, Wang W, Sims GP, Mydel P, Kasama T, Boyle DL, Galimi F, Vera D, Tremblay ML, Raychaudhuri S, Brenner MB, Firestein GS, Pitzalis C, Ekwall AKH, Stanford SM, Bottini N. Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. SCIENCE ADVANCES 2020; 6:eaba4353. [PMID: 32637608 PMCID: PMC7319753 DOI: 10.1126/sciadv.aba4353] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Fibroblast-like synoviocytes (FLS) are joint-lining cells that promote rheumatoid arthritis (RA) pathology. Current disease-modifying antirheumatic agents (DMARDs) operate through systemic immunosuppression. FLS-targeted approaches could potentially be combined with DMARDs to improve control of RA without increasing immunosuppression. Here, we assessed the potential of immunoglobulin-like domains 1 and 2 (Ig1&2), a decoy protein that activates the receptor tyrosine phosphatase sigma (PTPRS) on FLS, for RA therapy. We report that PTPRS expression is enriched in synovial lining RA FLS and that Ig1&2 reduces migration of RA but not osteoarthritis FLS. Administration of an Fc-fusion Ig1&2 attenuated arthritis in mice without affecting innate or adaptive immunity. Furthermore, PTPRS was down-regulated in FLS by tumor necrosis factor (TNF) via a phosphatidylinositol 3-kinase-mediated pathway, and TNF inhibition enhanced PTPRS expression in arthritic joints. Combination of ineffective doses of TNF inhibitor and Fc-Ig1&2 reversed arthritis in mice, providing an example of synergy between FLS-targeted and immunosuppressive DMARD therapies.
Collapse
Affiliation(s)
- Mattias N. D. Svensson
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Martina Zoccheddu
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shen Yang
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gyrid Nygaard
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian Secchi
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Biomedical Sciences, National Institute of Biostructures and Biosystems, University of Sassari Medical School, 07100 Sassari, Italy
| | - Karen M. Doody
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kamil Slowikowski
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Partners HealthCare Personalized Medicine, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Technical Institute and Harvard University, Cambridge, MA 02138, USA
- Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA 02138, USA
| | - Fumitaka Mizoguchi
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Frances Humby
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Rebecca Hands
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Eugenio Santelli
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Cristiano Sacchetti
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kuninobu Wakabayashi
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Dennis J. Wu
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher Barback
- Department of Radiology, University of California, La Jolla, CA 92093, USA
- UCSD Molecular Imaging Program, University of California, La Jolla, CA 92093, USA
| | - Rizi Ai
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gary P. Sims
- Respiratory, Inflammation and Autoimmunity, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Piotr Mydel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, The Laboratory Building, 5th Floor, 5021 Bergen, Norway
- Department of Microbiology, Jagiellonian University, Kraków, Poland
| | - Tsuyoshi Kasama
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - David L. Boyle
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesco Galimi
- Department of Biomedical Sciences, National Institute of Biostructures and Biosystems, University of Sassari Medical School, 07100 Sassari, Italy
| | - David Vera
- Department of Radiology, University of California, La Jolla, CA 92093, USA
- UCSD Molecular Imaging Program, University of California, La Jolla, CA 92093, USA
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Partners HealthCare Personalized Medicine, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Technical Institute and Harvard University, Cambridge, MA 02138, USA
- Rheumatology Unit, Karolinska Institutet, Stockholm S-171 76, Sweden
- Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PT, UK
| | - Michael B. Brenner
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gary S. Firestein
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Anna-Karin H. Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stephanie M. Stanford
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nunzio Bottini
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
31
|
Sun K, Luo J, Guo J, Yao X, Jing X, Guo F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review. Osteoarthritis Cartilage 2020; 28:400-409. [PMID: 32081707 DOI: 10.1016/j.joca.2020.02.027] [Citation(s) in RCA: 307] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a complicated degenerative disease that affects whole joint tissue. Currently, apart from surgical approaches to treat late stage OA, effective treatments to reverse OA are not available. Thus, the mechanisms leading to OA, and more effective approaches to treat OA should be investigated. According to available evidence, the PI3K/AKT/mTOR signaling pathway is essential for normal metabolism of joint tissues, but is also involved in development of OA. To provide a wide viewpoint to roles of PI3K/AKT/mTOR signaling pathway in osteoarthritis, a comprehensive literature search was performed using PubMed terms 'PI3K OR AKT OR mTOR' and 'osteoarthritis'. This review highlights the role of PI3K/AKT/mTOR signaling in cartilage degradation, subchondral bone dysfunction, and synovial inflammation, and discusses how this signaling pathway affects development of the disease. We also summarize recent evidences of therapeutic approaches to treat OA by targeting the PI3K/AKT/mTOR pathway, and discuss potential challenges in developing these strategies for clinical treatment of OA.
Collapse
Affiliation(s)
- K Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - J Luo
- The Center for Biomedical Research, The Tongji Hospital Research Building, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| | - J Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - X Yao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - X Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - F Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
32
|
Structurally novel PI3Kδ/γ dual inhibitors characterized by a seven-membered spirocyclic spacer: The SARs investigation and PK evaluation. Eur J Med Chem 2020; 191:112143. [DOI: 10.1016/j.ejmech.2020.112143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/29/2019] [Accepted: 02/11/2020] [Indexed: 12/30/2022]
|
33
|
Cai Y, Yu J, Ren P, He J, Wu Z, Xiao K, Jia H, Wang J, Sai Y, Dai G, Li X, Su W, Ngo K, Castro G, Acton PD, Fung‐Leung W, Edwards JP, Venable J, Rao TS. Immunological characterization of HM5023507, an orally active PI3Kδ/γ inhibitor. Pharmacol Res Perspect 2020; 8:e00559. [PMID: 31956418 PMCID: PMC6957347 DOI: 10.1002/prp2.559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Phosphoinositide 3-kinases, delta (PI3Kδ) and gamma (PI3Kγ) are enriched in immune cells and regulate the development and function of innate and adaptive immunity. Dual PI3Kδγ inhibitors are considered high value targets for their potential to treat a variety of immune-mediated diseases, but their discovery has been challenging. Here we describe the preclinical pharmacology of HM5023507, an orally active dual inhibitor of δγ isoforms in immune signaling. HM5023507 inhibited PI3Kδ and PI3Kγ isoforms with greater than 100-fold selectivity against PI3Kα and PI3Kβ in recombinant enzymatic assays and in primary human immune cells with an exquisite selectivity against other targets. HM5023507 attenuated the PI3Kδ/γ signaling in human basophils (IC50: 42/340 nmol/L; selectivity ratio ~1:8). HM5023507 attenuated the activation and function of human B and T cells, Th17 differentiation of CD4 T cells in the blood of healthy donors and rheumatoid arthritis patients, and cytokine and IgG production in human T and B cell cocultures, in vitro. Orally dosed HM5023507 attenuated PI3K δ/γ-mediated immune signaling in the rat in a dose-related manner. In addition, HM5023507 inhibited semiestablished collagen-induced arthritic inflammation in the rats (ED50 of 0.25mg/kg, p.o. BID or 0.5 mg/kg, QD, AUC: 1422 ng/mL*h), improved histopathology- and micro-computed tomography (µCT)-based indices of joint damage, bone destruction, and attenuated the levels of anti-collagen antibody, with an overall anti-inflammatory profile matching that of a TNFα neutralizing antibody. The PI3K δγ inhibitory profile of HM5023507 and its selectivity make it a useful tool to further delineate immunobiology of dual PI3K δγ targeting.
Collapse
Affiliation(s)
- Yu Cai
- Hutchison MediPharma, Research and Development CenterPudongShanghaiChina
| | - Jun Yu
- Hutchison MediPharma, Research and Development CenterPudongShanghaiChina
| | - Ping Ren
- Hutchison MediPharma, Research and Development CenterPudongShanghaiChina
| | - Jianlin He
- Hutchison MediPharma, Research and Development CenterPudongShanghaiChina
| | - Zhipeng Wu
- Hutchison MediPharma, Research and Development CenterPudongShanghaiChina
| | - Kun Xiao
- Hutchison MediPharma, Research and Development CenterPudongShanghaiChina
| | - Hong Jia
- Hutchison MediPharma, Research and Development CenterPudongShanghaiChina
| | - Jian Wang
- Hutchison MediPharma, Research and Development CenterPudongShanghaiChina
| | - Yang Sai
- Hutchison MediPharma, Research and Development CenterPudongShanghaiChina
| | - Guangxiu Dai
- Hutchison MediPharma, Research and Development CenterPudongShanghaiChina
| | - Xiong Li
- Hutchison MediPharma, Research and Development CenterPudongShanghaiChina
| | - Weiguo Su
- Hutchison MediPharma, Research and Development CenterPudongShanghaiChina
| | - Karen Ngo
- Janssen Pharmaceutical R&D, LLC.San DiegoCAUSA
| | | | | | | | | | | | | |
Collapse
|
34
|
Xin T, Han H, Wu W, Huang X, Cui J, Matsubara JA, Song J, Wang F, Colyer M, Lei H. Idelalisib inhibits vitreous-induced Akt activation and proliferation of retinal pigment epithelial cells from epiretinal membranes. Exp Eye Res 2019; 190:107884. [PMID: 31786159 DOI: 10.1016/j.exer.2019.107884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/19/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023]
Abstract
Proliferative vitreoretinopathy (PVR) is a blinding fibrotic eye disease that develops in 8-10% of patients who undergo primary retinal detachment-reparative surgery and in 40-60% of patients with open-globe injury. At present, there is no pharmacological treatment for this devastating disease. Vitreal growth factors activate their respective receptors of cells in the vitreous, trigger their downstream signaling transduction (e.g. phosphoinositide 3 kinases (PI3Ks)/Akt), and drive cellular responses intrinsic to the pathogenesis of PVR. PI3Ks play a central role in experimental PVR. However, which isoform(s) are involved in PVR pathogenesis remain unknown. Herein, we show that p110δ, a catalytic subunit of receptor-regulated PI3K isoform δ, is highly expressed in epiretinal membranes from patients with PVR, and that idelalisib, a specific inhibitor of PI3Kδ, effectively inhibits vitreous-induced Akt activation, proliferation, migration and contraction of retinal pigment epithelial cells derived from an epiretinal membrane of a PVR patient. Small molecules of kinase inhibitors have shown great promise as a class of therapeutics for a variety of human diseases. The data herein suggest that idelalisib is a promising PVR prophylactic.
Collapse
Affiliation(s)
- Tianyi Xin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Haote Han
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Wenyi Wu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Xionggao Huang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Department of Ophthalmology, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Jing Cui
- The University of British Columbia, Canada
| | | | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Marcus Colyer
- Department of Surgery, Walter Reed-Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Hetian Lei
- Shenzhen Eye Hospital, Shenzhen, Guangdong Province, PR China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA.
| |
Collapse
|
35
|
Taylor H, Laurence ADJ, Uhlig HH. The Role of PTEN in Innate and Adaptive Immunity. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036996. [PMID: 31501268 DOI: 10.1101/cshperspect.a036996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid and protein phosphatase and tensin homolog (PTEN) controls the differentiation and activation of multiple immune cells. PTEN acts downstream from T- and B-cell receptors, costimulatory molecules, cytokine receptors, integrins, and also growth factor receptors. Loss of PTEN activity in human and mice is associated with cellular and humoral immune dysfunction, lymphoid hyperplasia, and autoimmunity. Although most patients with PTEN hamartoma tumor syndrome (PHTS) have no immunological symptoms, a subclinical immune dysfunction is present in many, and clinical immunodeficiency in few. Comparison of the immune phenotype caused by PTEN haploinsufficiency in PHTS, phosphoinositide 3-kinase (PI3K) gain-of-function in activated PI3K syndrome, and mice with conditional biallelic Pten deletion suggests a threshold model in which coordinated activity of several phosphatases control the PI3K signaling in a cell-type-specific manner. Emerging evidence highlights the role of PTEN in polygenic autoimmune disorders, infection, and the immunological response to cancer. Targeting the PI3K axis is an emerging therapeutic avenue.
Collapse
Affiliation(s)
- Henry Taylor
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom
| | - Arian D J Laurence
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Haematology, University College London Hospitals NHS Trust, London WC1E 6AG, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
36
|
de Oliveira PG, Farinon M, Sanchez-Lopez E, Miyamoto S, Guma M. Fibroblast-Like Synoviocytes Glucose Metabolism as a Therapeutic Target in Rheumatoid Arthritis. Front Immunol 2019; 10:1743. [PMID: 31428089 PMCID: PMC6688519 DOI: 10.3389/fimmu.2019.01743] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/10/2019] [Indexed: 12/29/2022] Open
Abstract
Metabolomic studies show that rheumatoid arthritis (RA) is associated with metabolic disruption that may be therapeutically targetable. Among them, glucose metabolism and glycolytic intermediaries seem to have an important role in fibroblast-like synoviocytes (FLS) phenotype and might contribute to early stage disease pathogenesis. RA FLS are transformed from quiescent to aggressive and metabolically active cells and several works have shown that glucose metabolism is increased in activated FLS. Glycolytic inhibitors reduce not only FLS aggressive phenotype in vitro but also decrease bone and cartilage damage in several murine models of arthritis. Essential glycolytic enzymes, including hexokinase 2 (HK2) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) enzymes, have important roles in FLS behavior. Of interest, HK2 is an inducible enzyme present only in the inflamed rheumatic tissues compared to osteoarthritis synovium. It is a contributor to glucose metabolism that could be selectively targeted without compromising systemic homeostasis as a novel approach for combination therapy independent of systemic immunosuppression. More information about metabolic targets that do not compromise global glucose metabolism in normal cells is needed.
Collapse
Affiliation(s)
| | - Mirian Farinon
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elsa Sanchez-Lopez
- Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Shigeki Miyamoto
- Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
37
|
Yoshitomi H. Regulation of Immune Responses and Chronic Inflammation by Fibroblast-Like Synoviocytes. Front Immunol 2019; 10:1395. [PMID: 31275325 PMCID: PMC6593115 DOI: 10.3389/fimmu.2019.01395] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
Synovial tissue is a membranous non-immune organ lining joint cavities where it supports local immune responses, and functions directly and indirectly in joint destruction due to chronic inflammatory diseases such as rheumatoid arthritis (RA). Fibroblast-like synoviocytes (FLS), the dominant non-immune cells of synovial tissues, mainly contribute to joint destruction via multiple mechanisms. In RA, FLS respond to endogenous ligands of pattern recognition receptors (PRRs) and inflammatory cytokines as non-immune cells. In addition, FLS aid in the activation of immune responses by interacting with immune cells and by supporting ectopic lymphoid-like structure (ELS) formation in synovial tissues. Moreover, FLS directly cause the pathogenicity of RA i.e., joint deformities. Here, we describe new findings and review the mechanisms underlying the regulation of immune reactions by non-immune FLS and their roles in inflammatory diseases such as RA.
Collapse
Affiliation(s)
- Hiroyuki Yoshitomi
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Hesperidin inhibits synovial cell inflammation and macrophage polarization through suppression of the PI3K/AKT pathway in complete Freund's adjuvant-induced arthritis in mice. Chem Biol Interact 2019; 306:19-28. [DOI: 10.1016/j.cbi.2019.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/22/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
39
|
Jia H, Dai G, Su W, Xiao K, Weng J, Zhang Z, Wang Q, Yuan T, Shi F, Zhang Z, Chen W, Sai Y, Wang J, Li X, Cai Y, Yu J, Ren P, Venable J, Rao T, Edwards JP, Bembenek SD. Discovery, Optimization, and Evaluation of Potent and Highly Selective PI3Kγ-PI3Kδ Dual Inhibitors. J Med Chem 2019; 62:4936-4948. [PMID: 31033293 DOI: 10.1021/acs.jmedchem.8b02014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An electronic density model was developed and used to identify a novel pyrrolotriazinone replacement for a quinazolinone, a commonly used moiety to impart selectivity in inhibitors for PI3Kγ and PI3Kδ. Guided by molecular docking, this new specificity piece was then linked to the hinge-binding region of the inhibitor using a novel cyclic moiety. Further structure-activity relationship optimization around the hinge region led to the discovery of candidate 26, a highly potent and selective PI3Kγ-PI3Kδ dual inhibitor with favorable drug metabolism and pharmacokinetic properties in preclinical species.
Collapse
Affiliation(s)
- Hong Jia
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Guangxiu Dai
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Weiguo Su
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Kun Xiao
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Jianyang Weng
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Zhulin Zhang
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Qing Wang
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Tianhai Yuan
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Fuying Shi
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Zheng Zhang
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Wei Chen
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Yang Sai
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Jian Wang
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Xiong Li
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Yu Cai
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Jun Yu
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Ping Ren
- Hutchison MediPharma Limited , Building 4, 720 Cai Lun Road, Zhangjiang Hi-Tech Park , Shanghai 201203 , China
| | - Jennifer Venable
- Janssen Pharmaceuticals Research & Development , 3210 Merryfield Row , San Diego , California 92121 , United States
| | - Tadimeti Rao
- Janssen Pharmaceuticals Research & Development , 3210 Merryfield Row , San Diego , California 92121 , United States
| | - James P Edwards
- Janssen Pharmaceutical Research & Development , 1400 McKean Road , Spring House , Pennsylvania 19477 , United States
| | - Scott D Bembenek
- Janssen Pharmaceuticals Research & Development , 3210 Merryfield Row , San Diego , California 92121 , United States
| |
Collapse
|
40
|
FOXO3 is involved in the tumor necrosis factor-driven inflammatory response in fibroblast-like synoviocytes. J Transl Med 2019; 99:648-658. [PMID: 30679758 DOI: 10.1038/s41374-018-0184-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023] Open
Abstract
Fibroblast-like synoviocytes (FLS) are major contributors to joint inflammation in rheumatoid arthritis (RA). Forkhead box O 3 (FOXO3) perturbations in immune cells are increasingly linked to RA pathogenesis. Here, we show that FOXO3 is distinctly inactivated/phosphorylated in the FLS of rheumatoid synovitis. In vitro, stimulation of FLS with tumor necrosis factor-alpha α (TNFα) induced a rapid and sustained inactivation of FOXO3. mRNA profiling revealed that the inactivation of FOXO3 is important for the sustained pro-inflammatory interferon response to TNFα (CXCL9, CXCL10, CXCL11, and TNFSF18). Mechanistically, our studies demonstrate that the inactivation of FOXO3 results from TNF-induced downregulation of phosphoinositide-3-kinase-interacting protein 1 (PIK3IP1). Thus, we identified FOXO3 and its modulator PIK3IP1 as a critical regulatory circuit for the inflammatory response of the resident mesenchymal cells to TNFα and contribute insight into how the synovial tissue brings about chronic inflammation that is driven by TNFα.
Collapse
|
41
|
Bahekar R, Dave B, Soman S, Patel D, Chopade R, Funde R, Kumar J, Sachchidanand S, Giri P, Chatterjee A, Mahapatra J, Vyas P, Ghoshdastidar K, Bandyopadhyay D, Desai RC. Discovery of 1,3-dihydro-2H-imidazo[4,5-c]quinolin-2-ones based novel, potent and PI3Kδ selective inhibitors. Bioorg Med Chem Lett 2019; 29:1313-1319. [PMID: 30975623 DOI: 10.1016/j.bmcl.2019.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
Abstract
PI3Kδ is implicated in various inflammatory and autoimmune diseases. For the effective treatment of chronic immunological disorders such as rheumatoid arthritis, it is essential to develop isoform selective PI3Kδ inhibitors. Structure guided optimization of an imidazo-quinolinones based pan-PI3K/m-TOR inhibitor (Dactolisib) led to the discovery of a potent and orally bioavailable PI3Kδ isoform selective inhibitor (10h), with an improved efficacy in the animal models.
Collapse
Affiliation(s)
- Rajesh Bahekar
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India.
| | - Bhushan Dave
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India; Department of Chemistry, Faculty of Science, M.S. University of Baroda, Vadodara 390002, India
| | - Shubhangi Soman
- Department of Chemistry, Faculty of Science, M.S. University of Baroda, Vadodara 390002, India
| | - Dipam Patel
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Rajendra Chopade
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Radhika Funde
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Jeevan Kumar
- Department of Bioinformatics, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - S Sachchidanand
- Department of Bioinformatics, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Poonam Giri
- Department of Pharmacology, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Abhijit Chatterjee
- Department of Pharmacology, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Jogeswar Mahapatra
- Department of Pharmacology, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Purvi Vyas
- Department of Cell Biology, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Krishnarup Ghoshdastidar
- Department of Cell Biology, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Debdutta Bandyopadhyay
- Department of Cell Biology, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| | - Ranjit C Desai
- Department of Medicinal Chemistry, Zydus Research Centre, Sarkhej-Bavla, N.H. 8A Moraiya, Ahmedabad 382210, India
| |
Collapse
|
42
|
Ma X, Fang F, Tao Q, Shen L, Zhong G, Qiao T, Lv X, Li J. Conformationally restricted quinazolone derivatives as PI3Kδ-selective inhibitors: the design, synthesis and biological evaluation. MEDCHEMCOMM 2019; 10:413-420. [PMID: 30996859 PMCID: PMC6431952 DOI: 10.1039/c8md00556g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/22/2019] [Indexed: 11/21/2022]
Abstract
A series of structurally novel quinazolone-based PI3Kδ-selective inhibitors were designed and synthesized via the approach of conformational restriction. The majority of them exhibited two-digit to single-digit nanomolar IC50 values against PI3Kδ, along with low micromolar to submicromolar GI50 values against human malignant B-cell line SU-DHL-6. The representative compound, with the most potent PI3Kδ inhibitory activity (IC50 = 6.3 nM) and anti-proliferative activity (GI50 = 0.21 μM) in this series, was further evaluated for its PI3Kδ selectivity, capability to down-regulate PI3K signaling in SU-DHL-6 cells, in vitro metabolic stability, and pharmacokinetic (PK) properties. The experimental results illustrated that this compound, as a promising lead, merits extensive structural optimization for exploring novel PI3Kδ-selective inhibitors as clinical candidates.
Collapse
Affiliation(s)
- Xiaodong Ma
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230031 , China .
- Department of Medicinal Chemistry , Anhui Academy of Chinese Medicine , Hefei 230031 , China
| | - Fang Fang
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230031 , China .
- Department of Medicinal Chemistry , Anhui Academy of Chinese Medicine , Hefei 230031 , China
| | - Qiangqiang Tao
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230031 , China .
| | - Li Shen
- Ocean College , Zhejiang University , Zhoushan , China
| | - Guochen Zhong
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230031 , China .
| | - Tao Qiao
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230031 , China .
| | - Xiaoqing Lv
- College of Medicine , Jiaxing University , Jiaxing 314001 , China .
| | - Jiaming Li
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230031 , China .
- Department of Medicinal Chemistry , Anhui Academy of Chinese Medicine , Hefei 230031 , China
| |
Collapse
|
43
|
Affiliation(s)
- Toshio Odani
- Adeno-Associated Virus Biology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - John A. Chiorini
- Adeno-Associated Virus Biology Section, Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Malemud CJ. Defective T-Cell Apoptosis and T-Regulatory Cell Dysfunction in Rheumatoid Arthritis. Cells 2018; 7:E223. [PMID: 30469466 PMCID: PMC6316166 DOI: 10.3390/cells7120223] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, systemic autoimmune disease that mostly affects small and large synovial joints. At the molecular level, RA is characterized by a profoundly defective innate and adaptive immune response that results in a chronic state of inflammation. Two of the most significant alterations in T-lymphocyte (T-cell) dysfunction in RA is the perpetual activation of T-cells that result in an abnormal proliferation state which also stimulate the proliferation of fibroblasts within the joint synovial tissue. This event results in what we have termed "apoptosis resistance", which we believe is the leading cause of aberrant cell survival in RA. Finding therapies that will induce apoptosis under these conditions is one of the current goals of drug discovery. Over the past several years, a number of T-cell subsets have been identified. One of these T-cell subsets are the T-regulatory (Treg) cells. Under normal conditions Treg cells dictate the state of immune tolerance. However, in RA, the function of Treg cells become compromised resulting in Treg cell dysfunction. It has now been shown that several of the drugs employed in the medical therapy of RA can partially restore Treg cell function, which has also been associated with amelioration of the clinical symptoms of RA.
Collapse
Affiliation(s)
- Charles J Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine, Foley Medical Building, 2061 Cornell Road, Suite 207, Cleveland, OH 44122-5076, USA.
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
45
|
Harshan S, Dey P, Ragunathan S. Effects of rheumatoid arthritis associated transcriptional changes on osteoclast differentiation network in the synovium. PeerJ 2018; 6:e5743. [PMID: 30324023 PMCID: PMC6186409 DOI: 10.7717/peerj.5743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Background Osteoclast differentiation in the inflamed synovium of rheumatoid arthritis (RA) affected joints leads to the formation of bone lesions. Reconstruction and analysis of protein interaction networks underlying specific disease phenotypes are essential for designing therapeutic interventions. In this study, we have created a network that captures signal flow leading to osteoclast differentiation. Based on transcriptome analysis, we have indicated the potential mechanisms responsible for the phenotype in the RA affected synovium. Method We collected information on gene expression, pathways and protein interactions related to RA from literature and databases namely Gene Expression Omnibus, Kyoto Encyclopedia of Genes and Genomes pathway and STRING. Based on these information, we created a network for the differentiation of osteoclasts. We identified the differentially regulated network genes and reported the signaling that are responsible for the process in the RA affected synovium. Result Our network reveals the mechanisms underlying the activation of the neutrophil cytosolic factor complex in connection to osteoclastogenesis in RA. Additionally, the study reports the predominance of the canonical pathway of NF-κB activation in the diseased synovium. The network also confirms that the upregulation of T cell receptor signaling and downregulation of transforming growth factor beta signaling pathway favor osteoclastogenesis in RA. To the best of our knowledge, this is the first comprehensive protein–protein interaction network describing RA driven osteoclastogenesis in the synovium. Discussion This study provides information that can be used to build models of the signal flow involved in the process of osteoclast differentiation. The models can further be used to design therapies to ameliorate bone destruction in the RA affected joints.
Collapse
Affiliation(s)
- Shilpa Harshan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Poulami Dey
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srivatsan Ragunathan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| |
Collapse
|
46
|
Ko J, Kim JY, Lee EJ, Yoon JS. Inhibitory Effect of Idelalisib, a Selective Phosphatidylinositol 3-Kinase δ Inhibitor, on Adipogenesis in an In Vitro Model of Graves' Orbitopathy. ACTA ACUST UNITED AC 2018; 59:4477-4485. [DOI: 10.1167/iovs.18-24509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Young Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Department of Endocrinology, Severance Hospital, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Foxc1 promotes the proliferation of fibroblast-like synoviocytes in rheumatoid arthritis via PI3K/AKT signalling pathway. Tissue Cell 2018; 53:15-22. [DOI: 10.1016/j.tice.2018.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 11/19/2022]
|
48
|
A novel gene and pathway-level subtyping analysis scheme to understand biological mechanisms in complex disease: a case study in rheumatoid arthritis. Genomics 2018; 111:375-382. [PMID: 29481842 DOI: 10.1016/j.ygeno.2018.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 11/20/2022]
Abstract
Complex diseases have heterogeneous underlying molecular mechanisms. In order to improve the diagnosis and treatment of disease, it is vital to stratify patients into homogeneous subgroups that share a similar disease etiology. In this study, we performed gene-level subtyping analysis on two independent Rheumatoid Arthritis gene expression cohorts from different ethnic groups to discover the possible disease mechanisms associated with each subtype. Also, a novel pathway-level analysis is proposed to increase the subtyping robustness and facilitate biological interpretation. This approach could stratify RA patients into two robust and homogeneous groups with differing activation of central signal transduction pathways and pro-inflammatory cytokines in the pathogenesis of RA. Such a methodology can help understand disease mechanisms at play in different patient sub-populations and also potentially explain why some patients don't respond to anti-TNF treatment.
Collapse
|
49
|
Abstract
Activated PI3 kinase delta syndrome (APDS) is a primary immunodeficiency caused by dominant mutations that increase activity of phosphoinositide-3-kinase δ (PI3Kδ). APDS can be caused by mutations in the PIK3CD gene that encodes PI3Kδ catalytic subunit p110δ (APDS1) or mutations in the PIK3R1 gene that encodes regulatory subunit p85α (APDS2). APDS research advanced rapidly after the initial discovery in 2013. More than 200 APDS patients have been identified around the world. Multiple novel APDS mutations were reported and molecular mechanisms leading to PI3Kδ activation have been elucidated. The finding of APDS significantly increased our understanding of the role of PI3Kδ in the human immune system. Perhaps most importantly, discovery of the molecular basis of this primary immunodeficiency suggested that APDS patients, who previously received only non-specific therapy, could be treated by a novel class of drugs that inhibits PI3Kδ activity. This led to the ongoing clinical trials of selective PI3Kδ inhibitors in APDS patients. Overall, the APDS story provides an excellent example of translational research, beginning with patients who had an unknown disease cause and leading to a novel specific knowledge-based treatment.
Collapse
Affiliation(s)
- David Michalovich
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
50
|
Nygaard G, Di Paolo JA, Hammaker D, Boyle DL, Budas G, Notte GT, Mikaelian I, Barry V, Firestein GS. Regulation and function of apoptosis signal-regulating kinase 1 in rheumatoid arthritis. Biochem Pharmacol 2018; 151:282-290. [PMID: 29408488 DOI: 10.1016/j.bcp.2018.01.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/22/2018] [Indexed: 12/28/2022]
Abstract
Despite improved therapy, rheumatoid arthritis (RA) remains an unmet medical need. Previous efforts to validate therapeutic targets in the mitogen-activated protein kinase (MAPK) family have had minimal success. Therefore, we evaluated the potential for targeting an upstream MAPK, namely apoptosis signal-regulating kinase 1 (ASK1), as an alternative approach. ASK1 protein and gene expression were observed in RA and osteoarthritis (OA) synovium as determined by immunohistochemistry (IHC) and qPCR, respectively, particularly in the synovial intimal lining. For RA, but not OA synovium, ASK1 correlated with IL-1β and TNF gene expression. ASK1 was also expressed by cultured fibroblast-like synoviocytes (FLS), with significantly higher levels in RA compared with OA cells. IL-1β and TNF stimulation significantly increased ASK1 expression in a time-and concentration-dependent manner in cultured FLS. ASK1 promoter activity was significantly increased by IL-1β and TNF and was dependent on an upstream RelA binding motif. A selective small molecule ASK1 inhibitor reduced RA FLS invasion, migration and proliferation in vitro and decreased arthritis severity in the rat collagen-induced arthritis (CIA) model. In summary, our findings demonstrate that ASK1 modulates signaling pathways relevant to RA in vitro and in vivo. It is induced by inflammatory cytokines through the activation of NF-κB, which could provide some site- and event specificity. Thus, inhibitors of the upstream MAPK ASK1 could be a novel approach to treating inflammatory arthritis.
Collapse
Affiliation(s)
- Gyrid Nygaard
- UCSD School of Medicine, La Jolla, California, United States
| | | | - Deepa Hammaker
- UCSD School of Medicine, La Jolla, California, United States
| | - David L Boyle
- UCSD School of Medicine, La Jolla, California, United States
| | - Grant Budas
- Gilead Sciences, Inc., Foster City, California, United States
| | - Gregory T Notte
- Gilead Sciences, Inc., Foster City, California, United States
| | - Igor Mikaelian
- Gilead Sciences, Inc., Foster City, California, United States
| | - Vivian Barry
- Gilead Sciences, Inc., Foster City, California, United States
| | | |
Collapse
|