1
|
Ozsefil IC, Miraloglu IH, Ozbayram EG, Ince B, Ince O. Bioaugmentation of anaerobic digesters with the enriched lignin-degrading microbial consortia through a metagenomic approach. CHEMOSPHERE 2024; 355:141831. [PMID: 38561162 DOI: 10.1016/j.chemosphere.2024.141831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
The recalcitrance of lignin impedes the efficient utilization of lignocellulosic biomass, hindering the efficient production of biogas and value-added materials. Despite the emergence of anaerobic digestion as a superior alternative to the aerobic method for lignin processing, achieving its feasibility requires thorough characterization of lignin-degrading anaerobic microorganisms, assessment of their biomethane production potential, and a comprehensive understanding of the degradation pathway. This study aimed to address the aforementioned necessities by bioaugmenting seed sludge with three distinct enriched lignin-degrading microbial consortia at both 25 °C and 37 °C. Enhanced biomethane yields was detected in the bioaugmented digesters, while the highest production was observed as 188 mLN CH4 gVS-1 in digesters operated at 37 °C. Moreover, methane yield showed a significant improvement in the samples at 37 °C ranging from 110% to 141% compared to the control, demonstrating the efficiency of the enriched lignin-degrading microbial community. Temperature and substrate were identified as key factors influencing microbial community dynamics. The observation that microbial communities tended to revert to the initial state after lignin depletion, indicating the stability of the overall microbiota composition in the digesters, is a promising finding for large-scale studies. Noteworthy candidates for lignin degradation, including Sporosarcina psychrophila, Comamonas aquatica, Shewanella baltica, Pseudomonas sp. C27, and Brevefilum fermentans were identified in the bioaugmented samples. PICRUSt2 predictions suggest that the pathway and specific proteins involved in anaerobic lignin degradation might share similarities with those engaged in the degradation of aromatic compounds.
Collapse
Affiliation(s)
- Ibrahim Cem Ozsefil
- Bogazici University, Institute of Environmental Sciences, Bebek, 34342, Istanbul, Turkey
| | | | - E Gozde Ozbayram
- Istanbul University, Faculty of Aquatic Sciences, Department of Marine and Freshwater Resources Management, Fatih, 34134, Istanbul, Turkey
| | - Bahar Ince
- Bogazici University, Institute of Environmental Sciences, Bebek, 34342, Istanbul, Turkey
| | - Orhan Ince
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34396, Istanbul, Turkey
| |
Collapse
|
2
|
Liang J, Zhang R, Chang J, Chen L, Nabi M, Zhang H, Zhang G, Zhang P. Rumen microbes, enzymes, metabolisms, and application in lignocellulosic waste conversion - A comprehensive review. Biotechnol Adv 2024; 71:108308. [PMID: 38211664 DOI: 10.1016/j.biotechadv.2024.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
The rumen of ruminants is a natural anaerobic fermentation system that efficiently degrades lignocellulosic biomass and mainly depends on synergistic interactions between multiple microbes and their secreted enzymes. Ruminal microbes have been employed as biomass waste converters and are receiving increasing attention because of their degradation performance. To explore the application of ruminal microbes and their secreted enzymes in biomass waste, a comprehensive understanding of these processes is required. Based on the degradation capacity and mechanism of ruminal microbes and their secreted lignocellulose enzymes, this review concentrates on elucidating the main enzymatic strategies that ruminal microbes use for lignocellulose degradation, focusing mainly on polysaccharide metabolism-related gene loci and cellulosomes. Hydrolysis, acidification, methanogenesis, interspecific H2 transfer, and urea cycling in ruminal metabolism are also discussed. Finally, we review the research progress on the conversion of biomass waste into biofuels (bioethanol, biohydrogen, and biomethane) and value-added chemicals (organic acids) by ruminal microbes. This review aims to provide new ideas and methods for ruminal microbe and enzyme applications, biomass waste conversion, and global energy shortage alleviation.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mohammad Nabi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Sitthikitpanya N, Ponuansri C, Jomnonkhaow U, Wongfaed N, Reungsang A. Unlocking the potential of sugarcane leaf waste for sustainable methane production: Insights from microbial pre-hydrolysis and reactor optimization. Heliyon 2024; 10:e25787. [PMID: 38356542 PMCID: PMC10865077 DOI: 10.1016/j.heliyon.2024.e25787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Sugarcane leaf waste, a byproduct of the growing global sugar industry, challenges agricultural waste management. This study explores its potential for methane production via anaerobic digestion. A microbial pre-hydrolysis, using lignocellulose-degrading bacteria, enhanced soluble chemical oxygen demand at an optimal initial substrate concentration of 40 g-volatile solid/L. Comparative analysis with untreated and bioaugmented leaves revealed the pre-hydrolyzed leaves achieved the highest methane production rate (MPR) at 14.0 ± 0.5 mL-CH4/L·d, surpassing others by 1.47 and 1.67 times. Two continuous stirred tank reactors were employed to assess the optimal hydraulic retention time (HRT). Results showed a stable methane production with an HRT of 25 days, yielding high MPRs: 88.70 ± 0.63 mL-CH4/L·d from pre-hydrolyzed sugarcane leaves and 82.57 ± 1.22 mL-CH4/L·d from microbial consortium-augmented leaves. A 25-day HRT fosters high microbial diversity with Bacteroidota, Firmicutes, Chloroflexi, and Verrucomicrobiota dominance, indicating favorable conditions. Conversely, a 20-day HRT results in lower diversity due to unfavorable factors like low pH during organic overloading, leading to increased concentrations of volatile fatty acids and lactic acid, with Firmicutes as the predominant phylum. This study highlights sugarcane leaf waste's potential as a valuable resource for sustainable methane production.
Collapse
Affiliation(s)
- Napapat Sitthikitpanya
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaweewan Ponuansri
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Umarin Jomnonkhaow
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nantharat Wongfaed
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| |
Collapse
|
4
|
Zhao Y, Yu S, Tan J, Wang Y, Li L, Zhao H, Liu M, Jiang L. Bioconversion of citrus waste by long-term DMSO-cryopreserved rumen fluid to volatile fatty acids and biogas is feasible: A microbiome perspective. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119693. [PMID: 38042069 DOI: 10.1016/j.jenvman.2023.119693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Preserving rumen fluid as the inoculum for anaerobic digestion of food waste is necessary when access to animal donors or slaughterhouses is limited. This study aims to compare two preservation methods relative to fresh ruminal inoculum: (1) cryoprotected with 5% dimethyl sulfoxide (DMSO) and stored at -20 °C and (2) frozen at -20 °C, both for 6 months. The fermentation activity of different inoculum was evaluated by rumen-based in vitro anaerobic fermentation tests (volatile fatty acids, biomass digestibility, and gas production). Citrus pomace was used as the substrate during a 96-h fermentation. The maximum volatile fatty acids, methane production, and citrus pomace digestibility from fresh rumen fluid were not significantly different from rumen fluid preserved with DMSO. Metagenome analysis revealed a significant difference in the rumen microbial composition and functions between fresh rumen fluid and frozen inoculum without DMSO. Storage of rumen fluid using -20 °C with DMSO demonstrated the less difference compared with fresh rumen fluid in microbial alpha diversity and taxa composition. The hierarchical clustering tree of CAZymes showed that DMSO cryoprotected fluid was clustered much closer to the fresh rumen fluid, showing more similarity in CAZyme profiles than frozen rumen fluid. The abundance of functional genes associated with carbohydrate metabolism and methane metabolism did not differ between fresh rumen fluid and the DMSO-20 °C, whereas the abundance of key functional genes significantly decreased in frozen rumen fluid. These findings suggest that using rumen liquid preserved using DMSO at -20 °C for 180 days is a feasible alternative to fresh rumen fluid. This would reduce the need for laboratories to maintain animal donors and/or reduce the frequency of collecting rumen fluid from slaughterhouses.
Collapse
Affiliation(s)
- Yuchao Zhao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shiqiang Yu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Jian Tan
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ying Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Liuxue Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Huiying Zhao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ming Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Linshu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
5
|
Tamilselvan R, Immanuel Selwynraj A. Enhancing biogas generation from lignocellulosic biomass through biological pretreatment: Exploring the role of ruminant microbes and anaerobic fungi. Anaerobe 2024; 85:102815. [PMID: 38145708 DOI: 10.1016/j.anaerobe.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Biogas production from Lignocellulosic Biomass (LB) via anaerobic digestion (AD) has gained attention for its potential in self-sustainability. However, the recalcitrance of LB cell walls pose a challenge to its degradability and biogas generation. Therefore, pretreatment of LB is necessary to enhance lignin removal and increase degradability. Among the different approaches, environmentally friendly biological pretreatment ispromising as it avoids the production of inhibitors. The ruminal microbial community, including anaerobic fungi, bacteria, and protozoa, has shown an ability to effectively degrade LB through biomechanical and microbial penetration of refractory cell structures. In this review, we provide an overview of ruminant microbes dominating LB's AD, their degradation mechanism, and the bioaugmentation of the rumen. We also explore the potential cultivation of anaerobic fungi from the rumen, their enzyme potential, and their role in AD. The rumen ecosystem, comprising both bacteria and fungi, plays a crucial role in enhancing AD. This comprehensive review delves into the intricacies of ruminant microorganisms' adhesion to plant cells, elucidates degradation mechanisms, and explores integrated pretreatment approaches for the effective utilization of LB, minimizing the impact of inhibitors. The discussion underscores the considerable potential of ruminant microbes in pretreating LB, paving the way for sustainable biogas production. Optimizing fungal colonization and ligninolytic enzyme production, such as manganese peroxidase and laccase, significantly enhances the efficiency of fungal pretreatment. Integrating anaerobic fungi through bioaugmentation during mainstream processing demonstrably increases methane production. This study opens promising avenues for further research and development of these microorganisms for bioenergy production.
Collapse
Affiliation(s)
- R Tamilselvan
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - A Immanuel Selwynraj
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
6
|
Dong L, Chen M, Liu C, Lv Y, Wang X, Lei Q, Fang Y, Tong H. Microbe interactions drive the formation of floating iron films in circumneutral wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167711. [PMID: 37832684 DOI: 10.1016/j.scitotenv.2023.167711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Floating iron (Fe) films are widely found in wetlands that can form oxic-anoxic boundaries under circumneutral conditions. These films play a crucial role in the redox transformations and bioavailability of nutrients and trace metals. Current studies mainly focus on chemical oxidation during Fe film formation under circumneutral conditions. The functional microorganisms and associated microbial processes involved in Fe film formation have yet to be investigated in detail. Here, we investigated the microbial communities and involved microbial processes for the formation of floating Fe films in wetlands. Ferrihydrite was the dominant Fe(III) phase in films, accompanied by moderate levels of carbon and silicon. The Fe species and microbial analysis indicated that Fe films contain mixed-valent Fe and can form biotically. Microbial community analysis showed that the dominant genera in these Fe films were Fe-oxidizing and reducing bacteria and methanotrophs, including Leptothrix, Ferriphasclus, Gallionella, Geobacter and Methylococcales. Leptothrix, Ferriphasclus and Gallionella, as classical Fe(II)-oxidizing bacteria (FeOB), can oxidize Fe(II) with limited oxygen and form special structures that are consistent with Fe film morphology. Geobacter can provide a source of Fe(II) for FeOB growth, and Methylococcales can perform methane oxidation to provide energy for Fe cycling. The high ratios of Gallionella- and Geobacter-related microorganisms and carbon fixation genes proved the contribution of potential of Fe cycling and autotrophic microbial communities to the formation of Fe films. The diversity of microbial community suggested that Fe(II) oxidation could trigger carbon fixation, while Fe(III) reduction accelerated Fe and carbon cycling through anaerobic respiration and autotrophic chemosynthesis. These results highlight the contribution of these multiple microbial processes to Fe and carbon cycling during the formation of floating Fe films in wetlands. However, further studies are required to fully elucidate the interaction of functional microorganisms involved in floating film formation and their biogeochemical role in wetlands.
Collapse
Affiliation(s)
- Leheng Dong
- College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang 471023, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yahui Lv
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xugang Wang
- College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
| | - Qinkai Lei
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yujuan Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
7
|
Suryawanshi PR, Badapanda C, Singh KM, Rathore A. Exploration of the rumen microbial diversity and carbohydrate active enzyme profile of black Bengal goat using metagenomic approach. Anim Biotechnol 2023; 34:761-774. [PMID: 31081473 DOI: 10.1080/10495398.2019.1609489] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Black Bengal goats possess a rich source of rumen microbiota that helps them to adapt for the better utilization of plant biomaterial into energy and nutrients, a task largely performed by enzymes encoded by the rumen microbiota. Therefore the study was designed in order to explore the taxonomic profile of rumen microbial communities and potential biomass degradation enzymes present in the rumen of back Bengal goat using Illumina Nextseq-500 platform. A total of 83.18 million high-quality reads were generated and bioinformatics analysis was performed using various tools and subsequently, the predicted ORFs along with the rRNA containing contigs were then uploaded to MG-RAST to analyze taxonomic and functional profiling. The results highlighted that Bacteriodetes (41.38-59.74%) were the most abundant phyla followed by Firmicutes (30.59-39.96%), Proteobacteria (5.07-7.61%), Euryarcheaota (0.71-7.41%), Actinobacteria (2.05-2.75%). Genes that encode glycoside hydrolases (GHs) had the highest number of CAZymes, and accounted for (39.73-37.88%) of all CAZymes in goat rumen. The GT families were the second-most abundant in CAZymes (23.73-23.11%) and followed by Carbohydrate Binding module Domain (17.65-15.61%), Carbohydrate Esterase (12.90-11.95%). This study indicated that goat rumen had complex functional microorganisms produce numerous CAZymes, and that can be further effectively utilised for applied ruminant research and industry based applications.
Collapse
Affiliation(s)
- Prashant R Suryawanshi
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Agartala, India
| | | | - Krishna M Singh
- Molecular Biology Department, Unipath Specialty Laboratory Ltd., Ahmedabad, India
| | - Ankita Rathore
- Bioinformatics Division, Xcelris Labs Limited, Ahmedabad, India
| |
Collapse
|
8
|
Ozsefil IC, Miraloglu IH, Ozbayram EG, Uzun O, Ince B, Ince O. Is a floodplain forest a valuable source for lignin-degrading anaerobic microbial communities: A metagenomic approach. CHEMOSPHERE 2023; 339:139675. [PMID: 37517669 DOI: 10.1016/j.chemosphere.2023.139675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Lignin is one of the most substantial obstacles in the evaluation of lignocellulosic compounds. Although there are numerous approaches for the enhancement of lignin digestion in the literature, there has yet to be an optimized system to date. In this study, samples taken from Igneada floodplain forests were enriched anaerobically at 25 °C and 37 °C, with alkali lignin as the sole carbon source. The activity of the anaerobic lignin-degrading microbial consortium was detected more efficiently at 37 °C, where biogas production exceeded 3.5 mLgas/mLmedium. It was observed that the microbial community initially dominated by Proteobacteria (around 60%) changed completely after enrichment and was led by members of the Firmicutes phylum (up to 90%). The dominant species (Sporomusa termitida, Desulfitobacterium hafniense, Citrobacter freundii, Citrobacter portucalensis, Alkalibacter rhizosphaerae, and Gudongella oleilytica) occupying more than 50% in the final enrichment culture were only around 2% in the raw samples. Therefore, this study, one of the few in which enriched environmental samples were sequenced using MinION, demonstrated that longoses are exceptional reservoirs for lignin-digesting anaerobic microorganisms.
Collapse
Affiliation(s)
- Ibrahim Cem Ozsefil
- Bogazici University, Institute of Environmental Sciences, Bebek, 34342, Istanbul, Turkey.
| | | | - E Gozde Ozbayram
- Istanbul University, Faculty of Aquatic Sciences, Department of Marine and Freshwater Resources Management, Fatih, 34134, Istanbul, Turkey
| | - Omer Uzun
- Bogazici University, Institute of Environmental Sciences, Bebek, 34342, Istanbul, Turkey
| | - Bahar Ince
- Bogazici University, Institute of Environmental Sciences, Bebek, 34342, Istanbul, Turkey
| | - Orhan Ince
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34396, Istanbul, Turkey
| |
Collapse
|
9
|
Leca E, Zennaro B, Hamelin J, Carrère H, Sambusiti C. Use of additives to improve collective biogas plant performances: A comprehensive review. Biotechnol Adv 2023; 65:108129. [PMID: 36933869 DOI: 10.1016/j.biotechadv.2023.108129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Nowadays, anaerobic digestion (AD) is being increasingly encouraged to increase the production of biogas and thus of biomethane. Due to the high diversity among feedstocks used, the variability of operating parameters and the size of collective biogas plants, different incidents and limitations may occur (e.g., inhibitions, foaming, complex rheology). To improve performance and overcome these limitations, several additives can be used. This literature review aims to summarize the effects of the addition of various additives in co-digestion continuous or semi-continuous reactors to fit as much as possible with collective biogas plant challenges. The addition of (i) microbial strains or consortia, (ii) enzymes and (iii) inorganic additives (trace elements, carbon-based materials) in digester is analyzed and discussed. Several challenges associated with the use of additives for AD process at collective biogas plant scale requiring further research work are highlighted: elucidation of mechanisms, dosage and combination of additives, environmental assessment, economic feasibility, etc.
Collapse
Affiliation(s)
- Estelle Leca
- TotalEnergies, CSTJF, Centre Scientifique et Technique Jean Féger, Av. Larribau, 64000 Pau, France
| | - Bastien Zennaro
- INRAE Transfert, 60 Rue Nicolas Leblanc, 11100 Narbonne, France
| | - Jérôme Hamelin
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Hélène Carrère
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100 Narbonne, France
| | - Cecilia Sambusiti
- TotalEnergies, CSTJF, Centre Scientifique et Technique Jean Féger, Av. Larribau, 64000 Pau, France.
| |
Collapse
|
10
|
Wongfaed N, O-Thong S, Sittijunda S, Reungsang A. Taxonomic and enzymatic basis of the cellulolytic microbial consortium KKU-MC1 and its application in enhancing biomethane production. Sci Rep 2023; 13:2968. [PMID: 36804594 PMCID: PMC9941523 DOI: 10.1038/s41598-023-29895-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Lignocellulosic biomass is a promising substrate for biogas production. However, its recalcitrant structure limits conversion efficiency. This study aims to design a microbial consortium (MC) capable of producing the cellulolytic enzyme and exploring the taxonomic and genetic aspects of lignocellulose degradation. A diverse range of lignocellulolytic bacteria and degrading enzymes from various habitats were enriched for a known KKU-MC1. The KKU-MC1 was found to be abundant in Bacteroidetes (51%), Proteobacteria (29%), Firmicutes (10%), and other phyla (8% unknown, 0.4% unclassified, 0.6% archaea, and the remaining 1% other bacteria with low predominance). Carbohydrate-active enzyme (CAZyme) annotation revealed that the genera Bacteroides, Ruminiclostridium, Enterococcus, and Parabacteroides encoded a diverse set of cellulose and hemicellulose degradation enzymes. Furthermore, the gene families associated with lignin deconstruction were more abundant in the Pseudomonas genera. Subsequently, the effects of MC on methane production from various biomasses were studied in two ways: bioaugmentation and pre-hydrolysis. Methane yield (MY) of pre-hydrolysis cassava bagasse (CB), Napier grass (NG), and sugarcane bagasse (SB) with KKU-MC1 for 5 days improved by 38-56% compared to non-prehydrolysis substrates, while MY of prehydrolysed filter cake (FC) for 15 days improved by 56% compared to raw FC. The MY of CB, NG, and SB (at 4% initial volatile solid concentration (IVC)) with KKU-MC1 augmentation improved by 29-42% compared to the non-augmentation treatment. FC (1% IVC) had 17% higher MY than the non-augmentation treatment. These findings demonstrated that KKU-MC1 released the cellulolytic enzyme capable of decomposing various lignocellulosic biomasses, resulting in increased biogas production.
Collapse
Affiliation(s)
- Nantharat Wongfaed
- grid.9786.00000 0004 0470 0856Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Sompong O-Thong
- grid.440406.20000 0004 0634 2087International College, Thaksin University, Songkhla, 90000 Thailand
| | - Sureewan Sittijunda
- grid.10223.320000 0004 1937 0490Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
11
|
Zhang J, Yang Y, Lei X, Wang Y, Li Y, Li Z, Yao J. Active dry yeast supplementation benefits ruminal fermentation, bacterial community, blood immunoglobulins, and growth performance in young dairy goats, but not for intermittent supplementation. ANIMAL NUTRITION 2023; 13:289-301. [PMID: 37168451 PMCID: PMC10165222 DOI: 10.1016/j.aninu.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/10/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
This study evaluated the effects of active dry yeast (ADY) supplementation and supplementation strategies on ruminal fermentation, bacterial community, blood metabolites, and growth performance in young dairy goats. Sixty young female Guanzhong dairy goats of similar age (4.00 ± 0.50 months) and BW (19.65 ± 0.41 kg) were randomly divided into 3 groups (n = 20): (1) basal diet group (CON); (2) basal diet continuously supplemented with 3.0 g/goat per day commercial ADY (a proprietary strain of Saccharomyces cerevisiae with 5.0 × 109 cfu/g) group (CSY); (3) basal diet with intermittently supplemented ADY group (ISY; 5 d supplementation with ADY at 4.5 g/goat per day following 5 d of no supplementation). The experiment lasted 67 d with the first 7 d as an adaptive period. Rumen fluid and blood samples were collected bi-weekly. Data were analyzed using the MIXED procedure combined with the SLICE option in SAS. Specific orthogonal contrasts of ADY vs. CON and CSY vs. ISY were also analyzed. During the experimental period, ADY supplementation resulted in greater DMI (P = 0.03), ruminal acetate proportion (P < 0.01) and acetylesterase activity (P = 0.01), and blood contents of glucose (P = 0.01) and IgM (P = 0.02) and tended to have greater ADG (P = 0.05) and paunch girth (P = 0.06) than the CON, despite the propionate proportion (P = 0.03) and contents of total protein (P = 0.04) and IgA (P = 0.03) being lower. The lower ruminal NH3-N (P < 0.01) and blood urea nitrogen (P = 0.07) contents indicated greater nitrogen utilization with ADY supplementation. ADY supplementation showed persistent effects after it was stopped because the BW at 12 months of age (P = 0.03) and birth weight of lambs (P = 0.02) were greater than the CON. However, the ISY did not show those benefits and had significantly lower relative abundances of fiber-degrading related bacteria than the CSY. In conclusion, ADY supplementation, especially continuously supplemented, may enhance ADG and ADG:DMI ratio by improving DMI, ruminal cellulolytic bacteria abundance and enzyme activity, nitrogen utilization, and immune status. These findings provide a theoretical basis for the rational application of ADY and have important practical implications for the design of nutritional strategies in growing dairy goats.
Collapse
|
12
|
Liang J, Fang W, Chang J, Zhang G, Ma W, Nabi M, Zubair M, Zhang R, Chen L, Huang J, Zhang P. Long-term rumen microorganism fermentation of corn stover in vitro for volatile fatty acid production. BIORESOURCE TECHNOLOGY 2022; 358:127447. [PMID: 35690238 DOI: 10.1016/j.biortech.2022.127447] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Rumen microorganisms have the ability to efficiently hydrolyze and acidify lignocellulosic biomass. The effectiveness of long-term rumen microorganism fermentation of lignocellulose in vitro for producing volatile fatty acids (VFAs) is unclear. The feasibility of long-term rumen microorganism fermentation of lignocelluose was evaluated in this study, and a stable VFA production was successfully realized for 120 d. Results showed that VFA concentration reached to 5.32-8.48 g/L during long-term fermentation. Hydrolysis efficiency of hemicellulose and cellulose reached 36.5%-52.2% and 29.4%-38.4%, respectively. A stable bacterial community was mainly composed of Prevotella, Rikenellaceae_RC9_gut_group, Ruminococcus, and Succiniclasticum. VFA accumulation led to a pH decrease, which caused the change of bacterial community structure. Functional prediction showed that the functional genes related to hydrolysis and acidogenesis of corn stover were highly expressed during long-term fermentation. The successful long-term rumen fermentation to produce VFAs is of great significance for the practical application of rumen microorganisms.
Collapse
Affiliation(s)
- Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mohammad Nabi
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Muhammad Zubair
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ru Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jianghao Huang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
13
|
Boboua SYB, Zhou C, Li J, Bi W, Wang R, Chen S, Zheng G. Augmentation characteristics and microbial community dynamics of low temperature resistant composite strains LTF-27. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35338-35349. [PMID: 35050471 DOI: 10.1007/s11356-022-18677-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Biogas production in the cold regions of China is hindered by low temperatures, which led to slow lignocellulose biotransformation. Cold-adapted lignocellulose degrading microbial complex community LTF-27 was used to investigate the influence of hydrolysis on biogas production. After 5 days of hydrolysis at 15 ± 1 °C, the hydrolysis conversion rate of the corn straw went up to 22.64%, and the concentration of acetic acid increased to 2596.56 mg/L. The methane production rates of total solids (TS) inoculated by LTF-27 reached 204.72 mL/g, which was higher than the biogas (161.34 mL/g), and the control group (CK) inoculated with cultural solution (121.19 mL/g), the methane production rate of volatile solids (VS) increased by 26.88% and 68.92%, respectively. Parabacteroides, Lysinibacillus, and Citrobacter were the main organisms that were responsible for hydrolysis. While numerous other bacteria genera in the gas-producing phase, Macellibacteroides were the most commonly occurring one. Methanosarcina and Methanobacteriaceae contributed 86.25% and 11.80% of the total Archaea abundance during this phase. This study proves the psychrotrophic LTF-27's applicability in hydrolysis and biomass gas production in low temperatures.
Collapse
Affiliation(s)
- Stopira Yannick Benz Boboua
- College of Engineering, Northeast Agriculture University, Harbin, 150030, People's Republic of China
- Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, People's Republic of China
| | - Chenyang Zhou
- College of Engineering, Northeast Agriculture University, Harbin, 150030, People's Republic of China
- Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, People's Republic of China
| | - Jiachen Li
- College of Engineering, Northeast Agriculture University, Harbin, 150030, People's Republic of China
- Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, People's Republic of China
| | - Weishuai Bi
- College of Engineering, Northeast Agriculture University, Harbin, 150030, People's Republic of China
- Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, People's Republic of China
| | - Ruxian Wang
- College of Engineering, Northeast Agriculture University, Harbin, 150030, People's Republic of China
- Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, People's Republic of China
| | - Shengnan Chen
- College of Engineering, Northeast Agriculture University, Harbin, 150030, People's Republic of China
- Key Laboratory of Pig-Breeding Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China
| | - Guoxiang Zheng
- College of Engineering, Northeast Agriculture University, Harbin, 150030, People's Republic of China.
- Key Laboratory of Agricultural Renewable Resources Utilization Technology and Equipment in Cold Areas of Heilongjiang Province, Harbin, 150030, People's Republic of China.
- Key Laboratory of Pig-Breeding Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, 150030, People's Republic of China.
| |
Collapse
|
14
|
Enrichment of Anaerobic Microbial Communities from Midgut and Hindgut of Sun Beetle Larvae (Pachnoda marginata) on Wheat Straw: Effect of Inoculum Preparation. Microorganisms 2022; 10:microorganisms10040761. [PMID: 35456811 PMCID: PMC9024811 DOI: 10.3390/microorganisms10040761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
The Pachnoda marginata larva have complex gut microbiota capable of the effective conversion of lignocellulosic biomass. Biotechnological utilization of these microorganisms in an engineered system can be achieved by establishing enrichment cultures using a lignocellulosic substrate. We established enrichment cultures from contents of the midgut and hindgut of the beetle larva using wheat straw in an alkaline medium at mesophilic conditions. Two different inoculation preparations were used: procedure 1 (P1) was performed in a sterile bench under oxic conditions using 0.4% inoculum and small gauge needles. Procedure 2 (P2) was carried out under anoxic conditions using more inoculum (4%) and bigger gauge needles. Higher methane production was achieved with P2, while the highest acetic acid concentrations were observed with P1. In the enrichment cultures, the most abundant bacterial families were Dysgonomonadaceae, Heliobacteriaceae, Ruminococcaceae, and Marinilabiliaceae. Further, the most abundant methanogenic genera were Methanobrevibacter, Methanoculleus, and Methanosarcina. Our observations suggest that in samples processed with P1, the volatile fatty acids were not completely converted to methane. This is supported by the finding that enrichment cultures obtained with P2 included acetoclastic methanogens, which might have prevented the accumulation of acetic acid. We conclude that differences in the inoculum preparation may have a major influence on the outcome of enrichment cultures from the P. marginata larvae gut.
Collapse
|
15
|
Bhujbal SK, Ghosh P, Vijay VK, Rathour R, Kumar M, Singh L, Kapley A. Biotechnological potential of rumen microbiota for sustainable bioconversion of lignocellulosic waste to biofuels and value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152773. [PMID: 34979222 DOI: 10.1016/j.scitotenv.2021.152773] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/05/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass is an abundant resource with untapped potential for biofuel, enzymes, and chemical production. Its complex recalcitrant structure obstructs its bioconversion into biofuels and other value-added products. For improving its bioconversion efficiency, it is important to deconstruct its complex structure. In natural systems like rumen, diverse microbial communities carry out hydrolysis, acidogenesis, acetogenesis, and methanogenesis of lignocellulosic biomass through physical penetration, synergistic and enzymatic actions enhancing lignocellulose degradation activity. This review article aims to discuss comprehensively the rumen microbial ecosystem, their interactions, enzyme production, and applications for efficient bioconversion of lignocellulosic waste to biofuels. Furthermore, meta 'omics' approaches to elucidate the structure and functions of rumen microorganisms, fermentation mechanisms, microbe-microbe interactions, and host-microbe interactions have been discussed thoroughly. Additionally, feed additives' role in improving ruminal fermentation efficiency and reducing environmental nitrogen losses has been discussed. Finally, the current status of rumen microbiota applications and future perspectives for the development of rumen mimic bioreactors for efficient bioconversion of lignocellulosic wastes to biofuels and chemicals have been highlighted.
Collapse
Affiliation(s)
- Sachin Krushna Bhujbal
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Virendra Kumar Vijay
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Rashmi Rathour
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Manish Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Lal Singh
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| | - Atya Kapley
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440020, India
| |
Collapse
|
16
|
Nwankwegu AS, Zhang L, Xie D, Onwosi CO, Muhammad WI, Odoh CK, Sam K, Idenyi JN. Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114313. [PMID: 34942548 DOI: 10.1016/j.jenvman.2021.114313] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Environmental pollution mitigation measure involving bioremediation technology is a sustainable intervention for a greener ecosystem biorecovery, especially the obnoxious hydrocarbons, xenobiotics, and other environmental pollutants induced by anthropogenic stressors. Several successful case studies have provided evidence to this paradigm including the putative adoption that the technology is eco-friendly, cost-effective, and shows a high tendency for total contaminants mineralization into innocuous bye-products. The present review reports advances in bioremediation, types, and strategies conventionally adopted in contaminant clean-up. It identified that natural attenuation and biostimulation are faced with notable limitations including the poor remedial outcome under the natural attenuation system and the residual contamination occasion following a biostimulation operation. It remarks that the use of genetically engineered microorganisms shows a potentially promising insight as a prudent remedial approach but is currently challenged by few ethical restrictions and the rural unavailability of the technology. It underscores that bioaugmentation, particularly the use of high cell density assemblages referred to as microbial consortia possess promising remedial prospects thus offers a more sustainable environmental security. The authors, therefore, recommend bioaugmentation for large scale contaminated sites in regions where environmental degradation is commonplace.
Collapse
Affiliation(s)
- Amechi S Nwankwegu
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing, 400716, China; Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya.
| | - Lei Zhang
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing, 400716, China
| | - Deti Xie
- College of Resources and Environment, Southwest University, 1 Tiansheng Road, Beibei District, Chongqing, 400716, China
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Wada I Muhammad
- Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya; College of Water Conservancy, Hohai University, No.1 Xikang Road, Gulou District, Nanjing, 210098, China
| | - Chuks K Odoh
- Organization of African Academic Doctors, Off Kamiti Road, P.O. Box 25305-00100, Nairobi, Kenya; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Beijing, China
| | - Kabari Sam
- Faculty of Environmental Management, Department of Marine Environment and Pollution Control, Nigeria Maritime University, Okerenkoko, Delta State, Nigeria
| | - John N Idenyi
- Department of Biotechnology, Ebonyi State University Abakaliki, Nigeria
| |
Collapse
|
17
|
Baltaci MO. Enhancement of cellulase production by co-culture of Streptomyces ambofaciens OZ2 and Cytobacillus oceanisediminis OZ5 isolated from rumen samples. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2038581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
18
|
Li J, Wu Y, Zhao J, Wang S, Dong Z, Shao T. Bioaugmented degradation of rice straw combining two novel microbial consortia and lactic acid bacteria for enhancing the methane production. BIORESOURCE TECHNOLOGY 2022; 344:126148. [PMID: 34673188 DOI: 10.1016/j.biortech.2021.126148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Two consortia of lignocellulolytic microbes (CL and YL) were isolated from the rumen of ruminants. Their ability to facilitate the degradation of rice straw and enhance methane (CH4) production were evaluated, both individually and combined with lactic acid bacteria (LAB). After 30 days of degradation, rice straw powders (RSPs) were observed to change in physical structure and also displayed a significant reduction in lignocellulose content. Combined application of microbial consortia with LAB efficiently improved enzymatic hydrolysis of RSPs, increasing organic acid as well as mono- and disaccharide contents. Synergistic action between microbial consortia and LAB enhanced CH4 yield, and rice straw treated with YL + LAB had the highest CH4 production (357.53 mL CH4/g VS), more than fivefold of the control. The newly identified microbial consortia are capable of efficiently degrading lignocellulosic biomass. Functioning synergistically with LAB, they provide a feasible way biodegrade rice straw and enhance methane production from agricultural wastes.
Collapse
Affiliation(s)
- Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongjie Wu
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Siran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
19
|
Basak B, Ahn Y, Kumar R, Hwang JH, Kim KH, Jeon BH. Lignocellulolytic microbiomes for augmenting lignocellulose degradation in anaerobic digestion. Trends Microbiol 2021; 30:6-9. [PMID: 34610897 DOI: 10.1016/j.tim.2021.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Bioaugmenting lignocellulose digestion with potent lignocellulolytic microbiomes (LMs) facilitates efficient biomethanation. Assessing the metabolic roles of microbial communities of the LMs and their complex interactions with the indigenous anaerobic digester microbiome is pivotal in implementing bioaugmentation. Multiple meta-omics are the frontline approaches to investigating gene functions, metabolic roles, and the ecological niches of LMs.
Collapse
Affiliation(s)
- Bikram Basak
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yongtae Ahn
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Ramesh Kumar
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae-Hoon Hwang
- Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
20
|
Gui LS, Raza SHA, Ahmed Allam FAE, Zhou L, Hou S, Khan I, Kakar IU, Abd El-Aziz AH, Jia J, Sun Y, Wang Z. Altered milk yield and rumen microbial abundance in response to concentrate supplementation during the cold season in Tibetan sheep. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
21
|
Gozde Ozbayram E. Waste to energy: valorization of spent tea waste by anaerobic digestion. ENVIRONMENTAL TECHNOLOGY 2021; 42:3554-3560. [PMID: 32530785 DOI: 10.1080/09593330.2020.1782477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
The conversion of renewable resources into value-added products such as bioenergy is one of the growing concerns of bioeconomy strategy. Within this concept, assessing the proper combination of local wastes has major importance. This study set out to assess the feasibility of using spent tea waste as a single and co-substrate on anaerobic digestion and to explore the influence of the amount of microorganisms on the digester performance. For this purpose, biomethane potentials tests were conducted for seven different mixing ratios of spent tea waste and cow manure on a mass basis. The reactors operated under mesophilic conditions for 20 days with two inoculum/substrate ratios. The results revealed that using spent tea waste as a co-substrate did not reveal a significant effect on biomethane production in the reactors. Contrarily, the amount of inoculum had a remarkable effect on biomethane production, resulted in an increase in methane production between 28 and 32%. While the biomethane yields were in the range of 129-138 mLN CH4 gVS-1 for the co-digesters operated with inoculum/substrate ratio of 1, the range was 165-181 mLN CH4 gVS-1 for the co-digesters operated with inoculum/substrate ratio of 2. These findings represent the potential usage of the spent tea waste as a co-substrate within the sustainable waste management approach and are relevant to plant operators.
Collapse
Affiliation(s)
- E Gozde Ozbayram
- Department of Marine and Freshwater Resources Management, Faculty of Aquatic Sciences, Istanbul University, Istanbul, Turkey
| |
Collapse
|
22
|
Olatunji KO, Ahmed NA, Ogunkunle O. Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: a review. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:159. [PMID: 34281615 PMCID: PMC8287798 DOI: 10.1186/s13068-021-02012-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/09/2021] [Indexed: 05/10/2023]
Abstract
Population increase and industrialization has resulted in high energy demand and consumptions, and presently, fossil fuels are the major source of staple energy, supplying 80% of the entire consumption. This has contributed immensely to the greenhouse gas emission and leading to global warming, and as a result of this, there is a tremendous urgency to investigate and improve fresh and renewable energy sources worldwide. One of such renewable energy sources is biogas that is generated by anaerobic fermentation that uses different wastes such as agricultural residues, animal manure, and other organic wastes. During anaerobic digestion, hydrolysis of substrates is regarded as the most crucial stage in the process of biogas generation. However, this process is not always efficient because of the domineering stableness of substrates to enzymatic or bacteria assaults, but substrates' pretreatment before biogas production will enhance biogas production. The principal objective of pretreatments is to ease the accessibility of the enzymes to the lignin, cellulose, and hemicellulose which leads to degradation of the substrates. Hence, the use of pretreatment for catalysis of lignocellulose substrates is beneficial for the production of cost-efficient and eco-friendly process. In this review, we discussed different pretreatment technologies of hydrolysis and their restrictions. The review has shown that different pretreatments have varying effects on lignin, cellulose, and hemicellulose degradation and biogas yield of different substrate and the choice of pretreatment technique will devolve on the intending final products of the process.
Collapse
Affiliation(s)
- Kehinde Oladoke Olatunji
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa.
| | - Noor A Ahmed
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa
| | - Oyetola Ogunkunle
- Department of Mechanical Engineering Science, Faculty of Engineering and Built Environment, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
23
|
Rajeswari G, Jacob S, Chandel AK, Kumar V. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: a review. Microb Cell Fact 2021; 20:107. [PMID: 34044834 PMCID: PMC8161579 DOI: 10.1186/s12934-021-01597-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Uprising fossil fuel depletion and deterioration of ecological reserves supply have led to the search for alternative renewable and sustainable energy sources and chemicals. Although first generation biorefinery is quite successful commercially in generating bulk of biofuels globally, the food versus fuel debate has necessitated the use of non-edible feedstocks, majorly waste biomass, for second generation production of biofuels and chemicals. A diverse class of microbes and enzymes are being exploited for biofuels production for a series of treatment process, however, the conversion efficiency of wide range of lignocellulosic biomass (LCB) and consolidated way of processing remains challenging. There were lot of research efforts in the past decade to scour for potential microbial candidate. In this context, evolution has developed the gut microbiota of several insects and ruminants that are potential LCB degraders host eco-system to overcome its host nutritional constraints, where LCB processed by microbiomes pretends to be a promising candidate. Synergistic microbial symbionts could make a significant contribution towards recycling the renewable carbon from distinctly abundant recalcitrant LCB. Several studies have assessed the bioprospection of innumerable gut symbionts and their lignocellulolytic enzymes for LCB degradation. Though, some reviews exist on molecular characterization of gut microbes, but none of them has enlightened the microbial community design coupled with various LCB valorization which intensifies the microbial diversity in biofuels application. This review provides a deep insight into the significant breakthroughs attained in enrichment strategy of gut microbial community and its molecular characterization techniques which aids in understanding the holistic microbial community dynamics. Special emphasis is placed on gut microbial role in LCB depolymerization strategies to lignocellulolytic enzymes production and its functional metagenomic data mining eventually generating the sugar platform for biofuels and renewable chemicals production.
Collapse
Affiliation(s)
- Gunasekaran Rajeswari
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist. , Kattankulathur, 603203, Tamil Nadu, India
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist. , Kattankulathur, 603203, Tamil Nadu, India.
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena, 12.602.810, Brazil
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK.
| |
Collapse
|
24
|
Tingley JP, Low KE, Xing X, Abbott DW. Combined whole cell wall analysis and streamlined in silico carbohydrate-active enzyme discovery to improve biocatalytic conversion of agricultural crop residues. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:16. [PMID: 33422151 PMCID: PMC7797155 DOI: 10.1186/s13068-020-01869-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/24/2020] [Indexed: 05/08/2023]
Abstract
The production of biofuels as an efficient source of renewable energy has received considerable attention due to increasing energy demands and regulatory incentives to reduce greenhouse gas emissions. Second-generation biofuel feedstocks, including agricultural crop residues generated on-farm during annual harvests, are abundant, inexpensive, and sustainable. Unlike first-generation feedstocks, which are enriched in easily fermentable carbohydrates, crop residue cell walls are highly resistant to saccharification, fermentation, and valorization. Crop residues contain recalcitrant polysaccharides, including cellulose, hemicelluloses, pectins, and lignin and lignin-carbohydrate complexes. In addition, their cell walls can vary in linkage structure and monosaccharide composition between plant sources. Characterization of total cell wall structure, including high-resolution analyses of saccharide composition, linkage, and complex structures using chromatography-based methods, nuclear magnetic resonance, -omics, and antibody glycome profiling, provides critical insight into the fine chemistry of feedstock cell walls. Furthermore, improving both the catalytic potential of microbial communities that populate biodigester reactors and the efficiency of pre-treatments used in bioethanol production may improve bioconversion rates and yields. Toward this end, knowledge and characterization of carbohydrate-active enzymes (CAZymes) involved in dynamic biomass deconstruction is pivotal. Here we overview the use of common "-omics"-based methods for the study of lignocellulose-metabolizing communities and microorganisms, as well as methods for annotation and discovery of CAZymes, and accurate prediction of CAZyme function. Emerging approaches for analysis of large datasets, including metagenome-assembled genomes, are also discussed. Using complementary glycomic and meta-omic methods to characterize agricultural residues and the microbial communities that digest them provides promising streams of research to maximize value and energy extraction from crop waste streams.
Collapse
Affiliation(s)
- Jeffrey P Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
- Department of Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 6T5, Canada
| | - Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB, T1J 4B1, Canada.
- Department of Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 6T5, Canada.
| |
Collapse
|
25
|
Sarkar D, Rakshit A. Safeguarding the fragile rice–wheat ecosystem of the Indo-Gangetic Plains through bio-priming and bioaugmentation interventions. FEMS Microbiol Ecol 2020; 96:5956486. [DOI: 10.1093/femsec/fiaa221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Managing agrochemicals for crop production always remains a classic challenge for us to maintain the doctrine of sustainability. Intensively cultivated rice–wheat production system without using the organics (organic amendments, manures, biofertilizers) has a tremendous impact on soil characteristics (physical, chemical, and biological), environmental quality (water, air), input use efficiency, ecosystem biodiversity, and nutritional security. Consequently, crop productivity is found to be either decreasing or stagnating. Rice–wheat cropping system is the major agroecosystem in India feeding millions of people, which is widely practiced in the Indo-Gangetic Plains (IGP). Microorganisms as key players in the soil system can restore the degraded ecosystems using a variety of mechanisms. Here, we propose how delivery systems (i.e., the introduction of microbes in seed, soil, and crop through bio-priming and/or bioaugmentation) can help us in eradicating food scarcity and maintaining sustainability without compromising the ecosystem services. Both bio-priming and bioaugmentation are efficient techniques to utilize bio-agents judiciously for successful crop production by enhancing phytohormones, nutrition status, and stress tolerance levels in plants (including mitigating of abiotic stresses and biocontrol of pests/pathogens). However, there are some differences in application methods, and the latter one also includes the aspects of bioremediation or soil detoxification. Overall, we have highlighted different perspectives on applying biological solutions in the IGP to sustain the dominant (rice–wheat) cropping sequence.
Collapse
Affiliation(s)
- Deepranjan Sarkar
- Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Amitava Rakshit
- Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
26
|
Akyol Ç. In search of the optimal inoculum to substrate ratio during anaerobic co-digestion of spent coffee grounds and cow manure. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2020; 38:1278-1283. [PMID: 32356493 DOI: 10.1177/0734242x20914731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The inoculum to substrate (I:S) ratio is a crucial operating parameter during the start-up period of anaerobic digestion (AD) processes and this ratio shows high differentiation with respect to substrate composition. While spent coffee grounds (SCG) have started to gain attraction in AD as a co-substrate due to their vast production and promising methane potential, there is still not enough information on the operative environment of SCG-based biogas reactors. This study investigated the optimal I:S ratio during anaerobic co-digestion of SCG and cow manure. Biochemical methane potential tests were conducted at mesophilic conditions and the influence of I:S ratio on methane production and digestion stability was evaluated at a wide range of I:S ratios from 0.5:1 to 4:1 (volatile solids (VS) basis). Methane yields increased gradually starting from the I:S ratio of 0.5:1 up to 3:1 and the highest methane yield (225 mlCH4 gVS-1) was achieved at the I:S ratio of 3:1. Comparatively lower methane yields were obtained at the ratios of 3.5:1 and 4:1. Instable AD conditions were established at the lowest I:S ratio examined (0.5:1), which caused volatile fatty acid (VFA) accumulation. The results highlighted that anaerobic co-digestion of SCG and cow manure is a promising approach, while the I:S ratio should be well-maintained due to the high potential risk of rapid and/or excess VFA production of these feedstocks.
Collapse
Affiliation(s)
- Çağrı Akyol
- Institute of Environmental Sciences, Boğaziçi University, Turkey
- Department of Science and Engineering of Materials, Environment and Urban Planning-SIMAU, Marche Polytechnic University, Italy
| |
Collapse
|
27
|
Vinzelj J, Joshi A, Insam H, Podmirseg SM. Employing anaerobic fungi in biogas production: challenges & opportunities. BIORESOURCE TECHNOLOGY 2020; 300:122687. [PMID: 31926794 DOI: 10.1016/j.biortech.2019.122687] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 05/24/2023]
Abstract
Anaerobic fungi (AF, phylum Neocallimastigomycota) are best known for their ability to efficiently break down lignocellulosic biomass. Their unique combination of mechanical and enzymatic attacks on recalcitrant plant structures bears great potential for enhancement of the anaerobic digestion (AD) process. Although scientists in this field have long agreed upon the potential of AF for biotechnology, research is only recently gaining traction. This delay was largely due to difficulties in culture-dependent and culture-independent analysis of those high-maintenance organisms with their still unknown complex growth requirements. In this review, we will summarize current research efforts on bioaugmentation with AF and further point out, how the lack of basic knowledge on AF nutritional needs hampers their implementation on an industrial scale. Through this, we hope to further kindle interest into basic research on AF in order to advance their stable integration into biotechnological processes.
Collapse
Affiliation(s)
- Julia Vinzelj
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, A-6020 Innsbruck, Austria
| | - Akshay Joshi
- ZHAW School of Life Sciences and Facility Management, Einsiedlerstrasse 31, CH-8820 Wädenswil, Switzerland
| | - Heribert Insam
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, A-6020 Innsbruck, Austria
| | - Sabine Marie Podmirseg
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
28
|
Ozbayram EG, Kleinsteuber S, Nikolausz M. Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass. Appl Microbiol Biotechnol 2019; 104:489-508. [DOI: 10.1007/s00253-019-10239-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
|
29
|
Ferraro A, Massini G, Mazzurco Miritana V, Signorini A, Race M, Fabbricino M. A simplified model to simulate bioaugmented anaerobic digestion of lignocellulosic biomass: Biogas production efficiency related to microbiological data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 691:885-895. [PMID: 31326812 DOI: 10.1016/j.scitotenv.2019.07.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Mathematical model applications for the bioaugmented anaerobic digestion (BAD) process seem to be lacking in the scientific literature, even more so when related to microbiological data. The present study suggests a simplified mathematical model to investigate and simulate the process kinetics of bioaugmented anaerobic digestion (BAD) aimed at improving biogas production from wheat straw (WS). Bioaugmented conditions were obtained through a mixed inoculum of anaerobic ruminal fungi (ARF) and hydrogen-producing fermenting bacteria (F210) added to a methanogenic inoculum. The investigation focused on two process configurations characterized by a mono (I-BAD) and two-stage (II-BAD) process and a conventional anaerobic digestion (AD) control test. Each configuration was used on two operating scales (i.e., 120 ml and 12,000 ml reactor volume) to provide different data sets for the calibration and validation of the mathematical model proposed. The model calibration step was used to determine the optimal values of selected parameters displaying higher significance for experimental result predictability. The model calibration results highlighted a similar behavior for both BAD tests, which was further strengthened by a statistical analysis supporting the observed correlation regardless of the BAD configuration involved. The BAD configuration always enhanced the CH4 production (>70%) with a faster kinetic in the II-BAD test. The microbiological results support the superior performance of the II-BAD test, displaying higher Archaea fractions (up to 14.5% on day 23) with values more than double compared to I-BAD and triple compared to the AD test. Furthermore, the presence of Methanosarcina inside the Archaea guild (6.4% and 4.5% at days 11 and 61, respectively) ensures a greater diversification of the metabolic pathways and supports the strength of the process performance. Cell density values are strongly in line with these results.
Collapse
Affiliation(s)
- Alberto Ferraro
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125 Naples, Italy.
| | - Giulia Massini
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Valentina Mazzurco Miritana
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Antonella Signorini
- Department of Energy Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via di Biasio 43, 03043 Cassino, Italy
| | - Massimiliano Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples "Federico II", Via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
30
|
Suksong W, Kongjan P, Prasertsan P, O-Thong S. Thermotolerant cellulolytic Clostridiaceae and Lachnospiraceae rich consortium enhanced biogas production from oil palm empty fruit bunches by solid-state anaerobic digestion. BIORESOURCE TECHNOLOGY 2019; 291:121851. [PMID: 31374416 DOI: 10.1016/j.biortech.2019.121851] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Thermotolerant cellulolytic consortium for improvement biogas production from oil palm empty fruit bunches (EFB) by prehydrolysis and bioaugmentation strategies was investigated via solid-state anaerobic digestion (SS-AD). The prehydrolysis EFB with Clostridiaceae and Lachnospiraceae rich consortium have maximum methane yield of 252 and 349 ml CH4 g-1 VS with total EFB degradation efficiency of 62% and 86%, respectively. Clostridiaceae and Lachnospiraceae rich consortium augmentation in biogas reactor have maximum methane yield of 217 and 85.2 ml CH4 g-1 VS with degradation efficiency of 42% and 16%, respectively. The best improvement of biogas production was achieved by prehydrolysis EFB with Lachnospiraceae rich consortium with maximum methane production of 113 m3 CH4 tonne-1 EFB. While, Clostridiaceae rich consortium was suitable for augmentation in biogas reactor with maximum methane production of 70.6 m3 CH4 tonne-1 EFB. Application of thermotolerant cellulolytic consortium into the SS-AD systems could enhance biogas production of 3-11 times.
Collapse
Affiliation(s)
- Wantanasak Suksong
- Biotechnology Program, Faculty of Science, Thaksin University, Phatthalung, Thailand
| | - Prawit Kongjan
- Department of Science, Faculty of Science and Technology, Prince of Songkla University, Pattani, Thailand
| | - Poonsuk Prasertsan
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Sompong O-Thong
- Biotechnology Program, Faculty of Science, Thaksin University, Phatthalung, Thailand; Research Center in Energy and Environment, Faculty of Science, Thaksin University, Phatthalung, Thailand.
| |
Collapse
|
31
|
Akyol Ç, Ozbayram EG, Demirel B, Onay TT, Ince O, Ince B. Linking nano-ZnO contamination to microbial community profiling in sanitary landfill simulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:13580-13591. [PMID: 30915691 DOI: 10.1007/s11356-019-04906-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Nanomaterials (NMs) commercially used for various activities mostly end up in landfills. Reduced biogas productions reported in landfill reactors create a need for more comprehensive research on these greatly-diverse microbial pools. In order to evaluate the impact of one of the most widely-used NMs, namely nano-zinc oxide (nano-ZnO), simulated bioreactor and conventional landfills were operated using real municipal solid waste (MSW) for 300 days with addition nano-ZnO. Leachate samples were taken at different phases and analyzed by 16S rRNA gene amplicon sequencing. The bacterial communities were distinctly characterized by Cloacamonaceae (phylum WWE1), Rhodocyclaceae (phylum Proteobacteria), Porphyromonadaceae (phylum Bacteroidetes), and Synergistaceae (phylum Synergistetes). The bacterial community in the bioreactors shifted at the end of the operation and was dominated by Rhodocyclaceae. There was not a major change in the bacterial community in the conventional reactors. The methanogenic archaeal diversity highly differed between the bioreactors and conventional reactors. The dominance of Methanomicrobiaceae was observed in the bioreactors during the peak methane-production period; however, their prominence shifted to WSA2 in the nano-ZnO-added bioreactor and to Methanocorpusculaceae in the control bioreactor towards the end. Methanocorpusculaceae was the most abundant family in both conventional control and nano-ZnO-containing reactors.
Collapse
Affiliation(s)
- Çağrı Akyol
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
| | - Emine Gozde Ozbayram
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Burak Demirel
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Turgut Tüzün Onay
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Orhan Ince
- Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bahar Ince
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| |
Collapse
|
32
|
Omar B, Abou-Shanab R, El-Gammal M, Fotidis IA, Kougias PG, Zhang Y, Angelidaki I. Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures. WATER RESEARCH 2018; 142:86-95. [PMID: 29860195 DOI: 10.1016/j.watres.2018.05.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/07/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
A novel biological process to upgrade biogas was developed and optimised during the current study. In this process, CO2 in the biogas and externally provided H2 were fermented under mesophilic conditions to volatile fatty acids (VFAs), which are building blocks of higher-value biofuels. Meanwhile, the biogas was upgraded to biomethane (CH4 >95%), which can be used as a vehicle fuel or injected into the natural gas grid. To establish an efficient fermentative microbial platform, a thermal (at two different temperatures of 70 °C and 90 °C) and a chemical pretreatment method using 2-bromoethanesulfonate were investigated initially to inhibit methanogenesis and enrich the acetogenic bacterial inoculum. Subsequently, the effect of different H2:CO2 ratios on the efficiency of biogas upgrading and production of VFAs were further explored. The composition of the microbial community under different treatment methods and gas ratios has also been unravelled using 16S rRNA analysis. The chemical treatment of the inoculum had successfully blocked the activity of methanogens and enhanced the VFAs production, especially acetate. The chemical treatment led to a significantly better acetate production (291 mg HAc/L) compared to the thermal treatment. Based upon 16S rRNA gene sequencing, it was found that H2-utilizing methanogens were the dominant species in the thermally treated inoculum, while a significantly lower abundance of methanogens was observed in the chemically treated inoculum. The highest biogas content (96% (v/v)) and acetate production were achieved for 2H2:1CO2 ratio (v/v), with Acetoanaerobium noterae, as the dominant homoacetogenic hydrogen scavenger. Results from the present study can pave the way towards more development with respect to microorganisms and conditions for high efficient VFAs production and biogas upgrading.
Collapse
Affiliation(s)
- Basma Omar
- Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark; Department of Environmental Sciences, Faculty of Science, Damietta University, 34517 Damietta, Egypt
| | - Reda Abou-Shanab
- Department of Environmental Biotechnology, City of Scientific Research and Technology Applications, Alexandria, 21934, Egypt
| | - Maie El-Gammal
- Department of Environmental Sciences, Faculty of Science, Damietta University, 34517 Damietta, Egypt
| | - Ioannis A Fotidis
- Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Panagiotis G Kougias
- Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | - Irini Angelidaki
- Department of Environmental Engineering, Building 113, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
33
|
Chi X, Li J, Wang X, Zhang Y, Leu SY, Wang Y. Bioaugmentation with Clostridium tyrobutyricum to improve butyric acid production through direct rice straw bioconversion. BIORESOURCE TECHNOLOGY 2018; 263:562-568. [PMID: 29778795 DOI: 10.1016/j.biortech.2018.04.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
One-pot bioconversion is an economically attractive biorefinery strategy to reduce enzyme consumption. Direct conversion of lignocellulosic biomass for butyric acid production is still challenging because of competition among microorganisms. In a consolidated hydrolysis/fermentation bioprocessing (CBP) the microbial structure may eventually prefer the production of caproic acid rather than butyric acid production. This paper presents a new bioaugmentation approach for high butyric acid production from rice straw. By dosing 0.03 g/L of Clostridium tyrobutyricum ATCC 25755 in the CBP, an increase of 226% higher butyric acid was yielded. The selectivity and concentration also increased to 60.7% and 18.05 g/L, respectively. DNA-sequencing confirmed the shift of bacterial community in the augmented CBP. Butyric acid producer was enriched in the bioaugmented bacterial community and the bacteria related to long chain acids production was degenerated. The findings may be useful in future research and process design to enhance productivity of desired bio-products.
Collapse
Affiliation(s)
- Xue Chi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Xin Wang
- School of Resources and Environment, Northeast Agriculture University, 59 Mucai Road, Harbin 150001, China
| | - Yafei Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Ying Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
34
|
Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M, Schlüter A. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 2018; 102:5045-5063. [PMID: 29713790 PMCID: PMC5959977 DOI: 10.1007/s00253-018-8976-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Abstract
The production of biogas by anaerobic digestion (AD) of agricultural residues, organic wastes, animal excrements, municipal sludge, and energy crops has a firm place in sustainable energy production and bio-economy strategies. Focusing on the microbial community involved in biomass conversion offers the opportunity to control and engineer the biogas process with the objective to optimize its efficiency. Taxonomic profiling of biogas producing communities by means of high-throughput 16S rRNA gene amplicon sequencing provided high-resolution insights into bacterial and archaeal structures of AD assemblages and their linkages to fed substrates and process parameters. Commonly, the bacterial phyla Firmicutes and Bacteroidetes appeared to dominate biogas communities in varying abundances depending on the apparent process conditions. Regarding the community of methanogenic Archaea, their diversity was mainly affected by the nature and composition of the substrates, availability of nutrients and ammonium/ammonia contents, but not by the temperature. It also appeared that a high proportion of 16S rRNA sequences can only be classified on higher taxonomic ranks indicating that many community members and their participation in AD within functional networks are still unknown. Although cultivation-based approaches to isolate microorganisms from biogas fermentation samples yielded hundreds of novel species and strains, this approach intrinsically is limited to the cultivable fraction of the community. To obtain genome sequence information of non-cultivable biogas community members, metagenome sequencing including assembly and binning strategies was highly valuable. Corresponding research has led to the compilation of hundreds of metagenome-assembled genomes (MAGs) frequently representing novel taxa whose metabolism and lifestyle could be reconstructed based on nucleotide sequence information. In contrast to metagenome analyses revealing the genetic potential of microbial communities, metatranscriptome sequencing provided insights into the metabolically active community. Taking advantage of genome sequence information, transcriptional activities were evaluated considering the microorganism's genetic background. Metaproteome studies uncovered enzyme profiles expressed by biogas community members. Enzymes involved in cellulose and hemicellulose decomposition and utilization of other complex biopolymers were identified. Future studies on biogas functional microbial networks will increasingly involve integrated multi-omics analyses evaluating metagenome, transcriptome, proteome, and metabolome datasets.
Collapse
Affiliation(s)
- Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Sandra Off
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Paul Scherer
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Michael Klocke
- Dept. Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
35
|
Ozbayram EG, Kleinsteuber S, Nikolausz M, Ince B, Ince O. Bioaugmentation of anaerobic digesters treating lignocellulosic feedstock by enriched microbial consortia. Eng Life Sci 2018; 18:440-446. [PMID: 32624925 DOI: 10.1002/elsc.201700199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 11/07/2022] Open
Abstract
Three different bioaugmentation cultures enriched from natural and engineered cellulolytic environments (cow and goat rumen, a biogas reactor digesting sorghum biomass) were compared for their enhancement potential on the anaerobic digestion of wheat straw. Methane yields were determined in batch tests using the Automatic Methane Potential Test System operated for 30 days under mesophilic conditions. All cultures had positive effects on substrate degradation, and higher methane yields were observed in the bioaugmented reactors compared to control reactors set up with standard inoculum. However, the level of enhancement differed according to the type of the enrichment culture. Methane yield in batch reactors augmented with 2% cow rumen derived enrichment culture was increased by only 6%. In contrast, reactors amended with 2% goat rumen derived enrichment culture or with the bioaugmentation culture obtained from the biogas reactor digesting sorghum biomass produced 27 and 20% more methane, respectively. The highest methane yield was recorded in reactors amended with 6% goat rumen derived enrichment culture, which represented an increase by 36%. The microbial communities were quite similar at the end of the batch tests independently of the bioaugmentation sources, indicating that the introduced microbial communities of the enrichment cultures did not dominate the reactors.
Collapse
Affiliation(s)
- Emine Gozde Ozbayram
- Department of Environmental Engineering Faculty of Civil Engineering Istanbul Technical University Istanbul Turkey
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology Helmholtz Centre for Environmental Research - UFZ Leipzig Germany
| | - Marcell Nikolausz
- Department of Environmental Microbiology Helmholtz Centre for Environmental Research - UFZ Leipzig Germany
| | - Bahar Ince
- Institute of Environmental Sciences Boğaziçi University Istanbul Turkey
| | - Orhan Ince
- Department of Environmental Engineering Faculty of Civil Engineering Istanbul Technical University Istanbul Turkey
| |
Collapse
|
36
|
Hassa J, Maus I, Off S, Pühler A, Scherer P, Klocke M, Schlüter A. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol 2018. [PMID: 29713790 DOI: 10.1007/s00253-018-8976-7)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The production of biogas by anaerobic digestion (AD) of agricultural residues, organic wastes, animal excrements, municipal sludge, and energy crops has a firm place in sustainable energy production and bio-economy strategies. Focusing on the microbial community involved in biomass conversion offers the opportunity to control and engineer the biogas process with the objective to optimize its efficiency. Taxonomic profiling of biogas producing communities by means of high-throughput 16S rRNA gene amplicon sequencing provided high-resolution insights into bacterial and archaeal structures of AD assemblages and their linkages to fed substrates and process parameters. Commonly, the bacterial phyla Firmicutes and Bacteroidetes appeared to dominate biogas communities in varying abundances depending on the apparent process conditions. Regarding the community of methanogenic Archaea, their diversity was mainly affected by the nature and composition of the substrates, availability of nutrients and ammonium/ammonia contents, but not by the temperature. It also appeared that a high proportion of 16S rRNA sequences can only be classified on higher taxonomic ranks indicating that many community members and their participation in AD within functional networks are still unknown. Although cultivation-based approaches to isolate microorganisms from biogas fermentation samples yielded hundreds of novel species and strains, this approach intrinsically is limited to the cultivable fraction of the community. To obtain genome sequence information of non-cultivable biogas community members, metagenome sequencing including assembly and binning strategies was highly valuable. Corresponding research has led to the compilation of hundreds of metagenome-assembled genomes (MAGs) frequently representing novel taxa whose metabolism and lifestyle could be reconstructed based on nucleotide sequence information. In contrast to metagenome analyses revealing the genetic potential of microbial communities, metatranscriptome sequencing provided insights into the metabolically active community. Taking advantage of genome sequence information, transcriptional activities were evaluated considering the microorganism's genetic background. Metaproteome studies uncovered enzyme profiles expressed by biogas community members. Enzymes involved in cellulose and hemicellulose decomposition and utilization of other complex biopolymers were identified. Future studies on biogas functional microbial networks will increasingly involve integrated multi-omics analyses evaluating metagenome, transcriptome, proteome, and metabolome datasets.
Collapse
Affiliation(s)
- Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Sandra Off
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany
| | - Paul Scherer
- Dept. Biotechnologie, Hochschule für angewandte Wissenschaften (HAW) Hamburg Ulmenliet 20, 21033, Hamburg, Germany
| | - Michael Klocke
- Dept. Bioengineering, Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469, Potsdam, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstrasse 27, 33615, Bielefeld, Germany.
| |
Collapse
|
37
|
Hao DC, Zhang CR, Xiao PG. The first Taxus rhizosphere microbiome revealed by shotgun metagenomic sequencing. J Basic Microbiol 2018; 58:501-512. [PMID: 29676472 DOI: 10.1002/jobm.201700663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/12/2018] [Accepted: 04/07/2018] [Indexed: 12/13/2022]
Abstract
In the present study, the shotgun high throughput metagenomic sequencing was implemented to globally capture the features of Taxus rhizosphere microbiome. Total reads could be assigned to 6925 species belonging to 113 bacteria phyla and 301 species of nine fungi phyla. For archaea and virus, 263 and 134 species were for the first time identified, respectively. More than 720,000 Unigenes were identified by clean reads assembly. The top five assigned phyla were Actinobacteria (363,941 Unigenes), Proteobacteria (182,053), Acidobacteria (44,527), Ascomycota (fungi; 18,267), and Chloroflexi (15,539). KEGG analysis predicted numerous functional genes; 7101 Unigenes belong to "Xenobiotics biodegradation and metabolism." A total of 12,040 Unigenes involved in defense mechanisms (e.g., xenobiotic metabolism) were annotated by eggNOG. Talaromyces addition could influence not only the diversity and structure of microbial communities of Taxus rhizosphere, but also the relative abundance of functional genes, including metabolic genes, antibiotic resistant genes, and genes involved in pathogen-host interaction, bacterial virulence, and bacterial secretion system. The structure and function of rhizosphere microbiome could be sensitive to non-native microbe addition, which could impact on the pollutant degradation. This study, complementary to the amplicon sequencing, more objectively reflects the native microbiome of Taxus rhizosphere and its response to environmental pressure, and lays a foundation for potential combination of phytoremediation and bioaugmentation.
Collapse
Affiliation(s)
- Da-Cheng Hao
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Cai-Rong Zhang
- Biotechnology Institute, School of Environment and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
38
|
Enriching ruminal polysaccharide-degrading consortia via co-inoculation with methanogenic sludge and microbial mechanisms of acidification across lignocellulose loading gradients. Appl Microbiol Biotechnol 2018; 102:3819-3830. [DOI: 10.1007/s00253-018-8877-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 11/25/2022]
|
39
|
Ozbayram E, Akyol Ç, Ince B, Karakoç C, Ince O. Rumen bacteria at work: bioaugmentation strategies to enhance biogas production from cow manure. J Appl Microbiol 2018; 124:491-502. [DOI: 10.1111/jam.13668] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 11/29/2022]
Affiliation(s)
- E.G. Ozbayram
- Institute of Environmental Sciences; Bogazici University; Istanbul Turkey
| | - Ç. Akyol
- Department of Environmental Engineering; Faculty of Civil Engineering; Istanbul Technical University; Istanbul Turkey
| | - B. Ince
- Department of Environmental Engineering; Faculty of Civil Engineering; Istanbul Technical University; Istanbul Turkey
| | - C. Karakoç
- Department of Environmental Microbiology; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - O. Ince
- Institute of Environmental Sciences; Bogazici University; Istanbul Turkey
| |
Collapse
|
40
|
Mulat DG, Huerta SG, Kalyani D, Horn SJ. Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:19. [PMID: 29422947 PMCID: PMC5787918 DOI: 10.1186/s13068-018-1025-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/13/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methane production from steam-exploded birch in an anaerobic digestion (AD) process under thermophilic conditions (62 °C). RESULTS Overall, the combined SE and bioaugmentation enhanced the methane yield up to 140% compared to untreated birch, while SE alone contributed to the major share of methane enhancement by 118%. The best methane improvement of 140% on day 50 was observed in bottles fed with pretreated birch and bioaugmentation with lower dosages of C. bescii (2 and 5% of inoculum volume). The maximum methane production rate also increased from 4-mL CH4/g VS (volatile solids)/day for untreated birch to 9-14-mL CH4/g VS/day for steam-exploded birch with applied bioaugmentation. Bioaugmentation was particularly effective for increasing the initial methane production rate of the pretreated birch yielding 21-44% more methane than the pretreated birch without applied bioaugmentation. The extent of solubilization of the organic matter was increased by more than twofold when combined SE pretreatment and bioaugmentation was used in comparison with the methane production from untreated birch. The beneficial effects of SE and bioaugmentation on methane yield indicated that biomass recalcitrance and hydrolysis step are the limiting factors for efficient AD of lignocellulosic biomass. Microbial community analysis by 16S rRNA amplicon sequencing showed that the microbial community composition was altered by the pretreatment and bioaugmentation processes. Notably, the enhanced methane production by pretreatment and bioaugmentation was well correlated with the increase in abundance of key bacterial and archaeal communities, particularly the hydrolytic bacterium Caldicoprobacter, several members of syntrophic acetate oxidizing bacteria and the hydrogenotrophic Methanothermobacter. CONCLUSION Our findings demonstrate the potential of combined SE and bioaugmentation for enhancing methane production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Daniel Girma Mulat
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.Box 5003, 1432 Ås, Norway
| | - Silvia Greses Huerta
- Department of Chemical Engineering, University of Valencia, P.O.Box 46100, Valencia, Spain
| | - Dayanand Kalyani
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.Box 5003, 1432 Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O.Box 5003, 1432 Ås, Norway
| |
Collapse
|
41
|
Paudel SR, Banjara SP, Choi OK, Park KY, Kim YM, Lee JW. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. BIORESOURCE TECHNOLOGY 2017; 245:1194-1205. [PMID: 28899674 DOI: 10.1016/j.biortech.2017.08.182] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 05/25/2023]
Abstract
The anaerobic digestion (AD) of agricultural biomass is an attractive second generation biofuel with potential environmental and economic benefits. Most agricultural biomass contains lignocellulose which requires pretreatment prior to AD. For optimization, the pretreatment methods need to be specific to the characteristics of the biomass feedstock. In this review, cereal residue, fruit and vegetable wastes, grasses and animal manure were selected as the agricultural biomass candidates, and the fundamentals and current state of various pretreatment methods used for AD of these feedstocks were investigated. Several nonconventional methods (electrical, ionic liquid-based chemicals, ruminant biological pretreatment) offer potential as targeted pretreatments of lignocellulosic biomass, but each comes with its own challenges. Pursuing an energy-intensive route, a combined bioethanol-biogas production could be a promising a second biofuel refinery option, further emphasizing the importance of pretreatment when lignocellulosic feedstock is used.
Collapse
Affiliation(s)
- Shukra Raj Paudel
- Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Pulchowk, Lalitpur, Nepal
| | - Sushant Prasad Banjara
- School of Forestry and Environmental Studies, Yale University, 195 Prospect St, New Haven, CT 06511, USA
| | - Oh Kyung Choi
- Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Ki Young Park
- Department of Civil and Environmental Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Young Mo Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jae Woo Lee
- Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
42
|
Enrichment of lignocellulose-degrading microbial communities from natural and engineered methanogenic environments. Appl Microbiol Biotechnol 2017; 102:1035-1043. [DOI: 10.1007/s00253-017-8632-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/02/2017] [Accepted: 11/05/2017] [Indexed: 01/05/2023]
|
43
|
Kovacs KL. Biogas Science 2016. Anaerobe 2017; 46:1-2. [PMID: 28890221 DOI: 10.1016/j.anaerobe.2017.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kornel L Kovacs
- Department of Biotechnology, University of Szeged, Közép fasor 52, Szeged 6726, Hungary.
| |
Collapse
|