1
|
Hosseini H, Saadaoui I, Cherif M, Amir Siddiqui S, Sayadi S. Exploring the dynamics of algae-associated microbiome during the scale-up process of Tetraselmis sp. microalgae: A metagenomics approach. BIORESOURCE TECHNOLOGY 2024; 393:129991. [PMID: 37949148 DOI: 10.1016/j.biortech.2023.129991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Microalgae have become a key source of valuable compounds, promoting commercial scale applications. However, biological contamination is one of the most critical problems associated with large scale algal production, especially in open systems such as raceway ponds. The current research is the first to assess the effectiveness of open raceway ponds in maintaining a pure culture of Tetraselmis sp., starting from 20 L culture up to 10,000 L culture. Microbial profiling of each successive stage revealed lower abundance of eukaryotic organisms, whereas bacterial abundance increased notably resulting in a significant decrease in Tetraselmis sp. abundance. Furthermore, several bacteria with algae growth-promoting properties were found throughout the various culture stages including Balneola, Roseovarius, and Marinobacter. However, some algae-suppressive bacteria were evidenced at later stages such as Ulvibacter, Aestuariicoccus, and Defluviimonas. Overall, due to the increasing bacterial concentration, considerations limiting bacterial contamination need to be taken.
Collapse
Affiliation(s)
- Hoda Hosseini
- Biotechnology Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Imen Saadaoui
- Biotechnology Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar; Department of Biological and Environmental Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Maroua Cherif
- Biotechnology Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Simil Amir Siddiqui
- Biotechnology Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sami Sayadi
- Biotechnology Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
2
|
Aljabri H, Cherif M, Siddiqui SA, Bounnit T, Saadaoui I. Evidence of the drying technique's impact on the biomass quality of Tetraselmis subcordiformis (Chlorophyceae). BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:85. [PMID: 37210534 DOI: 10.1186/s13068-023-02335-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2023] [Indexed: 05/22/2023]
Abstract
Rapid drying, cost-effective and safe, will increase the viability of using microalgae for several bio-industrial applications. In this study, five different drying techniques of microalgal biomass were investigated. These include freeze drying, oven drying, air drying, sun drying, and microwave drying. Morphology, metabolite content, FAME profiling, chlorophyll content, total organic carbon, and total nitrogen were analyzed. Results showed that the freeze-drying technique preserves the highest amounts of chlorophyll, proteins, and lipids. Oven drying underperformed as it retained the lowest amount of chlorophyll, protein, and lipid content. More importantly, FAME profiling results showed that air drying was the best technique in maintaining the highest amount of polyunsaturated fatty acids and more specifically docosahexaenoic acid (DHA). Furthermore, this process requires the least capital and energy needs. The findings from this study confirmed that the drying technique affects the microalga biomass quality.
Collapse
Affiliation(s)
- Hareb Aljabri
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Maroua Cherif
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Simil Amir Siddiqui
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Touria Bounnit
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Imen Saadaoui
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Talhami M, Mussa AA, Thaher MI, Das P, Abouelela AR, Hawari AH. Efficient extraction of lipids from microalgal biomass for the production of biofuels using low-cost protic ionic solvents. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
4
|
Algal-algal bioflocculation enhances the recovery efficiency of Picochlorum sp. QUCCCM130 with low auto-settling capacity. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Asterarcys quadricellulare (Chlorophyceae) protects H9c2 cardiomyoblasts from H 2O 2-induced oxidative stress. Mol Cell Biochem 2022:10.1007/s11010-022-04626-7. [PMID: 36583795 PMCID: PMC10359365 DOI: 10.1007/s11010-022-04626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 11/28/2022] [Indexed: 12/31/2022]
Abstract
Oxidative stress has recently been identified as an important mediator of cardiovascular diseases. The need to find efficient antioxidant molecules is essential in the disease's prevention. Therefore, the present study aimed to evaluate the potential of microalgae bioactive in protecting H9c2 cardiomyoblasts from H2O2-induced oxidative stress. Four microalgal species were investigated for their antioxidant capacity. A qualitative assessment of oxidative stress in H9c2 cardiomyoblasts stained with DCFH-DA, treated with the highly active microalgae extracts, was performed. The protein expression of total caspase-3 was also examined to investigate whether the extract protects H9c2 cardimyoblasts from H2O2-induced apoptosis. High antioxidant activity was observed for the hexanoic extracts after 10 days of cultivation. Asterarcys quadricellulare exhibited the highest antioxidant capacity of 110.59 ± 1.75 mg TE g-1 dry weight and was tested against H9c2 cardiomyoblasts, which were initially subjected to H2O2-induced oxidative stress. This hexanoic extract protected against H2O2 induced oxidative stress with a similar scavenging capacity as N-Acetylcysteine. Furthermore, total caspase-3 was increased following treatment with the hexanoic extract, suggesting that A. quadricellulare also had anti-apoptotic properties. The outcome of our study highlighted the possible use of the local A. quadricellulare strain QUCCCM10 as a natural, safe, and efficient antioxidant to prevent cardiovascular diseases.
Collapse
|
6
|
Schipper K, Al Jabri HMSJ, Wijffels RH, Barbosa MJ. Realizing algae value chains in arid environments: an Arabian Peninsula perspective. Trends Biotechnol 2022; 41:750-759. [PMID: 36581482 DOI: 10.1016/j.tibtech.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 12/28/2022]
Abstract
Algae are a promising feedstock for the sustainable production of feed, fuels, and chemicals. Especially in arid regions such as the Arabian Peninsula, algae could play a significant role in enhancing food security, economic diversification, and decarbonization. Within this context, the regional potential of algae commercialization is discussed, exploring opportunities and challenges across technical, societal, and political aspects. Climate, availability of process inputs, and funding opportunities are identified as essential strengths that increase the global competitiveness of regional algae production. Implementation challenges include climate change, securing human resources, and the vital transitioning from research to commercial scales. With balanced management, however, the region's efforts could be the push that is necessary for algal technologies to take off globally.
Collapse
Affiliation(s)
- Kira Schipper
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar.
| | - Hareb Mohammed S J Al Jabri
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar; Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - René H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands; Nord University, Faculty of Biosciences and Aquaculture, N-8049, Bodø, Norway
| | - Maria J Barbosa
- Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
7
|
Paul K, Gaikwad M, Choudhary P, Mohan N, Pai P, Patil SD, Pawar Y, Chawande A, Banerjee A, Nagle V, Chelliah M, Sapre A, Dasgupta S. Year-round sustainable biomass production potential of Nannochloris sp. in outdoor raceway pond enabled through strategic photobiological screening. PHOTOSYNTHESIS RESEARCH 2022; 154:303-328. [PMID: 36434418 DOI: 10.1007/s11120-022-00984-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Microalgae cultivation utilizes the energy of sunlight to reduce carbon dioxide (CO2) for producing renewable energy feedstock. The commercial success of the biological fixation of carbon in a consistent manner depends upon the availability of a robust microalgae strain. In the present work, we report the identification of a novel marine Nannochloris sp. through multiparametric photosynthetic evaluation. Detailed photobiological analysis of this strain has revealed a smaller functional antenna, faster relaxation kinetics of non-photochemical quenching, and a high photosynthetic rate with increasing light and temperatures. Furthermore, laboratory scale growth assessment demonstrated a broad range halotolerance of 10-70 parts per thousand (PPT) and high-temperature tolerance up to 45 °C. Such traits led to the translation of biomass productivity potential from the laboratory scale (0.2-3.0 L) to the outdoor 50,000 L raceway pond scale (500-m2) without any pond crashes. The current investigation revealed outdoor single-day peak areal biomass productivity of 43 g m-2 d-1 in summer with an annual (March 2019-February 2020) average productivity of 20 g m-2 d-1 in seawater. From a sustainability perspective, this is the first report of successful round-the-year (> 347 days) multi-season (summer, monsoon, and winter) outdoor cultivation of Nannochloris sp. in broad seawater salinity (1-57 PPT), wide temperature ranges (15-40 °C), and in fluctuating light conditions. Concurrently, outdoor cultivation of this strain demonstrated conducive fatty acid distribution, including increased unsaturated fatty acids in winter. This inherent characteristic might play a role in protecting photosynthesis machinery at low temperatures and in high light stress. Altogether, our marine Nannochloris sp. showed tremendous potential for commercial scale cultivation to produce biofuels, food ingredients, and a sustainable source for vegetarian protein.
Collapse
Affiliation(s)
- Kenny Paul
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | - Mahadev Gaikwad
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | | | | | - Puja Pai
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | - Smita D Patil
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | - Yogesh Pawar
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | - Akshay Chawande
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | - Arun Banerjee
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India.
| | - Vinod Nagle
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | | | - Ajit Sapre
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| | - Santanu Dasgupta
- Synthetic Biology Research and Development Group, Reliance Industries Limited, Reliance Corporate Park, Ghansoli, Thane- Belapur Road, Navi Mumbai, 400701, India
| |
Collapse
|
8
|
Liu F, Wu R, Ma X, Su E. The Advancements and Prospects of Nervonic Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12772-12783. [PMID: 36166330 DOI: 10.1021/acs.jafc.2c05770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nervonic acid (NA) is a monounsaturated very long-chain fatty acid (VLCFA) and has been identified with critical biological functions in medical and health care for brain development and injury repair. Yet, the approaches to producing NA from the sources of plants or animals continue to pose challenges to meet increasing market demand, as they are generally associated with high costs, a lack of natural resources, a long life cycle, and low production efficiency. The recent technological advance in metabolic engineering allows us to precisely engineer oleaginous microbes to develop high-content NA-producing strains, which has the potential to provide a possible solution to produce NA on a commercial fermentation scale. In this Review, the biosynthetic pathway, natural sources, and metabolic engineering of NA are summarized. The strategies of metabolic engineering that could be adopted to modify oleaginous yeast to produce NA are discussed in detail, providing the prospecting views for the microbial cells producing NA.
Collapse
Affiliation(s)
- Feixiang Liu
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Department of Biological Science and Food Engineering, Bozhou University, Bozhou 236800, China
| | - Rong Wu
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqiang Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erzheng Su
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Abouelela AR, Mussa AA, Talhami M, Das P, Hawari AH. Industrial sludge valorization and decontamination via lipid extraction and heavy metals removal using low-cost protic ionic liquid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155451. [PMID: 35469861 DOI: 10.1016/j.scitotenv.2022.155451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Sludge is a heterogenous organic-rich matter that comprise of highly valuable biopolymers along with various contaminants including heavy metals. Sludge valorization as a renewable resource and inexpensive feedstock is key for sludge realization in circular economy context. This study presents the use of low-cost protic ionic liquid (PIL) as an integrated process medium to decontaminate heavy metal contaminated industrial sludge while selectively extract the lipid content. The treatment process focused on the use of 1-methylimidazole chloride for its higher heavy metal extraction performance compared to other screened ionic liquids (ILs). The treatment was also able to selectively extract lipids from industrial sludge, leaving a protein/carbohydrate rich solid product. Process temperature was shown to have a key impact on the biopolymers' fractionation. Operating at temperatures above 120 °C resulted in higher recovery of proteins in the lipid-rich fraction, compromising the quality of the lipid stream. Variation of the PIL acid/base (a/b) ratio also had a significant impact on the deconstruction of the sludge biopolymers, with a/b ratio of 1 resulting in highest recovery of all biopolymers. Optimal water concentration as co-solvent was found at 30 wt%, with lipid recovery reaching 60% and heavy metals extraction ranging between 29 and 89%.
Collapse
Affiliation(s)
- Aida Rafat Abouelela
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar
| | - Afnan A Mussa
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar
| | - Mohammed Talhami
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar
| | - Probir Das
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
10
|
Bello AS, Saadaoui I, Ahmed T, Hamdi H, Cherif M, Ben-Hamadou R. Evaluation of Roholtiella sp. Extract on Bell Pepper ( Capsicum annuum L.) Yield and Quality in a Hydroponic Greenhouse System. FRONTIERS IN PLANT SCIENCE 2022; 13:843465. [PMID: 35909742 PMCID: PMC9331902 DOI: 10.3389/fpls.2022.843465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
This study was carried out to investigate the impacts of cyanobacteria (Roholtiella sp.) high-value product extract (HVPE) and water resuspended biomass WRB treatments on bell pepper production using the hydroponic system under greenhouse conditions. Six cyanobacteria treatments (6 ml L-1, 4 ml L-1, and 2 ml L-1 - HVPE, 6 ml L-1, 4 ml L-1, and 2 ml L-1 - WRB, and TR0 as control) were evaluated using the foliar application method. The results showed that foliar application of HVPE with treatments of 2 ml L-1, 4 ml L-1, and 6 ml L-1 produced significantly higher values of physical growth parameters of bell pepper (BP) plants (shoot length, the number of leaves, plant leaf length, plant leaf width, and the diameter of the shoot), SPAD index, yield components (the fruit length, fruit width, the number of fruit per plant, and fresh weight per fruit), biochemical composition [ascorbic acid, phenolic acid, and total soluble solids (TSS)], and the total yield compared to the control group TR0. Also, significant higher values of growth parameters (shoot length, the number of leaves, plant leaf length, plant leaf width, the diameter of the shoot), SPAD index, yield components (the fruit length, fruit width, the number of fruits per plant, and fresh weight per fruit), biochemical composition [ascorbic acid, phenolic acid, and total soluble solids (TSS)], and the total yield were obtained with foliar spraying WRB at 2 ml L-1, 4 ml L-1, and 6 ml L-1 compared to the control group TR0. Consequently, the treated bell pepper with Roholtiella sp. HVPE and WRB were more efficient in enhancing production and chemical constituents compared with the control group.
Collapse
Affiliation(s)
- Adewale Suraj Bello
- Envrionmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Imen Saadaoui
- Envrionmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Algal Technologies Program (ATP), Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Talaat Ahmed
- Environmental Science Centre, Qatar University, Doha, Qatar
| | - Helmi Hamdi
- Food and Water Security Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Maroua Cherif
- Algal Technologies Program (ATP), Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Radhouane Ben-Hamadou
- Envrionmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Environmental Science Centre, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Techno-economic modelling of high-value metabolites and secondary products from microalgae cultivated in closed photobioreactors with supplementary lighting. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Hosseini H, Al-Jabri HM, Moheimani NR, Siddiqui SA, Saadaoui I. Marine microbial bioprospecting: Exploitation of marine biodiversity towards biotechnological applications-a review. J Basic Microbiol 2022; 62:1030-1043. [PMID: 35467037 DOI: 10.1002/jobm.202100504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 11/09/2022]
Abstract
The increase in the human population causes an increase in the demand for nutritional supplies and energy resources. Thus, the novel, natural, and renewable resources became of great interest. Here comes the optimistic role of bioprospecting as a promising tool to isolate novel and interesting molecules and microorganisms from the marine environment as alternatives to the existing resources. Bioprospecting of marine metabolites and microorganisms with high biotechnological potentials has gained wide interest due to the variability and richness of the marine environment. Indeed, the existence of extreme conditions that increases the adaptability of marine organisms, especially planktons, allow the presence of interesting biological species that are able to produce novel compounds with multiple health benefits and high economical value. This review aims to provide a comprehensive overview of marine microbial bioprospecting as a growing field of interest. It emphasizes functional bioprospecting that facilitates the discovery of interesting metabolites. Marine bioprospecting was also discussed from a legal aspect for the first time, focusing on the shortcomings of international law. We also summarized the challenges facing bioprospecting in the marine environment including economic feasibility issues.
Collapse
Affiliation(s)
- Hoda Hosseini
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hareb M Al-Jabri
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Navid R Moheimani
- Algae R&D Centre, Harry Buttler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Simil A Siddiqui
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Imen Saadaoui
- Algal Technologies Program, Centre for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
13
|
Assessment of novel halo- and thermotolerant desert cyanobacteria for phycobiliprotein production. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Giwa AS, Ali N. Perspectives of nervonic acid production by Yarrowia lipolytica. Biotechnol Lett 2022; 44:193-202. [PMID: 35119573 DOI: 10.1007/s10529-022-03231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
Abstract
Nervonic acid (cis-15-tetracosenoic acid, 24:1Δ15) is a long chain monounsaturated fatty acid, mainly exists in white matt er of the human brains. It plays an important role in the development of nervous system and curing neurological diseases. The limited natural sources and high price are considered limiting factors for the extensive application of nervonic acid. Yarrowia lipolytica is a high lipid producing yeast and engineered strain which can produce nervonic acid. The biosynthesis of nervonic acid has yet to be investigated, although the metabolism has been examined for couple of years. Normally, oleic acid is considered the origin of nervonic acid synthesis through fatty acid prolongation, where malonyl-CoA and acyl-CoA are initially concise by 3-ketoacyl-CoA synthase (KCS). To meet the high requirement of industrial production, the optimization of fermentation and bioreactors configurations are necessary tools to be carried out. This review article summarizes the research literature on advancements and recent trends about the production, synthesis and properties of nervonic acid.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Human Settlements and Environment, Nanchang Institute of Science and Technology, Nanchang, 330108, China.,State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Nasir Ali
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
Bello AS, Ben-Hamadou R, Hamdi H, Saadaoui I, Ahmed T. Application of Cyanobacteria ( Roholtiella sp.) Liquid Extract for the Alleviation of Salt Stress in Bell Pepper ( Capsicum annuum L.) Plants Grown in a Soilless System. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010104. [PMID: 35009109 PMCID: PMC8747557 DOI: 10.3390/plants11010104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 05/17/2023]
Abstract
Salinity is one of the abiotic stresses that affect crop growth and productivity in arid and semi-arid regions. Unfortunately, there are few known methods to mitigate the deleterious impacts of salt stress on the development and yield of vegetable crops. Blue-green algae (cyanobacteria) are endowed with the potential to curb the negative impacts of salt stress as they are characterized by biostimulant properties. The present work aimed to investigate the effects of Roholtiella sp. as a foliar extract on the growth characteristics, physiological and biochemical responses of bell pepper (Capsicum annuum L.) plants under varying levels of salinity conditions. A soilless water experiment was carried out in a greenhouse where bell pepper seedlings were grown under five salt concentrations (0, 50, 200, 150, and 200 mM of NaCl). Growth characteristics, pigments content, relative water content, and antioxidant activity (CAT) were determined. Our results showed that growth parameters, relative water content (RWC), chlorophyll a & b concentrations under salinity conditions were negatively affected at the highest concentration (200 mM). Interestingly, the application of Roholtiella sp. foliar extract enhanced the plant growth characteristics as shoot length increased by 17.014%, fresh weight by 39.15%, dry and weight by 31.02%, at various salt treatments. Moreover, chlorophyll a and b increased significantly compared with seedlings sprayed with water. Similarly, RWC exhibited a significant increase (92.05%) compared with plants sprayed with water. In addition, antioxidants activities and accumulation of proline were improved in Roholtella sp. extract foliar sprayed seedlings compared to the plants foliar sprayed with water. Conclusively, at the expiration of our study, the Rohotiella sp. extract-treated plants were found to be more efficient in mitigating the deleterious effects caused by the salinity conditions which is an indication of an enhancement potential of tolerating salt-stressed plants when compared to the control group.
Collapse
Affiliation(s)
- Adewale Suraj Bello
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.B.); (R.B.-H.)
| | - Radhouane Ben-Hamadou
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar; (A.S.B.); (R.B.-H.)
| | - Helmi Hamdi
- Center for Sustainable Development, Qatar University, Doha P.O. Box 2713, Qatar; (H.H.); (I.S.)
| | - Imen Saadaoui
- Center for Sustainable Development, Qatar University, Doha P.O. Box 2713, Qatar; (H.H.); (I.S.)
| | - Talaat Ahmed
- Environmental Science Centre, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: ; Tel.: +974-44034563
| |
Collapse
|
16
|
Saadaoui I, Rasheed R, Aguilar A, Cherif M, Al Jabri H, Sayadi S, Manning SR. Microalgal-based feed: promising alternative feedstocks for livestock and poultry production. J Anim Sci Biotechnol 2021; 12:76. [PMID: 34134776 PMCID: PMC8359609 DOI: 10.1186/s40104-021-00593-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/06/2021] [Indexed: 11/18/2022] Open
Abstract
There is an immediate need to identify alternative sources of high-nutrient feedstocks for domestic livestock production and poultry, not only to support growing food demands but also to produce microalgae-source functional foods with multiple health benefits. Various species of microalgae and cyanobacteria are used to supplement existing feedstocks. In this review, microalgae have been defined as a potential feedstock for domestic animals due to their abundance of proteins, carbohydrates, lipids, minerals, vitamins, and other high-value products. Additionally, the positive physiological effects on products of animals fed with microalgal biomass have been compiled and recommendations are listed to enhance the assimilation of biomolecules in ruminant and nonruminant animals, which possess differing digestive systems. Furthermore, the role of microalgae as prebiotics is also discussed. With regards to large scale cultivation of microalgae for use as feed, many economic trade-offs must be considered such as the selection of strains with desired nutritional properties, cultivation systems, and steps for downstream processing. These factors are highlighted with further investigations needed to reduce the overall costs of cultivation. Finally, this review outlines the pros and cons of utilizing microalgae as a supplementary feedstock for poultry and cattle, existing cultivation strategies, and the economics of large-scale microalgal production.
Collapse
Affiliation(s)
- Imen Saadaoui
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar.
| | - Rihab Rasheed
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Ana Aguilar
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maroua Cherif
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Hareb Al Jabri
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O.Box.2713, Doha, Qatar
| | - Schonna R Manning
- Department of Molecular Biosciences, UTEX Culture Collection of Algae, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
17
|
Cultivating Microalgae in Desert Conditions: Evaluation of the Effect of Light-Temperature Summer Conditions on the Growth and Metabolism of Nannochloropsis QU130. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11093799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Temperature and light are two of the most crucial factors for microalgae production. Variations in these factors alter their growth kinetics, macromolecular composition and physiological properties, including cell membrane permeability and fluidity. The variations define the adaptation mechanisms adopted by the microalgae to withstand changes in these environmental factors. In the Qatar desert the temperature varies widely, typically between 10° and 45 °C There are also wide variations in light intensity, with values of over 1500 μmolhν.m−2s−1 in summer. A study of the effects of these thermal and light fluctuations is therefore essential for large-scale outdoor production systems, especially during the summer when temperature and light fluctuations are at their highest. The aim of this work is to study the impact of temperature and light intensity variations as encountered in summer period on the Nannochloropsis QU130 strain, which was selected for its suitability for outdoor cultivation in the harsh conditions of the Qatar desert. It was carried out using lab-scale photobioreactors enabling simulation of both constant and dynamic temperature and light regimes. Biomass productivity, cell morphology and biochemical compositions were examined first in constant conditions, then in typical outdoor cultivation conditions to elucidate the adjustments in cell function in respect of fluctuations. The dynamic light and temperature were shown to have interactive effects. The application of temperature cycles under constant light led to a 13.6% increase in biomass productivity, while a 45% decrease was observed under light and temperature regimes due to the combined stress. In all cases, the results proved that N. sp. QU130 has a high level of adaptation to the wide fluctuations in light and temperature stress. This was shown through its ability to easily change its physiology (cell size) and metabolic process in response to different cultivation conditions.
Collapse
|
18
|
Schipper K, Das P, Al Muraikhi M, AbdulQuadir M, Thaher MI, Al Jabri HMSJ, Wijffels RH, Barbosa MJ. Outdoor scale-up of Leptolyngbya sp.: Effect of light intensity and inoculum volume on photoinhibition and -oxidation. Biotechnol Bioeng 2021; 118:2368-2379. [PMID: 33710627 PMCID: PMC8252766 DOI: 10.1002/bit.27750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/29/2022]
Abstract
The effect of light intensity and inoculum volume on the occurrence of photooxidation for Leptolyngbya sp. QUCCCM 56 was investigated, to facilitate the transition from small‐scale laboratory experiments to large‐scale outdoor cultivation. Indoor, the strain was capable of growing at light intensities of up to 5600 µmol photons/m2/s, at inoculation densities as low as 0.1 g/L (10% inoculation volume vol/vol). Levels of chlorophyll and phycocyanin showed a significant decrease within the first 24 h, indicating some level of photooxidation, however, both were able to recover within 72 h. When cultivated under outdoor conditions in Qatar during summer, with average peak light intensities 1981 ± 41 μmol photons/m2/s, the strain had difficulties growing. The culture recovered after an initial adaptation period, and clear morphological differences were observed, such as an increase in trichome length, as well as coiling of multiple trichomes in tightly packed strands. It was hypothesized that the morphological changes were induced by UV‐radiation as an adaptation mechanism for increased self‐shading. Furthermore, the presence of contaminating ciliates could have also affected the outdoor culture. Both UV and contaminants are generally not simulated under laboratory environments, causing a mismatch between indoor optimizations and outdoor realizations.
Collapse
Affiliation(s)
- Kira Schipper
- Algal Technologies Program, Center for Sustainable Development, Qatar University, Doha, Qatar.,Agrotechnology and Food Sciences, Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
| | - Probir Das
- Algal Technologies Program, Center for Sustainable Development, Qatar University, Doha, Qatar
| | - Mariam Al Muraikhi
- Algal Technologies Program, Center for Sustainable Development, Qatar University, Doha, Qatar
| | - Mohammed AbdulQuadir
- Algal Technologies Program, Center for Sustainable Development, Qatar University, Doha, Qatar
| | - Mahmoud Ibrahim Thaher
- Algal Technologies Program, Center for Sustainable Development, Qatar University, Doha, Qatar
| | | | - René H Wijffels
- Agrotechnology and Food Sciences, Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands.,Aquaculture, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Maria J Barbosa
- Agrotechnology and Food Sciences, Bioprocess Engineering, AlgaePARC, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
19
|
Ignatenko ME, Selivanova EA, Khlopko YA, Khlopko YA, Yatsenko-Stepanova TN. Algal and cyanobacterial diversity in saline rivers of the Elton Lake Basin (Russia) studied via light microscopy and next-generation sequencing. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Naturally saline rivers are known in various regions of the world. Saline rivers with a salinity gradient from the source to the mouth are particularly interesting, because the range of salinity is the structure-forming factor of the hydrobiont assemblage. Such rivers are represented by saline rivers of the Elton Lake Basin in Volgograd region of Russia (the Bolshaya Samoroda River and the Malaya Samoroda River). Herein, we analyzed taxonomic structure and species diversity of microalgae and Cyanobacteria of the saline rivers flowing into the Elton Lake by light microscopy and next-generation sequencing. The differences and possible causes of inconsistencies in the results obtained by these methods are discussed. In total, 91 taxa of microorganisms were identified by integrated approach in the assemblages of microalgae and Cyanobacteria in the middle course of the Bolshaya Samoroda River, and 60 taxa – in the river mouth. The species diversity of those assemblages in the hypersaline Malaya Samoroda River was lower: 27 taxa from the middle course and 23 taxa from the mouth. Next-generation sequencing allowed us to refine and expand the list of microalgae taxa in the studied saline rivers due to detection of species which were hard to identify, low-abundance taxa, as well as extremely small-cell forms. Some discrepancies between the data obtained by light microscopy and next-generation sequencing indicate the advantage of simultaneous use of both methods for study of the algae communities. Such a comprehensive approach provides the most accurate and correct list of taxa added with the morphological descriptions and 18S rRNA and 16S rRNA partial sequences. Generally, 18 taxa have been recorded for the first time in the Bolshaya Samoroda River, belonging to the phyla Chlorophyta (Borodinellopsis sp., Chlorochytrium lemnae Cohn, Caespitella sp., Halochlorococcum sp., Tetraselmis cordiformis (H. J. Carter) F. Stein), Ochrophyta (Pseudocharaciopsis ovalis (Chodat) D. J. Hibberd, Characiopsis sp., Poterioochromonas stipitata Scherffel, Chrysolepidomonas sp.), Euglenozoa (Euglena bucharica I. Kisselev, Lepocinclis tripteris (Dujardin) B. Marin & Melkonian, Phacus orbicularis K. Hübner, P. parvulus G. A. Klebs), Cryptophyta (Hemiselmis cryptochromatica C. E. Lane & J. M. Archibald, Rhodomonas sp., Hanusia phi J. A. Deane), Haptophyta (Pavlova sp.), Cyanobacteria (Johanseninema constrictum (Szafer) Hasler, Dvorák & Poulícková). Seven taxa have been detected for the first time in the algal and cyanobacterial assemblages of the Malaya Samoroda River from the phyla Chlorophyta (Tetraselmis cordiformis, T. arnoldii (Proschkina-Lavrenko) R. E. Norris, Hori & Chihara, T. tetrathele (West) Butcher, Pyrobotrys elongatus Korshikov), Cryptophyta (Hanusia phi), and Cyanobacteria (Synechococcus elongatus (Nägeli) Nägeli, Oscillatoria simplicissima Gomont).
Collapse
|
20
|
Saadaoui I, Cherif M, Rasheed R, Bounnit T, Al Jabri H, Sayadi S, Hamadou RB, Manning SR. Mychonastes homosphaera (Chlorophyceae): A promising feedstock for high quality feed production in the arid environment. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Sustainable Food Production and Nutraceutical Applications from Qatar Desert Chlorella sp. (Chlorophyceae). Animals (Basel) 2020; 10:ani10081413. [PMID: 32823672 PMCID: PMC7459828 DOI: 10.3390/ani10081413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 01/05/2023] Open
Abstract
Microalgae isolated from the Qatari desert was identified as thermotolerant, with a rich metabolite profile that is appropriate for use as food and health supplements. In this research, a species of Chlorella, QUCCCM3, from the Qatar University Culture Collection of Cyanobacteria and Microalgae, was investigated for its growth characteristics and metabolite compositions for use as potential feedstock for food production. The strain was cultivated at 30, 35, and 40 °C, covering the annual average low and high temperatures in Qatar. The highest growth rates were recorded for cultures at 30 °C with 0.64 ± 0.04 day-1, followed by a growth rate of 0.54 ± 0.06 day-1 at 40 °C, indicating its thermotolerance ability. The biomass exhibited a high protein content (43 ± 2.3%), with existence of lysine (4.13%) as an essential amino acid, and docosahexaenoic acid, linoleic acid, and alpha-linolenic acid as important omega fatty acids present. On the other hand, Chlorella sp. QUCCCM3 also exhibited a high capacity for scavenging free radicals with an antiproliferative effect against chronic myeloid leukemia K562 cancer cells. The results indicate that Chlorella sp. QUCCCM3 is a promising candidate that can be produced year-round, in the Qatar environment, for commercial applications such as feed and nutraceutical supplements.
Collapse
|
22
|
Sustainable Production of Nannochloris atomus Biomass Towards Biodiesel Production. SUSTAINABILITY 2020. [DOI: 10.3390/su12052008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nannochloris atomus (QUCCCM31) is a local marine microalga showing potential to serve as renewable feedstock for biodiesel production. The investigation of the impact of temperature variation and nitrogen concentrations on the biomass and lipid productivities evidenced that biomass productivity increased with the temperature to reach an optimum of 195 mgL−1 d−1 at 30 °C. Similarly, the lipid content was strongly influenced by the elevation of temperature; indeed, it increased up to ~3 folds when the temperature increased from 20 to 40 °C. When both stresses were combined, triacylglycerols and lipid productivity reached a maximum of 45% and 88 mgL−1 d−1, respectively at 40 °C. Cultures under high temperatures along with Nitrogen-Depleted (ND) favored the synthesis of Fatty Acids Methyl Ester (FAMEs) suitable for high quality biodiesel production, whereas cultures conducted at low temperature coupled with Nitrogen-Limited (NL) led to a production of polyunsaturated fatty acids (PUFAs). Our results support the feasibility of cultivating the thermotolerant isolate QUCCCM31 year-round to meet the sustainability challenges of algal biomass production by growing under temperature and nitrogen variations. The presence of omega 3 and 9 fatty acids as valuable co-products will help in reducing the total process cost via biorefinery.
Collapse
|
23
|
Sustainable Agriculture in the Arabian/Persian Gulf Region Utilizing Marginal Water Resources: Making the Best of a Bad Situation. SUSTAINABILITY 2018. [DOI: 10.3390/su10051364] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Fan Y, Meng HM, Hu GR, Li FL. Biosynthesis of nervonic acid and perspectives for its production by microalgae and other microorganisms. Appl Microbiol Biotechnol 2018; 102:3027-3035. [PMID: 29478140 DOI: 10.1007/s00253-018-8859-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/15/2022]
Abstract
Nervonic acid (NA) is a major very long-chain monounsaturated fatty acid found in the white matter of mammalian brains, which plays a critical role in the treatment of psychotic disorders and neurological development. In the nature, NA has been synthesized by a handful plants, fungi, and microalgae. Although the metabolism of fatty acid has been studied for decades, the biosynthesis of NA has yet to be illustrated. Generally, the biosynthesis of NA is considered starting from oleic acid through fatty acid elongation, in which malonyl-CoA and long-chain acyl-CoA are firstly condensed by a rate-limiting enzyme 3-ketoacyl-CoA synthase (KCS). Heterologous expression of kcs gene from high NA producing species in plants and yeast has led to synthesis of NA. Nevertheless, it has also been reported that desaturases in a few plants can catalyze very long-chain saturated fatty acid into NA. This review highlights recent advances in the biosynthesis, the sources, and the biotechnological aspects of NA.
Collapse
Affiliation(s)
- Yong Fan
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, People's Republic of China
| | - Hui-Min Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, People's Republic of China
| | - Guang-Rong Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, People's Republic of China
| | - Fu-Li Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
25
|
Das P, Quadir MA, Chaudhary AK, Thaher MI, Khan S, Alghazal G, Al-Jabri H. Outdoor Continuous Cultivation of Self-Settling Marine CyanobacteriumChroococcidiopsissp. Ind Biotechnol (New Rochelle N Y) 2018. [DOI: 10.1089/ind.2017.0019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Probir Das
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohammed Abdul Quadir
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Afeefa Kiran Chaudhary
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mahmoud Ibrahim Thaher
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Shoyeb Khan
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Ghamza Alghazal
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Hareb Al-Jabri
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
26
|
Das P, Thaher MI, Abdul Hakim MAQM, Al-Jabri HMSJ, Alghasal GSHS. Microalgae harvesting by pH adjusted coagulation-flocculation, recycling of the coagulant and the growth media. BIORESOURCE TECHNOLOGY 2016; 216:824-829. [PMID: 27318160 DOI: 10.1016/j.biortech.2016.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 06/06/2023]
Abstract
Coagulation-flocculation can be considered as one of the least energy intensive microalgae biomass harvesting processes. However, cost of the coagulant and biomass contamination are two critical issues that need to be considered. In this study, ferric chloride (72-96mg/L) was used to effectively harvest Scenedesmus sp. (530mg/L) - grown in BG-11 media and wastewater. Reducing the culture pH below 6.5, greatly improved the harvesting efficiency. Acidic solution (pH 1.0) was very effective to recover (almost 90%) the associated iron from the harvested biomass. Scenedesmus sp. was able to grow in the supernatant and utilize the residual iron in it. Iron extracted solution, with a supplementation of 9.8mg/L ferric chloride, was able to achieve similar harvesting efficiency. The potential recovery of iron from the harvested biomass and its reuse in the harvesting can improve the biomass quality for subsequent downstream processing while reducing the cost.
Collapse
Affiliation(s)
- Probir Das
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. 2713, Doha, Qatar.
| | - Mahmoud Ibrahim Thaher
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. 2713, Doha, Qatar
| | | | - Hareb Mohammed S J Al-Jabri
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. 2713, Doha, Qatar
| | - Ghamza Saed H S Alghasal
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. 2713, Doha, Qatar
| |
Collapse
|
27
|
Das P, Thaher MI, Hakim MAQMA, Al-Jabri HMSJ, Alghasal GSHS. A comparative study of the growth of Tetraselmis sp. in large scale fixed depth and decreasing depth raceway ponds. BIORESOURCE TECHNOLOGY 2016; 216:114-120. [PMID: 27235973 DOI: 10.1016/j.biortech.2016.05.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/15/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
In this study, an alternative approach was proposed where excess seawater would be added only during inoculation (DD) rather than daily addition (FD). Growth and metabolite contents of Tetraselmis sp. weren't affected for daily increase of 2% NaCl salinity. Tetraselmis sp. was then cultured in DD and FD pond. In DD pond, initial culture depth was 23.5cm and its depth reduced as no water was added; for FD pond, everyday sterilized seawater was added to maintain 20cm depth. DD pond had higher biomass productivity compared to FD pond, until DD pond was deeper than FD pond; metabolite content and FAME profile of Tetraselmis sp. were also similar in both cultures. Therefore, considering the simplicity in operation, halo tolerant microalgae can be grown in DD pond method.
Collapse
Affiliation(s)
- Probir Das
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. 2713, Doha, Qatar.
| | - Mahmoud Ibrahim Thaher
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. 2713, Doha, Qatar
| | | | - Hareb Mohammed S J Al-Jabri
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. 2713, Doha, Qatar
| | - Ghamza Saed H S Alghasal
- Algal Technologies Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. 2713, Doha, Qatar
| |
Collapse
|