1
|
Kelly C, Sartor RB, Rawls JF. Early subclinical stages of the inflammatory bowel diseases: insights from human and animal studies. Am J Physiol Gastrointest Liver Physiol 2025; 328:G17-G31. [PMID: 39499254 DOI: 10.1152/ajpgi.00252.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/07/2024]
Abstract
The inflammatory bowel diseases (IBD) occur in genetically susceptible individuals that mount inappropriate immune responses to their microbiota leading to chronic intestinal inflammation. The natural history of IBD progression begins with early subclinical stages of disease that occur before clinical diagnosis. Improved understanding of those early subclinical stages could lead to new or improved strategies for IBD diagnosis, prognostication, or prevention. Here, we review our current understanding of the early subclinical stages of IBD in humans including studies from first-degree relatives of patients with IBD and members of the general population who go on to develop IBD. We also discuss representative mouse models of IBD that can be used to investigate disease dynamics and host-microbiota relationships during these early stages. In particular, we underscore how mouse models of IBD that develop disease later in life with variable penetrance may present valuable opportunities to discern early subclinical mechanisms of disease before histological inflammation and other severe symptoms become apparent.
Collapse
Affiliation(s)
- Cecelia Kelly
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, United States
| | - R Balfour Sartor
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
2
|
Medina-Rodríguez EM, Martínez-Raga J, Sanz Y. Intestinal Barrier, Immunity and Microbiome: Partners in the Depression Crime. Pharmacol Rev 2024; 76:956-969. [PMID: 39084934 DOI: 10.1124/pharmrev.124.001202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024] Open
Abstract
Depression is a highly prevalent disorder and a leading cause of disability worldwide. It has a major impact on the affected individual and on society as a whole. Regrettably, current available treatments for this condition are insufficient in many patients. In recent years, the gut microbiome has emerged as a promising alternative target for treating and preventing depressive disorders. However, the microbes that form this ecosystem do not act alone but are part of a complicated network connecting the gut and the brain that influences our mood. Host cells that are in intimate contact with gut microbes, such as the epithelial cells forming the gut barrier and the immune cells in their vicinity, play a key role in the process. These cells continuously shape immune responses to maintain healthy communication between gut microbes and the host. In this article, we review how the interplay among epithelial cells, the immune system, and gut microbes mediates gut-brain communication to influence mood. We also discuss how advances in our knowledge of the mechanisms underlying the gut-brain axis could contribute to addressing depression. SIGNIFICANCE STATEMENT: This review does not aim to systematically describe intestinal microbes that might be beneficial or detrimental for depression. We have adopted a novel point of view by focusing on potential mechanisms underlying the crosstalk between gut microbes and their intestinal environment to control mood. These pathways could be targeted by well defined and individually tailored dietary interventions, microbes, or microbial metabolites to ameliorate depression and decrease its important social and economic impact.
Collapse
Affiliation(s)
- Eva M Medina-Rodríguez
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - José Martínez-Raga
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| | - Yolanda Sanz
- Psychiatry Service, Doctor Peset University Hospital, FISABIO, Valencia, Spain (E.M.M.-R., J.M.-R.); Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain (E.M.M.-R., Y.S.); and University of Valencia, Valencia, Spain (J.M.-R.)
| |
Collapse
|
3
|
Mor A, Tankiewicz-Kwedlo A, Ciwun M, Lewkowicz J, Pawlak D. Kynurenines as a Novel Target for the Treatment of Inflammatory Disorders. Cells 2024; 13:1259. [PMID: 39120289 PMCID: PMC11311768 DOI: 10.3390/cells13151259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
This review discusses the potential of targeting the kynurenine pathway (KP) in the treatment of inflammatory diseases. The KP, responsible for the catabolism of the amino acid tryptophan (TRP), produces metabolites that regulate various physiological processes, including inflammation, cell cycle, and neurotransmission. These metabolites, although necessary to maintain immune balance, may accumulate excessively during inflammation, leading to systemic disorders. Key KP enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), tryptophan 2,3-dioxygenase (TDO), and kynurenine 3-monooxygenase (KMO) have been considered promising therapeutic targets. It was highlighted that both inhibition and activation of these enzymes may be beneficial, depending on the specific inflammatory disorder. Several inflammatory conditions, including autoimmune diseases, for which modulation of KP activity holds therapeutic promise, have been described in detail. Preclinical studies suggest that this modulation may be an effective treatment strategy for diseases for which treatment options are currently limited. Taken together, this review highlights the importance of further research on the clinical application of KP enzyme modulation in the development of new therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Adrian Mor
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Anna Tankiewicz-Kwedlo
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Marianna Ciwun
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Janina Lewkowicz
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| |
Collapse
|
4
|
Peña-Juárez MC, Guadarrama-Escobar OR, Serrano-Castañeda P, Méndez-Albores A, Vázquez-Durán A, Vera-Graziano R, Rodríguez-Pérez B, Salgado-Machuca M, Anguiano-Almazán E, Morales-Florido MI, Rodríguez-Cruz IM, Escobar-Chávez JJ. Synergistic Effect of Retinoic Acid and Lactoferrin in the Maintenance of Gut Homeostasis. Biomolecules 2024; 14:78. [PMID: 38254678 PMCID: PMC10813542 DOI: 10.3390/biom14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Lactoferrin (LF) is a glycoprotein that binds to iron ions (Fe2+) and other metallic ions, such as Mg2+, Zn2+, and Cu2+, and has antibacterial and immunomodulatory properties. The antibacterial properties of LF are due to its ability to sequester iron. The immunomodulatory capability of LF promotes homeostasis in the enteric environment, acting directly on the beneficial microbiota. LF can modulate antigen-presenting cell (APC) biology, including migration and cell activation. Nonetheless, some gut microbiota strains produce toxic metabolites, and APCs are responsible for initiating the process that inhibits the inflammatory response against them. Thus, eliminating harmful strains lowers the risk of inducing chronic inflammation, and consequently, metabolic disease, which can progress to type 2 diabetes mellitus (T2DM). LF and retinoic acid (RA) exhibit immunomodulatory properties such as decreasing cytokine production, thus modifying the inflammatory response. Their activities have been observed both in vitro and in vivo. The combined, simultaneous effect of these molecules has not been studied; however, the synergistic effect of LF and RA may be employed for enhancing the secretion of humoral factors, such as IgA. We speculate that the combination of LF and RA could be a potential prophylactic alternative for the treatment of metabolic dysregulations such as T2DM. The present review focuses on the importance of a healthy diet for a balanced gut and describes how probiotics and prebiotics with immunomodulatory activity as well as inductors of differentiation and cell proliferation could be acquired directly from the diet or indirectly through the oral administration of formulations aimed to maintain gut health or restore a eubiotic state in an intestinal environment that has been dysregulated by external factors such as stress and a high-fat diet.
Collapse
Affiliation(s)
- Ma. Concepción Peña-Juárez
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Omar Rodrigo Guadarrama-Escobar
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Pablo Serrano-Castañeda
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria Lab-14 (Ciencia y Tecnología de los Materiales), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (A.M.-A.); (A.V.-D.)
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria Lab-14 (Ciencia y Tecnología de los Materiales), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (A.M.-A.); (A.V.-D.)
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico;
| | - Betsabé Rodríguez-Pérez
- Laboratorio de Servicio de Análisis de Propóleos (LASAP), Unidad de Investigación Multidisciplinaria (UIM), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico;
| | - Mariana Salgado-Machuca
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Ericka Anguiano-Almazán
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| | - Miriam Isabel Morales-Florido
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
- Laboratorio de Farmacia Molecular y Liberación Controlada, Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Isabel Marlene Rodríguez-Cruz
- Unidad de Enseñanza e Investigación, Hospital Regional e Alta Especialidad de Sumpango, Carretera Zumpango-Jilotzingo #400, Barrio de Santiago, 2ª Sección, Zumpango 55600, Mexico;
| | - José Juan Escobar-Chávez
- Unidad de Investigación Multidisciplinaria Lab-12 (Sistemas Transdérmicos y Materiales Nanoestructurados), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán Teoloyucan, Km 2.5, San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico; (M.C.P.-J.); (O.R.G.-E.); (P.S.-C.); (M.S.-M.); (E.A.-A.); (M.I.M.-F.)
| |
Collapse
|
5
|
Alula KM, Theiss AL. Autophagy in Crohn's Disease: Converging on Dysfunctional Innate Immunity. Cells 2023; 12:1779. [PMID: 37443813 PMCID: PMC10341259 DOI: 10.3390/cells12131779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease marked by relapsing, transmural intestinal inflammation driven by innate and adaptive immune responses. Autophagy is a multi-step process that plays a critical role in maintaining cellular homeostasis by degrading intracellular components, such as damaged organelles and invading bacteria. Dysregulation of autophagy in CD is revealed by the identification of several susceptibility genes, including ATG16L1, IRGM, NOD2, LRRK2, ULK1, ATG4, and TCF4, that are involved in autophagy. In this review, the role of altered autophagy in the mucosal innate immune response in the context of CD is discussed, with a specific focus on dendritic cells, macrophages, Paneth cells, and goblet cells. Selective autophagy, such as xenophagy, ERphagy, and mitophagy, that play crucial roles in maintaining intestinal homeostasis in these innate immune cells, are discussed. As our understanding of autophagy in CD pathogenesis evolves, the development of autophagy-targeted therapeutics may benefit subsets of patients harboring impaired autophagy.
Collapse
Affiliation(s)
| | - Arianne L. Theiss
- Division of Gastroenterology & Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Cirillo G, Negrete-Diaz F, Yucuma D, Virtuoso A, Korai SA, De Luca C, Kaniusas E, Papa M, Panetsos F. Vagus Nerve Stimulation: A Personalized Therapeutic Approach for Crohn's and Other Inflammatory Bowel Diseases. Cells 2022; 11:cells11244103. [PMID: 36552867 PMCID: PMC9776705 DOI: 10.3390/cells11244103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel diseases, including Crohn's disease and ulcerative colitis, are incurable autoimmune diseases characterized by chronic inflammation of the gastrointestinal tract. There is increasing evidence that inappropriate interaction between the enteric nervous system and central nervous system and/or low activity of the vagus nerve, which connects the enteric and central nervous systems, could play a crucial role in their pathogenesis. Therefore, it has been suggested that appropriate neuroprosthetic stimulation of the vagus nerve could lead to the modulation of the inflammation of the gastrointestinal tract and consequent long-term control of these autoimmune diseases. In the present paper, we provide a comprehensive overview of (1) the cellular and molecular bases of the immune system, (2) the way central and enteric nervous systems interact and contribute to the immune responses, (3) the pathogenesis of the inflammatory bowel disease, and (4) the therapeutic use of vagus nerve stimulation, and in particular, the transcutaneous stimulation of the auricular branch of the vagus nerve. Then, we expose the working hypotheses for the modulation of the molecular processes that are responsible for intestinal inflammation in autoimmune diseases and the way we could develop personalized neuroprosthetic therapeutic devices and procedures in favor of the patients.
Collapse
Affiliation(s)
- Giovanni Cirillo
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Flor Negrete-Diaz
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
| | - Daniela Yucuma
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Andalusian School of Public Health, University of Granada, 18011 Granada, Spain
| | - Assunta Virtuoso
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Sohaib Ali Korai
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | - Ciro De Luca
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
| | | | - Michele Papa
- Division of Human Anatomy, Neuronal Morphology Networks & Systems Biology Lab, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli, 80138 Naples, Italy
- SYSBIO Centre of Systems Biology ISBE-IT, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence: (M.P.); (F.P.)
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias (IdISSC), Hospital Clinico San Carlos de Madrid, 28040 Madrid, Spain
- Silk Biomed SL, 28260 Madrid, Spain
- Correspondence: (M.P.); (F.P.)
| |
Collapse
|
7
|
Kumar N, Vyas A, Agnihotri SK, Chattopadhyay N, Sachdev M. Small secretory proteins of immune cells can modulate gynecological cancers. Semin Cancer Biol 2022; 86:513-531. [PMID: 35150864 DOI: 10.1016/j.semcancer.2022.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 01/27/2023]
Abstract
Small secretory proteins of immune cells are mostly Cytokines, which include chemokines, interleukins, interferons, lymphokines and tumor necrosis factors but not hormones or growth factors. These secretory proteins are the molecular messengers and primarily involved in autocrine, paracrine and endocrine signaling as immunomodulating agents. Hence, these proteins actually regulate the cells of immune system to communicate with one another to produce a synchronized, robust, still self-regulated response to a specific antigen. Chemokines are smaller secreted proteins that control overall immune cell movement and location; these chemokines are divided into 4 subgroups, namely, CXC, CC, CX3C and C according to the position of 4 conserved cysteine residues. Complete characterization of cytokines and chemokines can exploit their vast signaling networks to develop cancer treatments. These secretory proteins like IL-6, IL-10, IL-12, TNFα, CCL2, CXCL4 & CXCL8 are predominantly expressed in most of the gynecological cancers, which directly stimulate immune effector cells and stromal cells at the tumor site and augment tumor cell recognition by cytotoxic T-cells. Hence; these secretory proteins are the major regulators, which can actually modulate all kinds of gynecological cancers. Furthermore, advancements in adoptive T-cell treatment have relied on the use of multiple cytokines/chemokines to establish a highly regulated environment for anti-tumor T cell growth. A number of in vitro studies as well as animal models and clinical subjects have also shown that cytokines/chemokines have broad antitumor activity, which has been translated into a number of cancer therapy approaches. This review will focus on the foremost cytokines & chemokines involved in the majority of the gynecological malignancies and discuss their basic biology as well as clinical applications.
Collapse
Affiliation(s)
- Niranjan Kumar
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | - Akanksha Vyas
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India
| | | | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| | - Monika Sachdev
- Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201 002, India.
| |
Collapse
|
8
|
Wang L, Choi H, Su Y, Lee B, Choi J, Jang SH, Jang YS, Seo JW. Protective effect of 17S‑epoxy‑docosapentaenoic acid against dextran sulfate sodium induced ulcerative colitis in BALB/c mice. Mol Med Rep 2022; 26:278. [PMID: 35856414 PMCID: PMC9364144 DOI: 10.3892/mmr.2022.12794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Ulcerative colitis (UC) is difficult to eradicate as it leads to chronic inflammation in the digestive tract due to immune system malfunction. The present study demonstrated the protective effect of 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA), which had been previously synthesized, on a dextran sulfate sodium (DSS)-induced BALB/c mouse model of UC. UC was induced with 4% DSS drinking water for 7 days. Initially, the anti-inflammatory effect of diHEP-DPA was confirmed by demonstrating that lipopolysaccharide-stimulated THP1 cells treated with diHEP-DPA decreased IL-6, TNF-α and nitrite levels by fluorescence-activated cell sorting (FACS) and Griess reagent kit. The results indicated that the administration of diHEP-DPA at 20 µg/kg significantly reduced the severity of colitis, as determined by hematoxylin and eosin staining. The levels of TNF-α, IL-6 and IL-1β in the colon tissue and serum were significantly reduced in the diHEP-DPA + DSS-treated group compared with in the control group, as determined by FACS and ELISA kit. It was also observed that diHEP-DPA decreased myeloperoxidase (MPO) and nitrite levels in the colon tissues of diHEP-DPA + DSS-treated mice, as indicated using commercial MPO and nitric oxide kits. The diHEP-DPA+DSS-treated mice also exhibited decreased expression levels of phosporylated (p)-inhibitor κB protein, p-p65 and inducible nitric oxide synthase in the colon tissue by inhibiting inflammation, which were measured by reverse transcription-quantitative PCR and weatern blot analysis. Overall, the present study demonstrated the protective effect of diHEP-DPA against a severe colitis condition in vivo.
Collapse
Affiliation(s)
- Lifang Wang
- Korea Research Institute of Bioscience and Biotechnology, Microbial Biotechnology Research Center, Jeongeup, Jeollabuk‑do 56212, Republic of Korea
| | - Hack Choi
- College of Applied Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Yan Su
- Korea Research Institute of Bioscience and Biotechnology, Microbial Biotechnology Research Center, Jeongeup, Jeollabuk‑do 56212, Republic of Korea
| | - Binna Lee
- Korea Research Institute of Bioscience and Biotechnology, Microbial Biotechnology Research Center, Jeongeup, Jeollabuk‑do 56212, Republic of Korea
| | - Jong Choi
- Korea Research Institute of Bioscience and Biotechnology, Microbial Biotechnology Research Center, Jeongeup, Jeollabuk‑do 56212, Republic of Korea
| | - Sun-Hee Jang
- Department of Bioactive Material Sciences, The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeollabuk‑do 54896, Republic of Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences, The Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeollabuk‑do 54896, Republic of Korea
| | - Jeong-Woo Seo
- Korea Research Institute of Bioscience and Biotechnology, Microbial Biotechnology Research Center, Jeongeup, Jeollabuk‑do 56212, Republic of Korea
| |
Collapse
|
9
|
Wong-Chew RM, de Castro JAA, Morelli L, Perez M, Ozen M. Gut immune homeostasis: the immunomodulatory role of Bacillus clausii, from basic to clinical evidence. Expert Rev Clin Immunol 2022; 18:717-729. [PMID: 35674642 DOI: 10.1080/1744666x.2022.2085559] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The gut microbiota affects the development of the gut immune system in early life. Perturbations to microbiota structure and composition during this period can have long-term consequences on the health of the individual, through its effects on the immune system. Research in the last few decades has shown that probiotic administration can reverse these effects in strain- and environment-specific ways. Bacillus clausii (B. clausii) has been in use for many decades as a safe and efficacious probiotic, but its mode of action has not yet been completely elucidated. AREAS COVERED In this review, we discuss how the gut immune system works, the factors that affect its functioning, and the plethora of research highlighting its role in various diseases. We also discuss the known modes of action of Bacillus probiotics, and highlight the preclinical and clinical evidence that reveal how B. clausii acts to bolster gut defense. EXPERT OPINION We anticipate that the treatment and/or prevention of dysbiosis will be central to managing human health and disease in the future. Discovering the pathophysiology of autoimmune diseases, infections, allergies, and some cancers will aid our understanding of the key role played by microbial communities in these diseases.
Collapse
Affiliation(s)
- Rosa María Wong-Chew
- Facultad de Medicina, División de Investigación, Universidad Nacional Autónoma de México, Coyoacán, Cdmx
| | - Jo-Anne A de Castro
- Department of Pediatrics de la Salle Medical and Health Sciences Institute (DLSMHSI), Dasmariñas Cavite, Philippines; Department of Microbiology and Parasitology, Pamantasan ng Lunsod ng Maynila (PLM), College of Medicine Intramuros, Manila, Philippines
| | - Lorenzo Morelli
- Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore Piacenza - Cremona, Italy
| | | | - Metehan Ozen
- Division of Pediatric Infectious Diseases, Acıbadem Mehmet Ali Aydınlar University, School of Medicine, Istanbul Turkey
| |
Collapse
|
10
|
Lei Z, Liu W, Nie Y, Yang Y, Chen G, Huang L, Wu H, Lei Y, Chen L, Hu Q, Rong H, Yu S, Song Q, Tong F, Guo J. EpCAM Is Essential to Maintaining the Immune Homeostasis of Intestines via Keeping the Expression of pIgR in the Intestinal Epithelium of Mice. Front Immunol 2022; 13:843378. [PMID: 35493520 PMCID: PMC9043958 DOI: 10.3389/fimmu.2022.843378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
EpCAM deficiency causes congenital tufting enteropathy (CTE) which is considered as one kinds of very early onset inflammatory bowel disease (IBD). However, functions of EpCAM on regulating the immunity of intestines are still unclear. To study the mechanism of EpCAM on maintaining the intestinal immune homeostasis, the intestines of WT and EpCAM-/- mice at E18.5, P0 and P3 stages were collected for morphological, histological and gene expression tests. Serious inflammation was detected in the small intestines of P3 EpCAM-/- mice. Compared to WT mice, genes related to inflammatory factors and immunity cells, including TNFα, IL-1β, IL-6, IL-8rb, MIP2, MCP1, Ly6d and Ly6g, were all significantly upregulated and the expression of intestinal abundance matrix metalloproteinases (MMPs) was also significantly increased in the intestines of EpCAM-/- mice at E18.5, P0 and P3 stages. Signals of p38, ERK1/2 and JNK were hyper-activated in the intestines of EpCAM-/- mice. The expression of pIgR was significantly decreased and the expression and activation of transcriptional factors which promote the expression of pIgR were also reduced in the intestines of EpCAM-/- mice compared to WT controls. In conclusion, EpCAM could maintain the immune homeostasis of intestines via keeping the expression of pIgR in the intestinal epithelium.
Collapse
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yanhong Yang
- The First Affiliated Hospital, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hedong Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Siping Yu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Qi Song
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Zili Lei, ; Jiao Guo,
| |
Collapse
|
11
|
Schaefer REM, Callahan RC, Atif SM, Orlicky DJ, Cartwright IM, Fontenot AP, Colgan SP, Onyiah JC. Disruption of monocyte-macrophage differentiation and trafficking by a heme analog during active inflammation. Mucosal Immunol 2022; 15:244-256. [PMID: 34916594 PMCID: PMC8881314 DOI: 10.1038/s41385-021-00474-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 02/04/2023]
Abstract
Heme metabolism is a key regulator of inflammatory responses. Cobalt protoporphyrin IX (CoPP) is a heme analog and mimic that potently activates the NRF2/heme oxygenase-1 (HO-1) pathway, especially in monocytes and macrophages. We investigated the influence of CoPP on inflammatory responses using a murine model of colitis. Surprisingly, conditional deletion of myeloid HO-1 did not impact the colonic inflammatory response or the protective influence of CoPP in the setting of dextran sodium sulfate-induced colitis. Rather, we reveal that CoPP elicits a contradictory shift in blood myeloid populations relative to the colon during active intestinal inflammation. Major population changes include markedly diminished trafficking of CCR2+Ly6Chi monocytes to the inflamed colon, despite significant mobilization of this population into circulation. This resulted in significantly diminished colonic expansion of monocyte-derived macrophages and inflammatory cytokine expression. These findings were linked with significant induction of systemic CCL2 leading to a disrupted CCL2 chemoattractant gradient toward the colon and concentration-dependent suppression of circulating monocyte CCR2 expression. Administration of CoPP also induced macrophage differentiation toward a MarcohiHmox1hi anti-inflammatory erythrophagocytic phenotype, contributing to an overall decreased inflammatory profile. Such findings redefine protective influences of heme metabolism during inflammation, and highlight previously unreported immunosuppressive mechanisms of endogenous CCL2 induction.
Collapse
Affiliation(s)
- Rachel E. M. Schaefer
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO,Department of Medicine, University of Colorado School of Medicine, Aurora, CO,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Rosemary C. Callahan
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO,Department of Medicine, University of Colorado School of Medicine, Aurora, CO,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Shaikh M. Atif
- Division of Allergy, Asthma and Clinical Immunology, University of Colorado School of Medicine, Aurora, CO
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Ian M. Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO,Department of Medicine, University of Colorado School of Medicine, Aurora, CO,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Andrew P. Fontenot
- Division of Allergy, Asthma and Clinical Immunology, University of Colorado School of Medicine, Aurora, CO
| | - Sean P. Colgan
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO,Department of Medicine, University of Colorado School of Medicine, Aurora, CO,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO
| | - Joseph C. Onyiah
- Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO,Department of Medicine, University of Colorado School of Medicine, Aurora, CO,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, Corresponding author: Joseph C. Onyiah, M.D., University of Colorado School of Medicine, Rocky Mountain Regional VA Medical Center, 12700 East 19th Ave. MS B-146, Aurora, CO 80045,
| |
Collapse
|
12
|
Kimoto T. Development of a safe and effective novel synthetic mucosal adjuvant SF-10 derived from physiological metabolic pathways and function of human pulmonary surfactant. Vaccine 2021; 40:544-553. [PMID: 34887132 DOI: 10.1016/j.vaccine.2021.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A safe and effective mucosal adjuvant is required for vaccination against influenza A virus (IAV) infection. Previously, we described that intranasally administration of surfacten®, a medicine derived from bovine pulmonary surfactant (PS), with IAV vaccine can induce IAV-specific IgA in the respiratory tract mucosa and IgG in serum. PS is secreted by alveolar type II cells and Clara cells and serves to reduce lung surface tension. PS finished its rules is incorporated by antigen presenting cells (APCs), such as alveolar macrophages and dendritic cells, and alveolar type II cells and rapidly metabolized. We focused on the metabolic pathways and rapid metabolic turnover of PS and developed a PS-based mucosal adjuvant. First, we determined the essential components of PS adjuvanticity and found that the complex of three PS lipids and surfactant protein-C can enhance to deliver the vaccine antigen and activate APCs. Later, we improved the safety, efficacy and ease of manufacture and finally succeeded in developing SF-10. The use of SF-10 with influenza split vaccine (HAv) (HAv-SF-10) enhances HAv incorporation into APCs both in vitro and in vivo, and intranasal instillation of HAv-SF-10 induced systemic and mucosal HAv-specific immunities in not only mice but also cynomolgus monkeys. The report that PS has physiological effects on the gastrointestinal mucosa prompted us develop a new SF-10-based vaccine that can be administered orally. In this review, We summarize our work on the development of clinically effective PS-based nasal and oral mucosal adjuvants for influenza vaccine.
Collapse
Affiliation(s)
- Takashi Kimoto
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan.
| |
Collapse
|
13
|
Alqazlan N, Emam M, Nagy É, Bridle B, Sargolzaei M, Sharif S. Transcriptomics of chicken cecal tonsils and intestine after infection with low pathogenic avian influenza virus H9N2. Sci Rep 2021; 11:20462. [PMID: 34650121 PMCID: PMC8517014 DOI: 10.1038/s41598-021-99182-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Influenza viruses cause severe respiratory infections in humans and birds, triggering global health concerns and economic burden. Influenza infection is a dynamic process involving complex biological host responses. The objective of this study was to illustrate global biological processes in ileum and cecal tonsils at early time points after chickens were infected with low pathogenic avian influenza virus (LPAIV) H9N2 through transcriptome analysis. Total RNA isolated from ileum and cecal tonsils of non-infected and infected layers at 12-, 24- and 72-h post-infection (hpi) was used for mRNA sequencing analyses to characterize differentially expressed genes and overrepresented pathways. Statistical analysis highlighted transcriptomic signatures significantly occurring 24 and 72 hpi, but not earlier at 12 hpi. Interferon (IFN)-inducible and IFN-stimulated gene (ISG) expression was increased, followed by continued expression of various heat-shock proteins (HSP), including HSP60, HSP70, HSP90 and HSP110. Some upregulated genes involved in innate antiviral responses included DDX60, MX1, RSAD2 and CMPK2. The ISG15 antiviral mechanism pathway was highly enriched in ileum and cecal tonsils at 24 hpi. Overall, most affected pathways were related to interferon production and the heat-shock response. Research on these candidate genes and pathways is warranted to decipher underlying mechanisms of immunity against LPAIV in chickens.
Collapse
Affiliation(s)
- Nadiyah Alqazlan
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mehdi Emam
- grid.14709.3b0000 0004 1936 8649Department of Human Genetics, McGill University, Montreal, QC H3A 0E7 Canada
| | - Éva Nagy
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Byram Bridle
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Mehdi Sargolzaei
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada ,Select Sires, Inc., Plain City, OH 43064 USA
| | - Shayan Sharif
- grid.34429.380000 0004 1936 8198Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
14
|
Abstract
Fucoidans are cell wall polysaccharides found in various species of brown seaweeds. They are fucose-containing sulfated polysaccharides (FCSPs) and comprise 5-20% of the algal dry weight. Fucoidans possess multiple bioactivities, including antioxidant, anticoagulant, antithrombotic, anti-inflammatory, antiviral, anti-lipidemic, anti-metastatic, anti-diabetic and anti-cancer effects. Dietary fucoidans provide small but constant amounts of FCSPs to the intestinal tract, which can reorganize the composition of commensal microbiota altered by FCSPs, and consequently control inflammation symptoms in the intestine. Although the bioactivities of fucoidans have been well described, there is limited evidence to implicate their effect on gut microbiota and bowel health. In this review, we summarize the recent studies that introduce the fundamental characteristics of various kinds of fucoidans and discuss their potential in altering commensal microorganisms and influencing intestinal diseases.
Collapse
Affiliation(s)
- Jin-Young Yang
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea;
| | - Sun Young Lim
- Division of Convergence on Marine Science, Korea Maritime & Ocean University, Busan 49112, Korea
| |
Collapse
|
15
|
Galen JE, Wahid R, Buskirk AD. Strategies for Enhancement of Live-Attenuated Salmonella-Based Carrier Vaccine Immunogenicity. Vaccines (Basel) 2021; 9:162. [PMID: 33671124 PMCID: PMC7923097 DOI: 10.3390/vaccines9020162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022] Open
Abstract
The use of live-attenuated bacterial vaccines as carriers for the mucosal delivery of foreign antigens to stimulate the mucosal immune system was first proposed over three decades ago. This novel strategy aimed to induce immunity against at least two distinct pathogens using a single bivalent carrier vaccine. It was first tested using a live-attenuated Salmonella enterica serovar Typhi strain in clinical trials in 1984, with excellent humoral immune responses against the carrier strain but only modest responses elicited against the foreign antigen. Since then, clinical trials with additional Salmonella-based carrier vaccines have been conducted. As with the original trial, only modest foreign antigen-specific immunity was achieved in most cases, despite the incorporation of incremental improvements in antigen expression technologies and carrier design over the years. In this review, we will attempt to deconstruct carrier vaccine immunogenicity in humans by examining the basis of bacterial immunity in the human gastrointestinal tract and how the gut detects and responds to pathogens versus benign commensal organisms. Carrier vaccine design will then be explored to determine the feasibility of retaining as many characteristics of a pathogen as possible to elicit robust carrier and foreign antigen-specific immunity, while avoiding over-stimulation of unacceptably reactogenic inflammatory responses.
Collapse
Affiliation(s)
- James E. Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Rezwanul Wahid
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Amanda D. Buskirk
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Process and Facilities, Division of Microbiology Assessment II, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA;
| |
Collapse
|
16
|
Han F, Song J, Jia W, Yang M, Wang D, Zhang H, Shih DQ, Targan SR, Zhang X. TL1A primed dendritic cells activation exacerbated chronic murine colitis. Life Sci 2020; 262:118220. [PMID: 32781075 DOI: 10.1016/j.lfs.2020.118220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
AIMS Tumor necrosis factor-like ligand 1A (TL1A) has been proved to activate adaptive immunity in inflammatory bowel disease (IBD). However, its role in the regulation of intestinal dendritic cells (DCs) has not been fully characterized. This study aims to investigate the modulation of TL1A in DCs activation in murine colitis. MATERIALS AND METHODS Myeloid TL1A-Transgenic C57BL/6 mice and wild-type (WT) mice were administrated with dextran sulfate sodium (DSS) to explore the effects of TL1A in murine colitis. Bone marrow-derived DCs (BMDCs) were isolated to detect the ability of antigen phagocytosis and presentation. The expression of nuclear factor-κB (NF-κB) pathway and chemokines receptors (CCRs) was assessed by real-time PCR and Western blot. KEY FINDINGS Myeloid cells with constitutive TL1A expression developed worsened murine colitis with exacerbated TH1/TH17 cytokine responses. Intestinal DCs from TL1A transgenic mice expressed high levels of costimulatory molecules (CD80 and CD86) with increased pro-inflammatory cytokines of IL-1β, TNF-α and IL-12/23 p40. Mechanistic studies showed that TL1A enhanced the phagocytotic ability of BMDCs. Moreover, TL1A enhanced the capacity of antigen process and presentation in BMDCs. Besides, TL1A induced the phosphorylation of NF-κB(p65) and IκBα. Meanwhile, higher expression of CCR2, CCR5, CCR7, and CX3CR1 was observed both in vivo and in vitro. SIGNIFICANCE TL1A exacerbated DSS-induced chronic experimental colitis, probably through activation and migration of dendritic cells, and therefore increasing the secretion of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Fei Han
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China
| | - Jia Song
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China
| | - Wenxiu Jia
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China
| | - Mingyue Yang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China
| | - Dong Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China
| | - Hong Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China
| | - David Q Shih
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles CA90048, USA
| | - Stephan R Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles CA90048, USA
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
17
|
Prevotella Induces the Production of Th17 Cells in the Colon of Mice. J Immunol Res 2020; 2020:9607328. [PMID: 33204736 PMCID: PMC7657696 DOI: 10.1155/2020/9607328] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Th17-mediated mucosal inflammation is related to increased Prevotella bacterial abundance. The actual involvement of Prevotella in the development and accumulation of intestinal Th17 cells at a steady state, however, remains undefined. Herein, we investigated the role of Prevotella in inducing intestinal Th17 cells in mice. Mice were treated with a combination of broad-spectrum antibiotics (including ampicillin, neomycin sulfate, vancomycin hydrochloride, and metronidazole) in their drinking water for 4 weeks and then gavaged with Prevotella for 4 weeks. After inoculation, 16S rDNA sequencing was used to verify the colonization of Prevotella in the colon of mice. The IL-17A as well as IL-17A-expressing T cells was localized and quantified by an immunofluorescence assay (IFA) of colon sections. Th17 cells in the mesenteric lymph nodes of mice were counted by flow cytometry. Systemic immune response to Prevotella colonization was evaluated based on the serum levels of IL-6, TNF-α, IL-1β, IL-17A, IL-10, IL-4, IFN-γ, and IL-2. Th17-polarizing cytokines (IL-6, TNF-α, IL-1β, and IL-2) induced by Prevotella were evaluated by stimulation of bone marrow-derived dendritic cells (BMDCs). Results revealed that after inoculation, Prevotella successfully colonized the intestine of mice and induced the production and accumulation of colonic Th17 cells in the colon. Moreover, Prevotella elevated some of the Th17-related cytokines in the serum of mice. And Th17-polarizing cytokines (IL-6 and IL-1β) produced by BMDCs were mediated mainly through the interaction between Prevotella and Toll-like receptor 2 (TLR2). In conclusion, our data suggest that Prevotella induces the production of Th17 cells in the colon of mice, thus highlighting the potential role of Prevotella in training the intestinal immune system.
Collapse
|
18
|
Ruder B, Becker C. At the Forefront of the Mucosal Barrier: The Role of Macrophages in the Intestine. Cells 2020; 9:E2162. [PMID: 32987848 PMCID: PMC7601053 DOI: 10.3390/cells9102162] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are part of the innate immunity and are key players for the maintenance of intestinal homeostasis. They belong to the group of mononuclear phagocytes, which exert bactericidal functions and help to clear apoptotic cells. Moreover, they play essential roles for the maintenance of epithelial integrity and tissue remodeling during wound healing processes and might be implicated in intestinal tumor development. Macrophages are antigen-presenting cells and secrete immune-modulatory factors, like chemokines and cytokines, which are necessary to activate other intestinal immune cells and therefore to shape immune responses in the gut. However, overwhelming activation or increased secretion of pro-inflammatory cytokines might also contribute to the pathogenesis of inflammatory bowel disease. Presently, intestinal macrophages are in the center of intense studies, which might help to develop new therapeutic strategies to counteract the development or treat already existing inflammatory diseases in the gut. In this review, we focus on the origin of intestinal macrophages and, based on current knowledge, discuss their role in the gut during homeostasis and inflammation, as well as during intestinal wound healing and tumor development.
Collapse
Affiliation(s)
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany;
| |
Collapse
|
19
|
Govers C, Tang Y, Stolte EH, Wichers HJ, Mes JJ. Wheat-derived arabinoxylans reduced M2-macrophage functional activity, but enhanced monocyte-recruitment capacity. Food Funct 2020; 11:7073-7083. [PMID: 32725025 DOI: 10.1039/d0fo00316f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The immunomodulatory properties of non-digestible polysaccharides (NDPs) have been recognized in in vitro and in vivo studies. The latter mostly demonstrated altered frequencies and inflammatory status of immune cells as clinical parameters. Most of the NDP activity will be exerted in the intestine where they can directly interact with macrophages. The predominant macrophage phenotype in the intestine is M2-like, with M1-like macrophages arising during inflammation. Here, we investigated transcriptional and functional impact on these macrophage phenotypes by NDP-treatment (i.e. yeast-derived soluble β-glucan (yeast-βG), apple-derived RG-I (apple-RGI), shiitake-derived β-glucan (shiitake-βG) or wheat-derived arabinoxylan (wheat-AX)). Wheat-AX, and to a lesser extent shiitake-βG and apple-RGI but not yeast-βG, reduced endocytosis and antigen processing capacity of M1- and M2-like macrophages. Moreover, the NDPs, and most notably wheat-AX, strongly induced transcription and secretion of a unique set of cytokines and chemokines. Conditioned medium from wheat-AX-treated M2-like macrophages subsequently demonstrated strongly increased monocyte recruitment capacity. These findings are in line with clinically observed immunomodulatory aspects of NDPs making it tempting to speculate that clinical activity of some NDPs is mediated through enhanced chemoattraction and modifying activity of intestinal immune cells.
Collapse
Affiliation(s)
- Coen Govers
- Wageningen - Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands.
| | - Yongfu Tang
- Wageningen - Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands. and Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands and Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Ellen H Stolte
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University & Research, Wageningen, The Netherlands
| | - Harry J Wichers
- Wageningen - Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands. and Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jurriaan J Mes
- Wageningen - Food & Biobased Research, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
20
|
Maternal Supplementation of Food Ingredient (Prebiotic) or Food Contaminant (Mycotoxin) Influences Mucosal Immune System in Piglets. Nutrients 2020; 12:nu12072115. [PMID: 32708852 PMCID: PMC7400953 DOI: 10.3390/nu12072115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
The early life period is crucial for the maturation of the intestinal barrier, its immune system, and a life-long beneficial host-microbiota interaction. The study aims to assess the impact of a beneficial dietary (short-chain fructooligosaccharides, scFOS) supplementation vs. a detrimental dietary environment (such as mycotoxin deoxynivalenol, DON) on offspring intestinal immune system developmental profiles. Sows were given scFOS-supplemented or DON-contaminated diets during the last 4 weeks of gestation, whereas force-feeding piglets with DON was performed during the first week of offspring life. Intestinal antigen-presenting cell (APC) subset frequency was analyzed by flow cytometry in the Peyer's patches and in lamina propria and the responsiveness of intestinal explants to toll-like receptor (TLR) ligands was performed using ELISA and qRT-PCR from post-natal day (PND) 10 until PND90. Perinatal exposure with scFOS did not affect the ontogenesis of APC. While it early induced inflammatory responses in piglets, scFOS further promoted the T regulatory response after TLR activation. Sow and piglet DON contamination decreased CD16+ MHCII+ APC at PND10 in lamina propria associated with IFNγ inflammation and impairment of Treg response. Our study demonstrated that maternal prebiotic supplementation and mycotoxin contamination can modulate the mucosal immune system responsiveness of offspring through different pathways.
Collapse
|
21
|
Nazimek K, Bryniarski K. Approaches to inducing antigen-specific immune tolerance in allergy and autoimmunity: Focus on antigen-presenting cells and extracellular vesicles. Scand J Immunol 2020; 91:e12881. [PMID: 32243636 DOI: 10.1111/sji.12881] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Increasing prevalence of allergic and autoimmune diseases urges clinicians and researchers to search for new and efficient treatments. Strategies that activate antigen-specific immune tolerance and simultaneously maintain immune reactivity to all other antigens deserve special attention. Accordingly, antigen-presenting cells (APCs) seem to be the best suited for orchestrating these mechanisms by directing T cell immune responses towards a tolerant subtype. Recent advances in understanding cell-to-cell communication via extracellular vesicles (EVs) make the latter promising candidates for reprogramming APCs towards a tolerant phenotype, and for mediating tolerogenic APC function. Thus, comprehensive studies have been undertaken to describe the interactions of APCs and EVs naturally occurring during immune tolerance induction, as well as to develop EV-based manoeuvres enabling the induction of immune tolerance in an antigen-specific manner. In this review, we summarize the findings of relevant studies, with a special emphasis on future perspectives on their translation to clinical practice.
Collapse
Affiliation(s)
- Katarzyna Nazimek
- Jagiellonian University Medical College, Department of Immunology, Krakow, Poland
| | - Krzysztof Bryniarski
- Jagiellonian University Medical College, Department of Immunology, Krakow, Poland
| |
Collapse
|
22
|
Wang D, Chen L, Fu Y, Kang Q, Wang X, Ma X, Li X, Sheng J. Avertin affects murine colitis by regulating neutrophils and macrophages. Int Immunopharmacol 2020; 80:106153. [PMID: 31931369 DOI: 10.1016/j.intimp.2019.106153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022]
Abstract
Anesthetics are thought to be involved in immunomodulation. Avertin is one of the safest and most commonly used intravenous anesthetics in rodent experiments; it is also widely used in euthanasia of inflammatory bowel disease (IBD) models. This study aimed to define the role and mechanism of action of Avertin on murine colitis. We assessed the effects of a single Avertin injection on colitis using the disease activity index (DAI), pathology, enzyme-linked immunosorbent assay (ELISA), multiplex-ELISA, flow cytometry, and routine blood examination in wild-type (WT) and dextran sodium sulphate (DSS)-treated mice. Although Avertin caused acute cecitis in WT mice after 24 h and aggravated inflammation in the medium term, it alleviated inflammation in the late stage of DSS-induced colitis according to the DAI. Avertin upregulated MPO production and induced the accumulation of neutrophils and macrophages in intestinal mucosa of both WT and DSS-treated mice; the altered MPO might indicate a change in respiratory burst. However, it exhibited a more effective suppression of inflammatory factors secreted by macrophages as the colitis progressed. Avertin led to an increase in neutrophils and decrease in monocytes in both WT and DSS-treated mice blood. Our findings suggest that Avertin aggravates inflammation in the early and medium terms, but alleviates inflammation in the late stage of colitis by regulating neutrophils and macrophages.
Collapse
Affiliation(s)
- Dezhi Wang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Linxiao Chen
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China; Dalian Medical University, Dalian 116044, China
| | - Yanxia Fu
- State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qian Kang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Xianzong Ma
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - Xuhang Li
- Department of Medicine/GI Division, School of Medicine, Johns Hopkins University, Baltimore 21205, United States
| | - Jianqiu Sheng
- Department of Gastroenterology, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China.
| |
Collapse
|
23
|
Combined Exposure of Activated Intestinal Epithelial Cells to Nondigestible Oligosaccharides and CpG-ODN Suppresses Th2-Associated CCL22 Release While Enhancing Galectin-9, TGF β, and Th1 Polarization. Mediators Inflamm 2019; 2019:8456829. [PMID: 31427886 PMCID: PMC6683774 DOI: 10.1155/2019/8456829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/22/2019] [Accepted: 06/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background Short-chain galacto- and long-chain fructo-oligosaccharides (scGOS/lcFOS) and CpG-ODN affect intestinal epithelial cells (IEC). Epithelial IL1α may contribute to allergic sensitization via autocrine mediator release affecting dendritic cells (DC). We studied whether IL1α contributes to Th2-associated mediator release by activated IEC and IEC/DC cocultures and possible modulation by scGOS/lcFOS±CpG-ODN. Methods Solid phase or transwell cultured IEC were preincubated with IL1α and/or IFNγ/TNFα for 6 h. The transwell IEC were also apically exposed to scGOS/lcFOS±CpG-ODN for 6 h, washed, and re-exposed, while cocultured with immature moDC (ccDC) for 48 h. These ccDC were subsequently added to allogeneic naïve T cells (MLR). IEC- and/or DC-derived mediators and T cell cytokines were measured. Results IL1α tended to enhance IL25 and enhanced IL33 and CCL20 release by IEC, while IL1α or TNFα or IFNγ enhanced CCL22. These were all further increased upon combined exposure of IFNγ/TNFα±IL1α coinciding with increased IL33 secretion in the solid phase culture. In the transwell, IL25 and IL33 remained under detection, while CCL20 and CCL22 were induced by IL1α or IFNγ/TNFα, respectively, and a synergistic increase was observed upon combined exposure of IFNγ/TNFα and IL1α. Furthermore, IFNγ was found to enhance galectin-9 secretion, which was more pronounced in IFNγ/TNFα±IL1α-exposed IEC and coincided with TGFβ increase. Epithelial CpG-ODN exposure further increased CCL20, while reducing CCL22 release by IFNγ/TNFα/IL1α-activated IEC; however, scGOS/lcFOS suppressed both. Combined scGOS/lcFOS and CpG-ODN reduced CCL22, while CCL20 and regulatory galectin-9 and TGFβ remained high in the supernatant of IFNγ/TNFα/IL1α-activated IEC and the following IEC/DC coculture. ccDC of scGOS/lcFOS- and CpG-ODN-exposed IFNγ/TNFα/IL1α-activated IEC increased IFNγ, IL10, TGFβ, and galectin-9 secretion in the MLR compared to ccDC exposed to control-activated IEC. Conclusion IL1α enhanced CCL20 and Th2-associated CCL22 release by IFNγ/TNFα-activated IEC. Combined scGOS/lcFOS and CpG-ODN exposure suppressed CCL22, while maintaining high CCL20, TGFβ, and galectin-9 concentrations. In addition, ccDC derived from this IEC/DC coculture enhanced Th1 and regulatory mediator secretion mimicking known in vivo effects.
Collapse
|
24
|
Gaudino SJ, Kumar P. Cross-Talk Between Antigen Presenting Cells and T Cells Impacts Intestinal Homeostasis, Bacterial Infections, and Tumorigenesis. Front Immunol 2019; 10:360. [PMID: 30894857 PMCID: PMC6414782 DOI: 10.3389/fimmu.2019.00360] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/12/2019] [Indexed: 11/21/2022] Open
Abstract
Innate immunity is maintained in part by antigen presenting cells (APCs) including dendritic cells, macrophages, and B cells. APCs interact with T cells to link innate and adaptive immune responses. By displaying bacterial and tumorigenic antigens on their surface via major histocompatibility complexes, APCs can directly influence the differentiation of T cells. Likewise, T cell activation, differentiation, and effector functions are modulated by APCs utilizing multiple mechanisms. The objective of this review is to describe how APCs interact with and influence the activation of T cells to maintain innate immunity during exposure to microbial infection and malignant cells. How bacteria and cancer cells take advantage of some of these interactions for their own benefit will also be discussed. While this review will cover a broad range of topics, a general focus will be held around pathogens, cancers, and interactions that typically occur within the gastrointestinal tract.
Collapse
Affiliation(s)
- Stephen J Gaudino
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| | - Pawan Kumar
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
25
|
Tatiya-Aphiradee N, Chatuphonprasert W, Jarukamjorn K. Immune response and inflammatory pathway of ulcerative colitis. J Basic Clin Physiol Pharmacol 2018; 30:1-10. [PMID: 30063466 DOI: 10.1515/jbcpp-2018-0036] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Ulcerative colitis (UC) is an idiopathic relapsing inflammatory disease. Although the etiology of UC remains unclear, it could be characterized by inflammation of the intestinal mucosa, starting from the rectum and potentially involving the entire colon. The immune response and inflammatory pathway of UC have shown that tissue damage is driven by dynamic and complexes of cells and cytokines. Various types of cells, including antigen-presenting cells (dendritic cells and macrophages), T helper cells, regulatory T cells, and natural killer T cells, play a crucial role in UC pathogenesis by regulation, suppression, and maintenance of inflammation. Moreover, cytokine networks become an important part due to their signaling function, which is indispensable for cell communication. Pro-inflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-1, IL-6, IL-9, IL-13, and IL-33] play significant roles in upregulation, while anti-inflammatory cytokines (transforming growth factor-β, IL-10, and IL-37) play significant roles in downregulation of disease progression. The pathogenesis of UC consists of immuno-inflammatory pathways related to the multiple components of the intestine, including the epithelial barrier, commensal microflora, antigen recognition, dysregulation of immunological responses, leukocyte recruitment, and genetic factors. The understanding of immuno-inflammatory pathways of UC might lead to the development of a specific therapy and/or a novel treatment that could be more efficient.
Collapse
Affiliation(s)
- Nitima Tatiya-Aphiradee
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Waranya Chatuphonprasert
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
26
|
Kimoto T, Kim H, Sakai S, Takahashi E, Kido H. Oral vaccination with influenza hemagglutinin combined with human pulmonary surfactant-mimicking synthetic adjuvant SF-10 induces efficient local and systemic immunity compared with nasal and subcutaneous vaccination and provides protective immunity in mice. Vaccine 2018; 37:612-622. [PMID: 30553569 DOI: 10.1016/j.vaccine.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/23/2022]
Abstract
We reported previously that a synthetic mucosal adjuvant SF-10, which mimics human pulmonary surfactant, delivers antigen to mucosal dendritic cells in the nasal cavity and promotes induction of humoral and cellular immunity. The aim of the present study was to determine the effects of oral administration of antigen combined with SF-10 (antigen-SF-10) on systemic and local immunity. Oral administration of ovalbumin, a model antigen, combined with SF-10 enhanced ovalbumin uptake into intestinal antigen presenting MHC II+CD11c+ cells and their CD11b+CD103+ and CD11b+CD103- subtype dendritic cells, which are the major antigen presenting subsets of the intestinal tract, more efficiently compared to without SF-10. Oral vaccination with influenza hemagglutinin vaccine (HAv)-SF-10 induced HAv-specific IgA and IgG in the serum, and HAv-specific secretory IgA and IgG in bronchoalveolar lavage fluid, nasal washes, gastric extracts and fecal material; their levels were significantly higher than those induced by subcutaneous HAv or intranasal HAv and HAv-SF-10 vaccinations. Enzyme-linked immunospot assay showed high numbers of HAv-specific IgA and IgG antibody secreting cells in the gastrointestinal and respiratory mucosal lymphoid tissues after oral vaccination with HAv-SF-10, but no or very low induction following oral vaccination with HAv alone. Oral vaccination with HAv-SF-10 provided protective immunity against severe influenza A virus infection, which was significantly higher than that induced by HAv combined with cholera toxin. Oral vaccination with HAv-SF-10 was associated with unique cytokine production patterns in the spleen after HAv stimulation; including marked induction of HAv-responsive Th17 cytokines (e.g., IL-17A and IL-22), high induction of Th1 cytokines (e.g., IL-2 and IFN-γ) and moderate induction of Th2 cytokines (e.g., IL-4 and IL-5). These results indicate that oral vaccination with HAv-SF-10 induces more efficient systemic and local immunity than nasal or subcutaneous vaccination with characteristically high levels of secretory HAv-specific IgA in various mucosal organs and protective immunity.
Collapse
Affiliation(s)
- Takashi Kimoto
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hyejin Kim
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Satoko Sakai
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan.
| |
Collapse
|
27
|
Flannigan KL, Denning TL. Segmented filamentous bacteria-induced immune responses: a balancing act between host protection and autoimmunity. Immunology 2018; 154:537-546. [PMID: 29771448 PMCID: PMC6050222 DOI: 10.1111/imm.12950] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Segmented filamentous bacteria (SFB) are Gram-positive, spore-forming, bacteria that primarily colonize the ileum of the small intestine. Upon direct adherence to intestinal epithelial cells, SFB actively stimulate innate and adaptive immune cell activation. The cardinal features of SFB-induced gut immunity - T helper type 17 (Th17) cell differentiation, IgA production and barrier protection - lead to the containment of SFB and further afford protection against invading pathogens. Th17 cells and interleukin-17A, however, can also reach peripheral sites and exacerbate autoimmunity. In this review, we highlight salient characteristics of SFB-host interactions and detail the cellular and molecular immune mechanisms involved in coordinating these responses.
Collapse
Affiliation(s)
- Kyle L. Flannigan
- Department of Physiology and PharmacologyCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Snyder Institute for Chronic DiseasesUniversity of CalgaryCalgaryAlbertaCanada
| | | |
Collapse
|
28
|
Hvas CL, Bendix M, Dige A, Dahlerup JF, Agnholt J. Current, experimental, and future treatments in inflammatory bowel disease: a clinical review. Immunopharmacol Immunotoxicol 2018; 40:446-460. [PMID: 29745777 DOI: 10.1080/08923973.2018.1469144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBDs) may result from dysregulated mucosal immune responses directed toward the resident intestinal microbiota. This review describes the hallmark immunobiology of Crohn's disease and ulcerative colitis as well as therapeutic targets and mechanisms of action for current, experimental, and future treatments in IBD. Conventional therapies include 5-aminosalicylic acid, glucocorticosteroids, thiopurines, and methotrexate. Since 1997, monoclonal antibodies have gained widespread use. These consist of antibodies directed against pro-inflammatory cytokines such as tumor necrosis factor α, interleukin (IL)-12, and IL-23, or anti-homing antibodies directed against α4β7 integrin. Emerging oral therapies include modulators of intracellular signal transduction such as Janus kinase inhibitors. Vitamin D may help to regulate innate and adaptive immune responses. Modulation of the intestinal microbiota, using live microorganisms (probiotics), substrates for the colonic microbiota (prebiotics), or fecal microbiota transplantation (FMT), is in development. Dietary supplements are in widespread use, but providing evidence for their benefit is challenging. Stem cell treatment and nervous stimulation are promising future treatments.
Collapse
Affiliation(s)
- Christian L Hvas
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark
| | - Mia Bendix
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark.,b Medical Department, Randers Regional Hospital , Randers , Denmark
| | - Anders Dige
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark
| | - Jens F Dahlerup
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark
| | - Jørgen Agnholt
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark
| |
Collapse
|
29
|
Toor SM, Elkord E. Comparison of Myeloid Cells in Circulation and in the Tumor Microenvironment of Patients with Colorectal and Breast Cancers. J Immunol Res 2017; 2017:7989020. [PMID: 29230424 PMCID: PMC5694573 DOI: 10.1155/2017/7989020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022] Open
Abstract
We have previously reported levels of myeloid cells in the periphery and in the tumor microenvironment (TME) of patients with primary breast cancer (PBC) and colorectal cancer (CRC). We found that both PBC and CRC patients have significantly higher levels of granulocytic and immature myeloid cells in the TME. Additionally, we reported an expansion of circulating granulocytic myeloid cells in CRC patients, but not in PBC patients. In this report, we compared levels of myeloid cells between these two common cancers and have added data from more cancer patients. We also investigated associations between clinical stage/histological grade of tumors and levels of myeloid cells in cancer patients. We found that although granulocytic myeloid cells were expanded in the TME of both PBC and CRC patients, the levels of these cells were significantly higher in the TME of CRC patients. Moreover, our results indicate that increased levels of circulating granulocytic myeloid cells are associated with poorly differentiated tumors in CRC patients. Taken together, this work suggests that CRC patients may benefit more from the development of therapeutic agents to promote myeloid cell differentiation or inhibition for the reversal of immune suppression.
Collapse
Affiliation(s)
- Salman M. Toor
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
- Institute of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
30
|
Luongo D, Treppiccione L, Sorrentino A, Ferrocino I, Turroni S, Gatti M, Di Cagno R, Sanz Y, Rossi M. Immune-modulating effects in mouse dendritic cells of lactobacilli and bifidobacteria isolated from individuals following omnivorous, vegetarian and vegan diets. Cytokine 2017. [PMID: 28648868 DOI: 10.1016/j.cyto.2017.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Macrophages treated with non-digestible polysaccharides reveal a transcriptionally unique phenotype. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
32
|
Intestinal macrophages in Peyer's patches, sacculus rotundus and appendix of Angora rabbit. Cell Tissue Res 2017; 370:285-295. [PMID: 28766043 DOI: 10.1007/s00441-017-2659-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 05/30/2017] [Indexed: 12/14/2022]
Abstract
The largest pool of macrophages in the body is harboured by the intestinal mucosa. As the principal phagocytic component of the immune system, macrophages are essential for maintaining mucosal homeostasis as they prevent commensal bacteria from adhering to mucosal epithelial cells. This study provides a RAM11 immunohistochemical and electron microscopic investigation of the existence, localization and distribution of intestinal macrophages in organized gut-associated lymphoid tissue (GALT), including Peyer's patches (PPs), the sacculus rotundus (SR) and the appendix, in the Angora rabbit. Although rabbit intestinal macrophages did not express the tissue macrophage marker macrosialin (CD68), they expressed RAM11. RAM11-positive intestinal macrophages were mostly localized to the subepithelial dome region, interfollicular area and germinal centres (GCs) of the GALT and the lamina propria or submucosa of the ileum and jejunum devoid of PPs and were also observed in the follicle-associated epithelium of PPs, but not in that of the SR and appendix. RAM11-positive macrophages containing engulfed apoptotic bodies were present in the GCs of the lymphoid follicles in the GALT. Electron microscopy further revealed multiple macrophages containing apoptotic bodies within the GCs of the follicles in the GALT. Some macrophage aggregations were observed in the GC and between the GC and the corona region of the follicles in the SR and appendix. Rabbit intestinal macrophages thus undertake both potent phagocytic activity and the efficient scavenging of apoptotic cells. Immunohistochemical data suggest that RAM11 can be reliably used for the determination of intestinal macrophages in the GALT of rabbits.
Collapse
|
33
|
PI3K p85α Subunit-deficient Macrophages Protect Mice from Acute Colitis due to the Enhancement of IL-10 Production. Sci Rep 2017; 7:6187. [PMID: 28733636 PMCID: PMC5522489 DOI: 10.1038/s41598-017-06464-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/13/2017] [Indexed: 12/21/2022] Open
Abstract
We investigated the role of the PI3K p85α subunit in the development of acute colitis with a focus on intestinal macrophages. Experimental acute colitis was induced using 3% dextran sulfate sodium (DSS) in drinking water for 7 days. The severity of DSS-induced acute colitis was significantly attenuated in p85α hetero-deficient (p85α+/−) mice compared with WT mice. The expression of proinflammatory mediators in intestinal macrophages isolated from the inflamed colonic mucosa was significantly suppressed in p85α+/− colitis mice compared with WT colitis mice. Interestingly, we found that bone marrow-derived macrophages (BMDMs) from p85α+/− mice produced a significantly higher amount of IL-10 than BMDMs from WT mice. The adoptive transfer of p85α+/− BMDMs, but not WT BMDMs, significantly improved the severity in WT colitis mice, and this effect was reversed by anti-IL-10 antibody. Furthermore, the expression of IL-10 in the intestinal macrophages of p85α+/− normal colonic mucosa was significantly higher than that in the intestinal macrophages of WT normal colonic mucosa. The present results demonstrate that p85α+/− mice exhibit a reduced susceptibility to DSS-induced acute colitis. Our study suggests that a deficiency of PI3K p85α enhances the production of IL-10 in intestinal macrophages, thereby suppressing the development of DSS-induced acute colitis.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Recent discoveries relay commensal gut microbiota as a relevant factor in the maintenance of intestinal homeostasis. RECENT FINDINGS Alterations in the composition of the intestinal microbiota have been reported in patients with systemic lupus erythematosus and many other inflammatory and autoimmune conditions. However, the mechanisms by which the intestinal microbiota can influence systemic immunity in these situations remain to be elucidated. The inappropriate immune responses of patients with systemic lupus erythematosus could originate a breakdown of tolerance towards the microbiota, leading to the expansion and/or contraction of specific bacterial groups that may culminate in a dysbiotic state. Conversely, an altered composition of the intestinal microbiome in genetically predisposed individuals could influence systemic immunity by several mechanisms, leading to a breakdown of tolerance to self-antigens. Moreover, humoral immune responses can be affected by specific bacterial groups in these individuals. SUMMARY Recent findings support an important role for the crosstalk between bacteria and immune cells to maintain an intestinal homeostasis crucial to sustain tolerance toward self-antigens and intestinal microbiota.
Collapse
|
35
|
SIgA–Shigella Immune Complexes Interact with Dectin-1 and SIGNR3 to Differentially Regulate Mouse Peyer's Patch and Mesenteric Lymph Node Dendritic Cell's Responsiveness. J Mol Biol 2017; 429:2387-2400. [DOI: 10.1016/j.jmb.2017.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/11/2017] [Accepted: 05/27/2017] [Indexed: 12/12/2022]
|
36
|
Ferrara JL, Smith CM, Sheets J, Reddy P, Serody JS. Altered homeostatic regulation of innate and adaptive immunity in lower gastrointestinal tract GVHD pathogenesis. J Clin Invest 2017; 127:2441-2451. [PMID: 28581444 DOI: 10.1172/jci90592] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lower gastrointestinal (GI) tract graft-versus-host disease (GVHD) is the predominant cause of morbidity and mortality from GVHD after allogeneic stem cell transplantation. Recent data indicate that lower GI tract GVHD is a complicated process mediated by donor/host antigenic disparities. This process is exacerbated by significant changes to the microbiome, and innate and adaptive immune responses that are critical to the induction of disease, persistence of inflammation, and a lack of response to therapy. Here, we discuss new insights into the biology of lower GI tract GVHD and focus on intrinsic pathways and regulatory mechanisms crucial to normal intestinal function. We then describe multiple instances in which these homeostatic mechanisms are altered by donor T cells or conditioning therapy, resulting in exacerbation of GVHD. We also discuss data suggesting that some of these mechanisms produce biomarkers that could be informative as to the severity of GVHD and its response to therapy. Finally, novel therapies that might restore homeostasis in the GI tract during GVHD are highlighted.
Collapse
Affiliation(s)
- James Lm Ferrara
- Departments of Medicine, Pediatrics, and Academic Informatics and Technology, Icahn School of Medicine at Mount Sinai and Tisch Cancer Institute, New York, New York, USA
| | - Christopher M Smith
- Departments of Medicine, Pediatrics, and Academic Informatics and Technology, Icahn School of Medicine at Mount Sinai and Tisch Cancer Institute, New York, New York, USA
| | - Julia Sheets
- University of North Carolina Hospital, Chapel Hill, North Carolina, USA
| | - Pavan Reddy
- Department of Medicine and University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan S Serody
- Department of Medicine and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
37
|
Kmieć Z, Cyman M, Ślebioda TJ. Cells of the innate and adaptive immunity and their interactions in inflammatory bowel disease. Adv Med Sci 2017; 62:1-16. [PMID: 28126697 DOI: 10.1016/j.advms.2016.09.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory conditions of the gastrointestinal tract that includes two major phenotypes, Crohn's disease and ulcerative colitis that are characterized by different clinical features and different course of the immune response. The exact aetiology of IBD still remains unknown, although it is thought that the diseases result from an excessive immune response directed against microbial or environmentally derived antigens which can be triggered by the disruption of the intestinal epithelial barrier integrity. In this review we present immune mechanisms and interactions between cells of the immune system and tissue environment that contribute to the development and progression of IBD in humans. Since dysregulation of the intestinal immune response is a hallmark of chronic inflammatory conditions, we characterize cells of the innate and adaptive immunity involved in the pathogenesis of IBD and their cross-talks. We describe various subclasses of recently discovered innate lymphoid cells, as well as dendritic cells, macrophages and T cells, including Th17, Th22 and T regulatory cells, present in the intestinal lamina propria and cytokine-mediated regulation of the immune response in IBD, highlighting the role of IL-22 and IL-17A/IL-23 axis. Insights into novel therapeutic modalities targeting certain elements of the immune pathways important for the pathogenesis of IBD have been also shortly presented.
Collapse
|
38
|
Botticelli A, Zizzari I, Mazzuca F, Ascierto PA, Putignani L, Marchetti L, Napoletano C, Nuti M, Marchetti P. Cross-talk between microbiota and immune fitness to steer and control response to anti PD-1/PDL-1 treatment. Oncotarget 2017; 8:8890-8899. [PMID: 27806346 PMCID: PMC5352451 DOI: 10.18632/oncotarget.12985] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
Immune Checkpoint Inhibitors (ICIs) are improving the survival of cancer patients, however only the 20-30% of treated patients present clinical benefits. Toxicity represents the major cause of reduced dosage, delayed drug administration and therapy discontinuation. Hence in the context of multiple treatment possibilities, the identification of predictive markers of response and toxicity is a challenging approach for drug selection in order to obtain the best clinical benefit while minimizing the side effects. The loss of the protective function of intestinal barriers that interacts with the environment measured as increased intestinal permeability and the changes occurring in the microbiota composition have been proposed as a mechanism potentially explaining the pathogenesis of immune related toxicity.In this review we discuss the new perspectives on the involvement of PD-1 and PDL-1 in the cross talk between gut microbiota and immune fitness and how gut microbiota impacts on the efficacy of anti-PD-1 and anti-PDL-1 treatments in cancer.
Collapse
Affiliation(s)
- Andrea Botticelli
- Department of Clinical and Molecular Medicine, SantAndrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Ilaria Zizzari
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Mazzuca
- Department of Clinical and Molecular Medicine, SantAndrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy, and Innovative Therapy, Istituto nazionale Tumori Fondazione G Pascale, Napoli, Italy
| | - Lorenza Putignani
- Units of Parasitology and Human Microbiome, Bambino Ges Childrens Hospital and Research Institute, Rome, Italy
| | - Luca Marchetti
- Department of Clinical Oncology, Policlinico Umberto I, University of Rome Sapienza, Rome, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, SantAndrea Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
39
|
Trojandt S, Bellinghausen I, Reske-Kunz AB, Bros M. Tumor-derived immuno-modulators induce overlapping pro-tolerogenic gene expression signatures in human dendritic cells. Hum Immunol 2016; 77:1223-1231. [DOI: 10.1016/j.humimm.2016.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022]
|
40
|
Manoharan I, Suryawanshi A, Hong Y, Ranganathan P, Shanmugam A, Ahmad S, Swafford D, Manicassamy B, Ramesh G, Koni PA, Thangaraju M, Manicassamy S. Homeostatic PPARα Signaling Limits Inflammatory Responses to Commensal Microbiota in the Intestine. THE JOURNAL OF IMMUNOLOGY 2016; 196:4739-49. [PMID: 27183583 DOI: 10.4049/jimmunol.1501489] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 03/25/2016] [Indexed: 12/28/2022]
Abstract
Dietary lipids and their metabolites activate members of the peroxisome proliferative-activated receptor (PPAR) family of transcription factors and are critical for colonic health. The PPARα isoform plays a vital role in regulating inflammation in various disease settings, but its role in intestinal inflammation, commensal homeostasis, and mucosal immunity in the gut are unclear. In this study, we demonstrate that the PPARα pathway in innate immune cells orchestrates gut mucosal immunity and commensal homeostasis by regulating the expression of IL-22 and the antimicrobial peptides RegIIIβ, RegIIIγ, and calprotectin. Additionally, the PPARα pathway is critical for imparting regulatory phenotype in intestinal macrophages. PPARα deficiency in mice led to commensal dysbiosis in the gut, resulting in a microbiota-dependent increase in the expression of inflammatory cytokines and enhanced susceptibility to intestinal inflammation. Pharmacological activation of this pathway decreased the expression of inflammatory cytokines and ameliorated colonic inflammation. Taken together, these findings identify a new important innate immune function for the PPARα signaling pathway in regulating intestinal inflammation, mucosal immunity, and commensal homeostasis. Thus, the manipulation of the PPARα pathway could provide novel opportunities for enhancing mucosal immunity and treating intestinal inflammation.
Collapse
Affiliation(s)
| | | | - Yuan Hong
- Cancer Center, Augusta University, Augusta, GA 30912
| | | | | | - Shamim Ahmad
- Cancer Center, Augusta University, Augusta, GA 30912
| | | | | | - Ganesan Ramesh
- Vascular Biology Center, Augusta University, Augusta, GA 30912
| | - Pandelakis A Koni
- Cancer Center, Augusta University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912; and
| | - Muthusamy Thangaraju
- Cancer Center, Augusta University, Augusta, GA 30912; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Santhakumar Manicassamy
- Cancer Center, Augusta University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912; and Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| |
Collapse
|