1
|
Panagou G, Stergiou E, Spyros A, Lydakis-Simantiris N, Pergantis SA. Nickel-induced multimetal uptake in two microalgal species (Chlorella sorokiniana and Chlamydomonas reinhardtii) and its effect on growth and lipid unsaturation. J Trace Elem Med Biol 2025; 87:127578. [PMID: 39681047 DOI: 10.1016/j.jtemb.2024.127578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
As the concern for Ni contamination in the aquatic environment escalates, efforts for microalgal use in environmental monitoring and bioremediation are increasing. This study aims to evaluate the potential of Chlorella sorokiniana and Chlamydomonas reinhardtii for Ni bioremediation by investigating their physiological stress responses in Ni-contaminated environments. The analysis focuses on how Ni(II) uptake affects cell growth, nutrient metal homeostasis, and lipid unsaturation levels, as these parameters are critical indicators of metabolic stability and resilience essential for effective bioremediation. The microalgae were grown under mixotrophic conditions in a tris-acetate-phosphate (TAP) medium enriched with Ni(II), at concentrations (1-6 mg∙L-1) exceeding those typically found in wastewater, providing insights into metal stress under severe contamination conditions. Even though increased uptake of Ni(II) was observed for both algal species, accompanied by growth suppression at high Ni(II) concentrations, multi-elemental trace analysis revealed a significant, Ni concentration-dependent, uptake of growth media essential metals as well. Specifically, for both algal species, Zn uptake concentrations increased by approximately 20 times when going from control cultures, with no Ni(II) added, to cultures incubated with increasing Ni(II) concentrations. Overall, Zn uptake was determined to be approximately 3 orders of magnitude higher than Ni(II) uptake when high concentrations of Ni(II) were present, making Zn the metal with the most significant uptake. Similar uptake trends were observed for Cu and Co for both algal species, with Cu uptake being approximately 2 orders of magnitude higher, while Co remained below the Ni(II) concentrations at high added Ni(II) concentrations. For Chlorella sorokiniana, increased Fe uptake relative to Ni(II) uptake was observed (2 orders of magnitude higher), as was the case for Mn (1 order of magnitude higher). This induced increase in uptake of some of the growth media metals was attributed to their liberation from ethylenediaminetetraacetic acid (EDTA) in tris-acetate-phosphate (TAP) medium, following the addition of Ni(II), which has a higher stability constant (Kf) with EDTA and was added at concentrations comparable or higher than those of the other metals. Calculated levels of free Ni(II) and free metals in the medium matched the observed metal uptake trends as determined using multielemental inductively coupled plasma mass spectrometry. Negative ion electrospray mass spectrometry also revealed that EDTA-metal complexes in the TAP media decreased as Ni(II) concentrations increased. The lipid unsaturation level and relative ω-3 fatty acids concentration of both microalgal species, based on 1H Nuclear Magnetic Resonance analysis, decreased with increasing Ni(II) concentration, with the decrease being more pronounced at Ni(II) incubation concentrations of 4 and 6 ppm. Unsaturation levels for individual lipid classes [monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol (SQDG)] in Chlamydomonas reinhardtii cells were also studied using positive ion mode electrospray mass spectrometry. At the highest Ni(II) concentrations, an overall reduction in unsaturation levels was observed for all 3 lipid classes, indicating a significant impact of elevated metal ion concentrations on membrane fluidity and therefore on cellular physiology and metabolism. Comparison of the two microalgal species under Ni-enriched conditions shows that Chlorella sorokiniana exhibits greater tolerance to the metal-induced stress under study than Chlamydomonas reinhardtii, suggesting its higher efficiency for the bioremediation in Ni-contaminated environments.
Collapse
Affiliation(s)
- Georgia Panagou
- Department of Chemistry, University of Crete, Voutes Campus, Heraklion 70013, Greece; Environmental Chemical Processes Laboratory, University of Crete, Voutes Campus, Heraklion 70013, Greece
| | - Evangelos Stergiou
- Department of Chemistry, University of Crete, Voutes Campus, Heraklion 70013, Greece; Environmental Chemical Processes Laboratory, University of Crete, Voutes Campus, Heraklion 70013, Greece
| | - Apostolos Spyros
- Department of Chemistry, University of Crete, Voutes Campus, Heraklion 70013, Greece
| | | | - Spiros A Pergantis
- Department of Chemistry, University of Crete, Voutes Campus, Heraklion 70013, Greece; Environmental Chemical Processes Laboratory, University of Crete, Voutes Campus, Heraklion 70013, Greece.
| |
Collapse
|
2
|
Gallego I, Medic N, Pedersen JS, Ramasamy PK, Robbens J, Vereecke E, Romeis J. The microalgal sector in Europe: Towards a sustainable bioeconomy. N Biotechnol 2025; 86:1-13. [PMID: 39778767 DOI: 10.1016/j.nbt.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Microalgae are a diverse group of photosynthetic microorganisms that can be exploited to produce sustainable food and feed products, alleviate environmental pollution, or sequester CO2 to mitigate climate change, among other uses. To optimize resource use and integrate industrial waste streams, it is essential to consider factors such as the biology and cultivation parameters of the microalgal strains, as well as the cultivation system and processing technologies employed. This paper reviews the main commercial applications of microalgae (including cyanobacteria) and examines the biological and biotechnological aspects critical to the sustainable processing of microalgal biomass and its derived compounds. We also provide an up-to-date overview of the microalgal sector in Europe considering the strain, cultivation system and commercial application. We have identified 146 different microalgal-derived products from 66 European microalgae producers, and 49 additional companies that provide services and technologies, such as optimization and scalability of the microalgal production. The most widely cultivated microalga is 'spirulina' (Limnospira spp.), followed by Chlorella spp. and Nannochloropsis spp., mainly for human consumption and cosmetics. The preferred cultivation system in Europe is the photobioreactor. Finally, we discuss the logistic and regulatory challenges of producing microalgae at industrial scale, particularly in the European Union, and explore the potential of new genomic techniques and bioprocessing to foster a sustainable bioeconomy in the microalgal sector.
Collapse
Affiliation(s)
- Irene Gallego
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland.
| | - Nikola Medic
- Center for Bioresources, Danish Technological Institute (DTI), Taastrup, Denmark
| | - Jakob Skov Pedersen
- Center for Bioresources, Danish Technological Institute (DTI), Taastrup, Denmark
| | | | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
| | - Elke Vereecke
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Belgium
| | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| |
Collapse
|
3
|
El-Fakharany EM, Saleh AK, El-Maradny YA, El-Sayed MH, Alali I, Alsirhani AM, Alalawy AI, Alhawiti AS, Alatawi IS, Mazi W, El-Gendi H. Comprehensive insight into recent algal enzymes production and purification advances: Toward effective commercial applications: A review. Int J Biol Macromol 2024; 283:137783. [PMID: 39557238 DOI: 10.1016/j.ijbiomac.2024.137783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Algal enzymes are essential catalysts in numerous biological reactions and industrial processes owing to their adaptability and potency. The marketing of algal enzymes has recently risen due to various reasons, including the cost-efficient manner of their cultivation in photobioreactors, the eco-friendly production of high biomass contents, sources of novel enzymes that used in many sectors (biofuel and bioremediation applications), sustainability, and more renewability. Oxidoreductases and hydrolytic enzymes are among the important applied algal enzymes in industrial applications, with annually growing demand. These algal enzymes have opened up new avenues for significant health advantages in reducing and treating oxidative stress, cardiovascular illness, tumors, microbial infections, and viral outbreaks. Despite their promising uses, commercial applications of algal enzymes face many difficulties, such as stability, toxicity, and lower data availability on specific and adequate catalytic mechanisms. Therefore, this review focuses on the algal enzyme types, their uses and advantages over other microbial enzymes, downstream and upstream processing, their commercial and marketing, and their challenges. With the constant development of novel enzymes and their uses, enzyme technology provides exciting options for several industrial sectors.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt; Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648, Alexandria.
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki 12622, Giza, Egypt
| | - Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Ibtisam Alali
- Department of Chemistry, College of Science, Jouf University, P.O. BOX 2014, Sakaka, Saudi Arabia
| | - Alaa Muqbil Alsirhani
- Department of Chemistry, College of Science, Jouf University, P.O. BOX 2014, Sakaka, Saudi Arabia
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Aliyah S Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Wafa Mazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
| |
Collapse
|
4
|
Sobhi M, Elsamahy T, Zhang Y, Zakaria E, Ren S, Gaballah MS, Zhu F, Hu X, Cui Y, Huo S. Adaptation of Chlorella vulgaris immobilization on rice straw with liquid manure to create a sustainable feedstock for biogas production and potential feed applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123050. [PMID: 39447360 DOI: 10.1016/j.jenvman.2024.123050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Rice straw (RS) is a widely available agricultural residue with significant potential for biogas production and feed applications; however, its poor digestibility and nutritional value limit its utilization. This study explores an innovative approach to enhance the digestibility and nutritional value of RS by cultivating Chlorella vulgaris through immobilization technology on RS, using liquid manure (LM) as an alternative to the traditional BG11 medium. The results showed an increase in chlorophyll a (Chl a) after 12 days for both the BG11 medium and LM-based treatments, from 0.13 to 0.34 and 0.24 mg Chl a/g product (DM), respectively. Additionally, the immobilized microalgal biomass increased to 284.18 and 170.14 mg algal biomass/g product (DM), respectively. Soaking under microaerobic conditions during cultivation led to the partial degradation of RS. This, combined with the formed microalgal biofilm, contributed to an improved digestibility of the dry matter, reaching 69.1% and 65.9% for the final products based on the BG11 medium and LM mediums, respectively, compared to 52.1% for the raw RS. Furthermore, the crude protein and lipids contents were significantly improved with the potential for applications in feed, reaching 21.4% and 4.1% for the BG11 medium-based product, while they were observed to be 12.8% and 3.0%, respectively, for the LM-based product. Additionally, carbon-to-nitrogen ratio was significantly reduced compared to the raw RS. The higher digestibility and improved nutritional value contributed to increased biogas production, reaching 129.3 and 118.7 mL/g (TS) for the products based on the traditional medium and LM medium, respectively, compared to 86.7 mL/g (TS) for the raw RS. The immobilization mechanism and biofilm development could be attributed to the roughness of the RS and extracellular polymer substances. This study demonstrates that integrating C. vulgaris cultivation on RS with LM as a nutrient source not only enhances the digestibility and nutritional value of RS but also offers a sustainable waste management solution with potential applications in biogas production and animal feed.
Collapse
Affiliation(s)
- Mostafa Sobhi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Alexandria University, Alexandria, 21545, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yajie Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Eman Zakaria
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Siyuan Ren
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mohamed S Gaballah
- School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI 48858, USA
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Raihan MT, Tanaka Y, Ishikawa T. Characterization of chloroplastic thioredoxin dependent glutathione peroxidase like protein in Euglena gracilis: biochemical and functional perspectives. Biosci Biotechnol Biochem 2024; 88:1034-1046. [PMID: 38925644 DOI: 10.1093/bbb/zbae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Euglena gracilis, a fascinating organism in the scientific realm, exhibits characteristics of both animals and plants. It maintains redox homeostasis through a variety of enzymatic and non-enzymatic antioxidant molecules. In contrast to mammals, Euglena possesses nonselenocysteine glutathione peroxidase homologues that regulate its intracellular pools of reactive oxygen species. In the present study, a full-length cDNA of chloroplastic EgGPXL-1 was isolated and subjected to biochemical and functional characterization. Recombinant EgGPXL-1 scavenged H2O2 and t-BOOH, utilizing thioredoxin as an electron donor rather than glutathione. Despite its monomeric nature, EgGPXL-1 exhibits allosteric behavior with H2O2 as the electron acceptor and follows typical Michaelis-Menten kinetics with t-BOOH. Suppression of EgGPXL-1 gene expression under normal and high-light conditions did not induce critical situations in E. gracilis, suggesting the involvement of compensatory mechanisms in restoring normal conditions.
Collapse
Affiliation(s)
- Md Topu Raihan
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Yasuhiro Tanaka
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
| | - Takahiro Ishikawa
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, Japan
| |
Collapse
|
6
|
Cid-Ibarra G, Rodríguez-Jasso RM, Rosero-Chasoy G, Belmares R, Carlos Contreras-Esquivel J, Machado-Cepeda S, Cabello-Galindo A, Ruiz HA. Microalgae Biomass Production from Rice Husk as Alternative Media Cultivation and Extraction of Phycocyanin Using 3D-Printed Ohmic Heating Reactor. Foods 2024; 13:1421. [PMID: 38731792 PMCID: PMC11083105 DOI: 10.3390/foods13091421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Phycocyanin is a highly valued pigment present in Spirulina platensis biomass with applications in the food industry in terms of biorefinery concepts; specifically, its antioxidant and antimicrobial capacity are an advantage that could be incorporated into a food matrix. This study aims to use rice husk as an alternative culture medium for S. platensis biomass growth and phycocyanin extraction by ohmic heating processing using a 3D-printed reactor. S. platensis was cultivated in rice husk extract (RHE) from 0-100% (v/v). The highest content of microalgal biomass was 1.75 ± 0.01 g/L, with a specific growth rate of 0.125 ± 0.01 h-1. For the phycocyanin extraction under an ohmic heating process, a 3D-printed reactor was designed and built. To optimize phycocyanin extraction, a central composite rotatable design (CCDR) was evaluated, with three factors: time (min), temperature (°C), and pH. The highest phycocyanin content was 75.80 ± 0.98 mg/g in S. platensis biomass grown with rice husk extract. Ohmic heating is a promising method for rapid phycocyanin extraction, and rice husk as a culture medium is an alternative for the growth of S. platensis biomass in the integration of second- and third-generation biorefineries.
Collapse
Affiliation(s)
- Gabriela Cid-Ibarra
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico (R.M.R.-J.); (S.M.-C.)
| | - Rosa M. Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico (R.M.R.-J.); (S.M.-C.)
| | - Gilver Rosero-Chasoy
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico (R.M.R.-J.); (S.M.-C.)
| | - Ruth Belmares
- Functional Foods and Nutrition Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico; (R.B.)
| | - Juan Carlos Contreras-Esquivel
- Laboratory of Applied Glycobiotechnology, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Samanta Machado-Cepeda
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico (R.M.R.-J.); (S.M.-C.)
| | - Alejandra Cabello-Galindo
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico (R.M.R.-J.); (S.M.-C.)
| | - Héctor A. Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico (R.M.R.-J.); (S.M.-C.)
| |
Collapse
|
7
|
Cardoso ACS, Azevedo RS, Brum RJ, Santos LO, Marins LF. Optimization of Recombinant Protein Production in Synechococcus elongatus PCC 7942: Utilizing Native Promoters and Magnetic Fields. Curr Microbiol 2024; 81:143. [PMID: 38627283 DOI: 10.1007/s00284-024-03672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
The cyanobacterium Synechococcus elongatus PCC 7942 holds significant potential as a biofactory for recombinant protein (RP) production due to its capacity to harness light energy and utilize CO2. This study aimed to enhance RP production by integration of native promoters and magnetic field application (MF) in S. elongatus PCC 7942. The psbA2 promoter, which responds to stress conditions, was chosen for the integration of the ZsGreen1 gene. Results indicated successful gene integration, affirming prior studies that showed no growth alterations in transgenic strains. Interestingly, exposure to 30 mT (MF30) demonstrated a increase in ZsGreen1 transcription under the psbA2 promoter, revealing the influence of MF on cyanobacterial photosynthetic machinery. This enhancement is likely attributed to stress-induced shifts in gene expression and enzyme activity. MF30 positively impacted photosystem II (PSII) without disrupting the electron transport chain, aligning with the "quantum-mechanical mechanism" theory. Notably, fluorescence levels and gene expression with application of 30 mT were significantly different from control conditions. This study showcases the efficacy of utilizing native promoters and MF for enhancing RP production in S. elongatus PCC 7942. Native promoters eliminate the need for costly exogenous inducers and potential cell stress. Moreover, the study expands the scope of optimizing RP production in photoautotrophic microorganisms, providing valuable insights for biotechnological applications.
Collapse
Affiliation(s)
- Arthur C S Cardoso
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Raíza S Azevedo
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Rayanne J Brum
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Lucielen O Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Luis F Marins
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil.
| |
Collapse
|
8
|
Mosibo OK, Ferrentino G, Udenigwe CC. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024; 13:733. [PMID: 38472846 DOI: 10.3390/foods13050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/04/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae are receiving increased attention in the food sector as a sustainable ingredient due to their high protein content and nutritional value. They contain up to 70% proteins with the presence of all 20 essential amino acids, thus fulfilling human dietary requirements. Microalgae are considered sustainable and environmentally friendly compared to traditional protein sources as they require less land and a reduced amount of water for cultivation. Although microalgae's potential in nutritional quality and functional properties is well documented, no reviews have considered an in-depth analysis of the pros and cons of their addition to foods. The present work discusses recent findings on microalgae with respect to their protein content and nutritional quality, placing a special focus on formulated food products containing microalgae proteins. Several challenges are encountered in the production, processing, and commercialization of foods containing microalgae proteins. Solutions presented in recent studies highlight the future research and directions necessary to provide solutions for consumer acceptability of microalgae proteins and derived products.
Collapse
Affiliation(s)
- Ornella Kongi Mosibo
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| | - Giovanna Ferrentino
- Faculty of Agriculture, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 9A7, Canada
| |
Collapse
|
9
|
Inam A, Oncu-Oner T, Deniz I. Algae in Biomedicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:147-163. [PMID: 38353867 DOI: 10.1007/5584_2024_795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Algae, which live in marine or freshwater, are photosynthetic organisms. They vary greatly in size, morphology, and degree of complexity of their body structures. Algae are generally divided into two main groups, microalgae, which are small in size, and macroalgae, which are larger in size. These aquatic organisms have rich and valuable compounds including sterols, polysaccharides, pigments, fatty acids, proteins, enzymes, minerals, and vitamins that could be used in different application fields due to their bioactive functions. In recent years, algae and their components have attracted interest in biomedicine and health applications as their bioactive components could show antioxidant, anticancer, anti-inflammatory, antiviral, antiangiogenic, antidiabetic, antiobesity, immunostimulatory, vaccine adjuvant, and hypolipidemic activities. In this chapter, these activities and bioactive components underlying these properties are reviewed.
Collapse
Affiliation(s)
- Aysegul Inam
- Bioengineering Department, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Yunusemre-Manisa, Turkey
| | - Tulay Oncu-Oner
- Bioengineering Department, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Yunusemre-Manisa, Turkey
| | - Irem Deniz
- Bioengineering Department, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Yunusemre-Manisa, Turkey.
| |
Collapse
|
10
|
Kolesovs S, Semjonovs P. Microalgal conversion of whey and lactose containing substrates: current state and challenges. Biodegradation 2023; 34:405-416. [PMID: 37329398 DOI: 10.1007/s10532-023-10033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Currently dairy processing by-products, such as whey, still propose a significant threat to the environment if unproperly disposed. Microalgal bioconversion of such lactose containing substrates can be used for production of valuable microalgae-derived bio-products as well as for significant reduction of environmental risks. Moreover, it could significantly reduce microalgae biomass production costs, being a significant obstacle in commercialization of many microalgae species. This review summarizes current knowledge on the use of lactose containing substrates, e.g. whey, for the production of value-added products by microalgae, including information on producer cultures, fermentation methods and cultivation conditions, bioprocess productivity and ability of microalgal cultures to produce β-galactosidases. It can be stated, that despite several limitations lactose-containing substrates can be successfully used for both-the production of microalgal biomass and removal of high amounts of excess nutrients from the cultivation media. Moreover, co-cultivation of microalgae and other microorganisms can further increase the removal of nutrients and the production of biomass. Further investigations on lactose metabolism by microalgae, selection of suitable strains and optimisation of the cultivation process is required in order to enable large-scale microalgae production on these substrates.
Collapse
Affiliation(s)
- Sergejs Kolesovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa Street 4, Riga, LV-1004, Latvia
| | - Pavels Semjonovs
- Laboratory of Industrial Microbiology and Food Biotechnology, Institute of Biology, University of Latvia, Ojara Vaciesa Street 4, Riga, LV-1004, Latvia.
| |
Collapse
|
11
|
Silva TAFDA, Silva PEDACE, Nascimento TP, Costa RMPB, Converti A, Porto ALF, Bezerra RP. Cost-effective fibrinolytic enzyme production by microalga Dunaliella tertiolecta using medium supplemented with corn steep liquor. AN ACAD BRAS CIENC 2023; 95:e20220552. [PMID: 37585969 DOI: 10.1590/0001-3765202320220552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/01/2022] [Indexed: 08/18/2023] Open
Abstract
A fibrinolytic enzyme from the microalga Dunaliella tertiolecta was produced under mixotrophic conditions using different corn steep liquor (CSL) concentrations ( 0 ≤ CLS ≤ 0.75%), purified using a combination of salting out and ion-exchange chromatography, and then biochemical characterized. Cultivation of this microalga using 0.5% CSL led to the highest maximum cell concentration (1.960±0.010 mg L-1) and cell productivity (0.140g L-1 day-1), besides a high fibrinolytic activity of the extract obtained by the homogenization method (102 ±1 U mL-1). The enzyme extracted from the microalgal biomass was 5-fold purified with a 20% yield and was found to have a specific activity of 670 U mg-1. The enzyme, whose molecular weight determined by fibrin zymography was 10 kDa, was shown to be stable at pH 3.0-9.0 and up to 70°C with optimal pH and temperature values of 8.0 and 50°C, respectively. When compared to other fibrinolytic enzymes, this protease stood out for its high fibrinolytic activity, which was enhanced by Fe2+, inhibited by Zn2+, Cu2+, Mg2+, and Ca2+, and strongly inhibited by phenylmethylsulfonyl fluoride, suggesting that it belongs to the serine metalloprotease family. Moreover, thanks to its thermal stability, the enzyme may be easily preserved and activated under high-temperature conditions.
Collapse
Affiliation(s)
- Túlio A F DA Silva
- Federal Rural University of Pernambuco-UFRPE, Department of Animal Morphology and Physiology, Dom Manoel de Medeiros Ave., s/n, Dois irmãos, 52171-900 Recife, PE, Brazil
| | - Páblo E DA C E Silva
- Federal University of Pernambuco-UFPE, Laboratory of Immunopathology Keizo Asami (LIKA), Prof. Moraes Ave., s/n, Várzea, 50670-901 Recife, PE, Brazil
| | - Thiago P Nascimento
- Federal University of Piauí, Campus Professora Cinobelina Elvas, Br 135, Km 3, Planalto Horizonte, 64900-000 Bom Jesus, PI, Brazil
| | - Romero M P B Costa
- University of Pernambuco-UPE, Institute of Biological Sciences, 310, Arnóbio Marquês St., Santo Amaro, 50100-130 Recife, PE, Brazil
| | - Attilio Converti
- University of Genoa, Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, via Opera Pia 15, 16145, 50100-130 Genoa, Italy
| | - Ana Lúcia F Porto
- Federal Rural University of Pernambuco-UFRPE, Department of Animal Morphology and Physiology, Dom Manoel de Medeiros Ave., s/n, Dois irmãos, 52171-900 Recife, PE, Brazil
- Federal University of Pernambuco-UFPE, Laboratory of Immunopathology Keizo Asami (LIKA), Prof. Moraes Ave., s/n, Várzea, 50670-901 Recife, PE, Brazil
| | - Raquel P Bezerra
- Federal Rural University of Pernambuco-UFRPE, Department of Animal Morphology and Physiology, Dom Manoel de Medeiros Ave., s/n, Dois irmãos, 52171-900 Recife, PE, Brazil
| |
Collapse
|
12
|
Serra GM, Siqueira AS, de Molfetta FA, Santos AV, Xavier LP. In Silico Analysis of a GH3 β-Glucosidase from Microcystis aeruginosa CACIAM 03. Microorganisms 2023; 11:microorganisms11040998. [PMID: 37110421 PMCID: PMC10146135 DOI: 10.3390/microorganisms11040998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/02/2023] [Accepted: 02/28/2023] [Indexed: 04/29/2023] Open
Abstract
Cyanobacteria are rich sources of secondary metabolites and have the potential to be excellent industrial enzyme producers. β-glucosidases are extensively employed in processing biomass degradation as they mediate the most crucial step of bioconversion of cellobiose (CBI), hence controlling the efficiency and global rate of biomass hydrolysis. However, the production and availability of these enzymes derived from cyanobacteria remains limited. In this study, we evaluated the β-glucosidase from Microcystis aeruginosa CACIAM 03 (MaBgl3) and its potential for bioconversion of cellulosic biomass by analyzing primary/secondary structures, predicting physicochemical properties, homology modeling, molecular docking, and simulations of molecular dynamics (MD). The results showed that MaBgl3 derives from an N-terminal domain folded as a distorted β-barrel, which contains the conserved His-Asp catalytic dyad often found in glycosylases of the GH3 family. The molecular docking results showed relevant interactions with Asp81, Ala271 and Arg444 residues that contribute to the binding process during MD simulation. Moreover, the MD simulation of the MaBgl3 was stable, shown by analyzing the root mean square deviation (RMSD) values and observing favorable binding free energy in both complexes. In addition, experimental data suggest that MaBgl3 could be a potential enzyme for cellobiose-hydrolyzing degradation.
Collapse
Affiliation(s)
- Gustavo Marques Serra
- Laboratório de Biotecnologia de Enzimas e Biotransformações, Instituto de Ciências Biológicas, Universidade Federal do Pará-UFPA, Belém 66075-110, Brazil
| | - Andrei Santos Siqueira
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará-UFPA, Belém 66075-110, Brazil
| | - Fábio Alberto de Molfetta
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará-UFPA, Belém 66075-10, Brazil
| | - Agenor Valadares Santos
- Laboratório de Biotecnologia de Enzimas e Biotransformações, Instituto de Ciências Biológicas, Universidade Federal do Pará-UFPA, Belém 66075-110, Brazil
| | - Luciana Pereira Xavier
- Laboratório de Biotecnologia de Enzimas e Biotransformações, Instituto de Ciências Biológicas, Universidade Federal do Pará-UFPA, Belém 66075-110, Brazil
| |
Collapse
|
13
|
Ghattavi S, Homaei A. Marine enzymes: Classification and application in various industries. Int J Biol Macromol 2023; 230:123136. [PMID: 36621739 DOI: 10.1016/j.ijbiomac.2023.123136] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
Oceans are regarded as a plentiful and sustainable source of biological compounds. Enzymes are a group of marine biomaterials that have recently drawn more attention because they are produced in harsh environmental conditions such as high salinity, extensive pH, a wide temperature range, and high pressure. Hence, marine-derived enzymes are capable of exhibiting remarkable properties due to their unique composition. In this review, we overviewed and discussed characteristics of marine enzymes as well as the sources of marine enzymes, ranging from primitive organisms to vertebrates, and presented the importance, advantages, and challenges of using marine enzymes with a summary of their applications in a variety of industries. Current biotechnological advancements need the study of novel marine enzymes that could be applied in a variety of ways. Resources of marine enzyme can benefit greatly for biotechnological applications duo to their biocompatible, ecofriendly and high effectiveness. It is beneficial to use the unique characteristics offered by marine enzymes to either develop new processes and products or improve existing ones. As a result, marine-derived enzymes have promising potential and are an excellent candidate for a variety of biotechnology applications and a future rise in the use of marine enzymes is to be anticipated.
Collapse
Affiliation(s)
- Saba Ghattavi
- Fisheries Department, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
14
|
Kaur M, Bhatia S, Gupta U, Decker E, Tak Y, Bali M, Gupta VK, Dar RA, Bala S. Microalgal bioactive metabolites as promising implements in nutraceuticals and pharmaceuticals: inspiring therapy for health benefits. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-31. [PMID: 36686403 PMCID: PMC9840174 DOI: 10.1007/s11101-022-09848-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The rapid increase in global population and shrinkage of agricultural land necessitates the use of cost-effective renewable sources as alternative to excessive resource-demanding agricultural crops. Microalgae seem to be a potential substitute as it rapidly produces large biomass that can serve as a good source of various functional ingredients that are not produced/synthesized inside the human body and high-value nonessential bioactive compounds. Microalgae-derived bioactive metabolites possess various bioactivities including antioxidant, anti-inflammatory, antimicrobial, anti-carcinogenic, anti-hypertensive, anti-lipidemic, and anti-diabetic activities, thereof rapidly elevating their demand as interesting option in pharmaceuticals, nutraceuticals and functional foods industries for developing new products. However, their utilization in these sectors has been limited. This demands more research to explore the functionality of microalgae derived functional ingredients. Therefore, in this review, we intended to furnish up-to-date knowledge on prospects of bioactive metabolites from microalgae, their bioactivities related to health, the process of microalgae cultivation and harvesting, extraction and purification of bioactive metabolites, role as dietary supplements or functional food, their commercial applications in nutritional and pharmaceutical industries and the challenges in this area of research. Graphical abstract
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Surekha Bhatia
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Urmila Gupta
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| | - Eric Decker
- Department of Food Science, University of Massachusetts, Amherst, MA USA
| | - Yamini Tak
- Agricultural Research Station, Agricultural University, Ummedganj, Kota India
| | - Manoj Bali
- Research & Development, Chemical Resources (CHERESO), Panchkula, Haryana India
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food & Biorefining and Advanced Materials Research Center, SRUC Barony Campus, Dumfries, Scotland, UK
| | - Rouf Ahmad Dar
- Sam Hiiginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh 211007 India
| | - Saroj Bala
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004 India
| |
Collapse
|
15
|
Yadav K, Vasistha S, Nawkarkar P, Kumar S, Rai MP. Algal biorefinery culminating multiple value-added products: recent advances, emerging trends, opportunities, and challenges. 3 Biotech 2022; 12:244. [PMID: 36033914 PMCID: PMC9402873 DOI: 10.1007/s13205-022-03288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/29/2022] [Indexed: 11/01/2022] Open
Abstract
Algal biorefinery is rising as a prominent solution to economically fulfill the escalating global requirement for nutrition, feed, fuel, and medicines. In recent years, scientific productiveness associated with microalgae-based studies has elaborated in multiplied aspects, while translation to the commercial level continues to be missing. The present microalgal biorefinery has a challenge in long-term viability due to escalated market price of algal-mediated biofuels and bioproducts. Advancements are required in a few aspects like improvement in algae processing, energy investment, and cost analysis of microalgae biorefinery. Therefore, it is essential to recognize the modern work by understanding the knowledge gaps and hotspots driving business scale up. The microalgae biorefinery integrated with energy-based products, bioactive and green compounds, focusing on a circular bioeconomy, is urgently needed. A detailed investigation of techno-economic analysis (TEA) and life cycle assessment (LCA) is important to increase the market value of algal products. This review discusses the valorization of algal biomass for the value-added application that holds a sustainable approach and cost-competitive algal biorefinery. The current industries, policies, technology transfer trends, challenges, and future economic outlook are discussed. This study is an overview through scientometric investigation attempt to describe the research development contributing to this rising field.
Collapse
Affiliation(s)
- Kushi Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201313 India
| | - Shrasti Vasistha
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201313 India
| | - Prachi Nawkarkar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Shashi Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Monika Prakash Rai
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh 201313 India
| |
Collapse
|
16
|
Kiki C, Qiu Y, Wang Q, Ifon BE, Qin D, Chabi K, Yu CP, Zhu YG, Sun Q. Induced aging, structural change, and adsorption behavior modifications of microplastics by microalgae. ENVIRONMENT INTERNATIONAL 2022; 166:107382. [PMID: 35803076 DOI: 10.1016/j.envint.2022.107382] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The effects of microalgal biofouling on microplastic (MP) may differ from bacterial biofouling. In this study, the influence of microalgae on MP surface alteration, structural change, and adsorption of organic micropollutants was evaluated. Virgin polyethylene (PE), polyvinyl chloride (PVC), and polyamide (PA) were each immersed in algal photobioreactor and river freshwater for 30 days to simulate algal and river microbe biofouling respectively. Consequently, their physicochemical changes and adsorption potential of a mixture of six bisphenol analogues (BPA, BPS, BPE, BPB, BPF, BPAF) and two parabens (propyl-paraben, benzyl-paraben) were investigated. Owing to the algal bioactive compounds, major microalgae-induced biofouling and more MP aging than the river microbe aging were observed through fractures, pits, cracks, and algal attachments. Intrusion of algal organic matter and scission of polymeric functional groups were revealed during microalgal immersion and the potential MP aging pathways were proposed. Algal biofouling considerably altered the intrinsic properties of the MPs, consequently the adsorption capacity of PE and PVC was enhanced by 3.04-6.72 and 2.14-8.72 times, respectively. Adsorption process onto algal-aged MPs was pH-dependent, endothermic, non-spontaneous, and favored by hydrogen bonds. Meanwhile, the amide group in PA structure was conducive to organic micropollutant adsorption, which was likely reduced by algal aging and the erosion of the N-H stretching. Moreover, higher adsorption capacities of organic micropollutants were shown by the algal-biofilm PE and PVC than virgin and river microbial biofilm MPs. This study discloses that, biofouling and aging of MPs by microalgae through their bioactive components would engender more incidences on MP properties, organic micropollutants adsorption with associated environmental and health hazards.
Collapse
Affiliation(s)
- Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China; National Institute of Water, University of Abomey-Calavi, 01 BP: 526, Cotonou, Benin
| | - Ying Qiu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qi Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Binessi Edouard Ifon
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Dan Qin
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kassim Chabi
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100043, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
17
|
Tan X, Wei H, Zhou Y, Zhang C, Ho SH. Adsorption of sulfamethoxazole via biochar: The key role of characteristic components derived from different growth stage of microalgae. ENVIRONMENTAL RESEARCH 2022; 210:112965. [PMID: 35218712 DOI: 10.1016/j.envres.2022.112965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Converting microalgal biomass residues into biochar (BC) after microalgal wastewater treatment is a popular approach that can produce an adsorbent to treat refractory organic pollutants. Moreover, the adsorption efficiency via BC is closely associated with the surface morphology, which may be determined by the composition of the microalgal biomass. However, the intrinsic relationship and advanced mechanism between the adsorption efficiency and microalgal composition have not been thoroughly investigated. In this work, four microalgal BCs were prepared from Chlamydomonas sp. QWY37 (CBC) after collection from four different growth stages of microalgal biomass during wastewater treatment. The adsorption performance for sulfamethoxazole indicates that the CBC collected in the mid-log phase (CBCL-M) possessed the best adsorption capacity (287.89 mg/g) owing to the higher decomposition of the microalgal cellular protein concentration (70%). Meanwhile, a higher protein content contributed to the largest specific surface area (42.16 m2/g), maximum pore volume (0.037 cm3/g) and abundant surface functional groups of the CBCL-M. Furthermore, based on the theoretical calculation of the structural analysis, the adsorption mechanism was a multilayer adsorption process in accordance with the Freundlich isotherm. Additionally, the strong hydrogen bond, electron donor-acceptor interaction and electrostatic attraction were the main adsorption mechanisms due to the carboxyl/ester functional groups. The results of this research provide a novel perspective on the reasonable harvest of microalgal biomass for BC fabrication and large-scale implementation of microalgal BC in future applications.
Collapse
Affiliation(s)
- Xuefei Tan
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150050, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Chinese Acad Sci, Dalian Inst Chem Phys, Dalian, 116023, PR China
| | - Huangzhao Wei
- Chinese Acad Sci, Dalian Inst Chem Phys, Dalian, 116023, PR China
| | - Yan Zhou
- President Office Harbin Medical University, Harbin, 150081, PR China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
18
|
Bentahar J, Deschênes J. Influence of sweet whey permeate utilization on
Tetradesmus obliquus
growth and β‐galactosidase production. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jihed Bentahar
- Département de mathématiques, d'informatique et de génie, Collectif de recherche appliquée aux bioprocédés et à la chimie de l'environnement (CRABE) Université du Québec à Rimouski Rimouski Québec Canada
| | - Jean‐Sébastien Deschênes
- Département de mathématiques, d'informatique et de génie, Collectif de recherche appliquée aux bioprocédés et à la chimie de l'environnement (CRABE) Université du Québec à Rimouski Rimouski Québec Canada
| |
Collapse
|
19
|
Abstract
Petroleum is the most common global fossil fuel. It is a complex multi-component system mainly composed of various hydrocarbons such as alkanes, cycloalkanes, mono-, bi- and polyaromatic compounds, resins and asphaltenes. In spite of humanity’s need for petroleum, it negatively affects the environment due to its toxicity. The ecological problem is especially serious at petroleum mining sites or during petroleum transportation. Since it is not possible to replace petroleum with less toxic fuel, ways to reduce the toxic impact of petroleum hydrocarbons on the environment need to be developed. This review addresses bioremediation, a biological approach to petroleum degradation, which is mainly performed by microbes. The pathways of degradation of alkanes, alkenes and aromatic hydrocarbons are presented in detail. The effects of temperature, aeration and the presence of biogenic elements on microbial degradation of petroleum are discussed. Plant–microbe interactions involved with the bioremediation of petroleum-polluted soils are specifically addressed. The data presented in this review point to the great potential of bioremediation practices for cleaning soils of petroleum.
Collapse
|
20
|
Gkioni MD, Andriopoulos V, Koutra E, Hatziantoniou S, Kornaros M, Lamari FN. Ultrasound-Assisted Extraction of Nannochloropsis oculata with Ethanol and Betaine: 1,2-Propanediol Eutectic Solvent for Antioxidant Pigment-Rich Extracts Retaining Nutritious the Residual Biomass. Antioxidants (Basel) 2022; 11:antiox11061103. [PMID: 35740000 PMCID: PMC9220189 DOI: 10.3390/antiox11061103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was the development of an efficient “green” extraction method of Nannochloropsis oculata to produce antioxidant extracts and nutritious residual biomass. Twenty-one extraction methods were evaluated by measuring the reactivity with the Folin–Ciocalteu reagent: ultrasonication or maceration at different temperatures with different organic solvents, extraction at different pH values, enzyme-assisted extraction, encapsulation with β-cyclodextrin, and the use of natural deep eutectic solvents. Ultrasound-assisted extraction with ethanol or betaine: 1,2-propanediol in a molar ratio of 2:5 (BP) had optimal extractive capacity. Both extracts were evaluated with antioxidant assays and the ethanol extract exhibited significantly higher (at least twofold) values. The determination of carotenoids by LC-MS and HPLC-DAD revealed the dominance of violaxanthin and antheraxanthin and their fourfold higher concentrations in the ethanol extract. The 1H-NMR characterization of the ethanol extract confirmed the results of the colorimetric and chromatographic assays. The microalgal biomass was characterized before and after the extraction in terms of humidity, ash, carbohydrates, proteins, chlorophyll-a, carotenoids, and lipids; the identity and content of the latter were determined with gas chromatography. BP caused a smaller depletion of the lipids from the biomass compared to ethanol, but proteins, carbohydrates, and ash were at a higher content in the biomass obtained after ethanol extraction, whereas the biomass was dry and easy to handle. Although further optimization may take place for the scale-up of those procedures, our study paves the way for a green strategy for the valorization of microalgae in cosmetics without generating waste, since the remaining biomass can be used for aquafeed.
Collapse
Affiliation(s)
- Maria D. Gkioni
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (M.D.G.); (S.H.)
| | - Vasilis Andriopoulos
- Department of Chemical Engineering, School of Engineering, University of Patras, 26504 Patras, Greece; (V.A.); (E.K.); (M.K.)
| | - Eleni Koutra
- Department of Chemical Engineering, School of Engineering, University of Patras, 26504 Patras, Greece; (V.A.); (E.K.); (M.K.)
| | - Sophia Hatziantoniou
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (M.D.G.); (S.H.)
| | - Michael Kornaros
- Department of Chemical Engineering, School of Engineering, University of Patras, 26504 Patras, Greece; (V.A.); (E.K.); (M.K.)
| | - Fotini N. Lamari
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (M.D.G.); (S.H.)
- Correspondence: ; Tel.: +30-2610962335
| |
Collapse
|
21
|
López-Sánchez A, Silva-Gálvez AL, Aguilar-Juárez Ó, Senés-Guerrero C, Orozco-Nunnelly DA, Carrillo-Nieves D, Gradilla-Hernández MS. Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114612. [PMID: 35149401 DOI: 10.1016/j.jenvman.2022.114612] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The intensive livestock activities that are carried out worldwide to feed the growing human population have led to significant environmental problems, such as soil degradation, surface and groundwater pollution. Livestock wastewater (LW) contains high loads of organic matter, nitrogen (N) and phosphorus (P). These compounds can promote cultural eutrophication of water bodies and pose environmental and human hazards. Therefore, humanity faces an enormous challenge to adequately treat LW and avoid the overexploitation of natural resources. This can be accomplished through circular bioeconomy approaches, which aim to achieve sustainable production using biological resources, such as LW, as feedstock. Circular bioeconomy uses innovative processes to produce biomaterials and bioenergy, while lowering the consumption of virgin resources. Microalgae-based wastewater treatment (MbWT) has recently received special attention due to its low energy demand, the robust capacity of microalgae to grow under different environmental conditions and the possibility to recover and transform wastewater nutrients into highly valuable bioactive compounds. Some of the high-value products that may be obtained through MbWT are biomass and pigments for human food and animal feed, nutraceuticals, biofuels, polyunsaturated fatty acids, carotenoids, phycobiliproteins and fertilizers. This article reviews recent advances in MbWT of LW (including swine, cattle and poultry wastewater). Additionally, the most significant factors affecting nutrient removal and biomass productivity in MbWT are addressed, including: (1) microbiological aspects, such as the microalgae strain used for MbWT and the interactions between microbial populations; (2) physical parameters, such as temperature, light intensity and photoperiods; and (3) chemical parameters, such as the C/N ratio, pH and the presence of inhibitory compounds. Finally, different strategies to enhance nutrient removal and biomass productivity, such as acclimation, UV mutagenesis and multiple microalgae culture stages (including monocultures and multicultures) are discussed.
Collapse
Affiliation(s)
- Anaid López-Sánchez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Ana Laura Silva-Gálvez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | - Óscar Aguilar-Juárez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Mexico
| | - Carolina Senés-Guerrero
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico
| | | | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. General Ramón Corona 2514, Nuevo México, Zapopan, Jalisco, Mexico.
| | | |
Collapse
|
22
|
Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041924] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, microalgae and cyanobacteria have become a promising and sustainable source of useful products, thanks to their richness in bioactive metabolites of high value (antibiotics, toxins, pharmaceutically active compounds, plant growth regulators, and others). These photoautotroph microorganisms generate biomass using photosynthesis. This review, which distinguishes microalgae and Cyanobacteria, often called blue-green microalgae, aims to present their classification and taxonomic diversity as the ecological niches occupied by them. In addition, the usages of open ponds and photobioreactors to produce various microalgae and Cyanobacteria strains and the high-value bioactive compounds from these microorganisms are summarized. Finally, the numerous commercial applications of these phytoplanktons in different fields, such as food, dietary supplements, feed, cosmetic, and biofuel applications, are reviewed.
Collapse
|
23
|
Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord. mSystems 2021; 6:e0057521. [PMID: 34904860 PMCID: PMC8670421 DOI: 10.1128/msystems.00575-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean’s interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details that regulate carbon cycling across depths remain little explored. As stratification in fjords has made them attractive models to explore patterns in biological oceanography, we here analyzed bacterial and archaeal transcription in samples from five depth layers in the Gullmar Fjord, Sweden. Transcriptional variation over depth correlated with gradients in chlorophyll a and nutrient concentrations. Differences in transcription between sampling dates (summer and early autumn) were strongly correlated with ammonium concentrations, which potentially was linked with a stronger influence of (micro-)zooplankton grazing in summer. Transcriptional investment in carbohydrate-active enzymes (CAZymes) decreased with depth and shifted toward peptidases, partly a result of elevated CAZyme transcription by Flavobacteriales, Cellvibrionales, and Synechococcales at 2 to 25 m and a dominance of peptidase transcription by Alteromonadales and Rhodobacterales from 50 m down. In particular, CAZymes for chitin, laminarin, and glycogen were important. High levels of transcription of ammonium transporter genes by Thaumarchaeota at depth (up to 18% of total transcription), along with the genes for ammonia oxidation and CO2 fixation, indicated that chemolithoautotrophy contributed to the carbon flux in the fjord. The taxon-specific expression of functional genes for processing of the marine pool of dissolved organic matter and inorganic nutrients across depths emphasizes the importance of different microbial foraging mechanisms over spatiotemporal scales for shaping biogeochemical cycles. IMPORTANCE It is generally recognized that stratification in the ocean strongly influences both the community composition and the distribution of ecological functions of microbial communities, which in turn are expected to shape the biogeochemical cycling of essential elements over depth. Here, we used metatranscriptomics analysis to infer molecular detail on the distribution of gene systems central to the utilization of organic matter in a stratified marine system. We thereby uncovered that pronounced shifts in the transcription of genes encoding CAZymes, peptidases, and membrane transporters occurred over depth among key prokaryotic orders. This implies that sequential utilization and transformation of organic matter through the water column is a key feature that ultimately influences the efficiency of the biological carbon pump.
Collapse
|
24
|
Szczepanczyk M, Ruzgas T, Gullfot F, Gustafsson A, Björklund S. Catalase Activity in Keratinocytes, Stratum Corneum, and Defatted Algae Biomass as a Potential Skin Care Ingredient. Biomedicines 2021; 9:1868. [PMID: 34944684 PMCID: PMC8699009 DOI: 10.3390/biomedicines9121868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
The generation of reactive oxygen species presents a destructive challenge for the skin organ and there is a clear need to advance skin care formulations aiming at alleviating oxidative stress. The aim of this work was to characterize the activity of the antioxidative enzyme catalase in keratinocytes and in the skin barrier (i.e., the stratum corneum). Further, the goal was to compare the activity levels with the corresponding catalase activity found in defatted algae biomass, which may serve as a source of antioxidative enzymes, as well as other beneficial algae-derived molecules, to be employed in skin care products. For this, an oxygen electrode-based method was employed to determine the catalase activity and the apparent kinetic parameters for purified catalase, as well as catalase naturally present in HaCaT keratinocytes, excised stratum corneum samples collected from pig ears with various amounts of melanin, and defatted algae biomass from the diatom Phaeodactylum tricornutum. Taken together, this work illustrates the versatility of the oxygen electrode-based method for characterizing catalase function in samples with a high degree of complexity and enables the assessment of sample treatment protocols and comparisons between different biological systems related to the skin organ or algae-derived materials as a potential source of skin care ingredients for combating oxidative stress.
Collapse
Affiliation(s)
- Michal Szczepanczyk
- Department of Biomedical Science, Malmö University, 214 32 Malmö, Sweden; (M.S.); (T.R.); (A.G.)
- Biofilms-Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden
- Simris Alg AB, 276 50 Hammenhög, Sweden;
| | - Tautgirdas Ruzgas
- Department of Biomedical Science, Malmö University, 214 32 Malmö, Sweden; (M.S.); (T.R.); (A.G.)
- Biofilms-Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden
| | | | - Anna Gustafsson
- Department of Biomedical Science, Malmö University, 214 32 Malmö, Sweden; (M.S.); (T.R.); (A.G.)
- Biofilms-Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science, Malmö University, 214 32 Malmö, Sweden; (M.S.); (T.R.); (A.G.)
- Biofilms-Research Center for Biointerfaces, Malmö University, 214 32 Malmö, Sweden
| |
Collapse
|
25
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
26
|
Biorefinery of exhausted olive pomace through the production of polygalacturonases and omega-3 fatty acids by Crypthecodinium cohnii. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Markou G. Bioprocess Optimization for the Production of Arthrospira (Spirulina) platensis Biomass Enriched in the Enzyme Alkaline Phosphatase. Bioengineering (Basel) 2021; 8:142. [PMID: 34677215 PMCID: PMC8533315 DOI: 10.3390/bioengineering8100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022] Open
Abstract
The enzyme alkaline phosphatase (ALP) is gaining interest because it exerts bioactive properties and may be a potentially important therapeutic agent for many disorders and diseases. Microalgae are considered an important novel source for the production of diverse bio-compounds and are gaining momentum as functional foods/feeds supplements. So far, studies for the production of ALP are limited to mammalian and partly to some heterotrophic microbial sources after its extraction and/or purification. Methods: Arthrospira was cultivated under P-limitation bioprocess and the effect of the P-limitation degree on the ALP enrichment was studied. The aim of this work was to optimize the cultivation of the edible and generally-recognized-as-safe (GRAS) cyanobacterium Arthrospira platensis for the production of single-cell (SC) biomass enriched in ALP as a potential novel functional diet supplement. Results: The results revealed that the relationship between intracellular-P and single-cell alkaline phosphatase (SC-ALP) activity was inverse; SC-ALP activity was the highest (around 50 U g-1) when intracellular-P was the lowest possible (around 1.7 mg-P g-1) and decreased gradually as P availability increased reaching around 0.5 U g-1 in the control cultures. Under the strongest P-limited conditions, a more than 100-fold increase in SC-ALP activity was obtained; however, protein content of A. platensis decreased significantly (around 22-23% from 58%). Under a moderate P-limitation degree (at intracellular-P of 3.6 mg-P g-1), there was a relatively high SC-ALP activity (>28 U g-1) while simultaneously, a relative high protein content (46%) was attained, which reflects the possibility to produce A. platensis enriched in ALP retaining though its nutritional value as a protein rich biomass source. The paper presents also results on how several parameters of the ALP activity assay, such as pH, temperature etc., and post-harvest treatment (hydrothermal treatment and biomass drying), influence the SC-ALP activity.
Collapse
Affiliation(s)
- Giorgos Markou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter, L. Sof. Venizelou 1, 14123 Lykovrysi, Greece
| |
Collapse
|
28
|
Production of Omega-3 Fatty Acids from the Microalga Crypthecodinium cohnii by Utilizing Both Pentose and Hexose Sugars from Agricultural Residues. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The core objective of this work was to take advantage of the unexploited wheat straw biomass, currently considered as a broadly available waste stream from the Greek agricultural sector, towards the integrated valorization of sugar streams for the microbial production of polyunsaturated omega-3 fatty acids (PUFAs). The OxiOrganosolv pretreatment process was applied using acetone and ethanol as organic solvents without any additional catalyst. The results proved that both cellulose-rich solid pulp and hemicellulosic oligosaccharides-rich aqueous liquid fraction after pretreatment can be efficiently hydrolyzed enzymatically, thus resulting in high yields of fermentable monosaccharides. The latter were supplied as carbon sources to the heterotrophic microalga Crypthecodinium cohnii for the production of PUFAs, more specifically docosahexaenoic acid (DHA). The solid fractions consisted mainly of hexose sugars and led to higher DHA productivity than their pentose-rich liquid counterparts, which can be attributed to the different carbon source and C/N ratio in the two streams. The best performance was obtained with the solid pulp pretreated with ethanol at 160 °C for 120 min and an O2 pressure of 16 bar. The total fatty acids content reached 70.3 wt% of dried cell biomass, of which 32.2% was DHA. The total DHA produced was 7.1 mg per g of untreated wheat straw biomass.
Collapse
|
29
|
Ben Hlima H, Karray A, Dammak M, Elleuch F, Michaud P, Fendri I, Abdelkafi S. Production and structure prediction of amylases from Chlorella vulgaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51046-51059. [PMID: 33973124 DOI: 10.1007/s11356-021-14357-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Amylases are enzymes required for starch degradation and are naturally produced by many microorganisms. These enzymes are used in several fields such as food processing, beverage, and medicine as well as in the formulation of enzymatic detergents proving their significance in modern biotechnology. In this study, a three-stage growth mode was applied to enhance starch production and amylase detection from Chlorella vulgaris. Stress conditions applied in the second stage of cultivation led to an accumulation of proteins (75% DW) and starch (21% DW) and a decrease in biomass. Amylase activities were detected and they showed high production levels especially on day 3 (35 U/ml) and day 5 (22.5 U/ml) of the second and third stages, respectively. The bioinformatic tools used to seek amylase protein sequences from TSA database of C. vulgaris revealed 7 putative genes encoding for 4 α-amylases, 2 β-amylases, and 1 isoamylase. An in silico investigation showed that these proteins are different in their lengths as well as in their cellular localizations and oligomeric states though they share common features like CSRs of GH13 family or active site of GH14 family. In brief, this study allowed for the production and in silico characterization of amylases from C. vulgaris.
Collapse
Affiliation(s)
- Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3018, Sfax, Tunisia
| | - Mouna Dammak
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Fatma Elleuch
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Plantes Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
30
|
Marques IM, Oliveira ACV, de Oliveira OMC, Sales EA, Moreira ÍTA. A photobioreactor using Nannochloropsis oculata marine microalgae for removal of polycyclic aromatic hydrocarbons and sorption of metals in produced water. CHEMOSPHERE 2021; 281:130775. [PMID: 34015656 DOI: 10.1016/j.chemosphere.2021.130775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The objective of the present work is to evaluate the potential of the removal of PAHs and metal sorption for the treatment of petroleum produced water using a photobioreactor system with Nannochloropsis oculata microalgae. A set of photobioreactors with different gradients of produced water concentration diluted in saline water was designed, establishing five gradients (v/v): 0, 25, 50, 75 and 100%. These concentrations were established to test the removal of PAHs. The microalgal growth was monitored daily, noting the adaptation of microalgae to the addition of produced water as a culture medium, with cell growth of 5.24 × 107 cells mL-1 from 25% (v/v), 4.09 × 107 cells mL-1 from 50% (v/v), 2.77 × 107 cells mL-1 from 75% (v/v), and 1.17 × 107 cells mL-1 from 100%. The total removal efficiency of PAHs in the produced water was 94%. Organic compounds such as naphthalene, benzo(a)pyrene, benzo(b)fluoranthene, and acenaphthylene showed higher removal percentages, between 89 and 99% efficiency in produced water. Iron and zinc were the metals detected in the water produced, and iron reduced from 1.57 ± 0.08 mg L-1 to <0.1 mg L-1 after 28 days of cultivation, whereas zinc increased by 0.23 ± 0.05 to 3.90 ± 0.46 mg L-1. The PAHs removal may have occurred in two ways, by intracellular bioaccumulation or biodegradation by oxidoreductase enzymes. 0.2 g of dry biomass with maximum extraction of oil obtained 3.07% and generation of 3.70% of protein was considered as value-added products for biodiesel and bioplastics.
Collapse
Affiliation(s)
- Isadora Machado Marques
- Federal University of Bahia, Department of Environmental Engineering, R. Prof. Aristídes Novis, 2- Federação, 40210-630, Salvador, BA, Brazil
| | | | | | - Emerson Andrade Sales
- Federal University of Bahia, Department of Environmental Engineering, R. Prof. Aristídes Novis, 2- Federação, 40210-630, Salvador, BA, Brazil
| | - Ícaro Thiago Andrade Moreira
- Federal University of Bahia, Department of Environmental Engineering, R. Prof. Aristídes Novis, 2- Federação, 40210-630, Salvador, BA, Brazil.
| |
Collapse
|
31
|
Gao X, Liu L, Cui L, Zheng T, Ji B, Liu K. Characterization of two β-galactosidases LacZ and WspA1 from Nostoc flagelliforme with focus on the latter's central active region. Sci Rep 2021; 11:18448. [PMID: 34531460 PMCID: PMC8445988 DOI: 10.1038/s41598-021-97929-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022] Open
Abstract
The identification and characterization of new β-galactosidases will provide diverse candidate enzymes for use in food processing industry. In this study, two β-galactosidases, Nf-LacZ and WspA1, from the terrestrial cyanobacterium Nostoc flagelliforme were heterologously expressed in Escherichia coli, followed by purification and biochemical characterization. Nf-LacZ was characterized to have an optimum activity at 40 °C and pH 6.5, different from that (45 °C and pH 8.0) of WspA1. Two enzymes had a similar Michaelis constant (Km = 0.5 mmol/liter) against the substrate o-nitrophenyl-β-D-galactopyranoside. Their activities could be inhibited by galactostatin bisulfite, with IC50 values of 0.59 µM for Nf-LacZ and 1.18 µM for WspA1, respectively. Gel filtration analysis suggested that the active form of WspA1 was a dimer, while Nf-LacZ was functional as a larger multimer. WspA1 was further characterized by the truncation test, and its minimum central region was found to be from residues 188 to 301, having both the glycosyl hydrolytic and transgalactosylation activities. Finally, transgenic analysis with the GFP reporter protein found that the N-terminus of WspA1 (35 aa) might play a special role in the export of WspA1 from cells. In summary, this study characterized two cyanobacterial β-galactosidases for potential applications in food industry.
Collapse
Affiliation(s)
- Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China. .,School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
| | - Litao Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lijuan Cui
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Tao Zheng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Ke Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
32
|
Kholssi R, Ramos PV, Marks EA, Montero O, Rad C. 2Biotechnological uses of microalgae: A review on the state of the art and challenges for the circular economy. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Insights into the technology utilized to cultivate microalgae in dairy effluents. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Roy UK, Nielsen BV, Milledge JJ. Tuning Dunaliella tertiolecta for Enhanced Antioxidant Production by Modification of Culture Conditions. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:482-500. [PMID: 34195924 PMCID: PMC8270869 DOI: 10.1007/s10126-021-10041-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
Microalgae, a popular source of food and bioactive compounds, accumulate antioxidants in response to culture condition stresses. Using a factorial design (3 × 3), the effect of light, temperature, and nitrogen level on chlorophyll and carotenoids, total protein, total phenolic, ascorbate and glutathione content, and enzyme (catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD)) activities in Dunaliella tertiolecta was studied. Data were analysed using Design of Experiments (DoE), and recommendations are made for optimum cultivation conditions to achieve the highest antioxidant content (phenolics, ascorbate and glutathione) or enzyme (CAT, SOD, and POD) activities. This is the first study to apply three levels of three factors during cultivation to tune Dunaliella tertiolecta for optimal antioxidant production.
Collapse
Affiliation(s)
- Uttam K Roy
- School of Architecture, Building and Civil Engineering, Loughborough University, Epinal Way Leicestershire, Loughborough, LE11 3TU, United Kingdom.
- Algae Biotechnology Research Group, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, England, United Kingdom.
| | - Birthe V Nielsen
- Algae Biotechnology Research Group, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, England, United Kingdom
| | - John J Milledge
- Algae Biotechnology Research Group, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, England, United Kingdom
| |
Collapse
|
35
|
Chalima A, de Castro LF, Burgstaller L, Sampaio P, Carolas AL, Gildemyn S, Velghe F, Ferreira BS, Pais C, Neureiter M, Dietrich T, Topakas E. Waste-derived volatile fatty acids as carbon source for added-value fermentation approaches. FEMS Microbiol Lett 2021; 368:6283741. [PMID: 34036336 DOI: 10.1093/femsle/fnab054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
The establishment of a sustainable circular bioeconomy requires the effective material recycling from biomass and biowaste beyond composting/fertilizer or anaerobic digestion/bioenergy. Recently, volatile fatty acids attracted much attention due to their potential application as carbon source for the microbial production of high added-value products. Their low-cost production from different types of wastes through dark fermentation is a key aspect, which will potentially lead to the sustainable production of fuels, materials or chemicals, while diminishing the waste volume. This article reviews the utilization of a volatile fatty acid platform for the microbial production of polyhydroxyalkanoates, single cell oil and omega-3 fatty acids, giving emphasis on the fermentation challenges for the efficient implementation of the bioprocess and how they were addressed. These challenges were addressed through a research project funded by the European Commission under the Horizon 2020 programme entitled 'VOLATILE-Biowaste derived volatile fatty acid platform for biopolymers, bioactive compounds and chemical building blocks'.
Collapse
Affiliation(s)
- Angelina Chalima
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Laura Fernandez de Castro
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Leonardo Da Vinci 1, 01510 Miñano, Álava, Spain
| | - Lukas Burgstaller
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ana Lúcia Carolas
- Biotrend SA - Biocant Park, Núcleo 04, Lote 2, 3060-197 Cantanhede, Portugal
| | | | | | | | - Celia Pais
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Markus Neureiter
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Thomas Dietrich
- TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Álava, Leonardo Da Vinci 1, 01510 Miñano, Álava, Spain
| | - Evangelos Topakas
- Industrial Biotechnology and Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
36
|
Kiran BR, Venkata Mohan S. Microalgal Cell Biofactory-Therapeutic, Nutraceutical and Functional Food Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:836. [PMID: 33919450 PMCID: PMC8143517 DOI: 10.3390/plants10050836] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022]
Abstract
Microalgae are multifaceted photosynthetic microorganisms with emerging business potential. They are present ubiquitously in terrestrial and aquatic environments with rich species diversity and are capable of producing significant biomass. Traditionally, microalgal biomass is being used as food and feed in many countries around the globe. The production of microalgal-based bioactive compounds at an industrial scale through biotechnological interventions is gaining interest more recently. The present review provides a detailed overview of the key algal metabolites, which plays a crucial role in nutraceutical, functional foods, and animal/aquaculture feed industries. Bioactive compounds of microalgae known to exhibit antioxidant, antimicrobial, antitumor, and immunomodulatory effects were comprehensively reviewed. The potential microalgal species and biological extracts against human pathogens were also discussed. Further, current technologies involved in upstream and downstream bioprocessing including cultivation, harvesting, and cell disruption were documented. Establishing microalgae as an alternative supplement would complement the sustainable and environmental requirements in the framework of human health and well-being.
Collapse
Affiliation(s)
| | - S. Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India;
| |
Collapse
|
37
|
Prospects of Microalgae for Biomaterial Production and Environmental Applications at Biorefineries. SUSTAINABILITY 2021. [DOI: 10.3390/su13063063] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microalgae are increasingly viewed as renewable biological resources for a wide range of chemical compounds that can be used as or transformed into biomaterials through biorefining to foster the bioeconomy of the future. Besides the well-established biofuel potential of microalgae, key microalgal bioactive compounds, such as lipids, proteins, polysaccharides, pigments, vitamins, and polyphenols, possess a wide range of biomedical and nutritional attributes. Hence, microalgae can find value-added applications in the nutraceutical, pharmaceutical, cosmetics, personal care, animal food, and agricultural industries. Microalgal biomass can be processed into biomaterials for use in dyes, paints, bioplastics, biopolymers, and nanoparticles, or as hydrochar and biochar in solid fuel cells and soil amendments. Equally important is the use of microalgae in environmental applications, where they can serve in heavy metal bioremediation, wastewater treatment, and carbon sequestration thanks to their nutrient uptake and adsorptive properties. The present article provides a comprehensive review of microalgae specifically focused on biomaterial production and environmental applications in an effort to assess their current status and spur further deployment into the commercial arena.
Collapse
|
38
|
Moog D, Zarzycki J, Rexer KH, Erb TJ, Maier UG. Engineering microalgae as a whole cell catalyst for PET degradation. Methods Enzymol 2021; 648:435-455. [PMID: 33579415 DOI: 10.1016/bs.mie.2020.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Plastic pollution has become a serious issue on Earth. Although efficient industrial recycling processes exist, a significant fraction of plastic waste still ends up in nature, where it can endure for centuries. Slow mechanical and chemical decay lead to the formation of micro- and nanoplastics, which are washed from land into rivers and finally end up in the oceans. As such particles cannot be efficiently removed from the environment, biological degradation mechanisms are highly desirable. Several enzymes have been described that are capable of degrading certain plastic materials such as polyethylene terephthalate (PET). Such enzymes have a huge potential for future biotechnology applications. However, they require model systems that can be efficiently adapted to very specific conditions. Here, we present detailed instructions, how to convert the model diatom Phaeodactylum into a solar-fueled microbial cell factory for PETase expression, resulting in a whole cell catalyst for PET degradation at moderate temperatures under saltwater conditions.
Collapse
Affiliation(s)
- Daniel Moog
- Laboratory for Cell Biology, University of Marburg, Marburg, Germany; SYNMIKRO Research Center, Marburg, Germany.
| | - Jan Zarzycki
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Karl-Heinz Rexer
- Department for Evolutionary Ecology of Plants, University of Marburg, Marburg, Germany
| | - Tobias J Erb
- SYNMIKRO Research Center, Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Uwe G Maier
- Laboratory for Cell Biology, University of Marburg, Marburg, Germany; SYNMIKRO Research Center, Marburg, Germany
| |
Collapse
|
39
|
Benedetti M, Barera S, Longoni P, Guardini Z, Herrero Garcia N, Bolzonella D, Lopez‐Arredondo D, Herrera‐Estrella L, Goldschmidt‐Clermont M, Bassi R, Dall’Osto L. A microalgal-based preparation with synergistic cellulolytic and detoxifying action towards chemical-treated lignocellulose. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:124-137. [PMID: 32649019 PMCID: PMC7769238 DOI: 10.1111/pbi.13447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 05/28/2023]
Abstract
High-temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesophilic enzymes. Here, we report on the development of a platform to produce four different thermostable cell wall degrading enzymes in the chloroplast of Chlamydomonas reinhardtii. The enzyme blend was composed of the cellobiohydrolase CBM3GH5 from C. saccharolyticus, the β-glucosidase celB from P. furiosus, the endoglucanase B and the endoxylanase XynA from T. neapolitana. In addition, transplastomic microalgae were engineered for the expression of phosphite dehydrogenase D from Pseudomonas stutzeri, allowing for growth in non-axenic media by selective phosphite nutrition. The cellulolytic blend composed of the glycoside hydrolase (GH) domain GH12/GH5/GH1 allowed the conversion of alkaline-treated lignocellulose into glucose with efficiencies ranging from 14% to 17% upon 48h of reaction and an enzyme loading of 0.05% (w/w). Hydrolysates from treated cellulosic materials with extracts of transgenic microalgae boosted both the biogas production by methanogenic bacteria and the mixotrophic growth of the oleaginous microalga Chlorella vulgaris. Notably, microalgal treatment suppressed the detrimental effect of inhibitory by-products released from the alkaline treatment of biomass, thus allowing for efficient assimilation of lignocellulose-derived sugars by C. vulgaris under mixotrophic growth.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
- Present address:
Dipartimento MESVAUniversità dell'AquilaCoppitoAQItaly
| | - Simone Barera
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Paolo Longoni
- Faculty of ScienceInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Zeno Guardini
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | | | | | - Damar Lopez‐Arredondo
- StelaGenomics MexicoS de RL de CVIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | - Luis Herrera‐Estrella
- Laboratorio Nacional de Genómica para la BiodiversidadCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | | | - Roberto Bassi
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Luca Dall’Osto
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| |
Collapse
|
40
|
Barros PDSD, Silva PECE, Nascimento TP, Costa RMPB, Bezerra RP, Porto ALF. Fibrinolytic enzyme from Arthrospira platensis cultivated in medium culture supplemented with corn steep liquor. Int J Biol Macromol 2020; 164:3446-3453. [DOI: 10.1016/j.ijbiomac.2020.08.217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
|
41
|
|
42
|
Nguyen TT, Heimann K, Zhang W. Protein Recovery from Underutilised Marine Bioresources for Product Development with Nutraceutical and Pharmaceutical Bioactivities. Mar Drugs 2020; 18:E391. [PMID: 32727001 PMCID: PMC7460389 DOI: 10.3390/md18080391] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/07/2023] Open
Abstract
The global demand for dietary proteins and protein-derived products are projected to dramatically increase which cannot be met using traditional protein sources. Seafood processing by-products (SPBs) and microalgae are promising resources that can fill the demand gap for proteins and protein derivatives. Globally, 32 million tonnes of SPBs are estimated to be produced annually which represents an inexpensive resource for protein recovery while technical advantages in microalgal biomass production would yield secure protein supplies with minimal competition for arable land and freshwater resources. Moreover, these biomaterials are a rich source of proteins with high nutritional quality while protein hydrolysates and biopeptides derived from these marine proteins possess several useful bioactivities for commercial applications in multiple industries. Efficient utilisation of these marine biomaterials for protein recovery would not only supplement global demand and save natural bioresources but would also successfully address the financial and environmental burdens of biowaste, paving the way for greener production and a circular economy. This comprehensive review analyses the potential of using SPBs and microalgae for protein recovery and production critically assessing the feasibility of current and emerging technologies used for the process development. Nutritional quality, functionalities, and bioactivities of the extracted proteins and derived products together with their potential applications for commercial product development are also systematically summarised and discussed.
Collapse
Affiliation(s)
| | - Kirsten Heimann
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Health Science Building, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia;
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Health Science Building, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia;
| |
Collapse
|
43
|
Meghwanshi GK, Kaur N, Verma S, Dabi NK, Vashishtha A, Charan PD, Purohit P, Bhandari HS, Bhojak N, Kumar R. Enzymes for pharmaceutical and therapeutic applications. Biotechnol Appl Biochem 2020; 67:586-601. [PMID: 32248597 DOI: 10.1002/bab.1919] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 01/03/2023]
Abstract
Enzymes are highly efficient and selective biocatalysts, present in the living beings. They exist in enormous varieties in terms of the types of reactions catalyzed by them for instance oxidation-reduction, group transfers within the molecules or between the molecules, hydrolysis, isomerization, ligation, bond cleavage, and bond formation. Besides, enzyme based catalyses are performed with much higher fidelity, under mild reaction conditions and are highly efficient in terms of number of steps, giving them an edge over their chemical counter parts. The unique characteristics of enzymes makes them highly applicable fora number of chemical transformation reactions in pharmaceutical industries, such as group protection and deprotection, selective acylation and deacylation, selective hydrolysis, deracemization, kinetic resolution of racemic mixtures, esterification, transesterification, and many others. In this review, an overview of the enzymes, their production and their applications in pharmaceutical syntheses and enzyme therapies are presented with diagrams, reaction schemes and table for easy understanding of the readers.
Collapse
Affiliation(s)
| | - Navpreet Kaur
- Department of Microbiology, M.G.S. University, Bikaner, India
| | - Swati Verma
- Department of Microbiology, M.G.S. University, Bikaner, India
| | | | | | - P D Charan
- Department of Environmental Science, M.G.S. University, Bikaner, India
| | - Praveen Purohit
- Department of Chemistry, Engineering College, Bikaner, India
| | - H S Bhandari
- Department of Chemistry, GCRC Govt. Dungar College, Bikaner, India
| | - N Bhojak
- Department of Chemistry, GCRC Govt. Dungar College, Bikaner, India
| | - Rajender Kumar
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
44
|
Tang DYY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. BIORESOURCE TECHNOLOGY 2020; 304:122997. [PMID: 32094007 DOI: 10.1016/j.biortech.2020.122997] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 05/11/2023]
Abstract
Microalgae are autotroph organisms that utilise light energy to synthesize various high-value bioactive compounds such as polysaccharides, proteins and lipids. Due to its fast growth rate and capability to survive in harsh environment, microalgae nowadays are applied in various industrial areas. The process of obtaining microalgae-based biomolecules starts with the selection of suitable microalgae strain, cultivation, followed by downstream processing of the biomass (i.e., pre-treatment, harvesting, extraction and purification). The end products of the processes are biofuels and other valuable bioproducts. Nevertheless, low production yield and high-cost downstream processes are the emerging bottlenecks which need to be addressed in the upscaling of extracted compounds from microalgae biomass. To conclude, tremendous efforts are required to overcome these challenges to revolutionize microalgae into a novel and green factory of different bioactive compounds for industrial necessities to satisfy and fulfil global demands.
Collapse
Affiliation(s)
- Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
45
|
Claverie M, McReynolds C, Petitpas A, Thomas M, Fernandes SCM. Marine-Derived Polymeric Materials and Biomimetics: An Overview. Polymers (Basel) 2020; 12:E1002. [PMID: 32357448 PMCID: PMC7285066 DOI: 10.3390/polym12051002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
The review covers recent literature on the ocean as both a source of biotechnological tools and as a source of bio-inspired materials. The emphasis is on marine biomacromolecules namely hyaluronic acid, chitin and chitosan, peptides, collagen, enzymes, polysaccharides from algae, and secondary metabolites like mycosporines. Their specific biological, physicochemical and structural properties together with relevant applications in biocomposite materials have been included. Additionally, it refers to the marine organisms as source of inspiration for the design and development of sustainable and functional (bio)materials. Marine biological functions that mimic reef fish mucus, marine adhesives and structural colouration are explained.
Collapse
Affiliation(s)
- Marion Claverie
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Colin McReynolds
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Arnaud Petitpas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Martin Thomas
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
| | - Susana C. M. Fernandes
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l’Adour, 64600 Anglet, France; (M.C.); (C.M.); (A.P.); (M.T.)
- Department of Chemistry—Angstrom Laboratory, Polymer Chemistry, Uppsala University, Lagerhyddsvagen 1, 75120 Uppsala, Sweden
| |
Collapse
|
46
|
Gomes TA, Zanette CM, Spier MR. An overview of cell disruption methods for intracellular biomolecules recovery. Prep Biochem Biotechnol 2020; 50:635-654. [DOI: 10.1080/10826068.2020.1728696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tatiane Aparecida Gomes
- Food Engineering Postgraduate Program, Department of Chemical Engineering, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Cristina Maria Zanette
- Food Engineering Postgraduate Program, Department of Chemical Engineering, Federal University of Paraná (UFPR), Curitiba, Brazil
- Food Engineering Department, Midwestern State University (UNICENTRO), Guarapuava, Brazil
| | - Michele Rigon Spier
- Food Engineering Postgraduate Program, Department of Chemical Engineering, Federal University of Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
47
|
Zhu J, Wakisaka M. Finding of phytase: Understanding growth promotion mechanism of phytic acid to freshwater microalga Euglena gracilis. BIORESOURCE TECHNOLOGY 2020; 296:122343. [PMID: 31711907 DOI: 10.1016/j.biortech.2019.122343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
To better understand the promotion effect of phytic acid and its uptake mechanism in freshwater microalga Euglena gracilis, cell growth, photosynthetic pigment content and cell morphology of E. gracilis were evaluated under four conditions: phosphorus deficient group (CMP-), single phosphate treatment group (CMP+), single phytic acid treatment group (CMPA-), and phosphate-phytic acid mixed treatment group (CMPA+). The results showed that phytic acid could serve as the sole phosphorus source for the growth of E. gracilis, and phytase which catalyzes the hydrolysis of phytic acid was discovered for the first time in E. gracilis. Fourier transform infrared spectroscopy combined with multivariate analysis showed the good recognition of metabolites from different culture conditions especially focusing on relative carbohydrate or lipid contents. Phytic acid derived from agro-wastes is a cheap growth promoter for E. gracilis, and this E. gracilis with high nutritional value is applicable to animal feed while minimizing environmental impact.
Collapse
Affiliation(s)
- Jiangyu Zhu
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan
| | - Minato Wakisaka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan.
| |
Collapse
|
48
|
Hamidi M, Kozani PS, Kozani PS, Pierre G, Michaud P, Delattre C. Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications? Mar Drugs 2019; 18:E28. [PMID: 31905716 PMCID: PMC7024282 DOI: 10.3390/md18010028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Natural bioactive compounds with antioxidant activity play remarkable roles in the prevention of reactive oxygen species (ROS) formation. ROS, which are formed by different pathways, have various pathological influences such as DNA damage, carcinogenesis, and cellular degeneration. Incremental demands have prompted the search for newer and alternative resources of natural bioactive compounds with antioxidant properties. The marine environment encompasses almost three-quarters of our planet and is home to many eukaryotic and prokaryotic microorganisms. Because of extreme physical and chemical conditions, the marine environment is a rich source of chemical and biological diversity, and marine microorganisms have high potential as a source of commercially interesting compounds with various pharmaceutical, nutraceutical, and cosmeceutical applications. Bacteria and microalgae are the most important producers of valuable molecules including antioxidant enzymes (such as superoxide dismutase and catalase) and antioxidant substances (such as carotenoids, exopolysaccharides, and bioactive peptides) with various valuable biological properties and applications. Here, we review the current knowledge of these bioactive compounds while highlighting their antioxidant properties, production yield, health-related benefits, and potential applications in various biological and industrial fields.
Collapse
Affiliation(s)
- Masoud Hamidi
- Food and Drug Research Center, Vice-Chancellery of Food and Drug, Guilan University of Medical Sciences, Rasht P.O. Box 41446/66949, Iran;
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115/111, Iran;
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
49
|
Liu Y, Cui Y, Chen J, Qin S, Chen G. Metabolic engineering of Synechocystis sp. PCC6803 to produce astaxanthin. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Keshari N, Gugger M, Zhu T, Lu X. Compatible solutes profiling and carbohydrate feedstock from diversified cyanobacteria. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|