1
|
Deng C, Liu Z, Li C, Xu G, Zhang R, Bai Z, Hu X, Xia Q, Pan L, Wang S, Xia J, Zhao R, Shi B. Predictive models for cholesterol crystals and plaque vulnerability in acute myocardial infarction: Insights from an optical coherence tomography study. Int J Cardiol 2024; 418:132610. [PMID: 39366560 DOI: 10.1016/j.ijcard.2024.132610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Cholesterol crystals (CCs) are recognized as a risk factor for vulnerable atherosclerotic plaque rupture (PR) and major adverse cardiovascular events. However, their predictive factors and association with plaque vulnerability in patients with acute myocardial infarction (AMI) remain insufficiently explored. Therefore, This study aims to investigate the association between CCs and plaque vulnerability in culprit lesions of AMI patients, identify the factors influencing CCs formation, and develop a predictive model for CCs. METHODS A total of 431 culprit lesions from AMI patients who underwent pre-intervention optical coherence tomography (OCT) imaging were analyzed. Patients were divided into groups based on the presence or absence of CCs and PR. The relationship between CCs and plaque vulnerability was evaluated. A risk nomogram for predicting CCs was developed using the least absolute shrinkage and selection operator and logistic regression analysis. RESULTS CCs were identified in 64.5 % of patients with AMI. The presence of CCs was associated with a higher prevalence of vulnerable plaque features, such as thin-cap fibroatheroma (TCFA), PR, macrophage infiltration, neovascularization, calcification, and thrombus, compared to patients without CCs. The CCs model demonstrated an area under the curve (AUC) of 0.676 for predicting PR. Incorporating CCs into the TCFA model (AUC = 0.656) significantly enhanced predictive accuracy, with a net reclassification improvement index of 0.462 (95 % confidence interval [CI]: 0.263-0.661, p < 0.001) and an integrated discrimination improvement index of 0.031 (95 % CI: 0.013-0.048, p = 0.001). Multivariate regression analysis identified the atherogenic index of plasma (odds ratio [OR] = 2.417), TCFA (OR = 1.759), macrophage infiltration (OR = 3.863), neovascularization (OR = 2.697), calcification (OR = 1.860), and thrombus (OR = 2.430) as independent risk factors for CCs formation. The comprehensive model incorporating these factors exhibited reasonable discriminatory ability, with an AUC of 0.766 (95 % CI: 0.717-0.815) in the training set and 0.753 (95 % CI: 0.704-0.802) in the internal validation set, reflecting good calibration. Decision curve analysis suggested that the model has potential clinical utility within a threshold probability range of approximately 18 % to 85 %. CONCLUSIONS CCs were associated with plaque vulnerability in the culprit lesions of AMI patients. Additionally, this study identified key factors influencing CCs formation and developed a predictive model with potential clinical applicability.
Collapse
Affiliation(s)
- Chancui Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhijiang Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chaozhong Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guanxue Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Renyi Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhixun Bai
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xingwei Hu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qianhang Xia
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Pan
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sha Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Xia
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Zhao J, Wu T, Tan J, Chen Y, Xu X, Guo Y, Jin C, Xiu L, Zhao R, Sun S, Peng C, Li S, Yu H, Liu Y, Wei G, Li L, Wang Y, Hou J, Dai J, Fang C, Yu B. Pancoronary plaque characteristics in STEMI patients with rapid plaque progression: An optical coherence tomography study. Int J Cardiol 2024; 400:131821. [PMID: 38301829 DOI: 10.1016/j.ijcard.2024.131821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/16/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Non-culprit plaque progression is associated with recurrent cardiac ischemic events and worse clinical outcomes. Given that atherosclerosis is a systemic disease, the pancoronary characteristics of patients with rapid plaque progression are unknown. This study aims to identify pancoronary plaque features in patients with ST-segment elevation myocardial infarction (STEMI) with and without rapid plaque progression, focused on the patient level. METHODS AND RESULTS From January 2017 to July 2019, 291 patients underwent 3-vessel optical coherence tomography imaging at the time of the primary procedure and a follow-up angiography interval of 12 months. The final analysis included 237 patients. Overall, 308 non-culprit lesions were found in 78 STEMI patients with rapid plaque progression, and 465 non-culprit plaques were found in 159 STEMI patients without rapid plaque progression. These patients had a higher pancoronary vulnerability (CLIMA-defined high-risk plaque: 47.4% vs. 33.3%; non-culprit plaque rupture: 25.6% vs. 14.5%) and a significantly higher prevalence of other vulnerable plaque characteristics (i.e., lipid-rich plaque, cholesterol crystal, microchannels, calcification, spotty calcification, and thrombus) at baseline versus those without rapid plaque progression. Lesions with rapid progression were highly distributed at the LAD, tending to be near the bifurcation. In multivariate analysis, age ≥ 65 years was an independent predictor of subsequent rapid lesion progression at the patient level, whereas microchannel, spotty calcification, and cholesterol crystal were independent predictors for STEMI patients ≥65 years old. CONCLUSIONS STEMI patients with subsequent rapid plaque progression had higher pancoronary vulnerability and commonly presented vulnerable plaque morphology. Aging was the only predictor of subsequent rapid plaque progression.
Collapse
Affiliation(s)
- Jiawei Zhao
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Tianyu Wu
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Jinfeng Tan
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Yuzhu Chen
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Xueming Xu
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Yibo Guo
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Chengmei Jin
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Lili Xiu
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Rui Zhao
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Sibo Sun
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Cong Peng
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Shuang Li
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Huai Yu
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Yanchao Liu
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Guo Wei
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Lulu Li
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Yini Wang
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Jingbo Hou
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Jiannan Dai
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China
| | - Chao Fang
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China.
| | - Bo Yu
- Department of Cardiology, The 2(nd) Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Harbin 150086, China.
| |
Collapse
|
3
|
Thazhathveettil J, Kumawat AK, Demirel I, Sirsjö A, Paramel GV. Vascular smooth muscle cells in response to cholesterol crystals modulates inflammatory cytokines release and promotes neutrophil extracellular trap formation. Mol Med 2024; 30:42. [PMID: 38519881 PMCID: PMC10960408 DOI: 10.1186/s10020-024-00809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The formation and accumulation of cholesterol crystals (CC) at the lesion site is a hallmark of atherosclerosis. Although studies have shown the importance of vascular smooth muscle cells (VSMCs) in the disease atherosclerosis, little is known about the molecular mechanism behind the uptake of CC in VSMCs and their role in modulating immune response. METHODS Human aortic smooth muscle cells were cultured and treated with CC. CC uptake and CC mediated signaling pathway and protein induction were studied using flow cytometry, confocal microscopy, western blot and Olink proteomics. Conditioned medium from CC treated VSMCs was used to study neutrophil adhesion, ROS production and phagocytosis. Neutrophil extracellular traps (NETs) formations were visualized using confocal microscopy. RESULTS VSMCs and macrophages were found around CC clefts in human carotid plaques. CC uptake in VSMCs are largely through micropinocytosis and phagocytosis via PI3K-AkT dependent pathway. The uptake of CC in VSMCs induce the release inflammatory proteins, including IL-33, an alarming cytokine. Conditioned medium from CC treated VSMCs can induce neutrophil adhesion, neutrophil reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) formation. IL-33 neutralization in conditioned medium from CC treated VSMCs inhibited neutrophil ROS production and NETs formation. CONCLUSION We demonstrate that VSMCs due to its vicinity to CC clefts in human atherosclerotic lesion can modulate local immune response and we further reveal that the interaction between CC and VSMCs impart an inflammatory milieu in the atherosclerotic microenvironment by promoting IL-33 dependent neutrophil influx and NETs formation.
Collapse
Affiliation(s)
- Jishamol Thazhathveettil
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Ashok Kumar Kumawat
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Allan Sirsjö
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden
| | - Geena Varghese Paramel
- Cardiovascular Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182, Örebro, Sweden.
- School of Medical Sciences, Örebro University, 70182, Örebro, Sweden.
| |
Collapse
|
4
|
Abideen ZU, Pathak DR, Sabanci R, Manu M, Abela GS. The effect of colchicine on cholesterol crystal formation, expansion and morphology: a potential mechanism in atherosclerosis. Front Cardiovasc Med 2024; 11:1345521. [PMID: 38495937 PMCID: PMC10941200 DOI: 10.3389/fcvm.2024.1345521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 03/19/2024] Open
Abstract
Background Inflammation is pivotal to the progression of atherosclerosis. Cholesterol crystals (CCs) that grow and enlarge within the plaque core can cause plaque rupture and trigger inflammation as they deposit into the atherosclerotic bed. Thus, agents that affect CC formation, expansion, and morphology may reduce cardiovascular (CV) risk independent of lipid-lowering and anti-inflammatory therapy. Objective Because colchicine is highly concentrated in leukocytes that can enter the atherosclerotic plaque core, we tested its effect on the formation and growth of CCs in bench experiments to determine whether it may have direct effects on CCs, independent of its known anti-inflammatory actions. Method Different dosages of colchicine mixed with cholesterol (0.05-5 mg/ml/g of cholesterol) were used to influence the formation CCs and volume expansion in vitro. These were compared to control samples with cholesterol in ddH2O without colchicine. In an ex vivo study, fresh atherosclerotic human plaques were incubated with and without colchicine in a water bath at 37°C for 48 h to assess the impact of colchicine on CC morphology. Scanning electron microscopy (SEM) was utilized to analyze CC morphology in samples from the various treatment groups. Results The addition of colchicine to cholesterol caused a substantial dose-dependent reduction in volume (p < 0.05). Pairwise comparisons of volume reduction, showed a significant reduction in volume at 5 mg/ml/g when compared to control (p < 0.02) but the calculated Cohen's d effect size was large for five of the six pairwise comparisons. By SEM, CCs from both in vitro and ex vivo samples treated with colchicine had evidence of dissolution and changes in their morphology as evidenced by the loss of their sharp edges. In contrast, CCs in untreated specimens retained their typical geometric structure. Conclusions Colchicine can reduce CC formation and expansion and alter CC morphology. These previously unappreciated effects of colchicine may contribute to its clinical benefit in patients with CV disease independent of its anti-inflammatory effects.
Collapse
Affiliation(s)
- Zain Ul Abideen
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, MI, United States
| | - Dorothy R. Pathak
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Rand Sabanci
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, MI, United States
| | - Megan Manu
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - George S. Abela
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, MI, United States
- Department of Physiology, Division of Pathology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
5
|
Baaten CCFMJ, Nagy M, Bergmeier W, Spronk HMH, van der Meijden PEJ. Platelet biology and function: plaque erosion vs. rupture. Eur Heart J 2024; 45:18-31. [PMID: 37940193 PMCID: PMC10757869 DOI: 10.1093/eurheartj/ehad720] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
The leading cause of heart disease in developed countries is coronary atherosclerosis, which is not simply a result of ageing but a chronic inflammatory process that can lead to acute clinical events upon atherosclerotic plaque rupture or erosion and arterial thrombus formation. The composition and location of atherosclerotic plaques determine the phenotype of the lesion and whether it is more likely to rupture or to erode. Although plaque rupture and erosion both initiate platelet activation on the exposed vascular surface, the contribution of platelets to thrombus formation differs between the two phenotypes. In this review, plaque phenotype is discussed in relation to thrombus composition, and an overview of important mediators (haemodynamics, matrix components, and soluble factors) in plaque-induced platelet activation is given. As thrombus formation on disrupted plaques does not necessarily result in complete vessel occlusion, plaque healing can occur. Therefore, the latest findings on plaque healing and the potential role of platelets in this process are summarized. Finally, the clinical need for more effective antithrombotic agents is highlighted.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, School of Medicine, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
- Blood Research Center, School of Medicine, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Henri M H Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
- Thrombosis Expertise Center, Heart+ Vascular Center, Maastricht University Medical Center+, P. Debeyelaan 25, Maastricht, the Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Thrombosis Expertise Center, Heart+ Vascular Center, Maastricht University Medical Center+, P. Debeyelaan 25, Maastricht, the Netherlands
| |
Collapse
|
6
|
Suzuki K, Niida T, Yuki H, Kinoshita D, Fujimoto D, Lee H, McNulty I, Takano M, Nakamura S, Kakuta T, Mizuno K, Jang I. Coronary Plaque Characteristics and Underlying Mechanism of Acute Coronary Syndromes in Different Age Groups of Patients With Diabetes. J Am Heart Assoc 2023; 12:e031474. [PMID: 38014673 PMCID: PMC10727321 DOI: 10.1161/jaha.123.031474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND High cardiovascular mortality has been reported in young patients with diabetes. However, the underlying pathology in different age groups of patients with diabetes has not been studied. METHODS AND RESULTS The aim of this study was to investigate the plaque characteristics and underlying pathology of acute coronary syndrome in different age groups of patients with or without diabetes in a large cohort. Patients who presented with acute coronary syndrome and underwent preintervention optical coherence tomography imaging were included. Culprit plaque was classified as plaque rupture, plaque erosion, or calcified plaque and stratified into 5 age groups. Plaque characteristics including features of vulnerability were examined by optical coherence tomography. Among 1394 patients, 482 (34.6%) had diabetes. Patients with diabetes, compared with patients without diabetes, had a higher prevalence of lipid-rich plaque (71.2% versus 64.8%, P=0.016), macrophage (72.0% versus 62.6%, P<0.001), and cholesterol crystal (27.6% versus 19.7%, P<0.001). Both diabetes and nondiabetes groups showed a decreasing trend in plaque erosion with age (patients with diabetes, P=0.020; patients without diabetes, P<0.001). Patients without diabetes showed an increasing trend with age in plaque rupture (P=0.004) and lipid-rich plaque (P=0.018), whereas patients with diabetes had a high prevalence of these vulnerable features at an early age that remained high across age groups. CONCLUSIONS Patients without diabetes showed an increasing trend with age in plaque rupture and lipid-rich plaque, whereas patients with diabetes had a high prevalence of these vulnerable features at an early age. These results suggest that atherosclerotic vascular changes with increased vulnerability start at a younger age in patients with diabetes. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifiers: NCT04523194, NCT03479723. URL: https://www.umin.ac.jp/ctr/. Unique identifier: UMIN000041692.
Collapse
Affiliation(s)
- Keishi Suzuki
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Takayuki Niida
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Haruhito Yuki
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Daisuke Kinoshita
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Daichi Fujimoto
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Hang Lee
- Biostatistics CenterMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Iris McNulty
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Masamichi Takano
- Cardiovascular CenterNippon Medical School Chiba Hokusoh HospitalInzai, ChibaJapan
| | - Sunao Nakamura
- Interventional Cardiology UnitNew Tokyo HospitalChibaJapan
| | - Tsunekazu Kakuta
- Department of CardiologyTsuchiura Kyodo General Hospital, TsuchiuraIbarakiJapan
| | | | - Ik‐Kyung Jang
- Cardiology DivisionMassachusetts General HospitalHarvard Medical SchoolBostonMA
| |
Collapse
|
7
|
Mohammadnia N, Opstal TSJ, El Messaoudi S, Bax WA, Cornel JH. An Update on Inflammation in Atherosclerosis: How to Effectively Treat Residual Risk. Clin Ther 2023; 45:1055-1059. [PMID: 37716836 DOI: 10.1016/j.clinthera.2023.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Abstract
PURPOSE This study reviewed the contribution of inflammation to atherosclerotic cardiovascular disease (ASCVD), which has gained widespread recognition in recent years. METHODS This critical review evaluated how recent publications and ongoing clinical trials in atherosclerotic inflammation will affect clinical care. FINDINGS Key trials, including CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcomes Study) with canakinumab (interleukin-1β inhibition), and COLCOT (Colchicine Cardiovascular Outcomes Trial) and LoDoCo2 (Low Dose Colchicine 2) with colchicine, have shown that suppressing inflammation can improve outcomes in ASCVD. Cholesterol crystals play an important role in activating the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome and subsequent cytokine cascade. Inflammation contributes to significant residual risk after optimal lipid-lowering therapy. High-sensitivity C-reactive protein is a recognized biomarker of residual risk, and newer biomarkers such as the neutrophil to lymphocyte ratio may add additional information. The role of lipoprotein(a) as a proinflammatory agent or possible inflammatory biomarker is under investigation. The contribution of clonal hematopoiesis of indeterminate potential and trained immunity are in the early stages of investigation. Ongoing clinical trials of suppressing inflammation with NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome inhibition (colchicine) and alternative approaches with downstream interleukin-6 ligand inhibition (ziltivekimab) will expand the evidence base for the use of anti-inflammatory agents in ASCVD. IMPLICATIONS Based on current evidence and ongoing clinical trials, targeting inflammation alongside optimal lipid lowering is likely to be central to the future treatment of ASCVD. (Clin Ther. 2023;45:XXX-XXX) © 2023 Elsevier HS Journals, Inc.
Collapse
Affiliation(s)
- N Mohammadnia
- Department of Cardiology, Radboudumc, Nijmegen, the Netherlands
| | - T S J Opstal
- Department of Cardiology, Radboudumc, Nijmegen, the Netherlands; Department of Cardiology, Northwest Clinics, Alkmaar, the Netherlands
| | - S El Messaoudi
- Department of Cardiology, Radboudumc, Nijmegen, the Netherlands
| | - W A Bax
- Department of Internal Medicine, Northwest Clinics, Alkmaar, the Netherlands
| | - J H Cornel
- Department of Cardiology, Radboudumc, Nijmegen, the Netherlands; Department of Cardiology, Northwest Clinics, Alkmaar, the Netherlands; Dutch Network for Cardiovascular Research (WCN), Utrecht, the Netherlands.
| |
Collapse
|
8
|
Abela GS, Katkoori VR, Pathak DR, Bumpers HL, Leja M, Abideen ZU, Boumegouas M, Perry D, Al-Janadi A, Richard JE, Barnaba C, Meza IGM. Cholesterol crystals induce mechanical trauma, inflammation, and neo-vascularization in solid cancers as in atherosclerosis. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2023; 35:100317. [PMID: 37981958 PMCID: PMC10655498 DOI: 10.1016/j.ahjo.2023.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Background and aims Cancer and atherosclerosis share common risk factors and inflammatory pathways that promote their proliferation via vascular endothelial growth factor (VEGF). Because CCs cause mechanical injury and inflammation in atherosclerosis, we investigated their presence in solid cancers and their activation of IL-1β, VEGF, CD44, and Ubiquityl-Histone H2B (Ub-H2B), that promote cancer growth. Methods Tumor specimens from eleven different types of human cancers and atherosclerotic plaques were assessed for CCs, free cholesterol content and IL1-β by microscopy, immunohistochemistry, and biochemical analysis. Breast and colon cancer cell lines were cultured with and without CCs to select for expression of VEGF, CD44, and Ub-H2B. Western blot and immunofluorescence were performed on cells to assess the effect of CCs on signaling pathways. Results Cancers displayed higher CC content (+2.29 ± 0.74 vs +1.46 ± 0.84, p < 0.0001), distribution (5.06 ± 3.13 vs 2.86 ± 2.18, p < 0.001) and free cholesterol (3.63 ± 4.02 vs 1.52 ± 0.56 μg/mg, p < 0.01) than cancer free marginal tissues and similarly for atherosclerotic plaques and margins (+2.31 ± 0.51 vs +1.44 ± 0.79, p < 0.02; 14.0 ± 5.74 vs 8.14 ± 5.52, p < 0.03; 0.19 ± 0.14 vs 0.09 ± 0.04 μg/mg, p < 0.02) respectively. Cancers displayed significantly increased expression of IL1-β compared to marginal tissues. CCs treated cancer cells had increased expression of VEGF, CD44, and Ub-H2B compared to control. By microscopy, CCs were found perforating cancer tumors similar to plaque rupture. Conclusions These findings suggest that CCs can induce trauma and activate cytokines that enhance cancer growth as in atherosclerosis.
Collapse
Affiliation(s)
- George S. Abela
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, MI, USA
- Department of Physiology, Division of Pathology, Michigan State University, East Lansing, MI, USA
| | - Venkat R. Katkoori
- Department of Physiology, Division of Pathology, Michigan State University, East Lansing, MI, USA
| | - Dorothy R. Pathak
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Harvey L. Bumpers
- Department of Surgery, Michigan State University, East Lansing, MI, USA
| | - Monika Leja
- Department of Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Zain ul Abideen
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, MI, USA
| | - Manel Boumegouas
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, MI, USA
| | - Daniel Perry
- Department of Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Anas Al-Janadi
- Department of Cancer Care Services, Corewell Health, Grand Rapids, MI, USA
| | | | - Carlo Barnaba
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Ilce G. Medina Meza
- Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Hammer SS, Dorweiler TF, McFarland D, Adu-Agyeiwaah Y, Mast N, El-Darzi N, Fortmann SD, Nooti S, Agrawal DK, Pikuleva IA, Abela GS, Grant MB, Busik JV. Cholesterol crystal formation is a unifying pathogenic mechanism in the development of diabetic retinopathy. Diabetologia 2023; 66:1705-1718. [PMID: 37311879 PMCID: PMC10390399 DOI: 10.1007/s00125-023-05949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/18/2023] [Indexed: 06/15/2023]
Abstract
AIMS/HYPOTHESIS Hyper-reflective crystalline deposits found in retinal lesions have been suggested to predict the progression of diabetic retinopathy, but the nature of these structures remains unknown. METHODS Scanning electron microscopy and immunohistochemistry were used to identify cholesterol crystals (CCs) in human donor, pig and mouse tissue. The effects of CCs were analysed in bovine retinal endothelial cells in vitro and in db/db mice in vivo using quantitative RT-PCR, bulk RNA sequencing, and cell death and permeability assays. Cholesterol homeostasis was determined using 2H2O and 2H7-cholesterol. RESULTS We identified hyper-reflective crystalline deposits in human diabetic retina as CCs. Similarly, CCs were found in the retina of a diabetic mouse model and a high-cholesterol diet-fed pig model. Cell culture studies demonstrated that treatment of retinal cells with CCs can recapitulate all major pathogenic mechanisms leading to diabetic retinopathy, including inflammation, cell death and breakdown of the blood-retinal barrier. Fibrates, statins and α-cyclodextrin effectively dissolved CCs present in in vitro models of diabetic retinopathy, and prevented CC-induced endothelial pathology. Treatment of a diabetic mouse model with α-cyclodextrin reduced cholesterol levels and CC formation in the retina, and prevented diabetic retinopathy. CONCLUSIONS/INTERPRETATION We established that cholesterol accumulation and CC formation are a unifying pathogenic mechanism in the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Sandra S Hammer
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Tim F Dorweiler
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Delaney McFarland
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Yvonne Adu-Agyeiwaah
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Nicole El-Darzi
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Seth D Fortmann
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sunil Nooti
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - George S Abela
- Department of Medicine, Michigan State University, East Lansing, MI, USA
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Tufaro V, Serruys PW, Räber L, Bennett MR, Torii R, Gu SZ, Onuma Y, Mathur A, Baumbach A, Bourantas CV. Intravascular imaging assessment of pharmacotherapies targeting atherosclerosis: advantages and limitations in predicting their prognostic implications. Cardiovasc Res 2023; 119:121-135. [PMID: 35394014 DOI: 10.1093/cvr/cvac051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Intravascular imaging has been often used over the recent years to examine the efficacy of emerging therapies targeting plaque evolution. Serial intravascular ultrasound, optical coherence tomography, or near-infrared spectroscopy-intravascular ultrasound studies have allowed us to evaluate the effects of different therapies on plaque burden and morphology, providing unique mechanistic insights about the mode of action of these treatments. Plaque burden reduction, a decrease in necrotic core component or macrophage accumulation-which has been associated with inflammation-and an increase in fibrous cap thickness over fibroatheromas have been used as surrogate endpoints to assess the value of several drugs in inhibiting plaque evolution and improving clinical outcomes. However, some reports have demonstrated weak associations between the effects of novel treatments on coronary atheroma and composition and their prognostic implications. This review examines the value of invasive imaging in assessing pharmacotherapies targeting atherosclerosis. It summarizes the findings of serial intravascular imaging studies assessing the effects of different drugs on atheroma burden and morphology and compares them with the results of large-scale trials evaluating their impact on clinical outcome. Furthermore, it highlights the limited efficacy of established intravascular imaging surrogate endpoints in predicting the prognostic value of these pharmacotherapies and introduces alternative imaging endpoints based on multimodality/hybrid intravascular imaging that may enable more accurate assessment of the athero-protective and prognostic effects of emerging therapies.
Collapse
Affiliation(s)
- Vincenzo Tufaro
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Sophie Zhaotao Gu
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway, Ireland
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
- Yale University School of Medicine, New Haven, CT, USA
| | - Christos Vasileios Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK
- Institute of Cardiovascular Sciences, University College London, London, UK
| |
Collapse
|
11
|
Gurgoglione FL, Denegri A, Russo M, Calvieri C, Benatti G, Niccoli G. Intracoronary Imaging of Coronary Atherosclerotic Plaque: From Assessment of Pathophysiological Mechanisms to Therapeutic Implication. Int J Mol Sci 2023; 24:5155. [PMID: 36982230 PMCID: PMC10049285 DOI: 10.3390/ijms24065155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of morbidity and mortality worldwide. Several cardiovascular risk factors are implicated in atherosclerotic plaque promotion and progression and are responsible for the clinical manifestations of coronary artery disease (CAD), ranging from chronic to acute coronary syndromes and sudden coronary death. The advent of intravascular imaging (IVI), including intravascular ultrasound, optical coherence tomography and near-infrared diffuse reflectance spectroscopy has significantly improved the comprehension of CAD pathophysiology and has strengthened the prognostic relevance of coronary plaque morphology assessment. Indeed, several atherosclerotic plaque phenotype and mechanisms of plaque destabilization have been recognized with different natural history and prognosis. Finally, IVI demonstrated benefits of secondary prevention therapies, such as lipid-lowering and anti-inflammatory agents. The purpose of this review is to shed light on the principles and properties of available IVI modalities along with their prognostic significance.
Collapse
Affiliation(s)
| | - Andrea Denegri
- Cardiology Department, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Michele Russo
- Department of Cardiology, S. Maria dei Battuti Hospital, AULSS 2 Veneto, 31015 Conegliano, Italy
| | - Camilla Calvieri
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, La Sapienza University, 00185 Rome, Italy
| | - Giorgio Benatti
- Cardiology Department, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Giampaolo Niccoli
- Cardiology Department, University of Parma, 43126 Parma, Italy
- Cardiology Department, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| |
Collapse
|
12
|
Xue C, Chen Q, Bian L, Yin Z, Xu Z, Zhang H, Zhang Q, Zhang J, Wang C, Du R, Fan L. The relationships between cholesterol crystals, NLRP3 inflammasome, and coronary atherosclerotic plaque vulnerability in acute coronary syndrome: An optical coherence tomography study. Front Cardiovasc Med 2022; 9:905363. [PMID: 36386333 PMCID: PMC9640760 DOI: 10.3389/fcvm.2022.905363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/29/2022] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Cholesterol crystals (CCs) in lesions are the hallmark of advanced atherosclerotic plaque. Previous studies have demonstrated that CCs could activate NLRP3 inflammasome, which played an important role in atherosclerotic lesion progression. However, the relationship between CCs, NLRP3 inflammasome pathway, and plaque vulnerability in patients with ACS is still not elucidated. METHODS Two hundred sixty-nine consecutive acute coronary syndrome (ACS) patients with 269 culprit lesions were included in this study. CCs and other plaque characteristics within the culprit lesion segment were evaluated by optical coherence tomography (OCT) before percutaneous coronary intervention (PCI). The NLRP3 mRNA expression in peripheral blood mononuclear cells (PBMCs) and the serum levels of interleukin (IL)-1β, IL-18, and other biological indices were measured. RESULTS Cholesterol crystals were observed in 105 (39%) patients with 105 culprit lesions. There were no significant differences in baseline clinical characteristics between the patients with CCs (CCs group, n = 105) and the patients without CCs (non-CCs group, n = 164) within the culprit lesion segment except for lipoprotein(a) [Lp(a)]. The CCs group had a higher level of NLRP3 mRNA expression in PBMCs and higher levels of serum cytokine IL-1β and IL-18. OCT showed that the CCs group had longer lesion length, more severe diameter stenosis, and less minimum luminal area (MLA) than the non-CCs group (all p < 0.05). The frequency of thin-cap fibroatheroma (TCFA), thrombus, accumulation of macrophages, plaque rupture, micro-channel, calcification, spotty calcification, and layered plaque was higher in the CCs group than in the non-CCs groups (all p < 0.05). Multivariate logistic analysis revealed that the level of NLRP3 expression (OR = 10.204), IL-1β levels (OR = 3.523), IL-18 levels (OR = 1.006), TCFA (OR = 3.593), layered plaque (OR = 5.287), MLA (OR = 1.475), macrophage accumulation (OR = 2.881), and micro-channel (OR = 3.185) were independently associated with CCs. CONCLUSION Acute coronary syndrome patients with CCs in culprit lesions had a higher expression of NLRP3, IL-1β, and IL-18, and had more vulnerable plaque characteristics than patients without CCs. CCs might have interacted with NLRP3 inflammasome activation in patients with ACS, which could contribute to plaque vulnerability in culprit lesions.
Collapse
Affiliation(s)
- Chao Xue
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qizhi Chen
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Bian
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaofang Yin
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zuojun Xu
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huili Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingyong Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junfeng Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changqian Wang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Run Du
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Fan
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Wang L, Jia L, Jiang A. Pathology of catheter-related complications: what we need to know and what should be discovered. J Int Med Res 2022; 50:3000605221127890. [PMID: 36268763 PMCID: PMC9597033 DOI: 10.1177/03000605221127890] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the considerable efforts made to increase the prevalence of autogenous fistula in patients on hemodialysis, tunneled cuffed catheters are still an important access modality and used in a high percentage of the hemodialysis population. However, because of the conundrum posed by tunneled cuffed catheters, patients can develop a multitude of complications, including thrombosis, infections, formation of a fibrin sheath, and central vein stenosis, resulting in increased morbidity and mortality as well as placing a heavy burden on the healthcare system. However, with an increasing number of studies now focusing on how to manage these catheter-related complications, there has been less translational research on the pathology of these complications. This review of the most recent literature provides an update on the pathological aspects of catheter-related complications, highlighting what we need to know and what is yet to be discovered. The future research strategies and innovations needed to prevent these complications are also addressed.
Collapse
Affiliation(s)
- Lihua Wang
- Lihua Wang, Department of Kidney Disease
and Blood Purification Centre, 2nd Hospital of Tianjin Medical University, 23rd
Pingjiang Road, Hexi District, Tianjin 300211, PR China.
| | | | | |
Collapse
|
14
|
Zheng Y, Xu L, Dong N, Li F. NLRP3 inflammasome: The rising star in cardiovascular diseases. Front Cardiovasc Med 2022; 9:927061. [PMID: 36204568 PMCID: PMC9530053 DOI: 10.3389/fcvm.2022.927061] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the prevalent cause of mortality around the world. Activation of inflammasome contributes to the pathological progression of cardiovascular diseases, including atherosclerosis, abdominal aortic aneurysm, myocardial infarction, dilated cardiomyopathy, diabetic cardiomyopathy, heart failure, and calcific aortic valve disease. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a critical role in the innate immune response, requiring priming and activation signals to provoke the inflammation. Evidence shows that NLRP3 inflammasome not only boosts the cleavage and release of IL-1 family cytokines, but also leads to a distinct cell programmed death: pyroptosis. The significance of NLRP3 inflammasome in the CVDs-related inflammation has been extensively explored. In this review, we summarized current understandings of the function of NLRP3 inflammasome in CVDs and discussed possible therapeutic options targeting the NLRP3 inflammasome.
Collapse
|
15
|
Russo M, Jang IK. Cholesterol crystals in atherosclerotic plaques: A future target to reduce the risk of plaque rupture? Int J Cardiol 2022; 365:30-31. [DOI: 10.1016/j.ijcard.2022.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022]
|
16
|
Birefringent Crystals Deposition and Inflammasome Expression in Human Atheroma Plaques by Levels of Uricemia. Joint Bone Spine 2022; 89:105423. [PMID: 35714832 DOI: 10.1016/j.jbspin.2022.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To verify the monosodium urate (MSU) crystal deposition in artery walls following a structure assessment and to assess NLRP3 inflammasome expression in human atheroma plaques by levels of uricemia. METHODS Patients with peripheral arterial disease who were candidates for amputation were recruited and classified as normouricemic or hyperuricemic. During surgery, an artery segment from the amputated limb was sampled, divided and fixed separately by cryo-embedding, 100% ethanol or Glyo-fixx. Samples were assessed by compensated polarized-light microscopy to identify MSU crystals on the artery walls. Afterwards, macrophages, neutrophils and NLRP3 inflammasome components at the plaque were categorized by immunostaining and compared between normouricemics and hyperuricemics. RESULTS Thirty artery samples from 27 patients were studied; 10 (37.0%) participants were hyperuricemic. Birefringent needle-shaped crystals were found in three samples (10.0%), all processed by frozen sectioning. Other methods showed no crystals. No accompanying inflammatory process was noted, and the presence of crystals was equally distributed across ranges of uricemia, making it unlikely they were MSU crystals. Regarding immunostaining, 28 artery samples were available for analysis, with similar infiltration of macrophages and neutrophils. NLRP3 and gasdermin-D expression were significantly greater in hyperuricemics compared to normouricemics (p=0.044 and p=0.017, respectively). ASC content was numerically larger in hyperuricemics as well, while caspase-1 and IL-1beta expression were similar between groups. CONCLUSIONS The presence of MSU crystals on artery walls was not confirmed. Hyperuricemia was associated with greater NLRP3 and gasdermin-D expression on human atheroma plaques in patients with peripheral artery disease.
Collapse
|
17
|
Qin Z, Cao M, Xi X, Zhang Y, Wang Z, Zhao S, Tian Y, Xu Q, Yu H, Tian J, Yu B. Cholesterol crystals in non-culprit plaques of STEMI patients: A 3-vessel OCT study. Int J Cardiol 2022; 364:162-168. [PMID: 35705168 DOI: 10.1016/j.ijcard.2022.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cholesterol crystals (CCs) are regular microstructures found within the necrotic core of atherosclerotic plaques and have been hypothesized to be related to plaque destabilization. We attempted to investigate the potential association between CCs and non-culprit plaque vulnerability in patients with ST-segment elevated myocardial infarction (STEMI) and study morphological features of CCs in ruptured non-culprit plaques. METHODS A total of 261 patients with ST-segment elevation myocardial infarction who underwent 3-vessel optical coherence tomography (OCT) imaging were included. Non-culprit plaques were divided into two groups according to the presence or absence of CCs in the plaque to compare the morphological characteristics of the plaques. The differences in parameters of the non-culprit plaque CCs were explored between ruptured plaques and unruptured plaques. RESULTS Totally, 530 non-culprit plaques (29 ruptured plaques and 501 unruptured plaques) were identified by OCT. The incidence of CCs was 21.1%. Compared with non-culprit plaques without CCs, those with CCs had a larger lipid burden. Macrophages (p < 0.001) and spotty calcification (p = 0.002) were more frequently observed in non-culprit plaques with CCs. The frequency of CCs was significantly higher (p = 0.001) and the CCs were larger (p = 0.046) and more superficial (p = 0.005) in ruptured non-culprit plaques than in unruptured non-culprit plaques. The maximum lipid arc and fibrous cap thickness were independent predictors of plaque rupture, but the presence of CCs was not. CONCLUSIONS Non-culprit plaques with CCs have more vulnerable features. CCs are more frequently found in ruptured non-culprit plaques and larger and more superficial CCs are associated with plaque rupture.
Collapse
Affiliation(s)
- Zhifeng Qin
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Muhua Cao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Xiangwen Xi
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Yanwen Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Zhuozhong Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Suhong Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Yanan Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Qinglu Xu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Huai Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China.
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China.
| |
Collapse
|
18
|
Shishikura D, Octavia Y, Hayat U, Thondapu V, Barlis P. Atherogenesis and Inflammation. Interv Cardiol 2022. [DOI: 10.1002/9781119697367.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
19
|
Sahashi Y, Kawasaki M, Okubo M, Kawamura I, Kawase Y, Yoshida A, Tanaka T, Hattori A, Matsuo H, Ozaki Y. Development of 60 MHz integrated backscatter intravascular ultrasound and tissue characterization of attenuated signal coronary plaques that cause myocardial injury after percutaneous coronary intervention. Heart Vessels 2022; 37:1689-1700. [PMID: 35524780 DOI: 10.1007/s00380-022-02080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/15/2022] [Indexed: 11/25/2022]
Abstract
The purpose of the present study was to develop a 60 MHz integrated backscatter intravascular ultrasound (IB-IVUS) and to evaluate its usefulness for the detection of lipid area with backward attenuation of ultrasound signal (AT) that for the prediction of post-procedural myocardial injury (PMI) after percutaneous coronary intervention (PCI). In a pathological study, images were acquired from 221 cross-sections of 18 coronary arteries from 13 cadavers obtained at autopsy. In the clinical training study, we compared non-targeted plaques in 38 patients by a previous IB-IVUS system (38 MHz) and a new IB-IVUS system (60 MHz). In the clinical testing study, we included 70 consecutive patients who underwent PCI. Serum troponin-I was measured just before and 24 h after PCI to evaluate PMI. As the % microcalcification + % cholesterol cleft area increased, the attenuation of IB values increased (r = 0.56, p < 0.001). The slopes of regression lines of the area of each tissue component between 38 and 60 MHz IB-IVUS were excellent. The lipid pool area with AT tended to be more useful than that of the conventional lipid pool area for the prediction of PMI (p = 0.11). We developed a 60 MHz IB-IVUS imaging system for tissue characterization of coronary plaques. Cutoff value of purple color was the most reliable value for the prediction of PMI.
Collapse
Affiliation(s)
- Yuki Sahashi
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masanori Kawasaki
- Department of Cardiovascular Medicine, Gifu Heart Center, 4-14-4 Yabuta-minami, Gifu, 500-8384, Japan.
| | - Munenori Okubo
- Department of Cardiovascular Medicine, Gifu Heart Center, 4-14-4 Yabuta-minami, Gifu, 500-8384, Japan
| | - Itta Kawamura
- Department of Cardiovascular Medicine, Gifu Heart Center, 4-14-4 Yabuta-minami, Gifu, 500-8384, Japan
| | - Yoshiaki Kawase
- Department of Cardiovascular Medicine, Gifu Heart Center, 4-14-4 Yabuta-minami, Gifu, 500-8384, Japan
| | - Akihiro Yoshida
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiki Tanaka
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Arihiro Hattori
- Department of Cardiovascular Medicine, Gifu Heart Center, 4-14-4 Yabuta-minami, Gifu, 500-8384, Japan
| | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center, 4-14-4 Yabuta-minami, Gifu, 500-8384, Japan
| | - Yukio Ozaki
- Department of Cardiology, Fujita Medical University, Aichi, Japan
| |
Collapse
|
20
|
Sekimoto T, Koba S, Mori H, Arai T, Matsukawa N, Sakai R, Yokota Y, Sato S, Tanaka H, Masaki R, Oishi Y, Ogura K, Arai K, Nomura K, Sakai K, Tsujita H, Kondo S, Tsukamoto S, Matsumoto H, Suzuki H, Shinke T. Impact of Small Dense Low-Density Lipoprotein Cholesterol on Cholesterol Crystals in Patients with Acute Coronary Syndrome: An Optical Coherence Tomography Study. J Clin Lipidol 2022; 16:438-446. [DOI: 10.1016/j.jacl.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022]
|
21
|
Peering into the crystal ball to predict plaque rupture. J Clin Lipidol 2022; 16:383-385. [DOI: 10.1016/j.jacl.2022.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/24/2022]
|
22
|
Nidorf SM. Insights into the evolving nature of atherosclerosis from surveillance of the aortic landscape in-vivo. Atherosclerosis 2022; 352:85-87. [DOI: 10.1016/j.atherosclerosis.2022.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022]
|
23
|
M. Petyaev I. Carotenoids in Thermal Adaptation of Plants and Animals. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The support of carotenoids in photosynthesis is well documented. However, what is their role in parts of plants where there is no photosynthesis such as in fruits or stems or even in parts which are not exposed to the light at all, such as seeds or roots? Why are carotenoids essential for all animals and humans and present in almost every tissue in their body? The answer is that carotenoids can make complexes with lipids, which results in an increase of lipid thermal energy absorption and a reduction of viscosity. These changes help to expand the temperature range for the functionality of lipid structures, improve the capacity of thermal homeostasis and support adaptation and survival of living species to environmental stress and in particular to temperature variations. Working as “thermal antennas” carotenoids can increase lipid thermal energy conductivity, heat storage and heat retaining capacity. This, on the one hand, can reduce the freezing/melting points of plant and animal lipids and makes carotenoids work as antifreezers in microorganisms, plants or ectothermic animals. On the other hand, the thermal antennas can help absorb, transmit and accumulate external thermal energy essential to activate and support cellular metabolism. In addition, we describe how these properties of carotenoids can affect lipid parameters in nutrition, physiology and pathology.
Collapse
|
24
|
Boumegouas M, Raju M, Gardiner J, Hammer N, Saleh Y, Al-Abcha A, Kalra A, Abela GS. Interaction between bacteria and cholesterol crystals: Implications for endocarditis and atherosclerosis. PLoS One 2022; 17:e0263847. [PMID: 35180238 PMCID: PMC8856546 DOI: 10.1371/journal.pone.0263847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/27/2022] [Indexed: 11/19/2022] Open
Abstract
Background
The interaction between pathogenic bacteria and cholesterol crystals (CCs) has not been investigated. However, CCs are found extensively in atherosclerotic plaques and sclerotic cardiac valves. Interactions between pathogenic bacteria and CCs could provide insights into destabilization of atherosclerotic plaques and bacterial adhesion to cardiac valves.
Methods
Staphylococcus aureus and Pseudomonas aeruginosa were used to assess in vitro bacterial adhesion to CCs and proliferation in the presence of CCs compared to plastic microspheres and glass shards as controls. Ex vivo studies evaluated bacterial adhesion to atherosclerotic rabbit arteries compared to normal arteries and human atherosclerotic carotid plaques compared to normal carotid arteries. Scanning electron microscopy (SEM) was used to visualize bacterial adhesion to CCs and confocal microscopy was used to detect cholesterol binding to bacteria grown in the presence or absence of CCs.
Results
In vitro, S. aureus and P. aeruginosa displayed significantly greater adhesion, 36% (p<0.0001) and 89% (p<0.0001), respectively, and growth upon exposure to CCs compared to microspheres or glass shards. Rabbit and human atherosclerotic arteries contained significantly greater bacterial burdens compared to controls (4× (p<0.0004); 3× (p<0.019), respectively. SEM demonstrated that bacteria adhered and appeared to degrade CCs. Consistent with this, confocal microscopy indicated increased cholesterol bound to the bacterial cells.
Conclusions
This study is the first to demonstrate an interaction between bacteria and CCs showing that bacteria dissolve and bind to CCs. This interaction helps to elucidate adhesion of bacteria to sclerotic valves and atherosclerotic plaques that may contribute to endocarditis and plaque destabilization.
Collapse
Affiliation(s)
- Manel Boumegouas
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Manjunath Raju
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Joseph Gardiner
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, United States of America
| | - Neal Hammer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Yehia Saleh
- Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, United States of America
| | - Abdullah Al-Abcha
- Department of Medicine, Division of Internal Medicine, Michigan State University/Sparrow Hospital, Lansing, Michigan, United States of America
| | - Apoorv Kalra
- Metro Infectious Disease Consultants, Kansas City, Missouri, United States of America
| | - George S. Abela
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, Michigan, United States of America
- Division of Pathology, Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kataoka Y, Nicholls SJ, Andrews J, Uno K, Kapadia SR, Tuzcu EM, Nissen SE, Puri R. Plaque microstructures during metformin therapy in type 2 diabetic subjects with coronary artery disease: optical coherence tomography analysis. Cardiovasc Diagn Ther 2022; 12:77-87. [PMID: 35282660 PMCID: PMC8898697 DOI: 10.21037/cdt-21-346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/29/2021] [Indexed: 07/28/2023]
Abstract
BACKGROUND While metformin is recommended as a first-line cardioprotective therapy for type 2 diabetic patients, whether it exerts direct effects on atherosclerotic plaque remains uncertain. The current study characterized coronary plaque microstructures in type 2 diabetic patients who received metformin. METHODS We retrospectively analyzed 409 non-culprit lipid plaques in 313 type 2 diabetic patients with coronary artery disease (CAD) by using frequency-domain optical coherence tomography (FD-OCT) imaging. FD-OCT derived plaque microstructures were compared in patients stratified according to metformin use. RESULTS A proportion of 38.6% of study subjects received metformin. Patients receiving metformin more likely exhibited a history of hypertension (79.3% vs. 67.1%, P=0.03) and metabolic syndrome (52.8% vs. 36.4%, P=0.01). On FD-OCT imaging, the prevalence of lipid plaque was lower in the metformin group (66.2% vs. 77.9%, P=0.03). Furthermore, the metformin group demonstrated plaques with a smaller lipid arc (median: 168.7° vs. 208.5°, P=0.008), shorter longitudinal length (media: 5.1 vs. 9.1 mm, P=0.04), and a lower frequency of cholesterol crystal (3.9% vs. 18.2%, P=0.01) and spotty calcification (3.9% vs. 34.8%, P=0.008). These differences remained significant after adjusting for clinical characteristics and glycemic control. However, in patients who received insulin, the favourable effect of metformin on lipid arc was not observed (insulin user: P=0.87; insulin non-user: P=0.009; P value for interaction between two groups, P=0.02). CONCLUSIONS Metformin use was associated with a lower prevalence of vulnerable plaque features in type 2 diabetic patients with CAD, especially insulin non-user. These findings suggest the potential of metformin to exert direct plaque stabilization effects in type 2 diabetic subjects.
Collapse
Affiliation(s)
- Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral & Cardiovascular Center, Suita, Japan
| | - Stephen J. Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Jordan Andrews
- South Australian Health & Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Kiyoko Uno
- Teikyo Academic Research Center, Teikyo University, Tokyo, Japan
| | - Samir R. Kapadia
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - E. Murat Tuzcu
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Steven E. Nissen
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rishi Puri
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Coordinating Center for Clinical Research, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Abstract
Cardiovascular diseases caused by atherosclerosis do not typically manifest before middle age; however, the disease process begins early in life. Preclinical atherosclerosis can be quantified with imaging methods in healthy populations long before clinical manifestations present. Cohort studies have shown that childhood exposure to risk factors, such as dyslipidaemia, elevated blood pressure and tobacco smoking, are associated with adult preclinical atherosclerotic phenotypes. Importantly, these long-term effects are substantially reduced if the individual becomes free from the risk factor by adulthood. As participants in the cohorts continue to age and clinical end points accrue, the strongest evidence linking exposure to risk factors in early life with cardiovascular outcomes has begun to emerge. Although science has deciphered the natural course of atherosclerosis, discovered its causal risk factors and developed effective means to intervene, we are still faced with an ongoing global pandemic of atherosclerotic diseases. In general, atherosclerosis goes undetected for too long, and preventive measures, if initiated at all, are inadequate and/or come too late. In this Review, we give an overview of the available literature suggesting the importance of initiating the prevention of atherosclerosis in early life and provide a summary of the major paediatric programmes for the prevention of atherosclerotic disease. We also highlight the limitations of current knowledge and indicate areas for future research.
Collapse
|
27
|
Fry L, Lee A, Khan S, Aziz K, Vedre A, Abela GS. Effect of aspirin on cholesterol crystallization: A potential mechanism for plaque stabilization. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 13:100083. [PMID: 38560074 PMCID: PMC10978190 DOI: 10.1016/j.ahjo.2021.100083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 04/04/2024]
Abstract
Background and aims Cholesterol crystals (CCs) have been found to be critical in the evolution and progression of atherosclerotic plaque leading up to rupture. This includes triggering inflammation and mechanically traumatizing the plaque and surrounding tissues. Thus, inhibition of crystal formation and degrading the crystals could be an important therapeutic approach in the prevention of cardiovascular events. Because of its physico-chemical properties we examined the effect of aspirin (ASA) on cholesterol crystallization. Methods A first experiment tested three amounts of cholesterol (1, 2, 3 g) with a wide range of ASA (0-60 mg) on cholesterol crystallization and volume expansion. A second experiment tested the effect of CCs with and without ASA in perforation of fibrous membrane during crystallization. A third experiment evaluated the effect of ASA on melting CCs in human atherosclerotic plaques. Scanning electron microscopy (SEM) was used to evaluate crystal morphology. Results Aspirin significantly inhibited cholesterol crystallization and volume expansion in a dose related fashion and even at physiologic levels (0.3 mg/ml). Moreover, ASA prevented perforation of fibrous membranes. By SEM, crystals in human atherosclerotic plaques were found melted with ASA. Conclusions Cholesterol volume expansion during crystallization was significantly inhibited and CCs were dissolved in the presence of ASA. Fibrous membranes were not perforated with ASA because of both these effects.
Collapse
Affiliation(s)
- Levi Fry
- Department of Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Andre Lee
- Department of Chemical Engineering, Michigan State University, East Lansing, MI, United States of America
| | - Shaza Khan
- Hospitalist Services, Sparrow Hospital, Lansing, MI, United States of America
| | - Kusai Aziz
- Visalia Cardiovascular and Medical Center, Visalia, CA, United States of America
| | - Ameeth Vedre
- First Coast Heart and Vascular Center, Jacksonville, FL, United States of America
| | - George S. Abela
- Department of Medicine, Division of Cardiology, College of Human Medicine, East Lansing, MI, United States of America
- Department of Physiology, Division of Pathology, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
28
|
Zhang Y, Gong F, Wu Y, Hou S, Xue L, Su Z, Zhang C. Poly-β-cyclodextrin Supramolecular Nanoassembly with a pH-Sensitive Switch Removing Lysosomal Cholesterol Crystals for Antiatherosclerosis. NANO LETTERS 2021; 21:9736-9745. [PMID: 34748340 DOI: 10.1021/acs.nanolett.1c03664] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cholesterol crystals (CCs), originally accumulating in the lysosome of cholesterol-laden cells, can aggravate the progression of atherosclerosis. β-cyclodextrin (CD) is a potent cholesterol acceptor or CC solubilizer. However, the random extraction of cholesterol impedes the in vivo application of CD for removing lysosomal CCs. Here, we exploit poly-β-cyclodextrin (pCD) as a lysosomal CC solubilizer and dextran sulfate grafted with benzimidazole (BM) as a pH-sensitive switch (pBM) to self-assemble into a supramolecular nanoassembly (pCD/pBM-SNA). The CD cavity in pCD/pBM-SNA can be efficiently sealed by hydrophobic BM at pH 7.4 (OFF). After it enters the lysosome, pCD/pBM-SNA disassembles, recovers the CD cavity to dissolve CCs into free cholesterol due to the protonation of BM (ON), and reduces CCs, finally enhancing the cholesterol efflux and promoting atherosclerosis regression. Our findings provide an "OFF-ON" tactic to remove lysosomal CCs for antiatherosclerosis as well as other diseases such as Niemann-Pick type C diseases with excessive cholesterol accumulation in the lysosome.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fanglin Gong
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yue Wu
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Siyuan Hou
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhigui Su
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
29
|
Prasad K, Reddy S S, Kaur J, Rao k R, Kumar S, Kadiyala V, Ram Kashyap J, Panwar G. Gender-based in vivo comparison of culprit plaque characteristics and plaque microstructures using optical coherence tomography in acute coronary syndrome. J Cardiovasc Thorac Res 2021; 13:277-284. [PMID: 35047132 PMCID: PMC8749362 DOI: 10.34172/jcvtr.2021.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction: Women perform worse after acute coronary syndrome (ACS) than men. The reason for these differences is unclear. The aim was to ascertain gender differences in the culprit plaque characteristics in ACS.
Methods: Patients with ACS undergoing percutaneous coronary intervention for the culprit vessel underwent optical coherence tomography (OCT) imaging. Culprit plaque was identified as lipid rich,fibrous, and calcific plaque. Mechanisms underlying ACS are classified as plaque rupture, erosion,or calcified nodule. A lipid rich plaque along with thin-cap fibroatheroma (TCFA) was a vulnerable plaque. Plaque microstructures including cholesterol crystals, macrophages, and microvessels were noted.
Results: A total of 52 patients were enrolled (men=29 and women=23). Baseline demographic features were similar in both the groups except men largely were current smokers (P <0.001). Plaque morphology,men vs. women: lipid rich 88.0% vs. 90.5%; fibrous 4% vs 0%; calcific 8.0% vs. 9.5% (P = 0.64). Of the ACS mechanisms in males versus females; plaque rupture (76.9 % vs. 50 %), plaque erosion (15.4 % vs.40 %) and calcified nodule (7.7 % vs. 10 %) was noted (P = 0.139). Fibrous cap thickness was (50.19 ±11.17 vs. 49.00 ± 10.71 mm, P = 0.71) and thin-cap fibroatheroma (96.2% vs. 95.0%, P = 1.0) in men and women respectively. Likewise no significant difference in presence of macrophages (42.3 % vs. 30%, P = 0.76), microvessels (73.1% vs. 60 %, P = 0.52) and cholesterol crystals (92.3% vs. 80%, P = 0.38).
Conclusion: No significant gender-based in-vivo differences could be discerned in ACS patients’ culprit plaques morphology, characteristics, and underlying mechanisms.
Collapse
Affiliation(s)
- Krishna Prasad
- Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sreeniavs Reddy S
- Department of Cardiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Jaspreet Kaur
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Raghavendra Rao k
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Suraj Kumar
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Vikas Kadiyala
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Jeet Ram Kashyap
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| | - Garima Panwar
- Department of Cardiology, Government Medical College and Hospital, Sector 32, Chandigarh, 160030, India
| |
Collapse
|
30
|
Baumer Y, McCurdy SG, Boisvert WA. Formation and Cellular Impact of Cholesterol Crystals in Health and Disease. Adv Biol (Weinh) 2021; 5:e2100638. [PMID: 34590446 PMCID: PMC11055929 DOI: 10.1002/adbi.202100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/20/2021] [Indexed: 11/10/2022]
Abstract
Cholesterol crystals (CCs) were first discovered in atherosclerotic plaque tissue in the early 1900 and have since been observed and implicated in many diseases and conditions, including myocardial infarction, abdominal aortic aneurism, kidney disease, ocular diseases, and even central nervous system anomalies. Despite the widespread involvement of CCs in many pathologies, the mechanisms involved in their formation and their role in various diseases are still not fully understood. Current knowledge concerning the formation of CCs, as well as the molecular pathways activated upon cellular exposure to CCs, will be explored in this review. As CC formation is tightly associated with lipid metabolism, the role of cellular lipid homeostasis in the formation of CCs is highlighted, including the role of lysosomes. In addition, cellular pathways and processes known to be affected by CCs are described. In particular, CC-induced activation of the inflammasome and production of reactive oxygen species, along with the role of CCs in complement-mediated inflammation is discussed. Moreover, the clinical manifestation of embolized CCs is described with a focus on renal and skin diseases associated with CC embolism. Lastly, potential therapeutic measures that target either the formation of CCs or their impact on different cell types and tissues are highlighted.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, Building 10, 10 Center Drive, Bethesda, MD 20814, USA
| | - Sara G. McCurdy
- Dept. of Medicine, University of California San Diego, 9500 Gilman Street, La Jolla, CA 92093, USA
| | - William A. Boisvert
- Center for Cardiovascular Research, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA
| |
Collapse
|
31
|
Nakano S, Otake H, Kawamori H, Toba T, Sugizaki Y, Nagasawa A, Takeshige R, Matsuoka Y, Tanimura K, Takahashi Y, Fukuyama Y, Shite J, Kozuki A, Iwasaki M, Kuroda K, Takaya T, Hirata KI. Association Between Visit-to-Visit Variability in Low-Density Lipoprotein Cholesterol and Plaque Rupture That Leads to Acute Coronary Syndrome. Circ Rep 2021; 3:540-549. [PMID: 34568633 PMCID: PMC8423612 DOI: 10.1253/circrep.cr-21-0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Background:
The effect of intraindividual variability in lipid levels on the onset of acute coronary syndrome (ACS) remains uncertain. We evaluated the relationship between intraindividual variability in lipid levels and culprit lesion morphologies by optical coherence tomography (OCT). Methods and Results:
Seventy-four consecutive patients with ACS whose cholesterol levels were assessed ≥3 times during outpatient visits before the onset of ACS were enrolled in the study; 222 patients without significant stenotic lesions were used as a control group. Based on OCT findings of culprit lesions, ACS patients were categorized into a plaque rupture ACS (PR-ACS) group (n=44) or a non-plaque rupture ACS (NPR-ACS) group (erosion or calcified nodule; n=30). Visit-to-visit variability in lipid levels was evaluated using the corrected variability independent of the mean (cVIM). Patients with ACS had significantly higher low-density lipoprotein cholesterol (LDL-C) levels and cVIM in LDL-C than the control group. The PR-ACS group had significantly higher mean LDL-C levels and greater cVIM in LDL-C than the control group. The PR-ACS group had a significantly higher cVIM than the NPR-ACS group, despite similar mean LDL-C levels. Multivariate analysis revealed that higher cVIM of LDL-C was an independent predictor of PR-ACS (odds ratio 1.06; P=0.018). Conclusions:
In addition to the LDL-C level, greater visit-to-visit variability in LDL-C levels may be associated with the onset of ACS induced by plaque rupture.
Collapse
Affiliation(s)
- Shinsuke Nakano
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine Kobe Japan
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine Kobe Japan
| | - Hiroyuki Kawamori
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine Kobe Japan
| | - Takayoshi Toba
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine Kobe Japan
| | - Yoichiro Sugizaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine Kobe Japan
| | - Akira Nagasawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine Kobe Japan
| | - Ryo Takeshige
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine Kobe Japan
| | - Yoichiro Matsuoka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine Kobe Japan
| | - Kosuke Tanimura
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine Kobe Japan
| | - Yu Takahashi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine Kobe Japan
| | - Yusuke Fukuyama
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine Kobe Japan
| | - Junya Shite
- Division of Cardiology, Osaka Saiseikai Nakatsu Hospital Osaka Japan
| | - Amane Kozuki
- Division of Cardiology, Osaka Saiseikai Nakatsu Hospital Osaka Japan
| | - Masamichi Iwasaki
- Department of Cardiology, Hyogo Prefectural Awaji Medical Center Sumoto Japan
| | - Koji Kuroda
- Department of Cardiology, Hyogo Prefectural Awaji Medical Center Sumoto Japan
| | - Tomofumi Takaya
- Division of Cardiology, Hyogo Brain and Heart Center Himeji Japan
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine Kobe Japan
| |
Collapse
|
32
|
Liang JJ, Fraser IDC, Bryant CE. Lipid regulation of NLRP3 inflammasome activity through organelle stress. Trends Immunol 2021; 42:807-823. [PMID: 34334306 DOI: 10.1016/j.it.2021.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 12/14/2022]
Abstract
Inflammation driven by the NLRP3 inflammasome in macrophages is an important contributor to chronic metabolic diseases that affect growing numbers of individuals. Many of these diseases involve the pathologic accumulation of endogenous lipids or their oxidation products, which can activate NLRP3. Other endogenous lipids, however, can inhibit the activation of NLRP3. The intracellular mechanisms by which these lipids modulate NLRP3 activity are now being identified. This review discusses emerging evidence suggesting that organelle stress, particularly involving mitochondria, lysosomes, and the endoplasmic reticulum, may be key in lipid-induced modification of NLRP3 inflammasome activity.
Collapse
Affiliation(s)
- Jonathan J Liang
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Medicine, University of Cambridge, Cambridge, UK
| | - Iain D C Fraser
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Clare E Bryant
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
33
|
Bouabdallaoui N, Tardif JC. Colchicine in the Management of Acute and Chronic Coronary Artery Disease. Curr Cardiol Rep 2021; 23:120. [PMID: 34269908 DOI: 10.1007/s11886-021-01560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Inflammation is involved in the initiation, progression, and destabilization of atherosclerosis. Anti-inflammatory strategies aimed at reducing residual cardiovascular (CV) risk have gained increasing interest in addition to the traditional management of risk factors. Colchicine is a potent anti-inflammatory therapy that affects the inflammasome and other targets. We will herein review the most recent evidence regarding the usefulness of colchicine in patients with coronary artery disease (CAD). RECENT FINDINGS Colchicine has recently been repurposed from its traditional use to a number of CV indications. The landmark COLCOT and LoDoCo2 trials have demonstrated that long-term use of colchicine was associated with a reduced rate of CV events in both acute and chronic presentations of CAD, with an overall good safety profile. Colchicine is emerging as a valuable, safe, and cost-effective therapy in addition to standard of care for the prevention of atherothrombotic events in CAD.
Collapse
Affiliation(s)
- Nadia Bouabdallaoui
- Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec, H1T1C8, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec, H1T1C8, Canada.
| |
Collapse
|
34
|
Boyadzhieva Z, Ruffer N, Krusche M. [Colchicine: old medication with new benefits : Use in rheumatology and beyond]. Z Rheumatol 2021; 80:647-657. [PMID: 34097101 PMCID: PMC8181537 DOI: 10.1007/s00393-021-01017-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2021] [Indexed: 12/22/2022]
Abstract
Colchicin, das Gift der Herbstzeitlosen, hat verschiedene antiinflammatorische Effekte. Aus diesem Grund kommt es zur Behandlung von rheumatologischen Erkrankungen aus dem autoinflammatorischen Formenkreis, wie z. B. der Arthritis urica oder dem familiären Mittelmeerfieber (FMF), zum Einsatz. Darüber hinaus gibt es erste Daten, die einen positiven Nutzen von Colchicin bei kardiovaskulären Erkrankungen nahelegen. Des Weiteren werden aktuell verschiedene antiinflammatorische Therapieansätze in der COVID-19-Behandlung in Studien erprobt. Hier gibt es ebenfalls erste Publikationen, die einen potenziellen Nutzen von Colchicin in bestimmten Krankheitsphasen der Virusinfektion nahe legen. Dieser Beitrag will einen Überblick über die Wirkweise, den Nutzen und Nebenwirkungen sowie die verschiedenen Einsatzmöglichkeiten von Colchicin in der Rheumatologie geben. Weiterhin soll ein kurzer Ausblick in neue Einsatzgebiete dieses Medikamentes gegeben werden.
Collapse
Affiliation(s)
- Z Boyadzhieva
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Deutschland
| | - N Ruffer
- Abteilung für Rheumatologie und Immunologie, Klinikum Bad Bramstedt, Bad Bramstedt, Deutschland
| | - M Krusche
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Deutschland.
| |
Collapse
|
35
|
Xin R, Yang D, Xu H, Han H, Li J, Miao Y, Du Z, Ding Q, Deng S, Ning Z, Shen R, Li R, Li C, Yuan C, Zhao X. Comparing Symptomatic and Asymptomatic Carotid Artery Atherosclerosis in Patients With Bilateral Carotid Vulnerable Plaques Using Magnetic Resonance Imaging. Angiology 2021; 73:104-111. [PMID: 34018407 DOI: 10.1177/00033197211012531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We compared plaque characteristics between symptomatic and asymptomatic sides in patients with bilateral carotid vulnerable plaques using magnetic resonance imaging (MRI). Participants (n = 67; mean age: 65.8 ± 7.7 years, 61 males) with bilateral carotid vulnerable plaques were included. Vulnerable plaques were characterized by intraplaque hemorrhage (IPH), large lipid-rich necrotic core (LRNC), or fibrous cap rupture (FCR) on MRI. Symptomatic vulnerable plaques showed greater plaque burden, LRNC volume (median: 221.4 vs 134.8 mm3, P = .003), IPH volume (median: 32.2 vs 22.5 mm3, P = .030), maximum percentage (Max%) LRNC (median: 51.3% vs 41.8%, P = .002), Max%IPH (median: 13.4% vs 9.5%, P = .022), cumulative slices of LRNC (median: 10 vs 8, P = .005), and more juxtaluminal IPH and/or thrombus (29.9% vs 6.0%, P = .001) and FCR (37.3% vs 16.4%, P = .007) than asymptomatic ones. After adjusting for plaque burden, differences in juxtaluminal IPH and/or thrombus (odds ratio [OR]: 5.49, 95% CI: 1.61-18.75, P = .007) and FCR (OR: 2.90, 95% CI: 1.16-7.24, P = .022) between bilateral sides remained statistically significant. For patients with bilateral carotid vulnerable plaques, symptomatic plaques had greater burden, more juxtaluminal IPH and/or thrombus, and FCR compared with asymptomatic ones. The differences in juxtaluminal IPH and/or thrombus and FCR between bilateral sides were independent of plaque burden.
Collapse
Affiliation(s)
- Ruijing Xin
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Dandan Yang
- Center for Brain Disorders Research, Capital Medical University and Beijing Institute of Brain Disorders, Beijing, China
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, 118223Tsinghua University School of Medicine, Beijing, China
| | - Huimin Xu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Hualu Han
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, 118223Tsinghua University School of Medicine, Beijing, China
| | - Jin Li
- Department of Radiology, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Yingyu Miao
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Ziwei Du
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Qian Ding
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Shasha Deng
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zihan Ning
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, 118223Tsinghua University School of Medicine, Beijing, China
| | - Rui Shen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, 118223Tsinghua University School of Medicine, Beijing, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, 118223Tsinghua University School of Medicine, Beijing, China
| | - Cheng Li
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Chun Yuan
- Department of Radiology, 7284University of Washington, Seattle, USA
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, 118223Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
36
|
Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, Nordestgaard BG, Watts GF, Bruckert E, Fazio S, Ference BA, Graham I, Horton JD, Landmesser U, Laufs U, Masana L, Pasterkamp G, Raal FJ, Ray KK, Schunkert H, Taskinen MR, van de Sluis B, Wiklund O, Tokgozoglu L, Catapano AL, Ginsberg HN. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2021; 41:2313-2330. [PMID: 32052833 PMCID: PMC7308544 DOI: 10.1093/eurheartj/ehz962] [Citation(s) in RCA: 749] [Impact Index Per Article: 249.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/10/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M John Chapman
- Endocrinology-Metabolism Division, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.,National Institute for Health and Medical Research (INSERM), Paris, France
| | - Ronald M Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute and UCSF, Oakland, CA 94609, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jacob F Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark.,Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mat J Daemen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert A Hegele
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Denmark
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia.,Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Eric Bruckert
- INSERM UMRS1166, Department of Endocrinology-Metabolism, ICAN - Institute of CardioMetabolism and Nutrition, AP-HP, Hopital de la Pitie, Paris, France
| | - Sergio Fazio
- Departments of Medicine, Physiology and Pharmacology, Knight Cardiovascular Institute, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK.,Institute for Advanced Studies, University of Bristol, Bristol, UK.,MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, Leipzig, Germany
| | - Luis Masana
- Research Unit of Lipids and Atherosclerosis, IISPV, CIBERDEM, University Rovira i Virgili, C. Sant Llorenç 21, Reus 43201, Spain
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial Centre for Cardiovascular Disease Prevention, Imperial College London, London, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Faculty of Medicine, Technische Universität München, Lazarettstr, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, and IRCCS MultiMedica, Milan, Italy
| | - Henry N Ginsberg
- Department of Medicine, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| |
Collapse
|
37
|
van der Lienden MJC, Aten J, Marques ARA, Waas ISE, Larsen PWB, Claessen N, van der Wel NN, Ottenhoff R, van Eijk M, Aerts JMFG. GCase and LIMP2 Abnormalities in the Liver of Niemann Pick Type C Mice. Int J Mol Sci 2021; 22:2532. [PMID: 33802460 PMCID: PMC7959463 DOI: 10.3390/ijms22052532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
The lysosomal storage disease Niemann-Pick type C (NPC) is caused by impaired cholesterol efflux from lysosomes, which is accompanied by secondary lysosomal accumulation of sphingomyelin and glucosylceramide (GlcCer). Similar to Gaucher disease (GD), patients deficient in glucocerebrosidase (GCase) degrading GlcCer, NPC patients show an elevated glucosylsphingosine and glucosylated cholesterol. In livers of mice lacking the lysosomal cholesterol efflux transporter NPC1, we investigated the expression of established biomarkers of lipid-laden macrophages of GD patients, their GCase status, and content on the cytosol facing glucosylceramidase GBA2 and lysosomal integral membrane protein type B (LIMP2), a transporter of newly formed GCase to lysosomes. Livers of 80-week-old Npc1-/- mice showed a partially reduced GCase protein and enzymatic activity. In contrast, GBA2 levels tended to be reciprocally increased with the GCase deficiency. In Npc1-/- liver, increased expression of lysosomal enzymes (cathepsin D, acid ceramidase) was observed as well as increased markers of lipid-stressed macrophages (GPNMB and galectin-3). Immunohistochemistry showed that the latter markers are expressed by lipid laden Kupffer cells. Earlier reported increase of LIMP2 in Npc1-/- liver was confirmed. Unexpectedly, immunohistochemistry showed that LIMP2 is particularly overexpressed in the hepatocytes of the Npc1-/- liver. LIMP2 in these hepatocytes seems not to only localize to (endo)lysosomes. The recent recognition that LIMP2 harbors a cholesterol channel prompts the speculation that LIMP2 in Npc1-/- hepatocytes might mediate export of cholesterol into the bile and thus protects the hepatocytes.
Collapse
Affiliation(s)
| | - Jan Aten
- Department of Pathology, Amsterdam UMC, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; (J.A.); (I.S.E.W.); (P.W.B.L.); (N.C.)
| | - André R. A. Marques
- Chronic Diseases Research Centre, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| | - Ingeborg S. E. Waas
- Department of Pathology, Amsterdam UMC, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; (J.A.); (I.S.E.W.); (P.W.B.L.); (N.C.)
| | - Per W. B. Larsen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; (J.A.); (I.S.E.W.); (P.W.B.L.); (N.C.)
| | - Nike Claessen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; (J.A.); (I.S.E.W.); (P.W.B.L.); (N.C.)
| | - Nicole N. van der Wel
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands;
| | - Roelof Ottenhoff
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1100 DD Amsterdam, The Netherlands;
| | - Marco van Eijk
- Department Medical Biochemistry, Leiden University, 2333 CC Leiden, The Netherlands; (M.J.C.v.d.L.); (M.v.E.)
| | - Johannes M. F. G. Aerts
- Department Medical Biochemistry, Leiden University, 2333 CC Leiden, The Netherlands; (M.J.C.v.d.L.); (M.v.E.)
| |
Collapse
|
38
|
Halkias C, Orth A, Feltis BN, Macrides TA, Gibson BC, Wright PFA. An advanced method for quantitative measurements of cholesterol crystallization. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158872. [PMID: 33359454 DOI: 10.1016/j.bbalip.2020.158872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/13/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cholesterol crystallization within an atherosclerotic plaque significantly contributes to the acceleration of plaque rupture - a problematic event due to the current lack of specific treatments to prevent such formations. Modelling this pathogenic process is also difficult due to the lack of suitable experimental models that enable quantitative analysis of crystal formation and bioactivity screening of potential therapeutic compounds. AIM To develop an in vitro human cell model of cholesterol crystallization combined with an imaging system that incorporates both quantitative analysis and real-time continuous imaging of cholesterol crystal formation. METHODS AND RESULTS An enhanced in vitro model of cholesterol crystallization was developed through the use of acetylated low-density lipoprotein (AcLDL) and 7-ketocholesterol as agents of foam cell induction within a human THP-1 monocytic cell line. Advanced confocal and polarizing microscopies were incorporated into the model so as to allow for quantitation of cholesterol crystallization, with the lipid-loaded group producing significantly greater numbers of cholesterol crystals than the untreated group. The utility of this system was also demonstrated by investigating the effects of the cholesterol-lowering drug lovastatin and therapeutic bile compound ursodeoxycholic acid (UDCA), showing that these drugs influence different aspects of cholesterol crystal formation. CONCLUSIONS The in vitro human THP-1 monocyte model of cholesterol crystallization provides an effective and efficient means of quantitating cholesterol crystallization in the pre-clinical stage of research. The model also allows for the screening of potentially therapeutic compounds that may be used in attenuating or preventing cholesterol crystallization.
Collapse
Affiliation(s)
- Christopher Halkias
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Antony Orth
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Science, RMIT University, Melbourne, Victoria 3001, Australia; National Research Council of Canada, Ottawa, Canada
| | - Bryce N Feltis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Theodore A Macrides
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Brant C Gibson
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Paul F A Wright
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
39
|
Fracassi F, Niccoli G, Cosentino N, Eligini S, Fiorelli S, Fabbiocchi F, Vetrugno V, Refaat H, Montone RA, Marenzi G, Tremoli E, Crea F. Human monocyte-derived macrophages: Pathogenetic role in plaque rupture associated to systemic inflammation. Int J Cardiol 2020; 325:1-8. [PMID: 33035612 DOI: 10.1016/j.ijcard.2020.09.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Macrophages play a key role in coronary plaque destabilization. In-vitro human monocyte-derived macrophages (MDMs) are used to study macrophages infiltrating tissue. Optical coherence tomography (OCT) provides an in-vivo insight of the coronary arteries. We compared the MDMs morpho-phenotype and culprit plaque features at OCT in acute coronary syndrome (ACS) patients according to the underlying plaque pathobiology. METHODS Sixty-six patients undergoing coronary angiography and pre-angioplasty OCT of the culprit vessel were allocated to three groups according to mechanism of ACS at OCT and C-reactive protein levels (cut-off: 2 mg/Ll): 1) plaque rupture with systemic inflammation; 2) plaque rupture without systemic inflammation, 3) plaque with intact fibrous cap. A blood sample was collected to obtain MDMs, categorized as having "round" or "spindle" morphology. RESULTS Thirty-two patients (48.5%) were assigned to Group 1, 10 (15.2%) to Group 2 and 24 (36.4%) to Group 3. The "round" MDMs were significantly more frequent in Group 1 (39.25 ± 4.98%) than in Group 2 (23.89 ± 3.10%) and Group 3 (23.02 ± 7.89%), p = 0.008. MDMs in Group 1 as compared to Groups 2 and 3 showed lower efferocytosis (8.74 ± 1.38 vs 9.74 ± 2.15 vs 11.41 ± 2.41; p = 0.012), higher tissue factor levels (369.84 ± 101.13 vs 301.89 ± 59.78 vs 231.74 ± 111.47; p = 0.001) and higher heme oxygenase-1 expression (678.78 ± 145.43 vs 419.12 ± 74.44 vs 409.78 ± 64.33; p = 0.008). CONCLUSIONS MDMs of ACS patients show morpho-phenotypic heterogeneity with prevalence of pro-thrombotic and pro-oxidative properties in case of plaque rupture and systemic inflammation. Such MDMs subpopulation may take part to the cellular pathways leading to fibrous cap rupture with the subsequent thrombus formation.
Collapse
Affiliation(s)
- Francesco Fracassi
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giampaolo Niccoli
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy.
| | | | - Sonia Eligini
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | | | | | - Vincenzo Vetrugno
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy
| | - Hesham Refaat
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy; Cardiology Department, Zagazig University, Zagazig, Egypt
| | - Rocco Antonio Montone
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy
| | | | - Elena Tremoli
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | - Filippo Crea
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
40
|
Mura M, Della Schiava N, Long A, Chirico EN, Pialoux V, Millon A. Carotid intraplaque haemorrhage: pathogenesis, histological classification, imaging methods and clinical value. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1273. [PMID: 33178805 PMCID: PMC7607119 DOI: 10.21037/atm-20-1974] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vulnerable carotid atherosclerotic plaques are characterised by several risk factors, such as inflammation, neovascularization and intraplaque haemorrhage (IPH). Vulnerable plaques can lead to ischemic events such as stroke. Many studies reported a relationship between IPH, plaque rupture, and ischemic stroke. Histology is the gold standard to evaluate IPH, but it required carotid endarterectomy (CEA) surgery to collect the tissue sample. In this context, several imaging methods can be used as a non-invasive way to evaluate plaque vulnerability and detect IPH. Most imaging studies showed that IPH is associated with plaque vulnerability and stroke, with magnetic resonance imaging (MRI) being the most sensitive and specific to detect IPH as a predictor of ischemic events. These conclusions are however still debated because of the limited number of patients included in these studies; further studies are required to better assess risks associated with different IPH stages. Moreover, IPH is implicated in plaque vulnerability with other risk factors which need to be considered to predict ischemic risk. In addition, MRI sequences standardization is required to compare results from different studies and agree on biomarkers that need to be considered to predict plaque rupture. In these circumstances, IPH detection by MRI could be an efficient clinical method to predict stroke. The goal of this review article is to first describe the pathophysiological process responsible for IPH, its histological detection in carotid plaques and its correlation with plaque rupture. The second part will discuss the benefits and limitations of imaging the carotid plaque, and finally the clinical interest of imaging IPH to predict plaque rupture, focusing on MRI-IPH.
Collapse
Affiliation(s)
- Mathilde Mura
- Univ Lyon, University Claude Bernard Lyon 1, Interuniversity Laboratory of Human Movement Biology EA7424, Lyon, France
| | - Nellie Della Schiava
- Department of Vascular and Endovascular Surgery, Groupement Hospitalier Est, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France.,Institut National des Sciences Appliquées Lyon, Laboratoire de Génie Electrique et Ferroélectricité EA 682, Villeurbanne, France
| | - Anne Long
- Univ Lyon, University Claude Bernard Lyon 1, Interuniversity Laboratory of Human Movement Biology EA7424, Lyon, France.,Departement of Internal Medicine and Vascular Medicine, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Erica N Chirico
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Vincent Pialoux
- Univ Lyon, University Claude Bernard Lyon 1, Interuniversity Laboratory of Human Movement Biology EA7424, Lyon, France.,Institut Universitaire de France, Paris, France
| | - Antoine Millon
- Department of Vascular and Endovascular Surgery, Groupement Hospitalier Est, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France.,Univ Lyon, University Claude Bernard Lyon 1, CarMeN Laboratory, INSERM U1060, Bron, France
| |
Collapse
|
41
|
Hypothetical Pathway for Formation of Cholesterol Microcrystals Initiating the Atherosclerotic Process. Cell Biochem Biophys 2020; 78:241-247. [PMID: 32602057 PMCID: PMC7403164 DOI: 10.1007/s12013-020-00925-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Abstract
Major factors leading to the development of atherosclerosis are a high cholesterol (Chol) level in the blood and oxidative stress. Both promote the formation of Chol microcrystals in blood vessel walls. Deposition of Chol microcrystals in arterial intima causes inflammation, which initiates and accompanies the atherosclerotic process in all its phases. One of the possible sources of Chol in the blood vessel walls is oxidized low-density lipoproteins-this atherosclerotic plaque formation pathway has already been described in the literature. Here, we hypothesize that initiation of the atherosclerotic process may involve Chol domains in the plasma membranes of arterial cells. Increased Chol content and the presence of polyunsaturated phospholipids in these membranes together with oxidative stress (phospholipid peroxidation) may lead to the formation of pure Chol bilayer domains that, with further peroxidation and increased Chol content, may collapse in the form of Chol seed crystals. Independent of their origin, Chol microcrystals activate inflammasomes, thereby stimulate immune responses, and initiate inflammation that may lead to the development of atherosclerosis. This new, hypothetical pathway has not yet been investigated in depth; however, data from the literature and our own results support its feasibility.
Collapse
|
42
|
Nidorf SM, Fiolet A, Abela GS. Viewing atherosclerosis through a crystal lens: How the evolving structure of cholesterol crystals in atherosclerotic plaque alters its stability. J Clin Lipidol 2020; 14:619-630. [DOI: 10.1016/j.jacl.2020.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023]
|
43
|
Jinnouchi H, Sato Y, Torii S, Sakamoto A, Cornelissen A, Bhoite RR, Kuntz S, Guo L, Paek KH, Fernandez R, Kolodgie FD, Virmani R, Finn AV. Detection of cholesterol crystals by optical coherence tomography. EUROINTERVENTION 2020; 16:395-403. [DOI: 10.4244/eij-d-20-00202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
El-Khatib LA, De Feijter-Rupp H, Janoudi A, Fry L, Kehdi M, Abela GS. Cholesterol induced heart valve inflammation and injury: efficacy of cholesterol lowering treatment. Open Heart 2020; 7:e001274. [PMID: 32747455 PMCID: PMC7402193 DOI: 10.1136/openhrt-2020-001274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/11/2020] [Accepted: 06/09/2020] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Heart valves often undergo a degenerative process leading to mechanical dysfunction that requires valve replacement. This process has been compared with atherosclerosis because of shared pathology and risk factors. In this study, we aimed to elucidate the role of inflammation triggered by cholesterol infiltration and cholesterol crystals formation causing mechanical and biochemical injury in heart valves. METHODS Human and atherosclerotic rabbit heart valves were evaluated. New Zealand White male rabbits were fed an enriched cholesterol diet alone or with simvastatin and ezetimibe simultaneous or after 6 months of initiating cholesterol diet. Inflammation was measured using C-reactive protein (CRP) and RAM 11 of tissue macrophage content. Cholesterol crystal presence and content in valves was evaluated using scanning electron microscopy. RESULTS Cholesterol diet alone induced cholesterol infiltration of valves with associated increased inflammation. Tissue cholesterol, CRP levels and RAM 11 were significantly lower in simvastatin and ezetimibe rabbit groups compared with cholesterol diet alone. However, the treatment was effective only when initiated with a cholesterol diet but not after lipid infiltration in valves. Aortic valve cholesterol content was significantly greater than all other cardiac valves. Extensive amounts of cholesterol crystals were noted in rabbit valves on cholesterol diet and in diseased human valves. CONCLUSIONS Prevention of valve infiltration with cholesterol and reduced inflammation by simvastatin and ezetimibe was effective only when given during the initiation of high cholesterol diet but was not effective when given following infiltration of cholesterol into the valve matrix.
Collapse
Affiliation(s)
| | - Heather De Feijter-Rupp
- Department of Medicine, Division of Cardiovascular Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Abed Janoudi
- Department of Medicine, Division of Cardiovascular Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Levi Fry
- Department of Medicine, Division of Cardiovascular Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Michael Kehdi
- Department of Medicine, Division of Cardiovascular Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - George S Abela
- Department of Medicine, Division of Cardiovascular Medicine, Michigan State University College of Human Medicine, East Lansing, Michigan, USA
- Department of Physiology, Division of Pathology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
45
|
Li J, Thiele S, Quirk BC, Kirk RW, Verjans JW, Akers E, Bursill CA, Nicholls SJ, Herkommer AM, Giessen H, McLaughlin RA. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. LIGHT, SCIENCE & APPLICATIONS 2020; 9:124. [PMID: 32704357 PMCID: PMC7371638 DOI: 10.1038/s41377-020-00365-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/23/2020] [Accepted: 07/04/2020] [Indexed: 05/03/2023]
Abstract
Preclinical and clinical diagnostics increasingly rely on techniques to visualize internal organs at high resolution via endoscopes. Miniaturized endoscopic probes are necessary for imaging small luminal or delicate organs without causing trauma to tissue. However, current fabrication methods limit the imaging performance of highly miniaturized probes, restricting their widespread application. To overcome this limitation, we developed a novel ultrathin probe fabrication technique that utilizes 3D microprinting to reliably create side-facing freeform micro-optics (<130 µm diameter) on single-mode fibers. Using this technique, we built a fully functional ultrathin aberration-corrected optical coherence tomography probe. This is the smallest freeform 3D imaging probe yet reported, with a diameter of 0.457 mm, including the catheter sheath. We demonstrated image quality and mechanical flexibility by imaging atherosclerotic human and mouse arteries. The ability to provide microstructural information with the smallest optical coherence tomography catheter opens a gateway for novel minimally invasive applications in disease.
Collapse
Affiliation(s)
- Jiawen Li
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Simon Thiele
- Institute of Applied Optics (ITO) and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Bryden C. Quirk
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Rodney W. Kirk
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| | - Johan W. Verjans
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000 Australia
- Royal Adelaide Hospital, Adelaide, SA 5000 Australia
| | - Emma Akers
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000 Australia
| | - Christina A. Bursill
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000 Australia
| | - Stephen J. Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, VIC 3168 Australia
| | - Alois M. Herkommer
- Institute of Applied Optics (ITO) and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Harald Giessen
- 4th Physics Institute and Research Center SCoPE, University of Stuttgart, 70569 Stuttgart, Germany
| | - Robert A. McLaughlin
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005 Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005 Australia
| |
Collapse
|
46
|
Del Prete A, Della Rocca DG, Calcagno S, Di Pietro R, Di Matteo A, Versaci F. Fractional flow reserve in patients with chronic kidney disease and severe arterial hypertension: one size does not fit all. Minerva Cardioangiol 2020; 68:258-260. [PMID: 32586074 DOI: 10.23736/s0026-4725.20.05284-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Armando Del Prete
- Division of Cardiology, Santa Maria Goretti Hospital, Latina, Italy -
| | | | - Simone Calcagno
- Division of Cardiology, Santa Maria Goretti Hospital, Latina, Italy
| | | | | | | |
Collapse
|
47
|
Koushki K, Shahbaz SK, Mashayekhi K, Sadeghi M, Zayeri ZD, Taba MY, Banach M, Al-Rasadi K, Johnston TP, Sahebkar A. Anti-inflammatory Action of Statins in Cardiovascular Disease: the Role of Inflammasome and Toll-Like Receptor Pathways. Clin Rev Allergy Immunol 2020; 60:175-199. [PMID: 32378144 PMCID: PMC7985098 DOI: 10.1007/s12016-020-08791-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is one type of cardiovascular disease (CVD) in which activation of the NLRP3 inflammasome and toll-like receptor (TLR) pathways is implicated. One of the most effective treatments for atherosclerosis is the use of statin medications. Recent studies have indicated that statins, in addition to their lipid-lowering effects, exert inhibitory and/or stimulatory effects on the NLRP3 inflammasome and TLRs. Some of the statins lead to activation of the inflammasome and subsequently cause secretion of IL-1β and IL-18. Thus, these actions may further aggravate the disease. On the other hand, some statins cause inhibition of the inflammasome or TLRs and along with lipid-lowering, help to improve the disease by reducing inflammation. In this article, we discuss these contradictory studies and the mechanisms of action of statins on the NLRP3 inflammasome and TLR pathways. The dose-dependent effects of statins on the NLRP3 complex are related to their chemistry, pharmacokinetic properties, and danger signals. Lipophilic statins have more pleiotropic effects on the NLRP3 complex in comparison to hydrophilic statins. Statins can suppress TLR4/MyD88/NF-ĸB signaling and cause an immune response shift to an anti-inflammatory response. Furthermore, statins inhibit the NF-ĸB pathway by decreasing the expression of TLRs 2 and 4. Statins are cost-effective drugs, which should have a continued future in the treatment of atherosclerosis due to both their immune-modulating and lipid-lowering effects.
Collapse
Affiliation(s)
- Khadijeh Koushki
- Department of Immunology, Faculty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sanaz Keshavarz Shahbaz
- Department of Immunology, Faculty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Mashayekhi
- Department of Immunology, Faculty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahvash Sadeghi
- Department of Immunology, Faculty of medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Khalid Al-Rasadi
- Medical Research Centre, Sultan Qaboos University, Muscat, Oman
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
48
|
Jin Z, Xiao Y, Yao F, Wang B, Zheng Z, Gao H, Lv X, Chen L, He Y, Wang W, Lin R. SIRT6 inhibits cholesterol crystal-induced vascular endothelial dysfunction via Nrf2 activation. Exp Cell Res 2020; 387:111744. [DOI: 10.1016/j.yexcr.2019.111744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022]
|
49
|
Ramasamy A, Ng J, White S, Johnson TW, Foin N, Girard MJA, Dijkstra J, Amersey R, Scoltock S, Koganti S, Jones D, Jin C, Räber L, Serruys PW, Torii R, Crake T, Rakhit R, Baumbach A, Mathur A, Bourantas CV. Efficacy and Reproducibility of Attenuation-Compensated Optical Coherence Tomography for Assessing External Elastic Membrane Border and Plaque Composition in Native and Stented Segments - An In Vivo and Histology-Based Study. Circ J 2019; 84:91-100. [PMID: 31735729 DOI: 10.1253/circj.cj-19-0630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Attenuation-compensated (AC) technique was recently introduced to improve the plaque characterization of optical coherence tomography (OCT). Histological validation demonstrated promising results but the efficacy and reproducibility of this technique for assessing in-vivo tissue composition remains unclear.Methods and Results:OCT images portraying native (n=200) and stented (n=200) segments and 31 histological cross-sections were analyzed. AC-OCT appeared superior to conventional (C)-OCT in detecting the external elastic lamina (EEM) borders (76% vs. 65.5%); AC-OCT enabled larger EEM arc detection compared with C-OCT (174.2±58.7° vs. 137.5±57.9°; P<0.001). There was poor agreement between the 2 techniques for detection of lipid in native and lipid and calcific tissue in stented segments (κ range: 0.164-0.466) but the agreement of C-OCT and AC-OCT was high for calcific tissue in native segments (κ=0.825). Intra and interobserver agreement of the 2 analysts was moderate to excellent with C-OCT (κ range: 0.681-0.979) and AC-OCT (κ range: 0.733-0.892) for all tissue types in both native and stented segments. Ex-vivoanalysis demonstrated that C-OCT was superior to AC-OCT (κ=0.545 vs. κ=0.296) for the detection of the lipid component in native segments. CONCLUSIONS The AC technique allows better delineation of the EEM but it remains inferior for lipid pool detection and neointima characterization. Combined AC- and C-OCT imaging may provide additional value for complete assessment of plaque and neointima characteristics.
Collapse
Affiliation(s)
- Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust.,William Harvey Research Institute, Queen Mary University London
| | - Jaryl Ng
- Department of Biomedical Engineering, National University of Singapore.,National Heart Centre and Duke-NUS Medical School, National University of Singapore
| | - Stephen White
- Department of Life Sciences, Manchester Metropolitan University
| | | | - Nicolas Foin
- Department of Biomedical Engineering, National University of Singapore.,National Heart Centre and Duke-NUS Medical School, National University of Singapore
| | - Michael J A Girard
- Department of Biomedical Engineering, National University of Singapore.,National Heart Centre and Duke-NUS Medical School, National University of Singapore
| | - Jouke Dijkstra
- Division of Image Processing, Department of Radiology, Leiden University Medical Center
| | - Rajiv Amersey
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust
| | | | | | - Daniel Jones
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust.,William Harvey Research Institute, Queen Mary University London
| | - Chongying Jin
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust
| | | | - Patrick W Serruys
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London
| | - Ryo Torii
- Department of Mechanical Engineering, University College London
| | - Tom Crake
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust
| | - Roby Rakhit
- Department of Cardiology, Royal Free London NHS Foundation Trust
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust.,William Harvey Research Institute, Queen Mary University London
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust.,William Harvey Research Institute, Queen Mary University London
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust.,William Harvey Research Institute, Queen Mary University London.,Institute of Cardiovascular Sciences, University College London
| |
Collapse
|
50
|
Shi X, Cai H, Wang F, Liu R, Xu X, Li M, Han Y, Yin Q, Ye R, Liu X. Cholesterol Crystals are Associated with Carotid Plaque Vulnerability: An Optical Coherence Tomography Study. J Stroke Cerebrovasc Dis 2019; 29:104579. [PMID: 31852598 DOI: 10.1016/j.jstrokecerebrovasdis.2019.104579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/13/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Vulnerable carotid plaque is associated with cerebrovascular events. Cholesterol crystals are often seen in the atherosclerotic plaques. However, the potential role of cholesterol crystals in carotid plaques destabilization is unknown. We aimed to identify the association between cholesterol crystals and carotid plaque vulnerability. METHODS Optical coherence tomography assessment of carotid plaque was performed in 95 patients. Clinical characteristics and plaque morphology were examined. The differences in plaque characteristics (thrombus, calcification, neovascularization, and macrophage accumulations) and clinical parameters (age, symptom, coronary heart disease, total cholesterol, triglycerides, and C-reactive protein) between patients with or without cholesterol crystals were analyzed with multivariate logistic regression. RESULTS Among 66 patients with acceptable carotid atherosclerotic optical coherence tomography images, 16 were with and 50 were without cholesterol crystals. 56.3% patients (9 of 16) with cholesterol crystals had cerebrovascular ischemic symptom related to ipsilateral internal carotid artery, whereas only 26.0% patients (13 of 50) without cholesterol crystals had symptom (OR, 3.66; 95% CI, 1.13-11.82; P = .025). 75.0% of the plaques with cholesterol crystals had concomitant macrophage accumulation (OR, 4.14; 95% CI, 1.17-14.65; P = .04). In segments with cholesterol crystals, a higher presence of calcification could be demonstrated compared to those without cholesterol crystals (62.5% versus 32.0%, P = .03). 70.0% plaques with cholesterol crystals and calcification were classified as symptomatic plaques (OR, 6.38; 95% CI, 1.46-27.91; P = .01). No association between plaque rupture and cholesterol crystals was identified. Multivariate logistic regression showed that age and macrophage accumulation were independently associated with cholesterol crystals. CONCLUSIONS Carotid atherosclerotic plaques with cholesterol crystals were more likely to have concomitant macrophage and calcification accumulations. Patients with cholesterol crystals plaque experienced more cerebrovascular symptoms. Thus, cholesterol crystals, especially together with macrophage and calcification, may serve as an important component of venerable carotid plaques.
Collapse
Affiliation(s)
- Xuan Shi
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Haodi Cai
- Department of Neurology, Jinling Hospital, Southeast University, Nanjing, China
| | - Fang Wang
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rui Liu
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaohui Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Min Li
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yunfei Han
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Qin Yin
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, China.
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|