1
|
Ohmura K, Tomita H, Okada H, Nakayama N, Ohe N, Izumo T, Hara A. Visualizing the endothelial glycocalyx in human glioma vasculature. Brain Tumor Pathol 2025:10.1007/s10014-025-00498-z. [PMID: 40035915 DOI: 10.1007/s10014-025-00498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Gliomas are the most common primary brain tumors in adults. However, glioblastoma is especially difficult to treat despite advancements in treatment. Therefore, new and more effective treatments are needed. The endothelial glycocalyx covers the luminal surface of the endothelium and plays an important role in vascular homeostasis. Tumor blood vessels normally have increased permeability, but some of them mimic normal cerebral blood vessels constituting the blood-brain barrier and retain drug-barrier function. Therefore, brain tumor vessels are considered to constitute the blood-tumor barrier. There are few reports on the endothelial glycocalyx in human brain tumor vessels. We aimed to visualize the endothelial glycocalyx in human brain tumor vessels and evaluate its microstructural differences in glioma vessels and normal capillaries. Surgical specimens from patients with glioma who underwent tumor resection at our institution were evaluated. We visualized the microstructures of the brain tumor vessels in human glioma specimens using electron microscopy with lanthanum nitrate. The endothelial glycocalyx was identified in the human glioma vasculature and its microstructure varied between the tumor margin and core. These variations may influence tumor angiogenesis and vascular remodeling, contributing to advancements in targeted therapies and diagnostics for human gliomas.
Collapse
Affiliation(s)
- Kazufumi Ohmura
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Hideshi Okada
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Naoyuki Ohe
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
2
|
Shahedi F, Naseri S, Momennezhad M, Zare H. MR Imaging Techniques for Microenvironment Mapping of the Glioma Tumors: A Systematic Review. Acad Radiol 2025:S1076-6332(25)00066-2. [PMID: 39894708 DOI: 10.1016/j.acra.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 02/04/2025]
Abstract
RATIONALE AND OBJECTIVES The tumor microenvironment (TME) is a critical regulator of cancer progression, metastasis, and treatment response. Currently, various imaging approaches exist to assess the pathophysiological features of the TME. This systematic review provides an overview of magnetic resonance imaging (MRI) methods used in clinical practice to characterize the pathophysiological features of the gliomas TME. METHODS This review involved a systematic comprehensive search of original open-access articles reporting the clinical use of MR imaging in glioma patients of all ages in the PubMed, Scopus, and Web of Science databases between January 2010 and December 2023. We restricted our research to papers published in the English language. RESULTS A total of 1137 studies were preliminarily identified through electronic database searches. After duplicate studies were removed, 44 studies met the eligibility criteria. The glioma TME was accompanied by alterations in metabolism, pH, vascularity, oxygenation, and extracellular matrix components, including tumor-associated macrophages, and sodium concentration. CONCLUSION Multiparametric MRI is capable of noninvasively assessing the pathophysiological features and tumor-supportive niches of the TME, which is in line with its application in personalized medicine.
Collapse
Affiliation(s)
- Fateme Shahedi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (F.S., S.N., M.M., H.Z.)
| | - Shahrokh Naseri
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (F.S., S.N., M.M., H.Z.)
| | - Mahdi Momennezhad
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (F.S., S.N., M.M., H.Z.)
| | - Hoda Zare
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (F.S., S.N., M.M., H.Z.); Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran (H.Z.).
| |
Collapse
|
3
|
Vollmuth P, Karschnia P, Sahm F, Park YW, Ahn SS, Jain R. A Radiologist's Guide to IDH-Wildtype Glioblastoma for Efficient Communication With Clinicians: Part II-Essential Information on Post-Treatment Imaging. Korean J Radiol 2025; 26:26.e14. [PMID: 40015559 DOI: 10.3348/kjr.2024.0983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/08/2024] [Accepted: 11/30/2024] [Indexed: 03/01/2025] Open
Abstract
Owing to recent advancements in various postoperative treatment modalities, such as radiation, chemotherapy, antiangiogenic treatment, and immunotherapy, the radiological and clinical assessment of patients with isocitrate dehydrogenase-wildtype glioblastoma using post-treatment imaging has become increasingly challenging. This review highlights the challenges in differentiating treatment-related changes such as pseudoprogression, radiation necrosis, and pseudoresponse from true tumor progression and aims to serve as a guideline for efficient communication with clinicians for optimal management of patients with post-treatment imaging.
Collapse
Affiliation(s)
- Philipp Vollmuth
- Division for Computational Radiology & Clinical AI (CCIBonn.ai), Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
- Medical Faculty Bonn, University of Bonn, Bonn, Germany
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurosurgery, Friedrich-Alexander-University University, Erlangen-Nuremberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, New York, USA
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
4
|
Song D, Fan G, Chang M. Research Progress on Glioma Microenvironment and Invasiveness Utilizing Advanced Multi-Parametric Quantitative MRI. Cancers (Basel) 2024; 17:74. [PMID: 39796702 PMCID: PMC11719598 DOI: 10.3390/cancers17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Magnetic resonance imaging (MRI) currently serves as the primary diagnostic method for glioma detection and monitoring. The integration of neurosurgery, radiation therapy, pathology, and radiology in a multi-disciplinary approach has significantly advanced its diagnosis and treatment. However, the prognosis remains unfavorable due to treatment resistance, inconsistent response rates, and high recurrence rates after surgery. These factors are closely associated with the complex molecular characteristics of the tumors, the internal heterogeneity, and the relevant external microenvironment. The complete removal of gliomas presents challenges due to their infiltrative growth pattern along the white matter fibers and perivascular space. Therefore, it is crucial to comprehensively understand the molecular features of gliomas and analyze the internal tumor heterogeneity in order to accurately characterize and quantify the tumor invasion range. The multi-parameter quantitative MRI technique provides an opportunity to investigate the microenvironment and aggressiveness of glioma tumors at the cellular, blood perfusion, and cerebrovascular response levels. Therefore, this review examines the current applications of advanced multi-parameter quantitative MRI in glioma research and explores the prospects for future development.
Collapse
Affiliation(s)
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China;
| | - Miao Chang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China;
| |
Collapse
|
5
|
Dixon L, Weld A, Bhagawati D, Patel N, Giannarou S, Grech-Sollars M, Lim A, Camp S. Intraoperative superb microvascular ultrasound imaging in glioma: novel quantitative analysis correlates with tumour grade. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.07.24318636. [PMID: 39677443 PMCID: PMC11643247 DOI: 10.1101/2024.12.07.24318636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Accurate grading of gliomas is critical to guide therapy and predict prognosis. The presence of microvascular proliferation is a hallmark feature of high grade gliomas which traditionally requires targeted surgical biopsy of representative tissue. Superb microvascular imaging (SMI) is a novel high resolution Doppler ultrasound technique which can uniquely define the microvascular architecture of whole tumours. We examined both qualitative and quantitative vascular features of gliomas captured with SMI, analysing flow signal density, vessel number, branching points, curvature, vessel angle deviation, fractal dimension, and entropy. Results indicate that high-grade gliomas exhibit significantly greater vascular complexity and disorganisation, with increased fractal dimension and entropy, correlating with known histopathological markers of aggressive angiogenesis. The integrated ROC model achieved high accuracy (AUC = 0.95), highlighting SMI's potential as a non-invasive diagnostic and prognostic tool. While further validation with larger datasets is required, this study opens avenues for SMI in glioma management, supporting intraoperative decision-making and informing future prognosis.
Collapse
|
6
|
Li Y, Wu C, Long X, Wang X, Gao W, Deng K, Xie B, Zhang S, Wu M, Liu Q. Single-cell transcriptomic analysis of glioblastoma reveals pericytes contributing to the blood-brain-tumor barrier and tumor progression. MedComm (Beijing) 2024; 5:e70014. [PMID: 39640361 PMCID: PMC11617595 DOI: 10.1002/mco2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 12/07/2024] Open
Abstract
The blood-brain barrier is often altered in glioblastoma (GBM) creating a blood-brain-tumor barrier (BBTB) composed of pericytes. The BBTB affects chemotherapy efficacy. However, the expression signatures of BBTB-associated pericytes remain unclear. We aimed to identify BBTB-associated pericytes in single-cell RNA sequencing data of GBM using pericyte markers, a normal brain pericyte expression signature, and functional enrichment. We identified parathyroid hormone receptor-1 (PTH1R) as a potential marker of pericytes associated with BBTB function. These pericytes interact with other cells in GBM mainly through extracellular matrix-integrin signaling pathways. Compared with normal pericytes, pericytes in GBM exhibited upregulation of several ECM genes (including collagen IV and FN1), and high expression levels of these genes were associated with a poor prognosis. Cell line experiments showed that PTH1R knockdown in pericytes increased collagen IV and FN1 expression levels. In mice models, the expression levels of PTH1R, collagen IV, and FN1 were consistent with these trends. Evans Blue leakage and IgG detection in the brain tissue suggested a negative correlation between PTH1R expression levels and blood-brain barrier function. Further, a risk model based on differentially expressed genes in PTH1R+ pericytes had predictive value for GBM, as validated using independent and in-house cohorts.
Collapse
Affiliation(s)
- Yuzhe Li
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Department of NeurosurgeryChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Changwu Wu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinmiao Long
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Xiangyu Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wei Gao
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Kun Deng
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Bo Xie
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Sen Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Minghua Wu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Cancer Research InstituteCentral South UniversityChangshaHunanChina
| | - Qing Liu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
7
|
Biegański M, Szeliga M. Disrupted glutamate homeostasis as a target for glioma therapy. Pharmacol Rep 2024; 76:1305-1317. [PMID: 39259492 PMCID: PMC11582119 DOI: 10.1007/s43440-024-00644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). Gliomas, malignant brain tumors with a dismal prognosis, alter glutamate homeostasis in the brain, which is advantageous for their growth, survival, and invasion. Alterations in glutamate homeostasis result from its excessive production and release to the extracellular space. High glutamate concentration in the tumor microenvironment destroys healthy tissue surrounding the tumor, thus providing space for glioma cells to expand. Moreover, it confers neuron hyperexcitability, leading to epilepsy, a common symptom in glioma patients. This mini-review briefly describes the biochemistry of glutamate production and transport in gliomas as well as the activation of glutamate receptors. It also summarizes the current pre-clinical and clinical studies identifying pharmacotherapeutics targeting glutamate transporters and receptors emerging as potential therapeutic strategies for glioma.
Collapse
Affiliation(s)
- Mikołaj Biegański
- Immunooncology Students' Science Association, Medical University of Warsaw, Żwirki i Wigury 61, Warszawa, 02-091, Poland
| | - Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, Warszawa, 02-106, Poland.
| |
Collapse
|
8
|
Rajkhowa S, Jha S. The role of NLRP3 and NLRP12 inflammasomes in glioblastoma. Genes Immun 2024; 25:541-551. [PMID: 39604503 DOI: 10.1038/s41435-024-00309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Glioblastoma (GBM) is the deadliest malignant brain tumor, with a survival of less than 14 months after diagnosis. The highly invasive nature of GBM makes total surgical resection challenging, leading to tumor recurrence and declined survival. The heterocellular composition of the GBM reprograms its microenvironment, favoring tumor growth, proliferation, and migration. The innate immune cells in the GBM tumor microenvironment, including microglia, astrocytes, and macrophages, express pattern recognition receptors such as NLRs (Nucleotide-binding domain and leucine-rich repeat-containing) that sense pathogen- and damage-associated molecular patterns initiating inflammation. Upon activation, NLRP3 promotes inflammation by NLRP3 inflammasome formation. Auto-proteolytic cleavage and activation of Caspase-1 within the inflammasome leads to caspase-1-mediated cleavage, activation, and conversion of pro-IL-1ß and pro-IL-18 to IL-1ß and IL-18, leading to pyroptosis. In contrast, NLRP12 downregulates inflammatory responses in microglia and macrophages by regulating the NF-κB pathway. NLRP3 and NLRP12 have been implicated in the disease pathophysiology of several cancers with cell-context-dependent, pro- or anti-tumorigenic roles. In this review, we discuss the current literature on the mechanistic roles of NLRP3 and NLRP12 in GBM and the gaps in the scientific literature in the context of GBM pathophysiology with potential for targeted therapeutics.
Collapse
Affiliation(s)
- Sushmita Rajkhowa
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India.
| |
Collapse
|
9
|
Cómitre-Mariano B, Vellila-Alonso G, Segura-Collar B, Mondéjar-Ruescas L, Sepulveda JM, Gargini R. Sentinels of neuroinflammation: the crucial role of myeloid cells in the pathogenesis of gliomas and neurodegenerative diseases. J Neuroinflammation 2024; 21:304. [PMID: 39578808 PMCID: PMC11583668 DOI: 10.1186/s12974-024-03298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The inflammatory processes that drive pathologies of the central nervous system (CNS) are complex and involve significant contributions from the immune system, particularly myeloid cells. Understanding the shared and distinct pathways of myeloid cell regulation in different CNS diseases may offer critical insights into therapeutic development. This review aims to elucidate the mechanisms underlying myeloid cell dysfunction and neuroinflammation in two groups of neurological pathologies with significant social impact and a limited efficacy of their treatments: the most common primary brain tumors -gliomas-, and the most prevalent neurodegenerative disorders -Alzheimer's and Parkinson's disease. Despite their distinct clinical manifestations, these diseases share key pathological features, including chronic inflammation and immune dysregulation. The role of myeloid cells in neuroinflammation has garnered special interest in recent years in both groups, as evidenced by the growing focus on therapeutic research centred on myeloid cells. By examining the cellular and molecular dynamics that govern these conditions, we hope to identify common and unique therapeutic targets that can inform the development of more effective treatments. Recent advances in single-cell technologies have revolutionized our understanding of myeloid cell heterogeneity, revealing diverse phenotypes and molecular profiles across different disease stages and microenvironments. Here, we present a comprehensive analysis of myeloid cell involvement in gliomas, Alzheimer's and Parkinson's disease, with a focus on phenotypic acquisition, molecular alterations, and therapeutic strategies targeting myeloid cells. This integrated approach not only addresses the limitations of current treatments but also suggests new avenues for therapeutic intervention, aimed at modulating the immune landscape to improve patient outcomes.
Collapse
Affiliation(s)
- Blanca Cómitre-Mariano
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Gabriel Vellila-Alonso
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
| | - Berta Segura-Collar
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Lucía Mondéjar-Ruescas
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Juan M Sepulveda
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
| | - Ricardo Gargini
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain.
| |
Collapse
|
10
|
Zedde M, Pascarella R. The Cerebrovascular Side of Plasticity: Microvascular Architecture across Health and Neurodegenerative and Vascular Diseases. Brain Sci 2024; 14:983. [PMID: 39451997 PMCID: PMC11506257 DOI: 10.3390/brainsci14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The delivery of nutrients to the brain is provided by a 600 km network of capillaries and microvessels. Indeed, the brain is highly energy demanding and, among a total amount of 100 billion neurons, each neuron is located just 10-20 μm from a capillary. This vascular network also forms part of the blood-brain barrier (BBB), which maintains the brain's stable environment by regulating chemical balance, immune cell transport, and blocking toxins. Typically, brain microvascular endothelial cells (BMECs) have low turnover, indicating a stable cerebrovascular structure. However, this structure can adapt significantly due to development, aging, injury, or disease. Temporary neural activity changes are managed by the expansion or contraction of arterioles and capillaries. Hypoxia leads to significant remodeling of the cerebrovascular architecture and pathological changes have been documented in aging and in vascular and neurodegenerative conditions. These changes often involve BMEC proliferation and the remodeling of capillary segments, often linked with local neuronal changes and cognitive function. Cerebrovascular plasticity, especially in arterioles, capillaries, and venules, varies over different time scales in development, health, aging, and diseases. Rapid changes in cerebral blood flow (CBF) occur within seconds due to increased neural activity. Prolonged changes in vascular structure, influenced by consistent environmental factors, take weeks. Development and aging bring changes over months to years, with aging-associated plasticity often improved by exercise. Injuries cause rapid damage but can be repaired over weeks to months, while neurodegenerative diseases cause slow, varied changes over months to years. In addition, if animal models may provide useful and dynamic in vivo information about vascular plasticity, humans are more complex to investigate and the hypothesis of glymphatic system together with Magnetic Resonance Imaging (MRI) techniques could provide useful clues in the future.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
11
|
Shamul JG, Wang Z, Gong H, Ou W, White AM, Moniz-Garcia DP, Gu S, Clyne AM, Quiñones-Hinojosa A, He X. Meta-analysis of the make-up and properties of in vitro models of the healthy and diseased blood-brain barrier. Nat Biomed Eng 2024:10.1038/s41551-024-01250-2. [PMID: 39304761 DOI: 10.1038/s41551-024-01250-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
In vitro models of the human blood-brain barrier (BBB) are increasingly used to develop therapeutics that can cross the BBB for treating diseases of the central nervous system. Here we report a meta-analysis of the make-up and properties of transwell and microfluidic models of the healthy BBB and of BBBs in glioblastoma, Alzheimer's disease, Parkinson's disease and inflammatory diseases. We found that the type of model, the culture method (static or dynamic), the cell types and cell ratios, and the biomaterials employed as extracellular matrix are all crucial to recapitulate the low permeability and high expression of tight-junction proteins of the BBB, and to obtain high trans-endothelial electrical resistance. Specifically, for models of the healthy BBB, the inclusion of endothelial cells and pericytes as well as physiological shear stresses (~10-20 dyne cm-2) are necessary, and when astrocytes are added, astrocytes or pericytes should outnumber endothelial cells. We expect this meta-analysis to facilitate the design of increasingly physiological models of the BBB.
Collapse
Affiliation(s)
- James G Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Zhiyuan Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Hyeyeon Gong
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Alisa M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA
| | | | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Brain and Behavior Institute, University of Maryland, College Park, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
12
|
Lubitz LJ, Haffner MP, Rieger H, Leneweit G. Increased Cellular Uptake of ApoE3- or c(RGD)-Modified Liposomes for Glioblastoma Therapy Depending on the Target Cells. Pharmaceutics 2024; 16:1112. [PMID: 39339149 PMCID: PMC11434700 DOI: 10.3390/pharmaceutics16091112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
As effective treatment of glioblastoma is still an unmet need, targeted delivery systems for efficient treatment are of utmost interest. Therefore, in this paper, surface modifications with a small peptide c(RGD) or physiological protein (ApoE3) were investigated. Cellular uptake in murine endothelial cells (bEnd.3) and different glioma cells (human U-87 MG, rat F98) was tested to elucidate possible differences and to correlate the uptake to the receptor expression. Different liposomal formulations were measured at 1 and 3 h for three lipid incubation concentrations. We calculated the liposomal uptake saturation S and the saturation half-time t1/2. An up to 9.6-fold increased uptake for ApoE3-modified liposomes, primarily in tumor cells, was found. Contrarily, c(RGD) liposomes showed a stronger increase in uptake in endothelial cells (up to 40.5-fold). The uptake of modified liposomes revealed enormous differences in S and t1/2 when comparing different tumor cell lines. However, for ApoE3-modified liposomes, we proved comparable saturation values (~25,000) for F98 cells and U-87 MG cells despite a 6-fold lower expression of LRP1 in F98 cells and a 5-fold slower uptake rate. Our findings suggest that cellular uptake of surface-modified liposomes depends more on the target structure than the ligand type, with significant differences between cell types of different origins.
Collapse
Affiliation(s)
- Larissa J. Lubitz
- ABNOBA GmbH, 75223 Niefern-Öschelbronn, Germany
- Carl Gustav Carus-Institute, 75223 Niefern-Öschelbronn, Germany
- Department of Chemical and Process Engineering, Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | | | - Harden Rieger
- ABNOBA GmbH, 75223 Niefern-Öschelbronn, Germany
- Carl Gustav Carus-Institute, 75223 Niefern-Öschelbronn, Germany
| | - Gero Leneweit
- ABNOBA GmbH, 75223 Niefern-Öschelbronn, Germany
- Carl Gustav Carus-Institute, 75223 Niefern-Öschelbronn, Germany
- Department of Chemical and Process Engineering, Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
13
|
Muthukrishnan SD, Qi H, Wang D, Elahi L, Pham A, Alvarado AG, Li T, Gao F, Kawaguchi R, Lai A, Kornblum HI. Low- and High-Grade Glioma-Associated Vascular Cells Differentially Regulate Tumor Growth. Mol Cancer Res 2024; 22:656-667. [PMID: 38441553 PMCID: PMC11217726 DOI: 10.1158/1541-7786.mcr-23-1069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
A key feature distinguishing high-grade glioma (HG) from low-grade glioma (LG) is the extensive neovascularization and endothelial hyperproliferation. Prior work has shown that tumor-associated vasculature from HG is molecularly and functionally distinct from normal brain vasculature and expresses higher levels of protumorigenic factors that promote glioma growth and progression. However, it remains unclear whether vessels from LG also express protumorigenic factors, and to what extent they functionally contribute to glioma growth. Here, we profile the transcriptomes of glioma-associated vascular cells (GVC) from IDH-mutant (mIDH) LG and IDH-wild-type (wIDH) HG and show that they exhibit significant molecular and functional differences. LG-GVC show enrichment of extracellular matrix-related gene sets and sensitivity to antiangiogenic drugs, whereas HG-GVC display an increase in immune response-related gene sets and antiangiogenic resistance. Strikingly, conditioned media from LG-GVC inhibits the growth of wIDH glioblastoma cells, whereas HG-GVC promotes growth. In vivo cotransplantation of LG-GVC with tumor cells reduces growth, whereas HG-GVC enhances tumor growth in orthotopic xenografts. We identify ASPORIN (ASPN), a small leucine-rich repeat proteoglycan, highly enriched in LG-GVC as a growth suppressor of wIDH glioblastoma cells in vitro and in vivo. Together, these findings indicate that GVC from LG and HG are molecularly and functionally distinct and differentially regulate tumor growth. Implications: This study demonstrated that vascular cells from IDH-mutant LG and IDH-wild-type HG exhibit distinct molecular signatures and have differential effects on tumor growth via regulation of ASPN-TGFβ1-GPM6A signaling.
Collapse
Affiliation(s)
- Sree Deepthi Muthukrishnan
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, Oklahoma
| | - Haocheng Qi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - David Wang
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Lubayna Elahi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Amy Pham
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Alvaro G. Alvarado
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Tie Li
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Fuying Gao
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Riki Kawaguchi
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Harley I. Kornblum
- Department of Psychiatry and Behavioral Sciences and the UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
14
|
Qin Z, Zhong Y, Li P, Ma Z, Kang H, Huang Y, Zhong Y, Wang L. Vasorin promotes endothelial differentiation of glioma stem cells via stimulating the transcription of VEGFR2. FASEB J 2024; 38:e23682. [PMID: 38780524 DOI: 10.1096/fj.202400159r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Gliomas are highly vascularized malignancies, but current anti-angiogenic treatments have not demonstrated practical improvements in patient survival. Studies have suggested that glioma-derived endothelial cell (GdEC) formed by glioma stem cell (GSC) differentiation may contribute to the failure of this treatment. However, the molecular mechanisms involved in GSC endothelial differentiation remain poorly understood. We previously reported that vasorin (VASN) is highly expressed in glioma and promotes angiogenesis. Here, we show that VASN expression positively correlates with GdEC signatures in glioma patients. VASN promotes the endothelial differentiation capacity of GSC in vitro and participates in the formation of GSC-derived vessels in vivo. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) is a critical factor that mediates the regulation of VASN on GSC endothelial differentiation. Separation of cell chromatin fractionation and chromatin immunoprecipitation-sequencing analysis show that VASN interacts with Notch1 and co-translocates into the cell nuclei, where VASN binds to the VEGFR2 gene promoter to stimulate its transcription during the progression of GSC differentiation into GdEC. Together, these findings elucidate the role and mechanisms of VASN in promoting the endothelial differentiation of GSC and suggest VASN as a potential target for anti-angiogenic therapy based on intervention in GdEC formation in gliomas.
Collapse
Affiliation(s)
- Zixi Qin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Peiwen Li
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Ziqing Ma
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hui Kang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Youwei Huang
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Guangzhou, China
| | - Ying Zhong
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Lihui Wang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Zhu Z, Liang S, Hong Y, Qi Y, Sun Q, Zhu X, Wei Y, Xu Y, Chen Q. Bufotalin enhances apoptosis and TMZ chemosensitivity of glioblastoma cells by promoting mitochondrial dysfunction via AKT signaling pathway. Aging (Albany NY) 2024; 16:9264-9279. [PMID: 38809514 PMCID: PMC11164496 DOI: 10.18632/aging.205883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and lethal primary intracranial neoplasm in the adult population, with treatments of limited efficacy. Recently, bufotalin has been shown to have anti-cancer activity in a variety of cancers. This investigation aims to investigate the effect of bufotalin on GBM and elucidate its potential underlying mechanism. Our results show that bufotalin not only inhibits the proliferation and epithelial-mesenchymal transition (EMT) but also triggers apoptosis in GBM cells. The result of RNA-seq indicated that bufotalin could induce mitochondrial dysfunction. Moreover, our observations indicate that bufotalin induces an excessive accumulation of intracellular reactive oxygen species (ROS) in GBM cells, leading to mitochondrial dysfunction and the dephosphorylation of AKT. Moreover, bufotalin improved TMZ sensitivity of GBM cells in vitro and in vivo. In conclusion, bufotalin enhances apoptosis and TMZ chemosensitivity of glioblastoma cells by promoting mitochondrial dysfunction via AKT signaling pathway.
Collapse
Affiliation(s)
- Zhansheng Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Shanwen Liang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yu Hong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xinyi Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Yuxin Wei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
16
|
Soni, Walke V, Joshi D, Sharma T, Shrivastava A, Agrawal A. The spectrum of microvascular patterns in adult diffuse glioma and their correlation with tumor grade. J Pathol Transl Med 2024; 58:127-133. [PMID: 38766738 PMCID: PMC11106609 DOI: 10.4132/jptm.2024.03.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Primary brain tumors constitute the leading cause of cancer-related mortality. Among them, adult diffuse gliomas are the most common type, affecting the cerebral hemispheres and displaying a diffuse infiltrative pattern of growth in the surrounding neuropil that accounts for about 80% of all primary intracranial tumors. The hallmark feature of gliomas is blood vessel proliferation, which plays an important role in tumor growth, tumor biological behavior, and disease outcome. High-grade gliomas exhibit increased vascularity, the worst prognosis, and lower survival rates. Several angiogenic receptors and factors are upregulated in glioblastomas and stimulate angiogenesis signaling pathways by means of activating oncogenes and/or down-regulating tumor-suppressor genes. Existing literature has emphasized that different microvascular patterns (MVPs) are displayed in different subtypes of adult diffuse gliomas. METHODS We examined the distribution and biological characteristics of different MVPs in 50 patients with adult diffuse gliomas. Haematoxylin and eosin staining results, along with periodic acid-Schiff and CD34 dual-stained sections, were examined to assess the vascular patterns and correlate with different grades of diffuse glioma. RESULTS The present observational study on adult diffuse glioma evaluated tumor grade and MVPs. Microvascular sprouting was the most common pattern, while a bizarre pattern (type 2) was associated with the presence of a high-grade glioma. Vascular mimicry was observed in 6% of cases, all of which were grade 4 gliomas. CONCLUSIONS This study supplements the role of neo-angiogenesis and aberrant vasculature patterns in the grading and progression of adult diffuse gliomas, which can be future targets for planning treatment strategies.
Collapse
Affiliation(s)
- Soni
- Departments of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Vaishali Walke
- Departments of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Deepti Joshi
- Departments of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Tanya Sharma
- Departments of Pathology and Lab Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Adesh Shrivastava
- Departments of Neurosurgery, All India Institute of Medical Sciences, Bhopal, India
| | - Amit Agrawal
- Departments of Neurosurgery, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
17
|
Jin JS, Chou JM, Tsai WC, Chen YC, Chen Y, Ong JR, Tsai YL. Effectively α-Terpineol Suppresses Glioblastoma Aggressive Behavior and Downregulates KDELC2 Expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155471. [PMID: 38452695 DOI: 10.1016/j.phymed.2024.155471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 02/11/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is notorious for the aggressive behaviors and easily results in chemo-resistance. Studies have shown that the use of herbal medicines as treatments for GBM as limited by the blood-brain barrier (BBB) and glioma stem cells. PURPOSE The aim of this study was to investigate the relationship between GBM suppression and α-terpineol, the monoterpenoid alcohol derived from Eucalyptus glubulus and Pinus merkusii. STUDY DESIGN Using serial in-vitro and in-vivo studies to confirm the mechanism of α-terpineol on down-regulating GBM development. METHODS The 3-[4,5-dimethylthiazol-2-yl)]-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate IC50 of α-terpineol to inhibit GBM cell survival. In order to evaluate the impact of GBM aggressive behaviors by α-terpineol, the analysis of cell migration, invasion and colony formation were implemented. In addition, the ability of tumor spheres and WB of CD44 and OCT3/4 were evaluated under the impression of α-terpineol decreased GBM stemness. The regulation of neoangiogenesis by α-terpineol via the WB of angiogenic factors and human umbilical vein endothelial cells (HUVEC) tube assay. To survey the decided factors of α-terpineol downregulating GBM chemoresistance depended on the impact of O6-methylguanine-DNA methyltransferase (MGMT) expression and autophagy-related factors activation. Additionally, WB and quantitative real-time polymerase chain reaction (qRT/PCR) of KDEL (Lys-Asp-Glu-Leu) containing 2 (KDELC2), endoplasmic reticulum (ER) stress, phosphoinositide 3-kinase (PI3k), mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) cascade signaling factors were examined to explore the mechanism of α-terpineol inhibiting GBM viability. Finally, the orthotopic GBM mouse model was applied to prove the efficacy and toxicity of α-terpineol on regulating GBM survival. RESULTS α-terpineol significantly suppressed GBM growth, migration, invasion, angiogenesis and temozolomide (TMZ) resistance. Furthermore, α-terpineol specifically targeted KDELC2 to downregulate Notch and PI3k/mTOR/MAPK signaling pathway. Finally, we also demonstrated that α-terpineol could penetrate the BBB to inhibit GBM proliferation, which resulted in reduced cytotoxicity to vital organs. CONCLUSION Compared to published literatures, we firstly proved α-terpineol possessed the capability to inhibit GBM through various mechanisms and potentially decreased the occurrence of chemoresistance, making it a promising alternative therapeutic option for GBM in the future.
Collapse
Affiliation(s)
- Jong-Shiaw Jin
- Department of Pathology, Tungs' Taichung MetroHarbor Hospital, Taichung, 40435, Taiwan
| | - Jung-Mao Chou
- Department of Pathology, Taipei City Hospital Renai Branch, Taipei 106, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - Ying-Chuan Chen
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, 114, Taiwan
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan
| | - Jiann-Ruey Ong
- Department of Emergency Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan; Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, 110, Taiwan; Department of Emergency Medicine, School of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan.
| |
Collapse
|
18
|
Romanishin A, Vasilev A, Khasanshin E, Evtekhov A, Pusynin E, Rubina K, Kakotkin V, Agapov M, Semina E. Oncolytic viral therapy for gliomas: Advances in the mechanisms and approaches to delivery. Virology 2024; 593:110033. [PMID: 38442508 DOI: 10.1016/j.virol.2024.110033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Glioma is a diverse category of tumors originating from glial cells encompasses various subtypes, based on the specific type of glial cells involved. The most aggressive is glioblastoma multiforme (GBM), which stands as the predominant primary malignant tumor within the central nervous system in adults. Despite the application of treatment strategy, the median survival rate for GBM patients still hovers around 15 months. Oncolytic viruses (OVs) are artificially engineered viruses designed to selectively target and induce apoptosis in cancer cells. While clinical trials have demonstrated encouraging results with intratumoral OV injections for some cancers, applying this approach to GBM presents unique challenges. Here we elaborate on current trends in oncolytic viral therapy and their delivery methods. We delve into the various methods of delivering OVs for therapy, exploring their respective advantages and disadvantages and discussing how selecting the optimal delivery method can enhance the efficacy of this innovative treatment approach.
Collapse
Affiliation(s)
- A Romanishin
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia.
| | - A Vasilev
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
| | - E Khasanshin
- Kaliningrad Regional Hospital, Kaliningrad, 236016, Russia
| | - A Evtekhov
- Kaliningrad Regional Hospital, Kaliningrad, 236016, Russia
| | - E Pusynin
- Kaliningrad Regional Hospital, Kaliningrad, 236016, Russia
| | - K Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991, Moscow, Russia
| | - V Kakotkin
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
| | - M Agapov
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991, Moscow, Russia
| | - E Semina
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991, Moscow, Russia
| |
Collapse
|
19
|
Wang K, Xiao Y, Zheng R, Cheng Y. Immune cell infiltration and drug response in glioblastoma multiforme: insights from oxidative stress-related genes. Cancer Cell Int 2024; 24:123. [PMID: 38566075 PMCID: PMC10986133 DOI: 10.1186/s12935-024-03316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND GBM, also known as glioblastoma multiforme, is the most prevalent and lethal type of brain cancer. The cell proliferation, invasion, angiogenesis, and treatment of gliomas are significantly influenced by oxidative stress. Nevertheless, the connection between ORGs and GBM remains poorly comprehended. The objective of this research is to investigate the predictive significance of ORGs in GBM and their potential as targets for therapy. METHODS We identified differentially expressed genes in glioma and ORGs from public databases. A risk model was established using LASSO regression and Cox analysis, and its performance was evaluated with ROC curves. We then performed consistent cluster analysis on the model, examining its correlation with immunity and drug response. Additionally, PCR, WB and IHC were employed to validate key genes within the prognostic model. RESULTS 9 ORGs (H6PD, BMP2, SPP1, HADHA, SLC25A20, TXNIP, ACTA1, CCND1, EEF1A1) were selected via differential expression analysis, LASSO and Cox analysis, and incorporated into the risk model with high predictive accuracy. Enrichment analyses using GSVA and GSEA focused predominantly on malignancy-associated pathways. Subtype C of GBM had the best prognosis with the lowest risk score. Furthermore, the model exhibited a strong correlation with the infiltration of immune cells and had the capability to pinpoint potential targeted therapeutic medications for GBM. Ultimately, we selected HADHA for in vitro validation. The findings indicated that GBM exhibits a significant upregulation of HADHA. Knockdown of HADHA inhibited glioma cell proliferation and diminished their migration and invasion capacities and influenced the tumor growth in vivo. CONCLUSION The risk model, built upon 9 ORGs and the identification of GBM subtypes, suggests that ORGs have a broad application prospect in the clinical immunotherapy and targeted drug treatment of GBM. HADHA significantly influences the development of gliomas, both in vivo and in vitro.
Collapse
Affiliation(s)
- Kan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China
| | - Yifei Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China
| | - Ruipeng Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China
| | - Yu Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China.
| |
Collapse
|
20
|
Mongiardi MP, Pallini R, D'Alessandris QG, Levi A, Falchetti ML. Regorafenib and glioblastoma: a literature review of preclinical studies, molecular mechanisms and clinical effectiveness. Expert Rev Mol Med 2024; 26:e5. [PMID: 38563164 PMCID: PMC11062143 DOI: 10.1017/erm.2024.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Glioblastoma IDH wild type (GBM) is a very aggressive brain tumour, characterised by an infiltrative growth pattern and by a prominent neoangiogenesis. Its prognosis is unfortunately dismal, and the median overall survival of GBM patients is short (15 months). Clinical management is based on bulk tumour removal and standard chemoradiation with the alkylating drug temozolomide, but the tumour invariably recurs leading to patient's death. Clinical options for GBM patients remained unaltered for almost two decades until the encouraging results obtained by the phase II REGOMA trial allowed the introduction of the multikinase inhibitor regorafenib as a preferred regimen in relapsed GBM treatment by the National Comprehensive Cancer Network (NCCN) 2020 Guideline. Regorafenib, a sorafenib derivative, targets kinases associated with angiogenesis (VEGFR 1-3), as well as oncogenesis (c-KIT, RET, FGFR) and stromal kinases (FGFR, PDGFR-b). It was already approved for metastatic colorectal cancers and hepatocellular carcinomas. The aim of the present review is to focus on both the molecular and clinical knowledge collected in these first three years of regorafenib use in GBM.
Collapse
Affiliation(s)
| | - Roberto Pallini
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Andrea Levi
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo, Rome, Italy
| | | |
Collapse
|
21
|
Rosito M, Maqbool J, Reccagni A, Giampaoli O, Sciubba F, Antonangeli F, Scavizzi F, Raspa M, Cordella F, Tondo L, Di Angelantonio S, Trettel F, Miccheli A, D'Alessandro G, Limatola C. Antibiotics treatment promotes vasculogenesis in the brain of glioma-bearing mice. Cell Death Dis 2024; 15:210. [PMID: 38480690 PMCID: PMC10937980 DOI: 10.1038/s41419-024-06578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
In recent years, several studies described the close relationship between the composition of gut microbiota and brain functions, highlighting the importance of gut-derived metabolites in mediating neuronal and glial cells cross-talk in physiological and pathological condition. Gut dysbiosis may affects cerebral tumors growth and progression, but the specific metabolites involved in this modulation have not been identified yet. Using a syngeneic mouse model of glioma, we have investigated the role of dysbiosis induced by the administration of non-absorbable antibiotics on mouse metabolome and on tumor microenvironment. We report that antibiotics treatment induced: (1) alteration of the gut and brain metabolome profiles; (2) modeling of tumor microenvironment toward a pro-angiogenic phenotype in which microglia and glioma cells are actively involved; (3) increased glioma stemness; (4) trans-differentiation of glioma cells into endothelial precursor cells, thus increasing vasculogenesis. We propose glycine as a metabolite that, in ABX-induced dysbiosis, shapes brain microenvironment and contributes to glioma growth and progression.
Collapse
Affiliation(s)
- Maria Rosito
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Center for Life Nanoscience & Neuroscience Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Javeria Maqbool
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Alice Reccagni
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University, Rome, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), Rome, Italy
| | | | | | - Federica Cordella
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Center for Life Nanoscience & Neuroscience Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Lucrezia Tondo
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Center for Life Nanoscience & Neuroscience Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Center for Life Nanoscience & Neuroscience Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University, Rome, Italy
| | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, IS, Italy.
- Department of Physiology and Pharmacology, Sapienza University, Laboratory Affiliated to Institute Pasteur Italia, Rome, Italy.
| |
Collapse
|
22
|
Mendes CB, da Rocha LS, de Carvalho Fraga CA, Ximenes-da-Silva A. Homeostatic status of thyroid hormones and brain water movement as determinant factors in biology of cerebral gliomas: a pilot study using a bioinformatics approach. Front Neurosci 2024; 18:1349421. [PMID: 38476871 PMCID: PMC10927765 DOI: 10.3389/fnins.2024.1349421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction The expression and localization of the water channel transporters, aquaporins (AQPs), in the brain are substantially modified in gliomas during tumorigenesis, cell migration, edema formation, and resolution. We hypothesized that the molecular changes associated with AQP1 and AQP4 in the brain may potentially be anticancer therapeutic targets. To test this hypothesis, a bioinformatics analysis of publicly available data from international consortia was performed. Methods We used RNA-seq as an experimental strategy and identified the number of differential AQP1 and AQP4 transcript expressions in glioma tissue compared to normal brain tissue. Results AQPs genes are overexpressed in patients with glioma. Among the glioma subtypes, AQP1 and AQP4 were overexpressed in astrocytoma (low-grade glioma) and classical (high-grade glioma). Overall survival analysis demonstrated that both AQP genes can be used as prognostic factors for patients with low-grade glioma. Additionally, we observed a correlation between the expression of genes involved in the tyrosine and thyroid hormone pathways and AQPs, namely: PNMT, ALDH1A3, AOC2, HGDATP1B1, ADCY5, PLCB4, ITPR1, ATP1A3, LRP2, HDAC1, MED24, MTOR, and ACTB1 (Spearman's coefficient = geq 0.20 and p-value = ≤ 0.05). Conclusion Our findings indicate that the thyroid hormone pathways and AQPs 1 and 4 are potential targets for new anti-tumor drugs and therapeutic biomarkers for malignant gliomas.
Collapse
Affiliation(s)
- Carmelita Bastos Mendes
- Laboratório de Eletrofisiologia e Metabolismo Cerebral, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | - Lanni Sarmento da Rocha
- Laboratório de Eletrofisiologia e Metabolismo Cerebral, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| | | | - Adriana Ximenes-da-Silva
- Laboratório de Eletrofisiologia e Metabolismo Cerebral, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Brazil
| |
Collapse
|
23
|
Ahmed YB, Ababneh OE, Al-Khalili AA, Serhan A, Hatamleh Z, Ghammaz O, Alkhaldi M, Alomari S. Identification of Hypoxia Prognostic Signature in Glioblastoma Multiforme Based on Bulk and Single-Cell RNA-Seq. Cancers (Basel) 2024; 16:633. [PMID: 38339384 PMCID: PMC10854729 DOI: 10.3390/cancers16030633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Glioblastoma (GBM) represents a profoundly aggressive and heterogeneous brain neoplasm linked to a bleak prognosis. Hypoxia, a common feature in GBM, has been linked to tumor progression and therapy resistance. In this study, we aimed to identify hypoxia-related differentially expressed genes (DEGs) and construct a prognostic signature for GBM patients using multi-omics analysis. Patient cohorts were collected from publicly available databases, including the Gene Expression Omnibus (GEO), the Chinese Glioma Genome Atlas (CGGA), and The Cancer Genome Atlas-Glioblastoma Multiforme (TCGA-GBM), to facilitate a comprehensive analysis. Hypoxia-related genes (HRGs) were obtained from the Molecular Signatures Database (MSigDB). Differential expression analysis revealed 41 hypoxia-related DEGs in GBM patients. A consensus clustering approach, utilizing these DEGs' expression patterns, identified four distinct clusters, with cluster 1 showing significantly better overall survival. Machine learning techniques, including univariate Cox regression and LASSO regression, delineated a prognostic signature comprising six genes (ANXA1, CALD1, CP, IGFBP2, IGFBP5, and LOX). Multivariate Cox regression analysis substantiated the prognostic significance of a set of three optimal signature genes (CP, IGFBP2, and LOX). Using the hypoxia-related prognostic signature, patients were classified into high- and low-risk categories. Survival analysis demonstrated that the high-risk group exhibited inferior overall survival rates in comparison to the low-risk group. The prognostic signature showed good predictive performance, as indicated by the area under the curve (AUC) values for one-, three-, and five-year overall survival. Furthermore, functional enrichment analysis of the DEGs identified biological processes and pathways associated with hypoxia, providing insights into the underlying mechanisms of GBM. Delving into the tumor immune microenvironment, our analysis revealed correlations relating the hypoxia-related prognostic signature to the infiltration of immune cells in GBM. Overall, our study highlights the potential of a hypoxia-related prognostic signature as a valuable resource for forecasting the survival outcome of GBM patients. The multi-omics approach integrating bulk sequencing, single-cell analysis, and immune microenvironment assessment enhances our understanding of the intricate biology characterizing GBM, thereby potentially informing the tailored design of therapeutic interventions.
Collapse
Affiliation(s)
- Yaman B. Ahmed
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Obada E. Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Anas A. Al-Khalili
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Abdullah Serhan
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Zaid Hatamleh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Owais Ghammaz
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Mohammad Alkhaldi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (A.A.A.-K.); (A.S.); (Z.H.); (O.G.); (M.A.)
| | - Safwan Alomari
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
24
|
Griessmair M, Delbridge C, Ziegenfeuter J, Jung K, Mueller T, Schramm S, Bernhardt D, Schmidt-Graf F, Kertels O, Thomas M, Zimmer C, Meyer B, Combs SE, Yakushev I, Wiestler B, Metz MC. Exploring molecular glioblastoma: Insights from advanced imaging for a nuanced understanding of the molecularly defined malignant biology. Neurooncol Adv 2024; 6:vdae106. [PMID: 39114182 PMCID: PMC11304596 DOI: 10.1093/noajnl/vdae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Background Molecular glioblastoma (molGB) does not exhibit the histologic hallmarks of a grade 4 glioma but is nevertheless diagnosed as glioblastoma when harboring specific molecular markers. MolGB can easily be mistaken for similar-appearing lower-grade astrocytomas. Here, we investigated how advanced imaging could reflect the underlying tumor biology. Methods Clinical and imaging data were collected for 7 molGB grade 4, 9 astrocytomas grade 2, and 12 astrocytomas grade 3. Four neuroradiologists performed VASARI-scoring of conventional imaging, and their inter-reader agreement was assessed using Fleiss κ coefficient. To evaluate the potential of advanced imaging, 2-sample t test, 1-way ANOVA, Mann-Whitney U, and Kruskal-Wallis test were performed to test for significant differences between apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) that were extracted fully automatically from the whole tumor volume. Results While conventional VASARI imaging features did not allow for reliable differentiation between glioma entities, rCBV was significantly higher in molGB compared to astrocytomas for the 5th and 95th percentile, mean, and median values (P < .05). ADC values were significantly lower in molGB than in astrocytomas for mean, median, and the 95th percentile (P < .05). Although no molGB showed contrast enhancement initially, we observed enhancement in the short-term follow-up of 1 patient. Discussion Quantitative analysis of diffusion and perfusion parameters shows potential in reflecting the malignant tumor biology of molGB. It may increase awareness of molGB in a nonenhancing, "benign" appearing tumor. Our results support the emerging hypothesis that molGB might present glioblastoma captured at an early stage of gliomagenesis.
Collapse
Affiliation(s)
- Michael Griessmair
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | | | - Julian Ziegenfeuter
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Kirsten Jung
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Tobias Mueller
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Severin Schramm
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Denise Bernhardt
- Department of Radiation Oncology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | | | - Olivia Kertels
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Marie Thomas
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Marie-Christin Metz
- Department of Neuroradiology, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| |
Collapse
|
25
|
Thapa K, Khan H, Kaur G, Kumar P, Singh TG. Therapeutic targeting of angiopoietins in tumor angiogenesis and cancer development. Biochem Biophys Res Commun 2023; 687:149130. [PMID: 37944468 DOI: 10.1016/j.bbrc.2023.149130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
The formation and progression of tumors in humans are linked to the abnormal development of new blood vessels known as neo-angiogenesis. Angiogenesis is a broad word that encompasses endothelial cell migration, proliferation, tube formation, and intussusception, as well as peri-EC recruitment and extracellular matrix formation. Tumor angiogenesis is regulated by angiogenic factors, out of which some of the most potent angiogenic factors such as vascular endothelial growth factor and Angiopoietins (ANGs) in the body are produced by macrophages and other immune cells within the tumor microenvironment. ANGs have a distinct function in tumor angiogenesis and behavior. ANG1, ANG 2, ANG 3, and ANG 4 are the family members of ANG out of which ANG2 has been extensively investigated owing to its unique role in modifying angiogenesis and its tight association with tumor progression, growth, and invasion/metastasis, which makes it an excellent candidate for therapeutic intervention in human malignancies. ANG modulators have demonstrated encouraging outcomes in the treatment of tumor development, either alone or in conjunction with VEGF inhibitors. Future development of more ANG modulators targeting other ANGs is needed. The implication of ANG1, ANG3, and ANG4 as probable therapeutic targets for anti-angiogenesis treatment in tumor development should be also evaluated. The article has described the role of ANG in tumor angiogenesis as well as tumor growth and the treatment strategies modulating ANGs in tumor angiogenesis as demonstrated in clinical studies. The pharmacological modulation of ANGs and ANG-regulated pathways that are responsible for tumor angiogenesis and cancer development should be evaluated for the development of future molecular therapies.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, 151401, Bathinda, India
| | | |
Collapse
|
26
|
Genoud V, Kinnersley B, Brown NF, Ottaviani D, Mulholland P. Therapeutic Targeting of Glioblastoma and the Interactions with Its Microenvironment. Cancers (Basel) 2023; 15:5790. [PMID: 38136335 PMCID: PMC10741850 DOI: 10.3390/cancers15245790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumour, and it confers a dismal prognosis despite intensive multimodal treatments. Whilst historically, research has focussed on the evolution of GBM tumour cells themselves, there is growing recognition of the importance of studying the tumour microenvironment (TME). Improved characterisation of the interaction between GBM cells and the TME has led to a better understanding of therapeutic resistance and the identification of potential targets to block these escape mechanisms. This review describes the network of cells within the TME and proposes treatment strategies for simultaneously targeting GBM cells, the surrounding immune cells, and the crosstalk between them.
Collapse
Affiliation(s)
- Vassilis Genoud
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
- Department of Oncology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Centre for Translational Research in Onco-Haematology, University of Geneva, 1205 Geneva, Switzerland
| | - Ben Kinnersley
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| | - Nicholas F. Brown
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Guy’s Cancer, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 3SS, UK
| | - Diego Ottaviani
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| | - Paul Mulholland
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| |
Collapse
|
27
|
Agrawal I, Bano S, Chaudhary A, Ahuja A. Role of Permeability Surface Area Product in Grading of Brain Gliomas using CT Perfusion. Asian J Neurosurg 2023; 18:751-760. [PMID: 38161609 PMCID: PMC10756843 DOI: 10.1055/s-0043-1774820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024] Open
Abstract
Purpose The aim of this study was to evaluate the role of permeability surface area product in grading brain gliomas using computed tomography (CT) perfusion Materials and Methods CT perfusion was performed on 33 patients with brain glioma diagnosed on magnetic resonance imaging. Of these, 19 had high-grade glioma and 14 had low-grade glioma on histopathological follow-up. CT perfusion values were obtained and first compared between the tumor region and normal brain parenchyma. Then the relative values of perfusion parameters were compared between high- and low-grade gliomas. Cut-off values, sensitivity, specificity, and strength of agreement for each parameter were calculated and compared subsequently. A conjoint factor (permeability surface area product + cerebral blood volume) was also evaluated since permeability surface area product and cerebral blood volume are considered complimentary factors for tumor vascularity. Results All five perfusion parameters namely permeability surface area product, cerebral blood volume, cerebral blood flow, mean transit time, and time to peak were found significantly higher in the tumor region than normal brain parenchyma. Among these perfusion parameters, only relative permeability surface area product and relative cerebral blood volume were found significant in differentiating high- and low-grade glioma. Moreover, relative permeability surface area product was significantly better than all other perfusion parameters with highest sensitivity and specificity (97.74 and 100%, respectively, at a cut-off of 9.0065). Relative permeability surface area product had a very good agreement with the histopathology grade. The conjoint factor did not yield any significant diagnostic advantage over permeability surface area product. Conclusion Relative permeability surface area product and relative cerebral blood volume were helpful in differentiating high- and low-grade glioma; however, relative permeability surface area product was significantly better than all other perfusion parameters. Grading brain gliomas using relative permeability surface area product can add crucial value in their management and prognostication; hence, it should be evaluated in the routine CT perfusion imaging protocol.
Collapse
Affiliation(s)
- Ira Agrawal
- Department of Radiodiagnosis, PGIMER, Dr. RML Hospital, New Delhi, India
| | - Shahina Bano
- Department of Radiodiagnosis, PGIMER, Dr. RML Hospital, New Delhi, India
| | - Ajay Chaudhary
- Department of Neurosurgery, PGIMER, Dr. RML Hospital, New Delhi, India
| | - Arvind Ahuja
- Department of Pathology, PGIMER, Dr. RML Hospital, New Delhi, India
| |
Collapse
|
28
|
Mahara A, Shima K, Soni R, Onishi R, Hirano Y, Saito S, Yamaoka T. In vivo MR imaging for tumor-associated initial neovascularization by supramolecular contrast agents. Colloids Surf B Biointerfaces 2023; 230:113525. [PMID: 37634287 DOI: 10.1016/j.colsurfb.2023.113525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Microvascular imaging is required to understand tumor angiogenesis development; however, an appropriate whole-body imaging method has not yet been established. Here, we successfully developed a supramolecular magnetic resonance (MR) contrast agent for long-term whole-tissue observation in a single individual. Fluorescein- and Gd-chelate-conjugated polyethylene glycols (PEGs) were synthesized, and their structures were optimized. Spectroscopic and pharmacokinetic analyses suggested that the fluorescein-conjugated linear and 8-arm PEGs with a molecular weight of approximately 10 kDa were suitable to form a supramolecular structure to visualize the microvessel structure and blood circulation. Microvascular formation was evaluated in a glioma cell transplantation model, and neovascularization around the glioma tissue at 5 days was observed, with the contrast agent leaking out into the cancer tissue. In contrast, after 12 days, microvessel structures were formed inside the glioma tissue, but the agents did not leak out. These imaging data for the first time proved that the microvessels formed inside cancer tissues at the early stage are very leaky, but that they form continuous microvessels after 12 days.
Collapse
Affiliation(s)
- Atsushi Mahara
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shim-machi, Suita, Osaka 564-8565, Japan.
| | - Keigo Shima
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shim-machi, Suita, Osaka 564-8565, Japan; Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka 565-8680, Japan
| | - Raghav Soni
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shim-machi, Suita, Osaka 564-8565, Japan
| | - Ryutaro Onishi
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Clinical Radiology Service, Kyoto University Hospital, Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshiaki Hirano
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamatecho, Suita, Osaka 565-8680, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shim-machi, Suita, Osaka 564-8565, Japan
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute, Kishibe Shim-machi, Suita, Osaka 564-8565, Japan
| |
Collapse
|
29
|
Zhao G, Deng Z, Li X, Wang H, Chen G, Feng M, Zhou Y. Targeting EZH2 regulates the biological characteristics of glioma stem cells via the Notch1 pathway. Exp Brain Res 2023; 241:2409-2418. [PMID: 37644332 DOI: 10.1007/s00221-023-06693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Glioma is the most common malignant brain tumor, and its behavior is closely related to the presence of glioma stem cells (GSCs). We found that the enhancer of zeste homolog 2 (EZH2) is highly expressed in glioma and that its expression is correlated with the prognosis of glioblastoma multiforme (GBM) in two databases: The Cancer Genome Atlas and the Chinese Glioma Genome Atlas. Additionally, EZH2 is known to regulate the stemness-associated gene expression, proliferation, and invasion ability of GSCs, which may be achieved through the activation of the STAT3 and Notch1 pathways. Furthermore, we demonstrated the effect of the EZH2-specific inhibitor GSK126 on GSCs; these results not only corroborate our hypothesis, but also provide a potential novel treatment approach for glioma.
Collapse
Affiliation(s)
- Guozheng Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Department of Neurosurgery, Suzhou Ninth People's Hospital, Suzhou, 215000, China
| | - Zhitong Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Department of Neurosurgery, The First Affiliated Hospital of Huzhou University, Huzhou, 313000, China
| | - Xuetao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Hao Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Guangliang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Ming Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
30
|
Maddison K, Faulkner S, Graves MC, Fay M, Bowden NA, Tooney PA. Vasculogenic Mimicry Occurs at Low Levels in Primary and Recurrent Glioblastoma. Cancers (Basel) 2023; 15:3922. [PMID: 37568738 PMCID: PMC10417556 DOI: 10.3390/cancers15153922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Vasculogenic mimicry (VM), the ability of tumour cells to form functional microvasculature without an endothelial lining, may contribute to anti-angiogenic treatment resistance in glioblastoma. We aimed to assess the extent of VM formation in primary and recurrent glioblastomas and to determine whether VM vessels also express prostate-specific membrane antigen (PSMA), a pathological vessel marker. Formalin-fixed paraffin-embedded tissue from 35 matched pairs of primary and recurrent glioblastoma was immunohistochemically labelled for PSMA and CD34 and stained with periodic acid-Schiff (PAS). Vascular structures were categorised as endothelial vessels (CD34+/PAS+) or VM (CD34-/PAS+). Most blood vessels in both primary and recurrent tumours were endothelial vessels, and these significantly decreased in recurrent tumours (p < 0.001). PSMA was expressed by endothelial vessels, and its expression was also decreased in recurrent tumours (p = 0.027). VM was observed in 42.86% of primary tumours and 28.57% of recurrent tumours. VM accounted for only a small proportion of the tumour vasculature and VM density did not differ between primary and recurrent tumours (p = 0.266). The functional contribution of VM and its potential as a treatment target in glioblastoma require further investigation.
Collapse
Affiliation(s)
- Kelsey Maddison
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (K.M.); (S.F.); (P.A.T.)
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (K.M.); (S.F.); (P.A.T.)
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
| | - Moira C. Graves
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Michael Fay
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
- GenesisCare, Lake Macquarie Private Hospital, Gateshead, NSW 2290, Australia
| | - Nikola A. Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Paul A. Tooney
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (K.M.); (S.F.); (P.A.T.)
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
31
|
Kolothara Unnikrishnan M, Schmidt MHH. Editorial for "Impact of Regorafenib on Endothelial Transdifferentiation of Glioblastoma Stem-like Cells". Cancers (Basel) 2023; 15:3830. [PMID: 37568645 PMCID: PMC10417816 DOI: 10.3390/cancers15153830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequently occurring form of malignant primary brain tumor in adults [...].
Collapse
Affiliation(s)
| | - Mirko H. H. Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307 Dresden, Germany;
| |
Collapse
|
32
|
Tatebayashi K, Nakayama N, Sakamoto D, Iida T, Ono S, Matsuda I, Enomoto Y, Tanaka M, Fujita M, Hirota S, Yoshimura S. Clinical Significance of Early Venous Filling Detected via Preoperative Angiography in Glioblastoma. Cancers (Basel) 2023; 15:3800. [PMID: 37568616 PMCID: PMC10416945 DOI: 10.3390/cancers15153800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Preoperative angiography in glioblastoma (GBM) often shows arteriovenous shunts and early venous filling (EVF). Here, we investigated the clinical implications of EVF in GBM as a prognostic and vascular mimicry biomarker. In this retrospective multicenter study, we consecutively enrolled patients who underwent angiography with a GBM diagnosis between 1 April 2013 and 31 March 2021. The primary and secondary endpoints were the differences in overall survival (OS) and progression-free survival (PFS), respectively, between cases with and without EVF. Of the 133 initially enrolled patients, 91 newly diagnosed with GBM underwent preoperative angiography and became the study population. The 6-year OS and PFS were significantly worse in the EVF than in the non-EVF group. Moreover, 20 GBM cases (10 with EVF and 10 without EVF) were randomly selected and evaluated for histological vascular mimicry. Except for two cases that were difficult to evaluate, the EVF group had a significantly higher frequency of vascular mimicry than the non-EVF group (0/8 vs. 5/10, p = 0.04). EVF on preoperative angiography is a robust prognostic biomarker for GBM and may help detect cases with a high frequency of histological vascular mimicry.
Collapse
Affiliation(s)
- Kotaro Tatebayashi
- Department of Neurosurgery, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.T.); (D.S.); (T.I.); (S.O.)
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University, Gifu 501-1112, Japan; (N.N.); (Y.E.)
| | - Daisuke Sakamoto
- Department of Neurosurgery, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.T.); (D.S.); (T.I.); (S.O.)
| | - Tomoko Iida
- Department of Neurosurgery, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.T.); (D.S.); (T.I.); (S.O.)
| | - Shun Ono
- Department of Neurosurgery, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.T.); (D.S.); (T.I.); (S.O.)
| | - Ikuo Matsuda
- Department of Surgical Pathology, Hyogo Medical University, Nishinomiya 663-8501, Japan; (I.M.); (S.H.)
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University, Gifu 501-1112, Japan; (N.N.); (Y.E.)
| | - Michihiro Tanaka
- Department of Neuroendovascular Surgery, Kameda Medical Center, Kamogawa 296-0041, Japan;
| | - Mitsugu Fujita
- Department of Medicine, Graduate School of Medical Sciences, Kindai University, Higashiosaka 577-8502, Japan;
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo Medical University, Nishinomiya 663-8501, Japan; (I.M.); (S.H.)
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo Medical University, Nishinomiya 663-8501, Japan; (K.T.); (D.S.); (T.I.); (S.O.)
| |
Collapse
|
33
|
Muthukrishnan SD, Qi H, Wang D, Elahi L, Pham A, Alvarado AG, Li T, Gao F, Kawaguchi R, Lai A, Kornblum HI. Low- and high-grade glioma endothelial cells differentially regulate tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548125. [PMID: 37461434 PMCID: PMC10350040 DOI: 10.1101/2023.07.07.548125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background A key feature distinguishing high-grade glioma (HGG) from low-grade glioma (LGG) is the extensive neovascularization and endothelial hyperproliferation. Prior work has shown that tumor endothelial cells (TEC) from HGG are molecularly and functionally distinct from normal brain EC and secrete higher levels of pro-tumorigenic factors that promote glioma growth and progression. However, it remains unclear whether TEC from LGG also express pro-tumorigenic factors, and to what extent they functionally contribute to glioma growth. Methods Transcriptomic profiling was conducted on tumor endothelial cells (TEC) from grade II/III (LGG, IDH-mutant) and grade IV HGG (IDH-wildtype). Functional differences between LGG- and HGG-TEC were evaluated using growth assays, resistance to anti-angiogenic drugs and radiation therapy. Conditioned media and specific factors from LGG- and HGG-TEC were tested on patient-derived gliomasphere lines using growth assays in vitro and in co-transplantation studies in vivo in orthotopic xenograft models. Results LGG-TEC showed enrichment of extracellular matrix and cell cycle-related gene sets and sensitivity to anti-angiogenic therapy whereas HGG-TEC displayed an increase in immune response-related gene sets and anti-angiogenic resistance. LGG- and HGG-TEC displayed opposing effects on growth and proliferation of IDH-wildtype and mutant tumor cells. Asporin (ASPN), a small leucine rich proteoglycan enriched in LGG-TEC was identified as a growth suppressor of IDH-wildtype GBM by modulating TGFΒ1-GPM6A signaling. Conclusions Our findings indicate that TEC from LGG and HGG are molecularly and functionally heterogeneous and differentially regulate the growth of IDH-wildtype and mutant tumors.
Collapse
|
34
|
Gareau DS, RochaKim N, Choudhury A, Bamkole M, Snuderl M, Zou J, Yaroslavsky A, Jacques SL, Strickland S, Krueger JG, Ahn HJ. Fiberoptic hemodynamic spectroscopy reveals abnormal cerebrovascular reactivity in a freely moving mouse model of Alzheimer's disease. Front Mol Neurosci 2023; 16:1163447. [PMID: 37465366 PMCID: PMC10350529 DOI: 10.3389/fnmol.2023.1163447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/22/2023] [Indexed: 07/20/2023] Open
Abstract
Many Alzheimer's disease (AD) patients suffer from altered cerebral blood flow and damaged cerebral vasculature. Cerebrovascular dysfunction could play an important role in this disease. However, the mechanism underlying a vascular contribution in AD is still unclear. Cerebrovascular reactivity (CVR) is a critical mechanism that maintains cerebral blood flow and brain homeostasis. Most current methods to analyze CVR require anesthesia which is known to hamper the investigation of molecular mechanisms underlying CVR. We therefore combined spectroscopy, spectral analysis software, and an implantable device to measure cerebral blood volume fraction (CBVF) and oxygen saturation (SO2) in unanesthetized, freely-moving mice. Then, we analyzed basal CBVF and SO2, and CVR of 5-month-old C57BL/6 mice during hypercapnia as well as during basic behavior such as grooming, walking and running. Moreover, we analyzed the CVR of freely-moving AD mice and their wildtype (WT) littermates during hypercapnia and could find impaired CVR in AD mice compared to WT littermates. Our results suggest that this optomechanical approach to reproducibly getting light into the brain enabled us to successfully measure CVR in unanesthetized freely-moving mice and to find impaired CVR in a mouse model of AD.
Collapse
Affiliation(s)
- Daniel S. Gareau
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Nicholas RochaKim
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Arnab Choudhury
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Michael Bamkole
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Matija Snuderl
- Department of Pathology, NYU Langone Health and Grossman School of Medicine, New York, NY, United States
| | - Julia Zou
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Anna Yaroslavsky
- Department of Physics and Applied Physics, University of Massachusetts, Lowell, MA, United States
| | - Steven L. Jacques
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Sidney Strickland
- Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - James G. Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Hyung Jin Ahn
- Department of Pharmacology, Physiology and Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
35
|
Boylan J, Byers E, Kelly DF. The Glioblastoma Landscape: Hallmarks of Disease, Therapeutic Resistance, and Treatment Opportunities. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i6.3994. [PMID: 38107346 PMCID: PMC10723753 DOI: 10.18103/mra.v11i6.3994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Malignant brain tumors are aggressive and difficult to treat. Glioblastoma is the most common and lethal form of primary brain tumor, often found in patients with no genetic predisposition. The median life expectancy for individuals diagnosed with this condition is 6 months to 2 years and there is no known cure. New paradigms in cancer biology implicate a small subset of tumor cells in initiating and sustaining these incurable brain tumors. Here, we discuss the heterogenous nature of glioblastoma and theories behind its capacity for therapy resistance and recurrence. Within the cancer landscape, cancer stem cells are thought to be both tumor initiators and major contributors to tumor heterogeneity and therapy evasion and such cells have been identified in glioblastoma. At the cellular level, disruptions in the delicate balance between differentiation and self-renewal spur transformation and support tumor growth. While rapidly dividing cells are more sensitive to elimination by traditional treatments, glioblastoma stem cells evade these measures through slow division and reversible exit from the cell cycle. At the molecular level, glioblastoma tumor cells exploit several signaling pathways to evade conventional therapies through improved DNA repair mechanisms and a flexible state of senescence. We examine these common evasion techniques while discussing potential molecular approaches to better target these deadly tumors. Equally important, the presented information encourages the idea of augmenting conventional treatments with novel glioblastoma stem cell-directed therapies, as eliminating these harmful progenitors holds great potential to modulate tumor recurrence.
Collapse
Affiliation(s)
- Jack Boylan
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth Byers
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Graduate Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Deborah F. Kelly
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Structural Oncology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
36
|
Khatami SH, Karami N, Taheri-Anganeh M, Taghvimi S, Tondro G, Khorsand M, Soltani Fard E, Sedighimehr N, Kazemi M, Rahimi Jaberi K, Moradi M, Nafisi Fard P, Darvishi MH, Movahedpour A. Exosomes: Promising Delivery Tools for Overcoming Blood-Brain Barrier and Glioblastoma Therapy. Mol Neurobiol 2023:10.1007/s12035-023-03365-0. [PMID: 37138197 PMCID: PMC10155653 DOI: 10.1007/s12035-023-03365-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Gliomas make up virtually 80% of all lethal primary brain tumors and are categorized based on their cell of origin. Glioblastoma is an astrocytic tumor that has an inferior prognosis despite the ongoing advances in treatment modalities. One of the main reasons for this shortcoming is the presence of the blood-brain barrier and blood-brain tumor barrier. Novel invasive and non-invasive drug delivery strategies for glioblastoma have been developed to overcome both the intact blood-brain barrier and leverage the disrupted nature of the blood-brain tumor barrier to target cancer cells after resection-the first treatment stage of glioblastoma. Exosomes are among non-invasive drug delivery methods and have emerged as a natural drug delivery vehicle with high biological barrier penetrability. There are various exosome isolation methods from different origins, and the intended use of the exosomes and starting materials defines the choice of isolation technique. In the present review, we have given an overview of the structure of the blood-brain barrier and its disruption in glioblastoma. This review provided a comprehensive insight into novel passive and active drug delivery techniques to overcome the blood-brain barrier, emphasizing exosomes as an excellent emerging drug, gene, and effective molecule delivery vehicle used in glioblastoma therapy.
Collapse
Affiliation(s)
- Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Karami
- TU Wien, Institute of Solid State Electronics, A-1040, Vienna, Austria
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Gholamhossein Tondro
- Microbiology Department, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Marjan Khorsand
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Sedighimehr
- Department of Physical Therapy, School of Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Kazemi
- Department of Radio-oncology, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Melika Moradi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Parvaneh Nafisi Fard
- Department of Veterinary Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
37
|
Yun J, Yun S, Park JE, Cheong EN, Park SY, Kim N, Kim HS. Deep Learning of Time-Signal Intensity Curves from Dynamic Susceptibility Contrast Imaging Enables Tissue Labeling and Prediction of Survival in Glioblastoma. AJNR Am J Neuroradiol 2023; 44:543-552. [PMID: 37105676 PMCID: PMC10171378 DOI: 10.3174/ajnr.a7853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/21/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND AND PURPOSE An autoencoder can learn representative time-signal intensity patterns to provide tissue heterogeneity measures using dynamic susceptibility contrast MR imaging. The aim of this study was to investigate whether such an autoencoder-based pattern analysis could provide interpretable tissue labeling and prognostic value in isocitrate dehydrogenase (IDH) wild-type glioblastoma. MATERIALS AND METHODS Preoperative dynamic susceptibility contrast MR images were obtained from 272 patients with IDH wild-type glioblastoma (training and validation, 183 and 89 patients, respectively). The autoencoder was applied to the dynamic susceptibility contrast MR imaging time-signal intensity curves of tumor and peritumoral areas. Representative perfusion patterns were defined by voxelwise K-means clustering using autoencoder latent features. Perfusion patterns were labeled by comparing parameters with anatomic reference tissues for baseline, signal drop, and percentage recovery. In the validation set (n = 89), a survival model was created from representative patterns and clinical predictors using Cox proportional hazard regression analysis, and its performance was calculated using the Harrell C-index. RESULTS Eighty-nine patients were enrolled. Five representative perfusion patterns were used to characterize tissues as high angiogenic tumor, low angiogenic/cellular tumor, perinecrotic lesion, infiltrated edema, and vasogenic edema. Of these, the low angiogenic/cellular tumor (hazard ratio, 2.18; P = .047) and infiltrated edema patterns (hazard ratio, 1.88; P = .009) in peritumoral areas showed significant prognostic value. The combined perfusion patterns and clinical predictors (C-index, 0.72) improved prognostication when added to clinical predictors (C-index, 0.55). CONCLUSIONS The autoencoder perfusion pattern analysis enabled tissue characterization of peritumoral areas, providing heterogeneity and dynamic information that may provide useful prognostic information in IDH wild-type glioblastoma.
Collapse
Affiliation(s)
- J Yun
- From the Departments of Convergence Medicine (J.Y., N.K.)
- Radiology and Research Institute of Radiology (J.Y., J.E.P., N.K., H.S.K.), Asan Medical Center
| | - S Yun
- Department of Radiology (S.Y.), Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - J E Park
- Radiology and Research Institute of Radiology (J.Y., J.E.P., N.K., H.S.K.), Asan Medical Center
| | - E-N Cheong
- Medical Science and Asan Medical Institute of Convergence Science and Technology (E.-N.C.), University of Ulsan College of Medicine, Seoul, Korea
| | - S Y Park
- Department of Statistics and Data Science (S.Y.P.), Korea National Open University, Seoul, Korea
| | - N Kim
- From the Departments of Convergence Medicine (J.Y., N.K.)
- Radiology and Research Institute of Radiology (J.Y., J.E.P., N.K., H.S.K.), Asan Medical Center
| | - H S Kim
- Radiology and Research Institute of Radiology (J.Y., J.E.P., N.K., H.S.K.), Asan Medical Center
| |
Collapse
|
38
|
Wälchli T, Bisschop J, Carmeliet P, Zadeh G, Monnier PP, De Bock K, Radovanovic I. Shaping the brain vasculature in development and disease in the single-cell era. Nat Rev Neurosci 2023; 24:271-298. [PMID: 36941369 PMCID: PMC10026800 DOI: 10.1038/s41583-023-00684-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/23/2023]
Abstract
The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.
Collapse
Affiliation(s)
- Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland.
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada.
| | - Jeroen Bisschop
- Group of CNS Angiogenesis and Neurovascular Link, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Division of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB & Department of Oncology, KU Leuven, Leuven, Belgium
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, People's Republic of China
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Science and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ivan Radovanovic
- Group of Brain Vasculature and Perivascular Niche, Division of Experimental and Translational Neuroscience, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| |
Collapse
|
39
|
Mellinghoff IK, Lu M, Wen PY, Taylor JW, Maher EA, Arrillaga-Romany I, Peters KB, Ellingson BM, Rosenblum MK, Chun S, Le K, Tassinari A, Choe S, Toubouti Y, Schoenfeld S, Pandya SS, Hassan I, Steelman L, Clarke JL, Cloughesy TF. Vorasidenib and ivosidenib in IDH1-mutant low-grade glioma: a randomized, perioperative phase 1 trial. Nat Med 2023; 29:615-622. [PMID: 36823302 DOI: 10.1038/s41591-022-02141-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/21/2022] [Indexed: 02/25/2023]
Abstract
Vorasidenib and ivosidenib inhibit mutant forms of isocitrate dehydrogenase (mIDH) and have shown preliminary clinical activity against mIDH glioma. We evaluated both agents in a perioperative phase 1 trial to explore the mechanism of action in recurrent low-grade glioma (IGG) and select a molecule for phase 3 testing. Primary end-point was concentration of D-2-hydroxyglutarate (2-HG), the metabolic product of mIDH enzymes, measured in tumor tissue from 49 patients with mIDH1-R132H nonenhancing gliomas following randomized treatment with vorasidenib (50 mg or 10 mg once daily, q.d.), ivosidenib (500 mg q.d. or 250 mg twice daily) or no treatment before surgery. Tumor 2-HG concentrations were reduced by 92.6% (95% credible interval (CrI), 76.1-97.6) and 91.1% (95% CrI, 72.0-97.0) in patients treated with vorasidenib 50 mg q.d. and ivosidenib 500 mg q.d., respectively. Both agents were well tolerated and follow-up is ongoing. In exploratory analyses, 2-HG reduction was associated with increased DNA 5-hydroxymethylcytosine, reversal of 'proneural' and 'stemness' gene expression signatures, decreased tumor cell proliferation and immune cell activation. Vorasidenib, which showed brain penetrance and more consistent 2-HG suppression than ivosidenib, was advanced to phase 3 testing in patients with mIDH LGGs. Funded by Agios Pharmaceuticals, Inc. and Servier Pharmaceuticals LLC; ClinicalTrials.gov number NCT03343197.
Collapse
Affiliation(s)
| | - Min Lu
- Agios Pharmaceuticals, Cambridge, MA, USA
- Mersana Therapeutics, Cambridge, MA, USA
| | | | - Jennie W Taylor
- University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | - Saewon Chun
- University of California, Los Angeles, Los Angeles, CA, USA
- California University of Science and Medicine, Colton, CA, USA
| | - Kha Le
- Agios Pharmaceuticals, Cambridge, MA, USA
- Aligos Therapeutics, South San Francisco, CA, USA
| | - Ania Tassinari
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | - Sung Choe
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | - Youssef Toubouti
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
- Sage Therapeutics, Cambridge, MA, USA
| | - Steven Schoenfeld
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | - Shuchi S Pandya
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | - Islam Hassan
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | - Lori Steelman
- Agios Pharmaceuticals, Cambridge, MA, USA
- Servier Pharmaceuticals LLC, Boston, MA, USA
| | | | | |
Collapse
|
40
|
The Journey of Cancer Cells to the Brain: Challenges and Opportunities. Int J Mol Sci 2023; 24:ijms24043854. [PMID: 36835266 PMCID: PMC9967224 DOI: 10.3390/ijms24043854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer metastases into the brain constitute one of the most severe, but not uncommon, manifestations of cancer progression. Several factors control how cancer cells interact with the brain to establish metastasis. These factors include mediators of signaling pathways participating in migration, infiltration of the blood-brain barrier, interaction with host cells (e.g., neurons, astrocytes), and the immune system. Development of novel therapies offers a glimpse of hope for increasing the diminutive life expectancy currently forecasted for patients suffering from brain metastasis. However, applying these treatment strategies has not been sufficiently effective. Therefore, there is a need for a better understanding of the metastasis process to uncover novel therapeutic targets. In this review, we follow the journey of various cancer cells from their primary location through the diverse processes that they undergo to colonize the brain. These processes include EMT, intravasation, extravasation, and infiltration of the blood-brain barrier, ending up with colonization and angiogenesis. In each phase, we focus on the pathways engaging molecules that potentially could be drug target candidates.
Collapse
|
41
|
Sabu A, Liu TI, Ng SS, Doong RA, Huang YF, Chiu HC. Nanomedicines Targeting Glioma Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:158-181. [PMID: 35544684 DOI: 10.1021/acsami.2c03538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM), classified as a grade IV glioma, is a rapidly growing, aggressive, and most commonly occurring tumor of the central nervous system. Despite the therapeutic advances, it carries an ominous prognosis, with a median survival of 14.6 months after diagnosis. Accumulating evidence suggests that cancer stem cells in GBM, termed glioma stem cells (GSCs), play a crucial role in tumor propagation, treatment resistance, and tumor recurrence. GSCs, possessing the capacity for self-renewal and multilineage differentiation, are responsible for tumor growth and heterogeneity, leading to primary obstacles to current cancer therapy. In this respect, increasing efforts have been devoted to the development of anti-GSC strategies based on targeting GSC surface markers, blockage of essential signaling pathways of GSCs, and manipulating the tumor microenvironment (GSC niches). In this review, we will discuss the research knowledge regarding GSC-based therapy and the underlying mechanisms for the treatment of GBM. Given the rapid progression in nanotechnology, innovative nanomedicines developed for GSC targeting will also be highlighted from the perspective of rationale, advantages, and limitations. The goal of this review is to provide broader understanding and key considerations toward the future direction of GSC-based nanotheranostics to fight against GBM.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Te-I Liu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Siew Suan Ng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
42
|
Faye MD, Easaw J, De Robles P, Agnihotram R, Torres-Vasquez A, Lamonde F, Petrecca K, Owen S, Panet-Raymond V, Shenouda G, Souhami L, Azam M, Hossain B, Alkass J, Sabri S, Abdulkarim B. Phase II trial of concurrent sunitinib, temozolomide, and radiotherapy with adjuvant temozolomide for newly diagnosed MGMT unmethylated glioblastoma. Neurooncol Adv 2023; 5:vdad106. [PMID: 37771465 PMCID: PMC10530294 DOI: 10.1093/noajnl/vdad106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Background The overall prognosis of glioblastoma (GBM) remains dismal, particularly for patients with unmethylated O6-methylguanine-DNA-methyltransferase (MGMT) promoter. In this phase II trial, we tested the combination of the antiangiogenic agent sunitinib with radiotherapy and temozolomide (TMZ) for newly diagnosed unmethylated MGMT GBM patients. Methods We enrolled 37 patients with unmethylated MGMT promoter GBM, age 18-70, and KPS ≥70. Patients received 12.5 mg of daily sunitinib for 7 days, followed by concurrent chemoradiation plus 12.5 mg sunitinib, then adjuvant TMZ. The primary endpoint was progression-free survival (PFS), and secondary endpoints were overall survival (OS), safety, and neutrophil-to-lymphocyte ratio (NLR) biomarker. Results At a median follow-up time of 15.3 months (range: 3.1-71.3 months), the median PFS was 7.15 months (95% CI: 5.4-10.5) and the 6-month PFS was 54.0%. Median OS was 15.0 months (95% CI: 13.8-19.4) and 2-year OS rate was 17.1%. Patients receiving >3 cycles of adjuvant TMZ, undergoing surgery at progression, and presenting a post-concurrent NLR ≤6 experienced a significant improved OS with hazard ratios of 0.197 (P = .001), 0.46 (P = .049), and 0.38 (P = .021), respectively, on multivariable analysis. Age >65 years predicted for worse OS with hazard ratio of 3.92 (P = .037). Grade ≥3 thrombocytopenia occurred in 22.9%, grade ≥3 neutropenia in 20%, and grade ≥3 thromboembolic events in 14.3% of patients. There were no grade 5 events. Conclusion Our findings suggest a potential benefit of combining sunitinib with chemoradiation in newly diagnosed GBM patients with unmethylated MGMT status and provide a strong rationale to test this combination in future studies.
Collapse
Affiliation(s)
- Mame Daro Faye
- Division of Radiation Oncology, Mcgill University Health Centre
| | - Jacob Easaw
- Department of Oncology, Cross Cancer Institute
| | | | - Raman Agnihotram
- Department of Oncology, McGill University Health Centre Research Institute
| | | | - Frederic Lamonde
- Department of Oncology, McGill University Health Centre Research Institute
| | - Kevin Petrecca
- Division of Neurosurgery, McGill University Health Centre
| | - Scott Owen
- Department of Oncology, McGill University Health Centre Research Institute
| | | | - George Shenouda
- Division of Radiation Oncology, Mcgill University Health Centre
| | - Luis Souhami
- Division of Radiation Oncology, Mcgill University Health Centre
| | - Maryam Azam
- Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Bushra Hossain
- Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Jad Alkass
- Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Siham Sabri
- Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| | - Bassam Abdulkarim
- Division of Radiation Oncology, Mcgill University Health Centre
- Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Kurz FT, Hahn A. Advanced Computational Methods to Evaluate Vascular Heterogeneity in Tumor Tissue Based on Single Plane Illumination Microscopy. Methods Mol Biol 2023; 2660:283-294. [PMID: 37191805 DOI: 10.1007/978-1-0716-3163-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
During tumor growth, the complex composition of vasculature is prone to dynamic changes due to mechanic and biochemical challenges. Perivascular invasion of tumor cells to co-opt existing vasculature, but also formation of de-novo vasculature and other effects on the vascular network, may lead to altered geometric vessel properties as well as changes in vascular network topology, which is defined by vascular multifurcations and connections between vessel segments. The intricate organization and heterogeneity of the vascular network can be analyzed with advanced computational methods to uncover vascular network signatures that may allow differentiating between pathological and physiological vessel regions. Herein, we present a protocol to evaluate vascular heterogeneity in whole vascular networks, using morphological and topological measures. The protocol was developed for single plane illumination microscopy images of mice brain vasculature but can be applied to any vascular network.
Collapse
Affiliation(s)
- Felix T Kurz
- Division of Radiology, German Cancer Research Center, Heidelberg, Germany.
| | | |
Collapse
|
44
|
Annese T, Errede M, De Giorgis M, Lorusso L, Tamma R, Ribatti D. Double Immunohistochemical Staining on Formalin-Fixed Paraffin-Embedded Tissue Samples to Study Vascular Co-option. Methods Mol Biol 2023; 2572:101-116. [PMID: 36161411 DOI: 10.1007/978-1-0716-2703-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Vascular co-option is a non-angiogenic mechanism whereby tumor growth and progression move on by hijacking the pre-existing and nonmalignant blood vessels and is employed by various tumors to grow and metastasize.The histopathological identification of co-opted blood vessels is complex, and no specific markers were defined, but it is critical to develop new and possibly more effective therapeutic strategies. Here, in glioblastoma, we show that the co-opted blood vessels can be identified, by double immunohistochemical staining, as weak CD31+ vessels with reduced P-gp expression and proliferation and surrounded by highly proliferating and P-gp- or S100A10-expressing tumor cells. Results can be quantified by the Aperio Colocalization algorithm, which is a valid and robust method to handle and investigate large data sets.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy.
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
45
|
Differentiation of Glioblastoma and Brain Metastases by MRI-Based Oxygen Metabolomic Radiomics and Deep Learning. Metabolites 2022; 12:metabo12121264. [PMID: 36557302 PMCID: PMC9781524 DOI: 10.3390/metabo12121264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GB) and brain metastasis (BM) are the most frequent types of brain tumors in adults. Their therapeutic management is quite different and a quick and reliable initial characterization has a significant impact on clinical outcomes. However, the differentiation of GB and BM remains a major challenge in today's clinical neurooncology due to their very similar appearance in conventional magnetic resonance imaging (MRI). Novel metabolic neuroimaging has proven useful for improving diagnostic performance but requires artificial intelligence for implementation in clinical routines. Here; we investigated whether the combination of radiomic features from MR-based oxygen metabolism ("oxygen metabolic radiomics") and deep convolutional neural networks (CNNs) can support reliably pre-therapeutic differentiation of GB and BM in a clinical setting. A self-developed one-dimensional CNN combined with radiomic features from the cerebral metabolic rate of oxygen (CMRO2) was clearly superior to human reading in all parameters for classification performance. The radiomic features for tissue oxygen saturation (mitoPO2; i.e., tissue hypoxia) also showed better diagnostic performance compared to the radiologists. Interestingly, both the mean and median values for quantitative CMRO2 and mitoPO2 values did not differ significantly between GB and BM. This demonstrates that the combination of radiomic features and DL algorithms is more efficient for class differentiation than the comparison of mean or median values. Oxygen metabolic radiomics and deep neural networks provide insights into brain tumor phenotype that may have important diagnostic implications and helpful in clinical routine diagnosis.
Collapse
|
46
|
Annese T, Errede M, d’Amati A, De Giorgis M, Lorusso L, Tamma R, Ribatti D. Differential P-Glycoprotein/CD31 Expression as Markers of Vascular Co-Option in Primary Central Nervous System Tumors. Diagnostics (Basel) 2022; 12:diagnostics12123120. [PMID: 36553127 PMCID: PMC9777393 DOI: 10.3390/diagnostics12123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vascular co-option is one of the main features of brain tumor progression. It is identified using histopathological analysis, but no antibody-specific markers were found, and no universally accepted histological features were defined. METHODS We employed double immunohistochemical stainings for CD31, P-gp, S100A10, and mitochondria on formalin-fixed, paraffin-embedded human samples of IDH-WT glioblastoma, IDH-mutant astrocytoma, and meningioma to study vascular co-option across different brain tumors and across normal, peritumoral, and intratumoral areas using the Aperio colocalization algorithm, which is a valid and robust method to handle and investigate large data sets. RESULTS The results have shown that (i) co-opted vessels could be recognized by the presence of metabolically overactive (evaluated as mitochondria expression) and P-gp+ or S100A10+ tumor cells surrounding CD31+ endothelial cells; (ii) vascular co-option occurs in the intratumoral area of meningioma and astrocytoma; and (iii) vascular co-option is prevalent in peritumoral glioblastoma area. CONCLUSIONS The described approach identifies new markers for cellular components of the vessel wall and techniques that uncover the order and localization of vascularization mechanisms, which may contribute to developing new and possibly more effective therapeutic strategies.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Medicine and Surgery, LUM University, Casamassima, 70100 Bari, Italy
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Correspondence:
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Antonio d’Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
- Section of Pathology, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
47
|
Bottlenecks and opportunities in immunotherapy for glioma: a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Nanomedicine approaches for medulloblastoma therapy. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Muthukrishnan SD, Kawaguchi R, Nair P, Prasad R, Qin Y, Johnson M, Wang Q, VanderVeer-Harris N, Pham A, Alvarado AG, Condro MC, Gao F, Gau R, Castro MG, Lowenstein PR, Deb A, Hinman JD, Pajonk F, Burns TC, Goldman SA, Geschwind DH, Kornblum HI. P300 promotes tumor recurrence by regulating radiation-induced conversion of glioma stem cells to vascular-like cells. Nat Commun 2022; 13:6202. [PMID: 36261421 PMCID: PMC9582000 DOI: 10.1038/s41467-022-33943-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Glioma stem cells (GSC) exhibit plasticity in response to environmental and therapeutic stress leading to tumor recurrence, but the underlying mechanisms remain largely unknown. Here, we employ single-cell and whole transcriptomic analyses to uncover that radiation induces a dynamic shift in functional states of glioma cells allowing for acquisition of vascular endothelial-like and pericyte-like cell phenotypes. These vascular-like cells provide trophic support to promote proliferation of tumor cells, and their selective depletion results in reduced tumor growth post-treatment in vivo. Mechanistically, the acquisition of vascular-like phenotype is driven by increased chromatin accessibility and H3K27 acetylation in specific vascular genes allowing for their increased expression post-treatment. Blocking P300 histone acetyltransferase activity reverses the epigenetic changes induced by radiation and inhibits the adaptive conversion of GSC into vascular-like cells and tumor growth. Our findings highlight a role for P300 in radiation-induced stress response, suggesting a therapeutic approach to prevent glioma recurrence.
Collapse
Affiliation(s)
- Sree Deepthi Muthukrishnan
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Riki Kawaguchi
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Pooja Nair
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Rachna Prasad
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Yue Qin
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maverick Johnson
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Qing Wang
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Nathan VanderVeer-Harris
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Amy Pham
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alvaro G Alvarado
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Michael C Condro
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Fuying Gao
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Raymond Gau
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maria G Castro
- Department of Neurosurgery, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Translational Neuromedicine, University of Coppenhagen School of Medicine, Coppenhagen, Denmark
| | - Daniel H Geschwind
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Harley I Kornblum
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
50
|
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, Castro MG, Lowenstein PR. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol 2022; 12:1005069. [PMID: 36276147 PMCID: PMC9583158 DOI: 10.3389/fonc.2022.1005069] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.
Collapse
Affiliation(s)
- Syed M. Faisal
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria L. Varela
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna E. Argento
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emily Brumley
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Clifford Abel
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Pedro R. Lowenstein,
| |
Collapse
|