1
|
Dursun I, Korkmaz ND, Firtina S, Erkoyuncu MS, Akbas F, Elibol B. Exploring epigenetic modification of the stress-related FKBP5 gene in mice exposed to alcohol during early postnatal development. Alcohol 2024:S0741-8329(24)00125-3. [PMID: 39245355 DOI: 10.1016/j.alcohol.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Early developmental exposure to alcohol has been implicated in adverse effects on the brain, often associated with the onset of neurodevelopmental disorders. Moreover, maternal alcohol consumption during pregnancy has been linked to the manifestation of mental health disorders, such as depression and anxiety, in subsequent generations. These mood disturbances may be attributed to alterations in protein expressions related to depression and anxiety within the hippocampus. While the precise mechanisms remain elusive, it is likely that pre- and postnatal exposure to alcohol induces changes in hippocampus, potentially through epigenetic modifications. The FKBP5 gene, known to modulate the stress response, is particularly relevant in this context. We postulate that alcohol-induced methylation of the FKBP5 gene disrupts HPA axis function, thereby prompting individuals to anxiety-like and depressive-like behaviors. To investigate this hypothesis, female C57BL/6 pups were subjected to early alcohol exposure via intubation with ethanol mixed in artificial milk from Postnatal Day 3 to Day 20. The intubation control pups were subjected to the same procedures without ethanol or milk, and a non-intubated control group included. Anxiety-like and depressive-like behaviors were assessed using the open field test, plus maze test, forced swim test, and tail suspension test when the pups reached 3 months of age. For epigenetic analysis of the FKBP5 gene, genomic DNA was isolated from hippocampal tissues and subjected to bisulfite conversion to distinguish methylated and unmethylated cytosines. Then, methylation-specific PCR was performed to assess methylation levels. Pups exposed to early postnatal alcohol exhibited increased levels of depression-like behavior and susceptibility to anxiety-like behavior during adolescence, as verified by behavioral assessments. Methylation profiling revealed higher rates of methylation within the stress-associated gene FKBP5 in both the early postnatal alcohol-exposed cohort (13.82%) and the intubation control group (3.93%), in contrast to the control cohort devoid of stress or alcohol exposure. These findings suggest a potential epigenetic mechanism underlying the observed behavioral alterations, implicating FKBP5 methylation as a candidate mediator of the increased vulnerability to mood disorders following early postnatal alcohol exposure.
Collapse
Affiliation(s)
- Ilknur Dursun
- Department of Physiology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Nur Damla Korkmaz
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Sinem Firtina
- Department of Medical Genetics, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Muhammed Salih Erkoyuncu
- Department of Neuroscience, Graduate School of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
| | - Fahri Akbas
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|
2
|
Podgórski R, Galiniak S, Mazur A, Domin A, Podgórska D. Serum levels of leptin, ghrelin putative peptide YY-3 in patients with fetal alcohol spectrum disorders. Sci Rep 2024; 14:14971. [PMID: 38951515 PMCID: PMC11217397 DOI: 10.1038/s41598-024-66052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are a severe developmental condition resulting from exposure to alcohol during pregnancy. The aim of this study was to examine the concentrations of hormones involved in appetite regulation-ghrelin, leptin, and putative peptide YY-3 (PYY)-in the serum of individuals with FASD. Additionally, we investigated the relationship between these hormone levels and clinical indicators. We conducted an enzyme-linked immunosorbent assay on samples collected from 62 FASD patients and 23 individuals without the condition. Our results revealed a significant decrease in leptin levels among FASD patients compared to the control group (5.124 vs. 6.838 ng/mL, p = 0.002). We revealed no statistically significant differences in the levels of other hormones studied (ghrelin and PYY). Comparisons of hormone levels were also conducted in three subgroups: FAS, neurobehavioral disorders associated with prenatal alcohol exposure and FASD risk, as well as by sex. Assignment to FASD subgroups indicated changes only for leptin. Sex had no effect on the levels of hormones. Moreover, the levels of leptin showed a negative correlation with cortisol levels and a positive correlation with BMI and proopiomelanocortin. Alterations in appetite regulation can contribute to the improper development of children with FASD, which might be another factor that should be taken into consideration in the proper treatment of patients.
Collapse
Affiliation(s)
- Rafał Podgórski
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-310, Rzeszow, Poland.
| | - Sabina Galiniak
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-310, Rzeszow, Poland
| | - Artur Mazur
- Department of Pediatric, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310, Rzeszow, Poland
| | - Agnieszka Domin
- Department of Pediatric, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310, Rzeszow, Poland
| | - Dominika Podgórska
- Department of Rheumatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-310, Rzeszow, Poland
| |
Collapse
|
3
|
Ornelas LC, Fish EW, Dooley JC, Carroll M, Parnell SE, Besheer J. The impact of prenatal alcohol, synthetic cannabinoid and co-exposure on behavioral adaptations in adolescent offspring and alcohol self-administration in adulthood. Neurotoxicol Teratol 2024; 102:107341. [PMID: 38490565 PMCID: PMC11000688 DOI: 10.1016/j.ntt.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Prenatal exposure to alcohol or cannabinoids can produce enduring neurobiological, cognitive, and behavioral changes in the offspring. Furthermore, prenatal co-exposure to alcohol and cannabinoids induces malformations in brain regions associated with reward and stress-related circuitry. This study examined the effects of co-exposure to alcohol and the synthetic cannabinoid (SCB) CP55,940 throughout gastrulation and neurulation in rats on basal corticosterone levels and a battery of behavioral tests during adolescence and alcohol self-administration in adulthood. Importantly, we find that prenatal alcohol exposure (PAE) caused lower baseline corticosterone levels in adolescent males and females. Co-exposure to alcohol + CP produced hyperactivity during open field test in males, but not females. During the two-bottle choice alcohol-drinking procedure, prenatal cannabinoid exposed male and female adolescent rats drank more alcohol than their vehicle-exposed controls. In adulthood, female rats treated with prenatal cannabinoid exposure (PCE), showed an overall total increase in alcohol intake during alcohol self-administration; but this was not found in males. When the reinforcer was changed to a 1% sucrose solution, male rats exposed to PCE, showed a reduced self-administration compared to vehicle-exposed males, potentially indicative of an anhedonic response. This lower self-administration persisted when 20% alcohol was reintroduced to the sucrose solution. Lastly, following an abstinence period, there were no changes due to prenatal drug exposure in either males or females. Overall, these data suggest lasting consequences of prenatal alcohol and cannabinoid exposure during adolescence and adulthood in male and female rats.
Collapse
Affiliation(s)
- Laura C Ornelas
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Jacob C Dooley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Megan Carroll
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
4
|
Boschen KE, Dragicevich CJ, Fish EW, Hepperla AJ, Simon JM, Parnell SE. Gastrulation-stage alcohol exposure induces similar rates of craniofacial malformations in male and female C57BL/6J mice. Birth Defects Res 2024; 116:e2292. [PMID: 38116840 PMCID: PMC10872400 DOI: 10.1002/bdr2.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Prenatal alcohol exposure during gastrulation (embryonic day [E] 7 in mice, ~3rd week of human pregnancy) impairs eye, facial, and cortical development, recapitulating birth defects characteristic of Fetal Alcohol Syndrome (FAS). However, it is not known whether the prevalence or severity of craniofacial features associated with FAS is affected by biological sex. METHODS The current study administered either alcohol (2.9 g/kg, two i.p. doses, 4 hr apart) or vehicle to pregnant C57BL/6J females on E7, prior to gonadal sex differentiation, and assessed fetal morphology at E17. RESULTS Whereas sex did not affect fetal size in controls, alcohol-exposed females were smaller than both control females and alcohol-treated males. Alcohol exposure increased the incidence of eye defects to a similar degree in males and females. Together, these data suggest that females might be more sensitive to the general developmental effects of alcohol, but not effects specific to the craniofacies. Whole transcriptomic analysis of untreated E7 embryos found 214 differentially expressed genes in females vs. males, including those in pathways related to cilia and mitochondria, histone demethylase activity, and pluripotency. CONCLUSION Gastrulation-stage alcohol induces craniofacial malformations in male and female mouse fetuses at similar rates and severity, though growth deficits are more prevalent females. These findings support the investigation of biological sex as a contributing factor in prenatal alcohol studies.
Collapse
Affiliation(s)
- Karen E. Boschen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Constance J. Dragicevich
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric W. Fish
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Austin J. Hepperla
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy M. Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott E. Parnell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Ornelas LC, Fish EW, Dooley JC, Carroll M, Parnell SE, Besheer J. The impact of prenatal alcohol and synthetic cannabinoid exposure on behavioral adaptations in adolescent offspring and alcohol self-administration in adulthood. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561571. [PMID: 37873078 PMCID: PMC10592743 DOI: 10.1101/2023.10.09.561571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Prenatal exposure to alcohol or cannabinoids can produce enduring neurobiological, cognitive, and behavioral changes in the offspring. Furthermore, prenatal co-exposure to alcohol and cannabinoids induces malformations in brain regions associated with reward and stress-related circuitry. This study examined the effects of co-exposure to alcohol and the synthetic cannabinoid (SCB) CP55,940 throughout gastrulation and neurulation in rats on basal corticosterone levels and a battery of behavioral tests during adolescence and alcohol self-administration in adulthood. Importantly, we find that prenatal alcohol exposure (PAE) caused lower baseline corticosterone levels in adolescent males and females. Co-exposure to alcohol + CP produced hyperactivity during open field test in males, but not females. During the two-bottle choice alcohol-drinking procedure, prenatal cannabinoid exposed male and female adolescent rats drank more alcohol than their vehicle-exposed controls. In adulthood, female rats treated with prenatal cannabinoid exposure (PCE), showed an overall total increase in alcohol intake during alcohol self-administration; but this was not found in males. When the reinforcer was changed to a 1% sucrose solution, male rats exposed to PCE, showed a reduced self-administration compared to vehicle-exposed males, potentially indicative of an anhedonic response. This lower self-administration persisted when 20% alcohol was reintroduced to the sucrose solution. Lastly, following an abstinence period, there were no changes due to prenatal drug exposure in either males or females. Overall, these data suggest lasting consequences of prenatal alcohol and cannabinoid exposure during adolescence and adulthood in male and female rats.
Collapse
|
6
|
Mukherjee S, Tarale P, Sarkar DK. Neuroimmune Interactions in Fetal Alcohol Spectrum Disorders: Potential Therapeutic Targets and Intervention Strategies. Cells 2023; 12:2323. [PMID: 37759545 PMCID: PMC10528917 DOI: 10.3390/cells12182323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are a set of abnormalities caused by prenatal exposure to ethanol and are characterized by developmental defects in the brain that lead to various overt and non-overt physiological abnormalities. Growing evidence suggests that in utero alcohol exposure induces functional and structural abnormalities in gliogenesis and neuron-glia interactions, suggesting a possible role of glial cell pathologies in the development of FASD. However, the molecular mechanisms of neuron-glia interactions that lead to the development of FASD are not clearly understood. In this review, we discuss glial cell pathologies with a particular emphasis on microglia, primary resident immune cells in the brain. Additionally, we examine the involvement of several neuroimmune molecules released by glial cells, their signaling pathways, and epigenetic mechanisms responsible for FASD-related alteration in brain functions. Growing evidence suggests that extracellular vesicles (EVs) play a crucial role in the communication between cells via transporting bioactive cargo from one cell to the other. This review emphasizes the role of EVs in the context of neuron-glia interactions during prenatal alcohol exposure. Finally, some potential applications involving nutritional, pharmacological, cell-based, and exosome-based therapies in the treatment of FASD are discussed.
Collapse
Affiliation(s)
- Sayani Mukherjee
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-1573, USA; (S.M.); (P.T.)
- Hormone Laboratory Research Group, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Jonas Lies vei 91B, 5021 Bergen, Norway
| | - Prashant Tarale
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-1573, USA; (S.M.); (P.T.)
| | - Dipak K. Sarkar
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-1573, USA; (S.M.); (P.T.)
| |
Collapse
|
7
|
The Association of the Hypothalamic-Pituitary-Adrenal Axis with Appetite Regulation in Children with Fetal Alcohol Spectrum Disorders (FASDs). Nutrients 2023; 15:nu15061366. [PMID: 36986097 PMCID: PMC10053353 DOI: 10.3390/nu15061366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Prenatal alcohol exposure causes growth impairment and a wide range of developmental, physical, and cognitive disorders in children, collectively referred to as fetal alcohol spectrum disorders (FASDs). In the course of FASDs, abnormalities can also affect eating behavior and nutritional status, but these problems have received little attention. Therefore, the aim of our study was to determine the levels of hormones involved in the action of the hypothalamic–pituitary–adrenal axis: proopiomelanocortin (POMC), cortisol, and adrenocorticotropic hormone (ACTH), in the serum of patients with FASDs. To our knowledge, none of these hormones studied have yet been evaluated in FASDs to date. We investigated 62 FASD patients and 23 healthy controls by applying an enzyme-linked immunosorbent method (ELISA). Fasting POMC levels were significantly lower in patients with FASDs (10.97 vs. 18,57 ng/mL, p = 0.039) compared to controls. However, there were no differences in cortisol concentrations. Additionally, the sex and subgroup status (fetal alcohol syndrome (FAS), neurobehavioral disorder associated with prenatal alcohol exposure (ND-PAE), and FASD risk) did not affect hormone levels. POMC was positively correlated with some clinical parameters such as age, BMI percentile, carbohydrate biomarkers, and ACTH. A positive correlation was observed between ACTH and cortisol levels, as well as ACTH and cholesterol levels. Data analysis showed no HPA axis abnormalities in the form of elevated serum cortisol and ACTH levels. Differences in POMC concentration may indicate the involvement and/or impairment of central nervous system structures in hormonal alterations in FASD individuals, caused by prenatal alcohol exposure. Hormonal dysregulation in FASDs can contribute to reduced growth and development, as well as many other disturbed processes, including neurological/neurodevelopmental dysfunctions. Further insightful studies involving a larger group of patients are needed to determine the potential impact of the measured hormones.
Collapse
|
8
|
Meombe Mbolle A, Thapa S, Bukiya AN, Jiang H. High-resolution imaging in studies of alcohol effect on prenatal development. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:10790. [PMID: 37593366 PMCID: PMC10433240 DOI: 10.3389/adar.2023.10790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Fetal alcohol syndrome represents the leading known preventable cause of mental retardation. FAS is on the most severe side of fetal alcohol spectrum disorders that stem from the deleterious effects of prenatal alcohol exposure. Affecting as many as 1 to 5 out of 100 children, FASD most often results in brain abnormalities that extend to structure, function, and cerebral hemodynamics. The present review provides an analysis of high-resolution imaging techniques that are used in animals and human subjects to characterize PAE-driven changes in the developing brain. Variants of magnetic resonance imaging such as magnetic resonance microscopy, magnetic resonance spectroscopy, diffusion tensor imaging, along with positron emission tomography, single-photon emission computed tomography, and photoacoustic imaging, are modalities that are used to study the influence of PAE on brain structure and function. This review briefly describes the aforementioned imaging modalities, the main findings that were obtained using each modality, and touches upon the advantages/disadvantages of each imaging approach.
Collapse
Affiliation(s)
- Augustine Meombe Mbolle
- Department Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Shiwani Thapa
- Department Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Anna N. Bukiya
- Department Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Huabei Jiang
- Department Medical Engineering, College of Engineering and Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
9
|
Wang AL, Micov VB, Kwarteng F, Wang R, Hausknecht KA, Oubraim S, Haj-Dahmane S, Shen RY. Prenatal ethanol exposure leads to persistent anxiety-like behavior during adulthood indicated by reduced horizontal and vertical exploratory behaviors. Front Neurosci 2023; 17:1163575. [PMID: 37090801 PMCID: PMC10117440 DOI: 10.3389/fnins.2023.1163575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
Background Fetal alcohol spectrum disorders (FASD) caused by prenatal ethanol exposure (PE) consist of many cognitive/behavioral deficits. Studies have reported that PE leads to impairments of learning and memory, attention, executive function, and anxiety. Open field (OF) is a common behavioral model which offers comprehensive ethological information. Here, we analyzed multiple parameters of OF to examine anxiety behavior and habituation after PE. Material and Methods Pregnant Sprague Dawley rats were gavaged twice/day with 0 or 3 g/kg/treatment ethanol (15% w/v) during gestational day (GD) 8-20, mimicking second-trimester heavy PE in humans. The control and PE adult offspring were subjected to OF task in different ambient light levels with or without acute stress. Results Prenatal ethanol exposure did not influence the overall locomotor activities or habituation in the OF. In lower ambient light, no PE effects could be detected. In higher ambient light, female PE rats showed less activities in the center zone, indicative of increased anxiety. Males show lower activities in the center zone only after acute stress. Rats spent <2% of the time in the center zone compared to >75% of the time in the corner zone where they engaged in frequent rearing activities (vertical exploration; exploratory rearing). Prenatal ethanol exposure led to lower rearing activities in the corner in both males and females. Acute stress masks the PE effects in males but not in females. Discussion The results support that heavy PE leads to persistent anxiety-like behavior during adulthood in both sexes. This conclusion is supported by using multiple parameters of exploratory behavior in the OF, including the rearing activities in the corner to reach reliable quantification of anxiety-like behavior.
Collapse
|
10
|
Fish EW, Mendoza-Romero HN, Love CA, Dragicevich CJ, Cannizzo MD, Boschen KE, Hepperla A, Simon JM, Parnell SE. The pro-apoptotic Bax gene modifies susceptibility to craniofacial dysmorphology following gastrulation-stage alcohol exposure. Birth Defects Res 2022; 114:1229-1243. [PMID: 35396933 PMCID: PMC10103739 DOI: 10.1002/bdr2.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND During early development, alcohol exposure causes apoptotic cell death in discrete regions of the embryo which are associated with distinctive patterns of later-life abnormalities. In gastrulation, which occurs during the third week of human pregnancy, alcohol targets the ectoderm, the precursor of the eyes, face, and brain. This midline tissue loss leads to the craniofacial dysmorphologies, such as microphthalmia and a smooth philtrum, which define fetal alcohol syndrome (FAS). An important regulator of alcohol-induced cell death is the pro-apoptotic protein Bax. The current study determines if mice lacking the Bax gene are less susceptible to the pathogenic effects of gastrulation-stage alcohol exposure. METHODS Male and female Bax+/- mice mated to produce embryos with full (-/- ) or partial (+/- ) Bax deletions, or Bax+/+ wild-type controls. On Gestational Day 7 (GD 7), embryos received two alcohol (2.9 g/kg, 4 hr apart), or control exposures. A subset of embryos was collected 12 hr later and examined for the presence of apoptotic cell death, while others were examined on GD 17 for the presence of FAS-like facial features. RESULTS Full Bax deletion reduced embryonic apoptotic cell death and the incidence of fetal eye and face malformations, indicating that Bax normally facilitates the development of alcohol-induced defects. An RNA-seq analysis of GD 7 Bax+/+ and Bax-/- embryos revealed 63 differentially expressed genes, some of which may interact with the Bax deletion to further protect against apoptosis. CONCLUSIONS Overall, these experiments identify that Bax is a primary teratogenic mechanism of gastrulation-stage alcohol exposure.
Collapse
Affiliation(s)
- Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Haley N Mendoza-Romero
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Charlotte A Love
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Constance J Dragicevich
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael D Cannizzo
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karen E Boschen
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Austin Hepperla
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA.,Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Binge-like Prenatal Ethanol Exposure Causes Impaired Cellular Differentiation in the Embryonic Forebrain and Synaptic and Behavioral Defects in Adult Mice. Brain Sci 2022; 12:brainsci12060793. [PMID: 35741678 PMCID: PMC9220802 DOI: 10.3390/brainsci12060793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022] Open
Abstract
An embryo’s in-utero exposure to ethanol due to a mother’s alcohol drinking results in a range of deficits in the child that are collectively termed fetal alcohol spectrum disorders (FASDs). Prenatal ethanol exposure is one of the leading causes of preventable intellectual disability. Its neurobehavioral underpinnings warrant systematic research. We investigated the immediate effects on embryos of acute prenatal ethanol exposure during gestational days (GDs) and the influence of such exposure on persistent neurobehavioral deficits in adult offspring. We administered pregnant C57BL/6J mice with ethanol (1.75 g/kg) (GDE) or saline (GDS) intraperitoneally (i.p.) at 0 h and again at 2 h intervals on GD 8 and GD 12. Subsequently, we assessed apoptosis, differentiation, and signaling events in embryo forebrains (E13.5; GD13.5). Long-lasting effects of GDE were evaluated via a behavioral test battery. We also determined the long-term potentiation and synaptic plasticity-related protein expression in adult hippocampal tissue. GDE caused apoptosis, inhibited differentiation, and reduced pERK and pCREB signaling and the expression of transcription factors Pax6 and Lhx2. GDE caused persistent spatial and social investigation memory deficits compared with saline controls, regardless of sex. Interestingly, GDE adult mice exhibited enhanced repetitive and anxiety-like behavior, irrespective of sex. GDE reduced synaptic plasticity-related protein expression and caused hippocampal synaptic plasticity (LTP and LTD) deficits in adult offspring. These findings demonstrate that binge-like ethanol exposure at the GD8 and GD12 developmental stages causes defects in pERK–pCREB signaling and reduces the expression of Pax6 and Lhx2, leading to impaired cellular differentiation during the embryonic stage. In the adult stage, binge-like ethanol exposure caused persistent synaptic and behavioral abnormalities in adult mice. Furthermore, the findings suggest that combining ethanol exposure at two sensitive stages (GD8 and GD12) causes deficits in synaptic plasticity-associated proteins (Arc, Egr1, Fgf1, GluR1, and GluN1), leading to persistent FASD-like neurobehavioral deficits in mice.
Collapse
|
12
|
Brown J, Jonason A, Asp E, McGinn V, Carter MN, Spiller V, Jozan A. Fetal alcohol spectrum disorder and confabulation in psycholegal settings: A beginner's guide for criminal justice, forensic mental health, and legal interviewers. BEHAVIORAL SCIENCES & THE LAW 2022; 40:46-86. [PMID: 34689366 DOI: 10.1002/bsl.2540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are neurodevelopmental/neurobehavioral conditions caused by prenatal alcohol exposure (PAE). Impairments caused by PAE contribute to the over-representation of individuals with FASD in the United States juvenile and adult criminal justice systems. These same impairments can equally impact on individuals with FASD who are witnesses to or victims of crime who also have to navigate the complexities of the criminal justice system. Difficulties include increased susceptibility to confabulation throughout the legal process that, in turn, can contribute to increased rates of poor outcomes including false confessions and wrongful convictions. Individuals with FASD are particularity at risk of confabulation when they are subjected to tactics, such as stressful and anxiety-provoking situations, threats, and leading, suggestive, or coercive questioning. Many professionals in the forensic context are unfamiliar with FASD or related confabulation risk and may unintentionally utilize tactics that intensify impacts of pre-existing impairment. This article serves as a beginner's guide for professionals working in criminal justice settings by (a) providing research-based overviews of FASD and confabulation, (b) describing how FASD may lead to confabulation, and (c) suggesting ways that professionals can modify protocols when interacting with individuals with FASD. Suggestions in this article hold the potential to decrease the risk of confabulation in the criminal justice system and decrease problematic outcomes, such as false confessions and wrongful convictions among individuals with FASD.
Collapse
Affiliation(s)
- Jerrod Brown
- Pathways Counseling Center, Inc., St. Paul, Minnesota, USA
- Concordia University, St. Paul, Minnesota, USA
- American Institute for the Advancement of Forensic Studies, St. Paul, Minnesota, USA
| | - Alec Jonason
- Department of Psychology, Hamline University, St. Paul, Minnesota, USA
- Wesley & Lorene Artz Cognitive Neuroscience Research Center, Hamline University, St. Paul, Minnesota, USA
| | - Erik Asp
- Department of Psychology, Hamline University, St. Paul, Minnesota, USA
- Wesley & Lorene Artz Cognitive Neuroscience Research Center, Hamline University, St. Paul, Minnesota, USA
- Department of Neurology, University of Iowa, Iowa City, Iowa, USA
| | - Valerie McGinn
- The FASD Centre, Auckland, New Zealand
- School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Megan N Carter
- University of Washington, Seattle, Washington, USA
- Department of Social and Health Services, Special Commitment Center, Steilacoom, Washington, USA
| | | | - Amy Jozan
- American Institute for the Advancement of Forensic Studies, St. Paul, Minnesota, USA
| |
Collapse
|
13
|
Hwang HM, Hashimoto-Torii K. Activation of the anterior cingulate cortex ameliorates anxiety in a preclinical model of fetal alcohol spectrum disorders. Transl Psychiatry 2022; 12:24. [PMID: 35058425 PMCID: PMC8776849 DOI: 10.1038/s41398-022-01789-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
People with fetal alcohol spectrum disorders (FASD) are suffered from a wide range of interlinked cognitive and psychological problems. However, few therapeutic options are available for those patients due to limited dissection of its underlying etiology. Here we found that prenatal alcohol exposure (PAE) increases anxiety in mice due to a dysregulated functional connectivity between the anterior cingulate cortex (ACC) and basolateral amygdala (BLA). We also show that chemogenetic activation of excitatory neurons in the ACC reduced this anxiety behavior in the PAE mice. Interestingly, although the level of plasma corticosterone correlated with the increase in anxiety in the PAE, this level was not altered by chemogenetic activation of the ACC, suggesting that the functional connectivity between the ACC and the BLA does not alter the activity of the hypothalamic-pituitary-adrenal axis. Altogether, this study demonstrated that reduced excitation in the ACC is a cause of anxiety in the PAE mice, providing critical insights into the ACC-BLA neural circuit as a potential target for treating anxiety in FASD patients.
Collapse
Affiliation(s)
- Hye M. Hwang
- grid.239560.b0000 0004 0482 1586Center for Neuroscience Research, The Children’s Research Institute, Children’s National Hospital, Washington, DC USA ,grid.253615.60000 0004 1936 9510The Institute for Biomedical Sciences, School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, The Children's Research Institute, Children's National Hospital, Washington, DC, USA. .,Departments of Pediatrics, and Pharmacology & Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
14
|
Cararo JH, Rico EP. Long-lasting implications of embryonic exposure to alcohol: Insights from zebrafish research. Dev Neurobiol 2021; 82:29-40. [PMID: 34687497 DOI: 10.1002/dneu.22855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022]
Abstract
The harmful consumption of ethanol is associated with significant health problems and social burdens. This drug activates a complex network of reward mechanisms and habit formation learning that is supposed to contribute to the consumption of increasingly high and frequent amounts, ultimately leading to addiction. In the context of fetal alcohol spectrum disorders, fetal alcohol syndrome (FAS) is a consequence of the harmful use of alcohol during pregnancy, which affects the embryonic development of the fetus. FAS can be easily reproduced in zebrafish by exposing the embryos to different concentrations of ethanol in water. In this regard, the aim of the present review is to discuss the late pathological implications in zebrafish exposed to ethanol at the embryonic stage, providing information in the context of human fetal alcoholic spectrum disorders. Experimental FAS in zebrafish is associated with impairments in the metabolic, morphological, neurochemical, behavioral, and cognitive domains. Many of the pathways that are affected by ethanol in zebrafish have at least one ortholog in humans, collaborating with the wider adoption of zebrafish in studies on alcohol disorders. In fact, zebrafish present validities required for the study of these conditions, which contributes to the use of this species in research, in addition to studies with rodents.
Collapse
Affiliation(s)
- José Henrique Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
15
|
Boschen KE, Fish EW, Parnell SE. Prenatal alcohol exposure disrupts Sonic hedgehog pathway and primary cilia genes in the mouse neural tube. Reprod Toxicol 2021; 105:136-147. [PMID: 34492310 PMCID: PMC8529623 DOI: 10.1016/j.reprotox.2021.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
Neurulation-stage alcohol exposure (NAE; embryonic day [E] 8-10) is associated with midline craniofacial and CNS defects that likely arise from disruption of morphogen pathways, such as Sonic hedgehog (Shh). Notably, midline anomalies are also a hallmark of genetic ciliopathies such as Joubert syndrome. We tested whether NAE alters Shh pathway signaling and the number and function of primary cilia, organelles critical for Shh pathway transduction. Female C57BL/6 J mice were administered two doses of alcohol (2.9 g/kg/dose) or vehicle on E9. Embryos were collected 6, 12, or 24 h later, and changes to Shh, cell cycle genes, and primary cilia were measured in the rostroventral neural tube (RVNT). Within the first 24 h post-NAE, reductions in Shh pathway and cell cycle gene expression and the ratio of Gli3 forms in the full-length activator state were observed. RVNT volume and cell layer width were reduced at 12 h. In addition, altered expression of multiple cilia-related genes was observed at 6 h post-NAE. As a further test of cilia gene-ethanol interaction, mice heterozygous for Kif3a exhibited perturbed behavior during adolescence following NAE compared to vehicle-treated mice, and Kif3a heterozygosity exacerbated the hyperactive effects of NAE on exploratory activity. These data demonstrate that NAE downregulates the Shh pathway in a region of the neural tube that gives rise to alcohol-sensitive brain structures and identifies disruption of primary cilia function, or a "transient ciliopathy", as a possible cellular mechanism of prenatal alcohol pathogenesis.
Collapse
Affiliation(s)
- Karen E Boschen
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Eric W Fish
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
| | - Scott E Parnell
- Bowles Center on Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Song L, Wu X, Wang J, Guan Y, Zhang Y, Gong M, Wang Y, Li B. Antidepressant effect of catalpol on corticosterone-induced depressive-like behavior involves the inhibition of HPA axis hyperactivity, central inflammation and oxidative damage probably via dual regulation of NF-κB and Nrf2. Brain Res Bull 2021; 177:81-91. [PMID: 34500039 DOI: 10.1016/j.brainresbull.2021.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the antidepressant effect and mechanism of catalpol on corticosterone (CORT)-induced depressive-like behavior in mice for the first time. As a result, CORT injection induced depressive-like behaviors of mice in behavioral tests, aggravated the serum CORT, adrenocorticotropic hormone, and corticotropin-releasing hormone levels, and conspicuously elevated the phosphorylations of nuclear factor kappa-B (NF-κB) in the hippocampus and frontal cortex, and down-regulated the expression levels of nuclear factor erythroid-2-related factor 2 (Nrf2). Furthermore, CORT exposure dramatically augmented the levels of inflammatory factors (interleukin-1β, tumor necrosis factor-α, nitric oxide synthase, and nitric oxide) and lipid peroxidation product malondialdehyde, and attenuated the levels of antioxidants including reduced glutathione, glutathione S-transferase, total superoxide dismutase, and heme oxygenase-1 in the mouse hippocampus and frontal cortex. On the contrary, catalpol administration markedly suppressed the abnormalities of the above indicators. From the overall results, this study displayed that catalpol exerted a beneficial effect on CORT-induced depressive-like behavior in mice possibly via the inhibition of hypothalamus-pituitary-adrenal (HPA) axis hyperactivity, central inflammation and oxidative damage at least partially through dual regulation of NF-κB and Nrf2.
Collapse
Affiliation(s)
- Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Yuechen Guan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Mingzhu Gong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bingyin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
17
|
Martín-Estal I, Castilla-Cortázar I, Castorena-Torres F. The Placenta as a Target for Alcohol During Pregnancy: The Close Relation with IGFs Signaling Pathway. Rev Physiol Biochem Pharmacol 2021; 180:119-153. [PMID: 34159446 DOI: 10.1007/112_2021_58] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alcohol is one of the most consumed drugs in the world, even during pregnancy. Its use is a risk factor for developing adverse outcomes, e.g. fetal death, miscarriage, fetal growth restriction, and premature birth, also resulting in fetal alcohol spectrum disorders. Ethanol metabolism induces an oxidative environment that promotes the oxidation of lipids and proteins, triggers DNA damage, and advocates mitochondrial dysfunction, all of them leading to apoptosis and cellular injury. Several organs are altered due to this harmful behavior, the brain being one of the most affected. Throughout pregnancy, the human placenta is one of the most important organs for women's health and fetal development, as it secretes numerous hormones necessary for a suitable intrauterine environment. However, our understanding of the human placenta is very limited and even more restricted is the knowledge of the impact of toxic substances in its development and fetal growth. So, could ethanol consumption during this period have wounding effects in the placenta, compromising proper fetal organ development? Several studies have demonstrated that alcohol impairs various signaling cascades within G protein-coupled receptors and tyrosine kinase receptors, mainly through its action on insulin and insulin-like growth factor 1 (IGF-1) signaling pathway. This last cascade is involved in cell proliferation, migration, and differentiation and in placentation. This review tries to examine the current knowledge and gaps in our existing understanding of the ethanol effects in insulin/IGFs signaling pathway, which can explain the mechanism to elucidate the adverse actions of ethanol in the maternal-fetal interface of mammals.
Collapse
Affiliation(s)
- Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, NL, Mexico
| | | | | |
Collapse
|
18
|
Brancato A, Castelli V, Lavanco G, Cannizzaro C. Environmental Enrichment During Adolescence Mitigates Cognitive Deficits and Alcohol Vulnerability due to Continuous and Intermittent Perinatal Alcohol Exposure in Adult Rats. Front Behav Neurosci 2020; 14:583122. [PMID: 33100982 PMCID: PMC7546794 DOI: 10.3389/fnbeh.2020.583122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/25/2020] [Indexed: 12/27/2022] Open
Abstract
Perinatal alcohol exposure affects ontogenic neurodevelopment, causing physical and functional long-term abnormalities with limited treatment options. This study investigated long-term consequences of continuous and intermittent maternal alcohol drinking on behavioral readouts of cognitive function and alcohol vulnerability in the offspring. The effects of environmental enrichment (EE) during adolescence were also evaluated. Female rats underwent continuous alcohol drinking (CAD)—or intermittent alcohol drinking paradigm (IAD), along pregestation, gestation, and lactation periods—equivalent to the whole gestational period in humans. Male offspring were reared in standard conditions or EE until adulthood and were then assessed for declarative memory in the novel object recognition test; spatial learning, cognitive flexibility, and reference memory in the Morris water maze (MWM); alcohol consumption and relapse by a two-bottle choice paradigm. Our data show that perinatal CAD decreased locomotor activity, exploratory behavior, and declarative memory with respect to controls, whereas perinatal IAD displayed impaired declarative memory and spatial learning and memory. Moreover, both perinatal alcohol-exposed offspring showed higher vulnerability to alcohol consummatory behavior than controls, albeit perinatal IAD rats showed a greater alcohol consumption and relapse behavior with respect to perinatal-CAD progeny. EE ameliorated declarative memory in perinatal CAD, while it mitigated spatial learning and reference memory impairment in perinatal-IAD progeny. In addition, EE decreased vulnerability to alcohol in both control and perinatal alcohol-exposed rats. Maternal alcohol consumption produces drinking pattern-related long-term consequences on cognition and vulnerability to alcohol in the offspring. However, increased positive environmental stimuli during adolescence may curtail the detrimental effects of developmental alcohol exposure.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
19
|
Yu Y, Shi Z, Xu D, Li Y, Qin J, Zhang Z, Wang H. Prenatal ethanol exposure increases susceptibility to depression- and anxiety-like behavior in adult female offspring and its underlying mechanism. Reprod Toxicol 2020; 96:36-46. [PMID: 32497709 DOI: 10.1016/j.reprotox.2020.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022]
Abstract
Epidemiological investigations have found that maternal alcohol intake increases the risk of mental illness in offspring. Our study investigated changes of depression- and anxiety-like behaviors in adult offspring caused by prenatal ethanol exposure (PEE) and explored the potential mechanism. After Wistar rats were intragastrically administered ethanol at a dose of 4 g/kg·d on the 9-20 t h days of pregnancy, the offspring were given 21 days of chronic unpredictable mild stress (CUMS) starting from the 9th week after birth. Before CUMS, the behavioral results showed that the PEE offspring appeared excited and anxious. After CUMS, the PEE offspring rats were more sensitive to the same intensity of stimulation, and then the behavioral disorders aggravated. In adult offspring from the PEE group, the intercellular space was enlarged in the hippocampus, and there was a loss of pyramidal cells. The expression of brain-derived neurotrophic factor (BDNF) decreased; the mRNA expression of the glucocorticoid receptor and synaptic plasticity-related genes decreased; the apoptosis-related genes expressed disrupted. In order to determine whether hippocampal injury and dysfunction resulted from ethanol directly or indirectly, we performed in vitro study. The outcome was accompanied by disrupted gene expression related to neurogenesis and synaptic plasticity. PEE increases the susceptibility of adult female offspring to depression- and anxiety-like behaviors, and its mechanism may be related to the toxic effects of ethanol, both directly and indirectly. The latter inhibits the hippocampal BDNF pathway, leading to the disruption of hippocampal neurogenesis, apoptosis and decreased synaptic plasticity.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Zhaokun Shi
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Ying Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun Qin
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
20
|
Madarnas C, Villalba NM, Soriano D, Brusco A. Anxious Behavior of Adult CD1 Mice Perinatally Exposed to Low Concentrations of Ethanol Correlates With Morphological Changes in Cingulate Cortex and Amygdala. Front Behav Neurosci 2020; 14:92. [PMID: 32636737 PMCID: PMC7319189 DOI: 10.3389/fnbeh.2020.00092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/14/2020] [Indexed: 01/12/2023] Open
Abstract
Perinatal ethanol (EtOH) exposure is associated with high incidence of behavioral disorders such as depression and anxiety. The cerebral areas related with these consequences involve the corticolimbic system, in particular the prefrontal cortex, hippocampus, amygdala, and cingulate cortex, although the latter has not been thoroughly studied yet. Different animal models of prenatal or perinatal EtOH exposure have reported morphofunctional alterations in the central nervous system, which could explain behavioral disorders along life; these results focus on youth and adolescents and are still controversial. In the light of these inconclusive results, the aim of this work was to analyze adult behavior in CD1 mice perinatally exposed to low concentrations of EtOH (PEE) during gestation and lactation, and describe the morphology of the cingulate cortex and amygdala with a view to establishing structure/function/behavior correlations. Primiparous CD1 female mice were exposed to EtOH 6% v/v for 20 days prior to mating and continued drinking EtOH 6% v/v during pregnancy and lactation. After weaning, male pups were fed food and water ad libitum until 77 days of age, when behavioral and morphological studies were performed. Mouse behavior was analyzed through light–dark box and open field tests. Parameters related to anxious behavior and locomotor activity revealed anxiogenic behavior in PEE mice. After behavioral studies, mice were perfused and neurons, axons, serotonin transporter, 5HT, CB1 receptor (CB1R) and 5HT1A receptor (5HT1AR) were studied by immunofluorescence and immunohistochemistry in brain sections containing cingulate cortex and amygdala. Cingulate cortex and amygdala cytoarchitecture were preserved in adult PEE mice, although a smaller number of neurons was detected in the amygdala. Cingulate cortex axons demonstrated disorganized radial distribution and reduced area. Serotonergic and endocannabinoid systems, both involved in anxious behavior, showed differential expression. Serotonergic afferents were lower in both brain areas of PEE animals, while 5HT1AR expression was lower in the cingulate cortex and higher in the amygdala. The expression of CB1R was lower only in the amygdala. In sum, EtOH exposure during early brain development induces morphological changes in structures of the limbic system and its neuromodulation, which persist into adulthood and may be responsible for anxious behavior.
Collapse
Affiliation(s)
- Catalina Madarnas
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Nerina Mariel Villalba
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Delia Soriano
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia Brusco
- Instituto de Biología Celular y Neurociencia (IBCN), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Biología Celular, Histología, Embriología y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Diaz MR, Johnson JM, Varlinskaya EI. Increased ethanol intake is associated with social anxiety in offspring exposed to ethanol on gestational day 12. Behav Brain Res 2020; 393:112766. [PMID: 32535179 DOI: 10.1016/j.bbr.2020.112766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023]
Abstract
Prenatal alcohol exposure (PAE) can result in physical, cognitive, and neurological deficits termed Fetal Alcohol Spectrum Disorder (FASD). Deficits in social functioning associated with PAE are frequently observed and persist throughout the lifespan. Social impairments, such as social anxiety, are associated with increased alcohol abuse, which is also highly pervasive following PAE. Yet, the relationship between PAE-induced social alterations and alcohol intake later in life is not well understood. In order to test this relationship, we exposed pregnant female Sprague Dawley rats to a single instance of PAE on gestational day 12, a period of substantial neural development, and tested offspring in adulthood (postnatal day 63) in a modified social interaction test followed by alternating alone and social ethanol intake sessions. Consistent with our previous findings, we found that, in general, PAE reduced social preference (measure of social anxiety-like behavior) in female but not male adults. However, ethanol intake was significantly higher in the PAE group regardless of sex. When dividing subjects according to level of social anxiety-like behavior (low, medium, or high), PAE males (under both drinking contexts) and control females (under the social drinking context) with a high social anxiety phenotype showed the highest level of ethanol intake. Taken together, these data indicate that PAE differentially affects the interactions between social anxiety, ethanol intake, and drinking context in males and females. These findings extend our understanding of the complexity and persistence of PAE's sex-dependent effects into adulthood.
Collapse
Affiliation(s)
- Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience Binghamton University, Binghamton, NY13902, United States; Developmental Exposure Alcohol Research Center, Baltimore MD21201, Binghamton NY 13902, Syracuse NY13210, United States.
| | - Julia M Johnson
- Developmental Exposure Alcohol Research Center, Baltimore MD21201, Binghamton NY 13902, Syracuse NY13210, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience Binghamton University, Binghamton, NY13902, United States; Developmental Exposure Alcohol Research Center, Baltimore MD21201, Binghamton NY 13902, Syracuse NY13210, United States
| |
Collapse
|
22
|
Gano A, Prestia L, Middleton FA, Youngentob SL, Ignacio C, Deak T. Gene expression profiling reveals a lingering effect of prenatal alcohol exposure on inflammatory-related genes during adolescence and adulthood. Cytokine 2020; 133:155126. [PMID: 32505093 DOI: 10.1016/j.cyto.2020.155126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023]
Abstract
Prenatal Alcohol Exposure (PAE) exerts devastating effects on the Central Nervous System (CNS), which vary as a function of both ethanol load and gestational age of exposure. A growing body of evidence suggests that alcohol exposure profoundly impacts a wide range of cytokines and other inflammation-related genes in the CNS. The olfactory system serves as a critical interface between infectious/inflammatory signals and other aspects of CNS function, and demonstrates long-lasting plasticity in response to alcohol exposure. We therefore utilized transcriptome profiling to identify gene expression patterns for immune-related gene families in the olfactory bulb of Long Evans rats. Pregnant dams received either an ad libitum liquid diet containing 35% daily calories from ethanol (ET), a pair-fed diet (PF) matched for caloric content, or free choice (FCL) access to the liquid diet and water from Gestational Day (GD) 11-20. Offspring were fostered to dams fed the FCL diet, weaned on P21, and then housed with same-sex littermates until mid-adolescence (P40) or young adulthood (P90). At the target ages of P40 or P90, offspring were euthanized via brief CO2 exposure and brains/blood were collected. Gene expression analysis was performed using a Rat Gene 1.0 ST Array (Affymetrix), and preliminary analyses focused on two moderately overlapping gene clusters, including all immune-related genes and those related to neuroinflammation. A total of 146 genes were significantly affected by prenatal Diet condition, whereas the factor of Age (P40 vs P90) revealed 998 genes significantly changed, and the interaction between Diet and Age yielded 162 significant genes. From this dataset, we applied a threshold of 1.3-fold change (30% increase or decrease in expression) for inclusion in later analyses. Findings indicated that in adolescents, few genes were altered by PAE, whereas adults displayed an increase of a wide range of gene upregulation as a result of PAE. Pathway analysis predicted an increase in Nf-κB activation in adolescence and a decrease in adulthood due to prenatal ethanol exposure, indicating age-specific and long-lasting alterations to immune signaling. These data may provide important insight into the relationship between immune-related signaling cascades and long-term changes in olfactory bulb function after PAE.
Collapse
Affiliation(s)
- Anny Gano
- Developmental Exposure Alcohol Research Center (DEARC), USA; Binghamton University-SUNY, Binghamton, NY 13902-6000, USA
| | - Laura Prestia
- Developmental Exposure Alcohol Research Center (DEARC), USA; SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Frank A Middleton
- Developmental Exposure Alcohol Research Center (DEARC), USA; SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Steven L Youngentob
- Developmental Exposure Alcohol Research Center (DEARC), USA; University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Cherry Ignacio
- Developmental Exposure Alcohol Research Center (DEARC), USA; Binghamton University-SUNY, Binghamton, NY 13902-6000, USA; SUNY-Upstate Medical University, Syracuse, NY 13210, USA
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center (DEARC), USA; Binghamton University-SUNY, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
23
|
Mughal R, Joyce A, Hill C, Dimitriou D. Sleep disturbance as a predictor of anxiety in children with Fetal Alcohol Spectrum Disorders and typically developing children. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 101:103610. [PMID: 32224364 DOI: 10.1016/j.ridd.2020.103610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/20/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND High levels of anxiety and sleep problems are common features of Fetal Alcohol Spectrum Disorders (FASD). The strong association between sleep and anxiety has been documented in typically developing (TD) populations and is thought to be bidirectional. The association between sleep and anxiety in children with FASD has not yet been examined. METHODS Caregivers of children with FASD (n = 91) and TD children (n = 103) aged 6-16 completed the Children's Sleep Habits Questionnaire (CSHQ), Spence Children's Anxiety Scale (SCAS), and a background questionnaire. Hierarchical multiple regression analyses, group comparisons and ANCOVA interaction models were used to test the associations between sleep and anxiety within and between the two groups. RESULTS Sleep disturbances and anxiety were at clinical levels for the majority of the FASD group, and significantly higher in the FASD group than the TD group. After controlling for age and sex, 27 % of the variance in anxiety scores in TD children was attributable to sleep problems, and 33 % in children with FASD. CONCLUSION This study highlights associations between parent-reported sleep and anxiety in FASD. Sleep disturbances were significant predictors of anxiety in both children with FASD and in TD children. Given the importance of sleep to healthy neurodevelopment, there is a pressing need for sleep intervention studies in children with FASD. Early identification and intervention for sleep problems in this condition should be a therapeutic priority.
Collapse
Affiliation(s)
- Rabya Mughal
- Institute of Education, University College London.
| | - Anna Joyce
- Regent's University London Catherine Hill: University Hospital Southampton, University of Southampton
| | - Catherine Hill
- Regent's University London Catherine Hill: University Hospital Southampton, University of Southampton
| | | |
Collapse
|
24
|
Abstract
AbstractIt is well established that high-dose alcohol consumption during pregnancy increases the risk for a plethora of adverse offspring outcomes. These include neurodevelopmental, cognitive and social deficits, as well as psychiatric illnesses, such as depression and anxiety. However, much less evidence is available on the effects of low- and early-dose alcohol exposure on mental health outcomes, regardless of the accumulating evidence that mental health outcomes should be considered in the context of the Developmental Origins of Health and Disease hypothesis. This review will discuss the evidence that indicates low-dose and early prenatal alcohol exposure can increase the risk of mental illness in offspring and discuss the mechanistic pathways that may be involved.
Collapse
|
25
|
Elliott AJ, Kinney HC, Haynes RL, Dempers JD, Wright C, Fifer WP, Angal J, Boyd TK, Burd L, Burger E, Folkerth RD, Groenewald C, Hankins G, Hereld D, Hoffman HJ, Holm IA, Myers MM, Nelsen LL, Odendaal HJ, Petersen J, Randall BB, Roberts DJ, Robinson F, Schubert P, Sens MA, Sullivan LM, Tripp T, Van Eerden P, Wadee S, Willinger M, Zaharie D, Dukes KA. Concurrent prenatal drinking and smoking increases risk for SIDS: Safe Passage Study report. EClinicalMedicine 2020; 19:100247. [PMID: 32140668 PMCID: PMC7046523 DOI: 10.1016/j.eclinm.2019.100247] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Sudden infant death syndrome (SIDS) is the leading cause of postneonatal mortality. Although the rate has plateaued, any unexpected death of an infant is a family tragedy thus finding causes and contributors to risk remains a major public health concern. The primary objective of this investigation was to determine patterns of drinking and smoking during pregnancy that increase risk of SIDS. METHODS The Safe Passage Study was a prospective, multi-center, observational study with 10,088 women, 11,892 pregnancies, and 12,029 fetuses, followed to 1-year post delivery. Subjects were from two sites in Cape Town, South Africa and five United States sites, including two American Indian Reservations. Group-based trajectory modeling was utilized to categorize patterns of drinking and smoking exposure during pregnancy. FINDINGS One-year outcome was ascertained in 94·2% infants, with 28 SIDS (2·43/1000) and 38 known causes of death (3·30/1000). The increase in relative risk for SIDS, adjusted for key demographic and clinical characteristics, was 11·79 (98·3% CI: 2·59-53·7, p < 0·001) in infants whose mothers reported both prenatal drinking and smoking beyond the first trimester, 3.95 (98·3% CI: 0·44-35·83, p = 0·14), for drinking only beyond the first trimester and 4·86 (95% CI: 0·97-24·27, p = 0·02) for smoking only beyond the first trimester as compared to those unexposed or reported quitting early in pregnancy. INTERPRETATION Infants prenatally exposed to both alcohol and cigarettes continuing beyond the first trimester have a substantially higher risk for SIDS compared to those unexposed, exposed to alcohol or cigarettes alone, or when mother reported quitting early in pregnancy. Given that prenatal drinking and smoking are modifiable risk factors, these results address a major global public health problem. FUNDING National Institute on Alcohol Abuse and Alcoholism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, and the National Institute on Deafness and Other Communication Disorders.
Collapse
Affiliation(s)
- Amy J. Elliott
- Center for Pediatric & Community Research, Avera Health, 6001 S. Sharon Ave., Suite 2, Sioux Falls, SD 57108, United States
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD 57104, United States
- Corresponding author at: Center for Pediatric & Community Research, Avera Research Institute, 6001 S. Sharon Ave., Suite 2, Sioux Falls, SD 57108, United States.
| | - Hannah C. Kinney
- Department of Pathology, Boston Children's Hospital, Harvard School of Medicine, Boston, MA 02115, United States
| | - Robin L. Haynes
- Department of Pathology, Boston Children's Hospital, Harvard School of Medicine, Boston, MA 02115, United States
| | - Johan D. Dempers
- Division of Forensic Medicine and Pathology, Department of Pathology and Western Cape Forensic Pathology Health Services, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Colleen Wright
- Department of Pathology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town 7505, South Africa
| | - William P. Fifer
- Department of Psychiatry and Pediatrics, Columbia University Medical Center, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States
| | - Jyoti Angal
- Center for Pediatric & Community Research, Avera Health, 6001 S. Sharon Ave., Suite 2, Sioux Falls, SD 57108, United States
- Department of Pediatrics, University of South Dakota School of Medicine, Sioux Falls, SD 57104, United States
| | - Theonia K. Boyd
- Department of Pathology, Boston Children's Hospital, Harvard School of Medicine, Boston, MA 02115, United States
| | - Larry Burd
- North Dakota Fetal Alcohol Syndrome Center, Department of Pediatrics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Elsie Burger
- Department of Forensic Medicine, NSW Health Pathology, Glebe 2037, Australia
| | - Rebecca D. Folkerth
- Department of Forensic Medicine, New York University School of Medicine, New York, NY 10016, United States
| | - Coen Groenewald
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town 7505, South Africa
| | - Gary Hankins
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Dale Hereld
- National Institute on Alcohol Abuse and Alcoholism, 5635 Fishers Lane, Rockville, MD 20852, United States
| | - Howard J. Hoffman
- Epidemiology and Statistics Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health (NIH), Division of Scientific Programs, Room 8325, MSC 9670 Executive Boulevard, 6001 Executive Boulevard, Bethesda, MD 20892, United States
| | - Ingrid A. Holm
- Division of Genetics & Genomics & the Manton Center for Orphan Diseases Research, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, United States
| | - Michael M. Myers
- Department of Psychiatry and Pediatrics, Columbia University Medical Center, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States
| | - Laura L. Nelsen
- Department of Pathology, Maine General Medical Center, Augusta, ME 04330, United States
| | - Hein J. Odendaal
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town 7505, South Africa
| | - Julie Petersen
- DM-STAT, Inc., One Salem Street, Suite 300, Malden, MA 02148, United States
- Department of Epidemiology, Boston University School of Public Health, 715 Albany Street, Talbot Building, Boston, MA 02118, United States
| | - Bradley B. Randall
- Department of Pathology, University of South Dakota School of Medicine, Sioux Falls, SD 57105, United States
| | - Drucilla J. Roberts
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Fay Robinson
- DM-STAT, Inc., One Salem Street, Suite 300, Malden, MA 02148, United States
- PPD, 929N. Front Street, Wilmington, NC 28401, United States
| | - Pawel Schubert
- Division of Anatomical Pathology, Tygerberg Hospital, National Health Laboratory Service, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Mary Ann Sens
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Lisa M. Sullivan
- Department of Biostatistics, Boston University School of Public Health, 715 Albany Street, Talbot Building, Boston, MA 02118, United States
| | - Tara Tripp
- DM-STAT, Inc., One Salem Street, Suite 300, Malden, MA 02148, United States
| | - Peter Van Eerden
- Department of Obstetrics and Gynecology, School of Medicine, University of North Dakota, Fargo, ND 58203, United States
| | - Shabbir Wadee
- Division of Forensic Medicine and Pathology, Department of Pathology and Western Cape Forensic Pathology Health Services, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Marian Willinger
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Drive, Room 2305, Bethesda, MD 20892, United States
| | - Daniel Zaharie
- Department of Pathology, Faculty of Medicine and Health Science, Stellenbosch University, Cape Town 7505, South Africa
| | - Kimberly A. Dukes
- DM-STAT, Inc., One Salem Street, Suite 300, Malden, MA 02148, United States
- Department of Biostatistics, Boston University School of Public Health, 715 Albany Street, Talbot Building, Boston, MA 02118, United States
- Biostatistics and Epidemiology Data Analysis Center, Boston University School of Public Health, 85 East Newton Street, M921, Boston, MA 02118, United States
| |
Collapse
|
26
|
Raineki C, Morgan EJ, Ellis L, Weinberg J. Glucocorticoid receptor expression in the stress-limbic circuitry is differentially affected by prenatal alcohol exposure and adolescent stress. Brain Res 2019; 1718:242-251. [PMID: 31102593 PMCID: PMC6579044 DOI: 10.1016/j.brainres.2019.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
The dense expression of glucocorticoid receptors (GR) within the amygdala, medial prefrontal cortex (mPFC) and paraventricular nucleus of hypothalamus (PVN) mediates many aspects of emotional and stress regulation. Importantly, both prenatal alcohol exposure (PAE) and adolescent stress are known to induce emotional and stress dysregulation. Little is known, however, about how PAE and/or adolescent stress may alter the expression of GR in the amygdala, mPFC, and PVN. To fill this gap, we exposed PAE and control adolescent male and female rats to chronic mild stress (CMS) and assessed GR mRNA expression in the amygdala, mPFC, and PVN immediately following stress or in adulthood. We found that the effects of PAE on GR expression were more prevalent in the amygdala, while effects of adolescent stress on GR expression were more prevalent in the mPFC. Moreover, PAE effects in the amygdala were more pronounced during adolescence and adolescent stress effects in the mPFC were more pronounced in adulthood. GR expression in the PVN was affected by both PAE and adolescent stress. Finally, PAE and/or adolescent stress effects were distinct between males and females. Together, these results suggest that PAE and adolescent CMS induce dynamic alterations in GR expression in the amygdala, mPFC, and PVN, which manifest differently depending on the brain area, age, and sex of the animal. Additionally, these data indicate that PAE-induced hyperresponsiveness to stress and increased vulnerability to mental health problems may be mediated by different neural mechanisms depending on the sex and age of the animal.
Collapse
Affiliation(s)
- Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | - Erin J Morgan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Linda Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
27
|
Burgess DJ, Dorey ES, Gardebjer EM, Bielefeldt-Ohmann H, Moritz KM, Cuffe JSM. Periconceptional ethanol exposure alters the stress axis in adult female but not male rat offspring. Stress 2019; 22:347-357. [PMID: 30741061 DOI: 10.1080/10253890.2018.1563068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ethanol consumption during pregnancy alters offspring hypothalamus-pituitary-adrenal (HPA) axis regulation. However, little is known about the outcomes of alcohol consumption confined to the periconceptional period. This study investigated the effects of periconceptional ethanol (PC:EtOH) exposure on corticosterone concentrations, response to restraint stress and gene expression of adrenal, hypothalamic, and hippocampal glucocorticoid-related pathways in rat offspring. Female Sprague-Dawley rats were treated with PC:EtOH (12.5% v/v EtOH liquid diet) or a control diet from four days before conception, until embryonic day 4. At 6 (adult) and 12-14 (aged) months of age, basal corticosterone concentrations were measured, while in a separate cohort of aged rats, blood pressure, heart rate, and plasma corticosterone concentrations were measured during a 30-minute restraint stress. Adrenal gland, hypothalamic and hippocampal tissue from aged rats were subjected to transcriptomic analysis. PC:EtOH exposure reduced basal plasma corticosterone concentrations in adult and aged female but not male offspring (p < .05). The corticosterone and pressor response were significantly reduced in aged PC:EtOH female offspring following restraint (p < .05). Expression of adrenal steroidogenesis genes (Mc2r, Cyp11a1, Cyp21a1, 11bhsd2, and Nr3c1) and hypothalamic genes (Crh, Crh-r1, Nr3c1, and Hsp90a1) was not affected by PC:EtOH. In aged female offspring exposed to PC:EtOH, adrenal mRNA expression of Hsp90a1 was significantly elevated, and within the hippocampus, mRNAs for glucocorticoid receptor (Nr3c1) and Hsp90a1 were increased (p < .05). This study supports the hypothesis that prenatal alcohol exposure programs sex-specific alterations in the HPA axis and provides the first evidence that the periconceptional period is a critical window for programing of this axis. Lay summary This study investigated the impact of alcohol consumption around the time of conception on offspring stress reactivity in a rat model. Offspring exposed to alcohol displayed altered cardiovascular responses to stress and had reduced circulating concentrations of the stress hormone corticosterone both under basal conditions and following a stressful challenge. This study also identified altered expression of key genes in an important part of the brain known to be involved in stress responsiveness; the hippocampus. If similar outcomes occur in humans, these results would suggest that alcohol consumption, even before a woman knows she is pregnant, may significantly impact stress-related outcomes in children.
Collapse
Affiliation(s)
- Danielle J Burgess
- a School of Biomedical Sciences, Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Emily S Dorey
- a School of Biomedical Sciences, Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | - Emelie M Gardebjer
- a School of Biomedical Sciences, Faculty of Medicine , The University of Queensland , Brisbane , Australia
| | | | - Karen M Moritz
- a School of Biomedical Sciences, Faculty of Medicine , The University of Queensland , Brisbane , Australia
- c The University of Queensland, Child Health Research Centre , Brisbane , Australia
| | - James S M Cuffe
- a School of Biomedical Sciences, Faculty of Medicine , The University of Queensland , Brisbane , Australia
| |
Collapse
|
28
|
Bhatia S, Drake DM, Miller L, Wells PG. Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res 2019; 111:714-748. [PMID: 31033255 DOI: 10.1002/bdr2.1509] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
This review covers molecular mechanisms involving oxidative stress and DNA damage that may contribute to morphological and functional developmental disorders in animal models resulting from exposure to alcohol (ethanol, EtOH) in utero or in embryo culture. Components covered include: (a) a brief overview of EtOH metabolism and embryopathic mechanisms other than oxidative stress; (b) mechanisms within the embryo and fetal brain by which EtOH increases the formation of reactive oxygen species (ROS); (c) critical embryonic/fetal antioxidative enzymes and substrates that detoxify ROS; (d) mechanisms by which ROS can alter development, including ROS-mediated signal transduction and oxidative DNA damage, the latter of which leads to pathogenic genetic (mutations) and epigenetic changes; (e) pathways of DNA repair that mitigate the pathogenic effects of DNA damage; (f) related indirect mechanisms by which EtOH enhances risk, for example by enhancing the degradation of some DNA repair proteins; and, (g) embryonic/fetal pathways like NRF2 that regulate the levels of many of the above components. Particular attention is paid to studies in which chemical and/or genetic manipulation of the above mechanisms has been shown to alter the ability of EtOH to adversely affect development. Alterations in the above components are also discussed in terms of: (a) individual embryonic and fetal determinants of risk and (b) potential risk biomarkers and mitigating strategies. FASD risk is likely increased in progeny which/who are biochemically predisposed via genetic and/or environmental mechanisms, including enhanced pathways for ROS formation and/or deficient pathways for ROS detoxification or DNA repair.
Collapse
Affiliation(s)
- Shama Bhatia
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Danielle M Drake
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada
| | | | - Peter G Wells
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,Centre for Pharmaceutical Oncology, University of Toronto, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Mendoza R, Morales-Marente E, Palacios MS, Rodríguez-Reinado C, Corrales-Gutiérrez I, García-Algar Ó. Health advice on alcohol consumption in pregnant women in Seville (Spain). GACETA SANITARIA 2019; 34:449-458. [PMID: 30733046 DOI: 10.1016/j.gaceta.2018.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To analyse to what extent pregnant women remembered having received health advice regarding alcohol consumption during pregnancy, what the message they perceived was and whether there is social inequality in this regard. METHOD A cross-sectional descriptive study was performed with a sample of 426 pregnant women (in their 20th week of pregnancy) receiving care in the outpatient clinics of a university hospital in a southern Spanish city (Seville). The data were collected through face-to-face structured interviews carried out by trained health professionals. RESULTS 43% of the interviewed women stated that they had not received any health advice in this regard. Only 43.5% of the sample remembered having received the correct message (not to consume any alcohol at all during pregnancy) from their midwife, 25% from their obstetrician and 20.3% from their general practitioner. The women with a low educational level were those who least declared having received health advice on the issue. CONCLUSION The recommended health advice to avoid alcohol consumption during pregnancy does not effectively reach a large proportion of pregnant women. Developing institutional programmes which help healthcare professionals to carry out effective preventive activities of foetal alcohol spectrum disorder is needed.
Collapse
Affiliation(s)
- Ramón Mendoza
- Department of Social, Developmental and Educational Psychology, University of Huelva, Huelva, Spain; Research Group on Health Promotion and Development of Lifestyle across the Life Span, University of Huelva, Huelva, Spain
| | - Elena Morales-Marente
- Department of Social, Developmental and Educational Psychology, University of Huelva, Huelva, Spain; Center for Research in Contemporary Thought and Innovation for Social Development (COIDESO)
| | - M Soledad Palacios
- Department of Social, Developmental and Educational Psychology, University of Huelva, Huelva, Spain; Center for Research in Contemporary Thought and Innovation for Social Development (COIDESO)
| | - Carmen Rodríguez-Reinado
- Research group in Social Studies and Social Intervention, Center for Research in Contemporary Thought and Innovation for Social Development (COIDESO), University of Huelva, Huelva, Spain
| | | | - Óscar García-Algar
- Grup de Recerca Infància i Entorn (GRIE), Neonatology Unit, Hospital Clínic-Maternitat, BCNatal, Barcelona, Spain; Department of Pediatrics, Obstetrics, Gynaecology and Preventive Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
30
|
Xia Q, Wang H, Yin H, Yang Z. Excessive corticosterone induces excitotoxicity of hippocampal neurons and sensitivity of potassium channels via insulin-signaling pathway. Metab Brain Dis 2019; 34:119-128. [PMID: 30284676 DOI: 10.1007/s11011-018-0326-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
Corticosterone (CORT) is a kind of corticosteroid produced by cortex of adrenal glands. Hypothalamic-pituitary-adrenal (HPA) axis hyperfunction leads to excessive CORT, which is associated with depression. Few studies have investigated the role of CORT in voltage-gated ion channels and its upstream signaling pathway in central nervous system. In this study, we investigated the mechanism of excessive CORT resulting in brain impairment on voltage-gated ion channels, and its upstream signaling effectors in hippocampal CA1 neurons. The action potential (AP) and voltage-gated potassium currents were determined by using whole-cell patch-clamp. Insulin and CORT improved the neuronal excitability. Independent effects existed in transient potassium channel (IA) and delay rectifier potassium channel (IK). The inhibition of potassium currents, IA in our experiment, could increase neuronal excitability. CORT led to the excitotoxicity of hippocampal neurons via phosphatidylinositol 3 kinase (PI3K)-mediated insulin-signaling pathway. Therefore, the stimulation of excessive CORT induces excitotoxicity of hippocampal neurons and sensitivity of potassium channels via PI3K-mediated insulin-signaling pathway, which indicates one possible way of depression treatment.
Collapse
Affiliation(s)
- Qingqing Xia
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Hui Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongqiang Yin
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
31
|
Pei Y, Jiao Z, Dong W, Pei L, He X, Wang H, Xu D. Excitotoxicity and compensatory upregulation of GAD67 in fetal rat hippocampus caused by prenatal nicotine exposure are associated with inhibition of the BDNF pathway. Food Chem Toxicol 2018; 123:314-325. [PMID: 30389584 DOI: 10.1016/j.fct.2018.10.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/04/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
Abstract
Prenatal nicotine exposure (PNE) can cause hypersensitivity of hypothalamic-pituitary-adrenal (HPA) axis in offspring with intrauterine growth retardation. The purpose of this study was to explore the original mechanism of intrauterine development that mediates hypersensitivity of the HPA axis in offspring due to PNE. Pregnant Wistar rats were injected subcutaneously with 2 mg/kg·d of nicotine on the 9th to the 20th gestational day (GD9-GD20) and the fetuses were extracted at GD20. Compared with the control group, fetal rats by PNE showed increased hippocampal apoptosis, reduced synaptic plasticity and downregulation of the brain-derived neurotrophic factor (BDNF) pathway, whereas glutamic acid decarboxylase 67 (GAD67) expression was upregulated. Rat fetal hippocampal H19-7/IGF1R cell lines were treated with different concentrations of nicotine (1, 10 and 100 μM) for 3 days, the extracellular fluid glutamate (Glu) level increased and similar effects were observed as in vivo. Intervention treatments caused the opposite results. These results indicated that PNE downregulates the BDNF pathway and mediates the hippocampal excitotoxicity; then, the compensatory upregulation of GAD67 causes the imbalance of signal output in the fetal hippocampus. The negative feedback regulation of the paraventricular hypothalamic nucleus by the hippocampus is unbalanced, eventually causing hypersensitivity of the HPA axis of the offspring.
Collapse
Affiliation(s)
- Yun Pei
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Zhexiao Jiao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Wanting Dong
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Linguo Pei
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Xia He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
32
|
Caldwell KK, Solomon ER, Smoake JJW, Djatche de Kamgaing CD, Allan AM. Sex-specific deficits in biochemical but not behavioral responses to delay fear conditioning in prenatal alcohol exposure mice. Neurobiol Learn Mem 2018; 156:1-16. [PMID: 30316893 DOI: 10.1016/j.nlm.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/17/2018] [Accepted: 10/11/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND Studies in clinical populations and preclinical models have shown that prenatal alcohol exposure (PAE) is associated with impairments in the acquisition, consolidation and recall of information, with deficits in hippocampal formation-dependent learning and memory being a common finding. The glucocorticoid receptor (GR), mineralocorticoid receptor (MR), and extracellular signal-regulated kinase 2 (ERK2) are key regulators of hippocampal formation development, structure and functioning and, thus, are potential mediators of PAE's effects on this brain region. In the present studies, we employed a well-characterized mouse model of PAE to identify biochemical mechanisms that may underlie activity-dependent learning and memory deficits associated with PAE. METHODS Mouse dams consumed either 10% (w/v) ethanol in 0.066% (w/v) saccharin (SAC) or 0.066% (w/v) SAC alone using a limited (4-h) access, drinking-in-the-dark paradigm. Male and female offspring (∼180-days of age) were trained using a delay conditioning procedure and contextual fear responses (freezing behavior) were measured 24 h later. Hippocampal formation tissue and blood were collected from three behavioral groups of animals: 20 min following conditioning (conditioning only group), 20 min following the re-exposure to the context (conditioning plus re-exposure group), and behaviorally naïve (naïve group) mice. Plasma corticosterone levels were measured by enzyme immunoassay. Immunoblotting techniques were used to measure protein levels of the GR, MR, ERK1 and ERK2 in nuclear and membrane fractions prepared from the hippocampal formation. RESULTS Adult SAC control male and female mice displayed similar levels of contextual fear. However, significant sex differences were observed in freezing exhibited during the conditioning session. Compared to same-sex SAC controls, male and female PAE mice demonstrated context fear deficits While plasma corticosterone concentrations were elevated in PAE males and females relative to their respective SAC naïve controls, plasma corticosterone concentrations in the conditioning only and conditioning plus re-exposure groups were similar in SAC and PAE animals. Relative to the respective naïve group, nuclear GR protein levels were increased in SAC, but not PAE, male hippocampal formation in the conditioning only group. In contrast, no difference was observed between nuclear GR levels in the naïve and conditioning plus re-exposure groups. In females, nuclear GR levels were significantly reduced by PAE but there was no effect of behavioral group or interaction between prenatal treatment and behavioral group. In males, nuclear MR levels were significantly elevated in the SAC conditioning plus re-exposure group compared to SAC naïve mice. In PAE females, nuclear MR levels were elevated in both the conditioning only and conditioning plus re-exposure groups relative to the naïve group. Levels of activated ERK2 (phospho-ERK2 expressed relative to total ERK2) protein were elevated in SAC, but not PAE, males following context re-exposure, and a significant interaction between prenatal exposure group and behavioral group was found. No main effects or interactions of behavioral group and prenatal treatment on nuclear ERK2 were found in female mice. These findings suggest a sex difference in which molecular pathways are activated during fear conditioning in mice. CONCLUSIONS In PAE males, the deficits in contextual fear were associated with the loss of responsiveness of hippocampal formation nuclear GR, MR and ERK2 to signals generated by fear conditioning and context re-exposure. In contrast, the contextual fear deficit in PAE female mice does not appear to be associated with activity-dependent changes in GR and MR levels or ERK2 activation during training or memory recall, although an overall reduction in nuclear GR levels may play a role. These studies add to a growing body of literature demonstrating that, at least partially, different mechanisms underlie learning, memory formation and memory recall in males and females and that these pathways are differentially affected by PAE.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Elizabeth R Solomon
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Jane J W Smoake
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Chrys D Djatche de Kamgaing
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Andrea M Allan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
33
|
Gartstein MA, Skinner MK. Prenatal influences on temperament development: The role of environmental epigenetics. Dev Psychopathol 2018; 30:1269-1303. [PMID: 29229018 PMCID: PMC5997513 DOI: 10.1017/s0954579417001730] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review summarizes current knowledge and outlines future directions relevant to questions concerning environmental epigenetics and the processes that contribute to temperament development. Links between prenatal adversity, epigenetic programming, and early manifestations of temperament are important in their own right, also informing our understanding of biological foundations for social-emotional development. In addition, infant temperament attributes represent key etiological factors in the onset of developmental psychopathology, and studies elucidating their prenatal foundations expand our understanding of developmental origins of health and disease. Prenatal adversity can take many forms, and this overview is focused on the environmental effects of stress, toxicants, substance use/psychotropic medication, and nutrition. Dysregulation associated with attention-deficit/hyperactivity-disruptive disorders was noted in the context of maternal substance use and toxicant exposures during gestation, as well as stress. Although these links can be made based on the existing literature, currently few studies directly connect environmental influences, epigenetic programming, and changes in brain development/behavior. The chain of events starting with environmental inputs and resulting in alterations to gene expression, physiology, and behavior of the organism is driven by epigenetics. Epigenetics provides the molecular mechanism of how environmental factors impact development and subsequent health and disease, including early brain and temperament development.
Collapse
Affiliation(s)
- Maria A. Gartstein
- Department of Psychology, Washington State University, Pullman, WA-99164-4820, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA-99164-4236, USA
| |
Collapse
|
34
|
Ornoy A, Koren G, Yanai J. Is post exposure prevention of teratogenic damage possible: Studies on diabetes, valproic acid, alcohol and anti folates in pregnancy: Animal studies with reflection to human. Reprod Toxicol 2018; 80:92-104. [DOI: 10.1016/j.reprotox.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/06/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
|
35
|
Walker SE, Papilloud A, Huzard D, Sandi C. The link between aberrant hypothalamic–pituitary–adrenal axis activity during development and the emergence of aggression—Animal studies. Neurosci Biobehav Rev 2018; 91:138-152. [DOI: 10.1016/j.neubiorev.2016.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/09/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
|
36
|
Mooney SM, Varlinskaya EI. Enhanced sensitivity to socially facilitating and anxiolytic effects of ethanol in adolescent Sprague Dawley rats following acute prenatal ethanol exposure. Alcohol 2018; 69:25-32. [PMID: 29571047 DOI: 10.1016/j.alcohol.2017.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 12/24/2022]
Abstract
Emerging evidence suggests that deficits in social functioning and social anxiety are associated with adolescent alcohol use. Our previous research has shown that acute exposure to a high dose of ethanol on gestational day (G) 12 produces social alterations in adolescent Sprague Dawley rats. The present study assessed whether these social alterations can affect sensitivity to acute ethanol challenge during adolescence. Pregnant females were exposed intraperitoneally (i.p.) to ethanol (2.5 g/kg followed by 1.25 g/kg in 2 h) or saline on G12, and their male and female offspring were tested on postnatal day (P) 42. Rats were challenged i.p. with one of four ethanol doses (0, 0.5, 0.75, and 1.0 g/kg), and their social behavior was assessed in a modified social interaction test. Social alterations associated with prenatal ethanol exposure and indexed via decreases of social investigation, social preference, and play fighting were evident in males and females challenged with the 0 g/kg ethanol dose. Acute ethanol increased social investigation, social preference, and play fighting in animals prenatally exposed to ethanol. In contrast, rats prenatally exposed to saline, showing no social facilitation, demonstrated significant ethanol-induced (0.75 and 1.0 g/kg) decreases in social behavior. Given that late adolescents demonstrating social alterations induced by prenatal ethanol exposure become sensitive to the socially anxiolytic as well as socially facilitating effects of acute ethanol, it is possible that the attractiveness of ethanol to these adolescents may be based on its ability to alleviate anxiety under social circumstances and facilitate interactions with peers.
Collapse
Affiliation(s)
- Sandra M Mooney
- Developmental Exposure Alcohol Research Center, Baltimore, MD 21201, United States; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Elena I Varlinskaya
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton, NY 13902, United States.
| |
Collapse
|
37
|
Yu L, Zhou J, Zhang G, Huang W, Pei L, Lv F, Zhang Y, Zhang W, Wang H. cAMP/PKA/EGR1 signaling mediates the molecular mechanism of ethanol-induced inhibition of placental 11β-HSD2 expression. Toxicol Appl Pharmacol 2018; 352:77-86. [PMID: 29802914 DOI: 10.1016/j.taap.2018.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 02/08/2023]
Abstract
It is known that inhibiting 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) expression in the placenta can cause fetal over-exposure to maternal glucocorticoids and induce intrauterine growth restriction (IUGR); these effects ultimately increase the risk of adult chronic diseases. This study aimed to investigate the molecular mechanism of the prenatal ethanol exposure (PEE)-induced inhibition of placental 11β-HSD2 expression. Pregnant Wistar rats were intragastrically administered ethanol (4 g/kg/d) from gestational days 9 to 20. The levels of maternal and fetal serum corticosterone and placental 11β-HSD2-related gene expression were analyzed. Furthermore, we investigated the mechanism of reduced placental 11β-HSD2 expression induced by ethanol treatment (15-60 mM) in HTR-8/SVneo cells. In vivo, PEE decreased fetal body weights and increased maternal and fetal serum corticosterone and early growth response factor 1 (EGR1) expression levels. Moreover, histone modification changes (decreased acetylation and increased di-methylation of H3K9) to the HSD11B2 promoter and lower 11β-HSD2 expression levels were observed. In vitro, ethanol decreased cAMP/PKA signaling and 11β-HSD2 expression and increased EGR1 expression in a concentration-dependent manner. A cAMP agonist and EGR1 siRNA reversed the ethanol-induced inhibition of 11β-HSD2 expression. Together, PEE reduced placental 11β-HSD2 expression, and the underlying mechanism is associated with ethanol-induced histone modification changes to the HSD11B2 promoter through the cAMP/PKA/EGR1 pathway.
Collapse
Affiliation(s)
- Luting Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Jin Zhou
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Guohui Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Huang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Linguo Pei
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Feng Lv
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Yuanzhen Zhang
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Zhang
- Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China; Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
38
|
Sánchez MC, Fontana VA, Galotto C, Cambiasso MY, Sobarzo CMA, Calvo L, Calvo JC, Cebral E. Murine sperm capacitation, oocyte penetration and decondensation following moderate alcohol intake. Reproduction 2018; 155:529-541. [PMID: 29626105 DOI: 10.1530/rep-17-0507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/06/2018] [Indexed: 01/22/2023]
Abstract
Male chronic alcohol abuse causes testicular failure and infertility. We analyzed the effects of moderate sub-chronic alcohol intake on sperm morphology, capacitation, fertilization and sperm head decondensation. CF-1 male mice were administered 15% ethanol in drinking water for 15 days; control mice received ethanol-free water. Similar patterns of tyrosine phosphorylation were observed in capacitated spermatozoa of control and treated males. Percentage of hyperactivation (H) and spontaneous (SAR) and progesterone-induced (IAR) acrosome reaction significantly decreased at 120 and 150 min of capacitation in treated males compared to controls (H: 14.1 ± 2.5 vs 23.7 ± 2.6, P < 0.05; SAR-T120 min: 17.9 ± 2.5 vs 32.9 ± 4.1, P < 0.01; IAR-150 min: 43.3 ± 3.5 vs 73.1 ± 1.1, P < 0.001, n = 6). During in vitro fertilization (2.5, 3.5 and 4.5 h post-insemination), there was an increased percentage of fertilized oocytes (with a decondensed sperm head and one or two pronuclei) in treated males (P < 0.001, n = 7). After 60 min of in vitro decondensation with glutathione plus heparin, the percentage of decondensed sperm heads was significantly higher in treated males than in controls (mean ± s.d.: 57.1 ± 5.6 vs 48.3 ± 4.5, P < 0.05, n = 5). The percentage of morphologically normal sperm heads was significantly decreased in treated males with respect to controls (P < 0.001, n = 9). These results show that short-term moderate alcohol consumption in outbred mice affect sperm morphology, hyperactivation, acrosomal exocytosis, and the dynamics of in vitro fertilization and in vitro sperm nuclear decondensation.
Collapse
Affiliation(s)
- Melisa C Sánchez
- CONICETInstituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Vanina A Fontana
- CONICETInstituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina.,Departamento de Química BiológicaFacultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Camila Galotto
- CONICETInstituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Maite Y Cambiasso
- CONICETInstituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Cristian M A Sobarzo
- Universidad de Buenos AiresFacultad de Medicina, CONICET-Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Lucrecia Calvo
- CONICETInstituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina
| | - Juan C Calvo
- CONICETInstituto de Biología y Medicina Experimental (IByME), Buenos Aires, Argentina.,Departamento de Química BiológicaFacultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Elisa Cebral
- Universidad de Buenos AiresFacultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina .,CONICET-Universidad de Buenos AiresInstituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET), Buenos Aires, Argentina
| |
Collapse
|
39
|
Petrelli B, Weinberg J, Hicks GG. Effects of prenatal alcohol exposure (PAE): insights into FASD using mouse models of PAE. Biochem Cell Biol 2018; 96:131-147. [PMID: 29370535 PMCID: PMC5991836 DOI: 10.1139/bcb-2017-0280] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The potential impact of prenatal alcohol exposure (PAE) varies considerably among exposed individuals, with some displaying serious alcohol-related effects and many others showing few or no overt signs of fetal alcohol spectrum disorder (FASD). In animal models, variables such as nutrition, genetic background, health, other drugs, and stress, as well as dosage, duration, and gestational timing of exposure to alcohol can all be controlled in a way that is not possible in a clinical situation. In this review we examine mouse models of PAE and focus on those with demonstrated craniofacial malformations, abnormal brain development, or behavioral phenotypes that may be considered FASD-like outcomes. Analysis of these data should provide a valuable tool for researchers wishing to choose the PAE model best suited to their research questions or to investigate established PAE models for FASD comorbidities. It should also allow recognition of patterns linking gestational timing, dosage, and duration of PAE, such as recognizing that binge alcohol exposure(s) during early gestation can lead to severe FASD outcomes. Identified patterns could be particularly insightful and lead to a better understanding of the molecular mechanisms underlying FASD.
Collapse
Affiliation(s)
- Berardino Petrelli
- Department of Biochemistry & Medical Genetics; Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, UBC Institute of Mental Health, Vancouver, British Columbia, Canada
| | - Geoffrey G. Hicks
- Department of Biochemistry & Medical Genetics; Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
40
|
High expression of hippocampal glutamic acid decarboxylase 67 mediates hypersensitivity of the hypothalamic-pituitary-adrenal axis in response to prenatal caffeine exposure in rats. Toxicol Lett 2018; 283:39-51. [DOI: 10.1016/j.toxlet.2017.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 01/14/2023]
|
41
|
Lowe J, Qeadan F, Leeman L, Shrestha S, Stephen JM, Bakhireva LN. The effect of prenatal substance use and maternal contingent responsiveness on infant affect. Early Hum Dev 2017; 115:51-59. [PMID: 28898707 PMCID: PMC5681393 DOI: 10.1016/j.earlhumdev.2017.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/24/2017] [Accepted: 09/05/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND The effects of prenatal substance exposure on neurobehavioral outcomes are inherently confounded by the effects of the postnatal environment, making it difficult to disentangle their influence. The goal of this study was to examine the contributing effects of prenatal substance use and parenting style (operationalized as contingent responding during the play episodes of the Still-face paradigm [SFP]) on infant affect. METHODS A prospective cohort design was utilized with repeated assessment of substance use during pregnancy and the administration of the SFP, which measures infant response to a social stressor, at approximately 6months of age. Subjects included 91 dyads classified into four groups: 1) Control (n=34); 2) Medication assisted therapy for opioid dependence (MAT; n=19); 3) Alcohol (n=15); 4) Alcohol+MAT (n=23). Mean % of positive infant affect and mean % of maternal responsiveness (watching, attention seeking, and contingent responding) was compared among the five SFP episodes across the four study groups by MANOVA. Mixed effects modelling was used to estimate the contributing effects of the study groups and maternal responsiveness on infant affect. RESULTS Maternal contingent responding was associated with increase (β̂=0.84; p<0.0001) and attention seeking with decrease (β̂=-0.78; p<0.0001) in infant positive affect. The combined effect of prenatal exposures and covariates explained 15.8% of the variability in infant positive affect, while the model including contingent responding and covariates explained 67.1% of the variability. CONCLUSIONS Higher maternal responsiveness was a much stronger predictor of infant behavior than prenatal exposures, providing the basis for future intervention studies focusing on specific parenting strategies.
Collapse
Affiliation(s)
- Jean Lowe
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| | - Fares Qeadan
- Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Lawrence Leeman
- Department of Family and Community Medicine, University of New Mexico, Albuquerque, NM, USA; Department of Obstetrics and Gynecology, University of New Mexico, Albuquerque, NM, USA
| | - Shikhar Shrestha
- Department of Pharmacy Practice and Administrative Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, USA
| | - Ludmila N Bakhireva
- Division of Epidemiology and Biostatistics, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA; Department of Family and Community Medicine, University of New Mexico, Albuquerque, NM, USA; Department of Pharmacy Practice and Administrative Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM, USA.
| |
Collapse
|
42
|
Fish EW, Wieczorek LA, Rumple A, Suttie M, Moy SS, Hammond P, Parnell SE. The enduring impact of neurulation stage alcohol exposure: A combined behavioral and structural neuroimaging study in adult male and female C57BL/6J mice. Behav Brain Res 2017; 338:173-184. [PMID: 29107713 DOI: 10.1016/j.bbr.2017.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/18/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Abstract
Prenatal alcohol exposure (PAE) can cause behavioral and brain alterations over the lifespan. In animal models, these effects can occur following PAE confined to critical developmental periods, equivalent to the third and fourth weeks of human gestation, before pregnancy is usually recognized. The current study focuses on PAE during early neurulation and examines the behavioral and brain structural consequences that appear in adulthood. On gestational day 8 C57BL/6J dams received two alcohol (2.8g/kg, i.p), or vehicle, administrations, four hours apart. Male and female offspring were reared to adulthood and examined for performance on the elevated plus maze, rotarod, open field, Morris water maze, acoustic startle, social preference (i.e. three-chambered social approach test), and the hot plate. A subset of these mice was later evaluated using magnetic resonance imaging to detect changes in regional brain volumes and shapes. In males, PAE increased exploratory behaviors on the elevated plus maze and in the open field; these changes were associated with increased fractional anisotropy in the anterior commissure. In females, PAE reduced social preference and the startle response, and decreased cerebral cortex and brain stem volumes. Vehicle-treated females had larger pituitaries than did vehicle-treated males, but PAE attenuated this sex difference. In males, pituitary size correlated with open field activity, while in females, pituitary size correlated with social activity. These findings indicate that early neurulation PAE causes sex specific behavioral and brain changes in adulthood. Changes in the pituitary suggest that this structure is especially vulnerable to neurulation stage PAE.
Collapse
Affiliation(s)
- E W Fish
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States.
| | - L A Wieczorek
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - A Rumple
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - M Suttie
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - S S Moy
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - P Hammond
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - S E Parnell
- The Bowles Center for Alcohol Studies (EWF, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AR, SSM), and Carolina Institute for Developmental Disabilities (SSM, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| |
Collapse
|
43
|
Prenatal nicotine exposure induces HPA axis-hypersensitivity in offspring rats via the intrauterine programming of up-regulation of hippocampal GAD67. Arch Toxicol 2017; 91:3927-3943. [DOI: 10.1007/s00204-017-1996-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/18/2017] [Indexed: 12/24/2022]
|
44
|
Vore AS, Doremus-Fitzwater T, Gano A, Deak T. Adolescent Ethanol Exposure Leads to Stimulus-Specific Changes in Cytokine Reactivity and Hypothalamic-Pituitary-Adrenal Axis Sensitivity in Adulthood. Front Behav Neurosci 2017; 11:78. [PMID: 28522965 PMCID: PMC5415566 DOI: 10.3389/fnbeh.2017.00078] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
Adolescent alcohol use comprises a significant public health concern and is often characterized by binge-like consumption patterns. While ethanol exposure in adulthood has been shown to alter the stress response, including the Hypothalamic–Pituitary–Adrenal (HPA) axis, few studies have examined whether binge-like ethanol exposure during adolescence results in enduring changes in HPA axis sensitivity in adulthood. In the present studies, adolescent Sprague-Dawley rats were given intragastric (i.g.) intubations of ethanol (4 g/kg) or vehicle once per day for three consecutive days, beginning on postnatal day (P) 30 (±1). This exposure was followed by a 2-day period of rest/withdrawal. Rats received a total of either two (Experiments 1, 2 and 3) or four (Experiment 4) cycles of ethanol exposure and were subsequently allowed to age normally until adulthood. In Experiment 1, adult, (P71–75), ethanol- or vehicle-exposed rats received a 60 min restraint stress challenge. In Experiment 2, rats received a 50 μg/kg injection of lipopolysaccharide (LPS). In Experiment 3, rats received a challenge of 2.5 g/kg ethanol (intraperitoneally; i.p.). In Experiment 4, male and female ethanol- or vehicle- exposed rats received a 50 μg/kg injection of LPS. In all experiments, blood samples were collected for later assessment of corticosterone (CORT), blood ethanol concentrations (BECs), and the cellular fraction of blood was analyzed for cytokine gene expression. As expected, all three challenges led to a time-dependent surge in CORT. Gene expression analyses of cytokines (Interleukin [IL]-6, IL-1β, and Tumor necrosis factor alpha [TNFα]) from the cellular fraction of blood revealed unique, time-dependent patterns of cytokine expression depending upon the nature of the adult challenge incurred (restraint, LPS, or EtOH). Importantly, adolescent ethanol exposure led to attenuated restraint and LPS-induced cytokine expression in males, whereas female rats displayed an absence of cytokine alterations, and a tendency toward heightened HPA axis reactivity. These findings suggest that adolescent ethanol exposure may cause lasting alterations in cytokine regulation and HPA axis sensitivity that (a) persist into adulthood; (b) may vary depending on the nature of the challenge incurred during adulthood; and that (c) are sex-specific.
Collapse
Affiliation(s)
- Andrew S Vore
- Behavioral Neuroscience Program, Department of Psychology, Binghamton UniversityBinghamton, NY, USA
| | | | - Anny Gano
- Behavioral Neuroscience Program, Department of Psychology, Binghamton UniversityBinghamton, NY, USA
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton UniversityBinghamton, NY, USA
| |
Collapse
|
45
|
Xu W, Huo L, Li J, Xu C, Wang S, Yang Y, Liu C, Zheng X, Feng X, Yan X. Effects of Alcohol on Mitochondrial Functions of Cumulus Cells in Mice. Cell Reprogram 2017; 19:123-131. [PMID: 28170286 DOI: 10.1089/cell.2016.0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alcohol is an important compound used in food, agriculture, and medicine. In this study, we investigated the effect of alcohol on oocyte quality in mice by exposing animals for different duration times during an estrous cycle. Cumulus-oocyte complexes were collected from mice after pregnant mare serum gonadotropin- and human chorionic gonadotropin-induced superovulation. Ovulation number, E2 level in serum, and parthenogenetic embryo development in vitro were evaluated. Mitochondrial gene expression, mitochondrial membrane potential, and reactive oxygen species (ROS) levels in the cumulus were also assessed. The results showed that acute exposure to alcohol did not affect ovulation time (p > 0.05). Blasocyst formation rate in vitro was significantly improved after 1 and 2 days of alcohol exposure (p < 0.01). Mitochondrial membrane potential was significantly increased after 1-4 days of alcohol exposure (p < 0.05), but it decreased after 5 days (p < 0.05). ROS levels remained relatively low after 2, 3, and 4 days of exposure (p < 0.05), and they significantly increased after 6 days (p < 0.05). In addition, alcohol altered the expression of mitochondrial and nuclear genes in the cumulus. Taken together, our data suggest that acute exposure to alcohol affects oocyte quality by influencing the function and gene expression in the cumulus. These results underscore potential implications for the development of human reproductive therapeutics.
Collapse
Affiliation(s)
- Wanlu Xu
- 1 Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| | - Lihui Huo
- 1 Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| | - Jingjing Li
- 1 Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| | - Chunli Xu
- 1 Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| | - Shuang Wang
- 2 Department of Experimental Surgery of Xijing Hospital, The Fourth Military Medical University , Xi'an, China
| | - Yanhong Yang
- 3 Department of Obstetrics & Gynecology, Tangdu Hospital, The Fourth Military Medical University , Xi'an, China
| | - Chuang Liu
- 3 Department of Obstetrics & Gynecology, Tangdu Hospital, The Fourth Military Medical University , Xi'an, China
| | - Xiaomin Zheng
- 4 Key Laboratory of Fertility Preservation and Maintenance , Ministry of Education, Yinchuan, China .,5 Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, University of Helsinki , Helsinki, Finland
| | - Xiuliang Feng
- 2 Department of Experimental Surgery of Xijing Hospital, The Fourth Military Medical University , Xi'an, China
| | - Xingrong Yan
- 1 Shaanxi Key Laboratory for Animal Conservation, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| |
Collapse
|
46
|
Jia Y, Dong Z, Yan T, Wu B, Liao Z, Bi K, Gong P, Suna B. Antidepressant-like activity of red wine phenolic extracts in repeated corticosterone-induced depression mice via BDNF/TrkB/CREB signaling pathway. BIO WEB OF CONFERENCES 2016. [DOI: 10.1051/bioconf/20160704009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
47
|
Swart PC, Currin CB, Russell VA, Dimatelis JJ. Early ethanol exposure and vinpocetine treatment alter learning- and memory-related proteins in the rat hippocampus and prefrontal cortex. J Neurosci Res 2016; 95:1204-1215. [DOI: 10.1002/jnr.23894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Patricia C. Swart
- Department of Human Biology; Faculty of Health Sciences, University of Cape Town; Observatory Cape Town 7925 South Africa
| | - Christopher B. Currin
- Department of Human Biology; Faculty of Health Sciences, University of Cape Town; Observatory Cape Town 7925 South Africa
| | - Vivienne A. Russell
- Department of Human Biology; Faculty of Health Sciences, University of Cape Town; Observatory Cape Town 7925 South Africa
| | - Jacqueline J. Dimatelis
- Department of Human Biology; Faculty of Health Sciences, University of Cape Town; Observatory Cape Town 7925 South Africa
| |
Collapse
|
48
|
Pan Z, Zhang X, Shangguan Y, Hu H, Chen L, Wang H. Suppressed osteoclast differentiation at the chondro-osseous junction mediates endochondral ossification retardation in long bones of Wistar fetal rats with prenatal ethanol exposure. Toxicol Appl Pharmacol 2016; 305:234-241. [DOI: 10.1016/j.taap.2016.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 02/02/2023]
|
49
|
Schambra UB, Nunley K, Harrison TA, Lewis CN. Consequences of low or moderate prenatal ethanol exposures during gastrulation or neurulation for open field activity and emotionality in mice. Neurotoxicol Teratol 2016; 57:39-53. [PMID: 27296969 DOI: 10.1016/j.ntt.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/05/2016] [Accepted: 06/09/2016] [Indexed: 11/28/2022]
Abstract
In a previous study we used a mouse model for ethanol exposure during gastrulation or neurulation to investigate the effects of modest and occasional human drinking during the 3rd or 4th week of pregnancy (Schambra et al., 2015). Pregnant C57Bl/6J mice were treated by gavage during gastrulation on gestational day (GD) 7 or neurulation on GD8 with 2 doses 4h apart of either 2.4 or 2.9g ethanol/kg body weight, resulting in peak blood ethanol concentrations (BECs) of 104 and 177mg/dl, respectively. We found that mice exposed to the low dose on either day were significantly delayed in their neonatal sensorimotor development. In the present study, we tested the same cohort of mice in an open field as juveniles on postnatal day (PD) 23-25 and as young adults on PD65-67 for prenatal ethanol effects on exploration and emotionality with measures of activity, rearing, grooming and defecation. We evaluated the effects of dose, sex, day of treatment and day of birth by multiple regression analyses. We found that, compared to the respective gavage controls, juvenile mice that had been prenatally exposed to the low BEC on either GD7 or GD8 were significantly hypoactive on the first 2 test days, reared significantly more on the last 2 test days, and groomed and defecated significantly more on all 3 test days. Only mice that had been treated on GD7 remained hypoactive as adults. Juvenile mice prenatally exposed to the moderate BEC on GD7 groomed significantly more, while those exposed on GD8 reared and defecated significantly more. Sex differences were highly significant in adult control mice, with control males less active and more emotional than females. Similar, but smaller, sex differences were also evident in adults exposed to ethanol prenatally. Persistence into later life of a deleterious effect of premature birth (i.e., birth on GD19 rather than GD20) on weight and behavior was not consistently supported by these data. Importantly, mice shown previously to be delayed in sensorimotor development as neonates, in the present study demonstrated hypoactivity and increased emotionality in open field behaviors as juveniles, and those mice exposed during gastrulation remained hypoactive as adults. Thus, we propose that the delayed motor development, hypoactivity and emotionality we observed in mice exposed to a low BEC during gastrulation or neurulation may relate to an attention deficit-activity disorder in humans, possibly the inattentive subtype, or Sluggish Cognitive Tempo (SCT). We further discuss concerns about occasional light or moderate alcohol consumption during the 3rd or 4th week of human pregnancy.
Collapse
Affiliation(s)
- Uta B Schambra
- Department Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Kevin Nunley
- Department Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Theresa A Harrison
- Department Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - C Nicole Lewis
- Department of Mathematics & Statistics, College of Arts and Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
50
|
Fish EW, Holloway HT, Rumple A, Baker LK, Wieczorek LA, Moy SS, Paniagua B, Parnell SE. Acute alcohol exposure during neurulation: Behavioral and brain structural consequences in adolescent C57BL/6J mice. Behav Brain Res 2016; 311:70-80. [PMID: 27185739 DOI: 10.1016/j.bbr.2016.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Prenatal alcohol exposure (PAE) can induce physical malformations and behavioral abnormalities that depend in part on thedevelopmental timing of alcohol exposure. The current studies employed a mouse FASD model to characterize the long-term behavioral and brain structural consequences of a binge-like alcohol exposure during neurulation; a first-trimester stage when women are typically unaware that they are pregnant. Time-mated C57BL/6J female mice were administered two alcohol doses (2.8g/kg, four hours apart) or vehicle starting at gestational day 8.0. Male and female adolescent offspring (postnatal day 28-45) were then examined for motor activity (open field and elevated plus maze), coordination (rotarod), spatial learning and memory (Morris water maze), sensory motor gating (acoustic startle and prepulse inhibition), sociability (three-chambered social test), and nociceptive responses (hot plate). Regional brain volumes and shapes were determined using magnetic resonance imaging. In males, PAE increased activity on the elevated plus maze and reduced social novelty preference, while in females PAE increased exploratory behavior in the open field and transiently impaired rotarod performance. In both males and females, PAE modestly impaired Morris water maze performance and decreased the latency to respond on the hot plate. There were no brain volume differences; however, significant shape differences were found in the cerebellum, hypothalamus, striatum, and corpus callosum. These results demonstrate that alcohol exposure during neurulation can have functional consequences into adolescence, even in the absence of significant brain regional volumetric changes. However, PAE-induced regional shape changes provide evidence for persistent brain alterations and suggest alternative clinical diagnostic markers.
Collapse
Affiliation(s)
- E W Fish
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - H T Holloway
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - A Rumple
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - L K Baker
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - L A Wieczorek
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - S S Moy
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - B Paniagua
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States
| | - S E Parnell
- Bowles Center for Alcohol Studies (EWF, HTH, LKB, LAW, SEP), Department of Cell Biology and Physiology (SEP), Department of Psychiatry (AMR, SSM, BP), and Carolina Institute for Developmental Disabilities (SSM, BP, SEP), University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|