1
|
Biabani N, Taherpour K, Ghasemi HA, Akbari Gharaei M, Hafizi M, Nazaran MH. Advanced chelate technology-based trace minerals reduce inflammation and oxidative stress in Eimeria-infected broilers by modulating NF-kB and Nrf2 pathways. Sci Rep 2024; 14:24227. [PMID: 39415045 PMCID: PMC11484868 DOI: 10.1038/s41598-024-75695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
This study investigated the effects of substituting inorganic trace minerals (ITM) with advanced chelate technology-based TM (ACTM) in broiler chicken feed on productive performance, metabolic profile, humoral immunity, antioxidant status, and modulation of NF-kB and Nrf2 signaling pathways in mixed Eimeria species exposure. The study involved 480 newly hatched male broiler chickens, which were divided into 5 treatment groups, each with 6 replicate cages and 16 chickens per replicate. The experimental treatments included an uninfected negative control group fed a basal diet with recommended inorganic TM levels (NC), an infected positive control group fed the same diet (PC), a PC group supplemented with salinomycin (SAL), and two PC groups in which the basal diet was replaced with 50% and 100% ACTM instead of inorganic TM (ACTM50 and ACTM100, respectively). All groups, except for the NC group, were orally challenged with mixed Eimeria species oocysts on day 14. According to the results, the PC group showed lower feed intake, breast yield, low-density lipoprotein-cholesterol concentration, lactobacillus spp. counts, and serum IgG levels, but higher jejunal TGF-β expression versus the NC group. The broilers in the NC, SAL, and ACTM100 groups showed higher body weight gain, carcass yield, and TGF-β expression, but lower serum alkaline phosphatase activity, ileal E. coli count, and jejunal expression levels of IL-1β, IL-6, IFN-γ, Nrf2, and SOD1 compared to the PC group, with the NC group having the highest body weight gain and lowest IL-1β and Nrf2 expression levels. Furthermore, the administration of ACTM100 treatment improved feed efficiency, increased serum iron, zinc, manganese, and copper levels, enhanced total antioxidant capacity and different antioxidant enzyme activities, and reduced malondialdehyde concentration. In conclusion, complete replacement of ITM with ACTM effectively protects broilers from Eimeria infection, with similar positive effects to SAL treatment in terms of productive performance and anti-inflammatory responses and better antioxidant responses and mineral availability.
Collapse
Affiliation(s)
- Nasim Biabani
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak, 38156-8-8349, Iran.
| | | | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | | |
Collapse
|
2
|
Biabani N, Taherpour K, Ghasemi HA, Akbari Gharaei M, Hafizi M, Nazaran MH. Dietary advanced chelate technology-based 7-mineral supplement improves growth performance and intestinal health indicators during a mixed Eimeria challenge in broiler chickens. Vet Parasitol 2024; 331:110277. [PMID: 39094330 DOI: 10.1016/j.vetpar.2024.110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/09/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The health and productivity of broilers may be improved by optimizing the availability and levels of trace minerals (TM) in their feed, especially in the presence of parasites. This study investigated the effects of replacing inorganic TM (ITM) with an advanced chelate technology-based 7 TM (ACTM) on performance, hematology, lesion score, oocyst shedding, gut morphology, and tight junction structure in broilers challenged with mixed Eimeria species. There were 480 1-day-old broiler chickens divided into 5 groups: uninfected negative control and recommended levels of ITM (NC); infected positive control and recommended levels of ITM (PC); or PC supplemented with salinomycin (SAL); PC diet with 50 % ACTM instead of ITM (ACTM50); or PC diet with 100 % ACTM instead of ITM (ACTM100). All groups, except NC, were orally challenged with mixed Eimeria spp. oocysts on day 14. Each group had 6 replicate cages, with 16 birds per replicate. The results showed that the NC, SAL, and ACTM100 groups had higher (P < 0.05) body weight, average daily gain (ADG), and European production efficiency index (EPEI), as well as a lower (P < 0.05) feed conversion, mortality rate, and heterophile to lymphocyte ratio compared to the PC group, with the NC group having the highest ADG and EPEI throughout the experiment. The SAL and ACTM100 groups had lower (P < 0.05) intestinal lesion scores and oocyst numbers compared to the PC group, although all coccidiosis-challenged groups had higher oocyst shedding compared to the NC group. On day 24, the challenged birds in the SAL and ACTM100 groups had higher (P < 0.05) villus height and surface area in the duodenum and ileum, as well as a higher (P < 0.05) villus height to crypt depth ratio in the jejunum. The expression levels of jejunal CLDN1 and ZO-1 were also higher (P < 0.05) in the ACTM100 and SAL groups compared to the PC and ACTM50 groups at 24 days of age. In conclusion, while using ACTM in broiler diets at 50 % of the commercial recommended levels maintained performance and physiological responses, complete replacement with ACTM improved growth performance and intestinal health characteristics, similar to salinomycin under Eimeria challenge conditions.
Collapse
Affiliation(s)
- Nasim Biabani
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran.
| | - Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Environment, Arak University, Arak 38156-8-8349, Iran.
| | | | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | | |
Collapse
|
3
|
Han X, Kong J, Zheng C, Yan X, Qiu T, Chen Z, Zhang H. The effects of a mixture of small peptide chelating minerals and inorganic minerals on the production performance and tissue deposition of broiler chickens. Front Vet Sci 2024; 11:1380911. [PMID: 38706756 PMCID: PMC11066274 DOI: 10.3389/fvets.2024.1380911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Due to the limited bioavailability of inorganic trace minerals, their utilization in poultry production has led to problems such as environmental contamination and inefficient resource utilization. It was investigated whether replacing inorganic trace minerals (ITM) with a blend of organic small peptide-chelated trace minerals (MIX) would improve production performance, selected biochemical parameters, antioxidant capacity, mineral deposition in liver, heart, and tibia, as well as mineral content in feces of broilers. A total of 432 healthy 21-day-old 817 broilers were randomly divided into 4 groups with 6 replicates per group and 18 chickens per replicate. The control group received a basal diet supplemented with 1,000 mg/kg of inorganic trace minerals as sulfate. The experimental groups received basal diets supplemented with 200, 400, and 600 mg/kg of mixed trace mineral elements (50% sulfate +50% small peptide-chelate) for a trial period of 30 days, divided into two stages: 21-35 days and 36-50 days. The results indicate that on the 50th day, compared with the 1,000 mg/kg ITM group, the levels of serum cholesterol, urea nitrogen, and malondialdehyde in the 200, 400, and 600 mg/kg MIX groups decreased (p < 0.01), while the levels of serum glutathione peroxidase in the 200, 400, and 600 mg/kg MIX groups increased (p < 0.05). Compared to the ITM group, the addition of organic small peptide chelated trace minerals mixed with inorganic trace minerals can reduce the levels of zinc and manganese in feces (p < 0.01). Furthermore, the iron content in the heart and tibia of the 600 mg/kg MIX group also significantly decreased (p < 0.05). There were no differences in growth performance and slaughter performance among the groups (p > 0.05). This study shows that replacing inorganic minerals with low-dose MIX (200, 400, and 600 mg/kg) can reduce the levels of zinc and manganese in feces, with no negative impact on growth and slaughter performance.
Collapse
Affiliation(s)
- Xiaofeng Han
- School of Life Science and Engineering, Foshan University, Foshan, China
- Wen’s Foodstuffs Group Co., Ltd., Yunfu, China
| | - Jing Kong
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chaojun Zheng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xia Yan
- Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ting Qiu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhiyong Chen
- Foshan Guangmuxing Feed Co., Ltd., Foshan, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
4
|
Rebelo A, Duarte B, Freitas AR, Almeida A, Azevedo R, Pinto E, Peixe L, Antunes P, Novais C. Uncovering the effects of copper feed supplementation on the selection of copper-tolerant and antibiotic-resistant Enterococcus in poultry production for sustainable environmental practices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165769. [PMID: 37506909 DOI: 10.1016/j.scitotenv.2023.165769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
The use of antibiotics in animal production is linked to the emergence and spread of antibiotic-resistant bacteria, a threat to animal, environmental and human health. Copper (Cu) is an essential element in poultry diets and an alternative to antibiotics, supplementing inorganic or organic trace mineral feeds (ITMF/OTMF). However, its contribution to select multidrug-resistant (MDR) and Cu tolerant Enterococcus, a bacteria with a human-animal-environment-food interface, remains uncertain. We evaluated whether feeding chickens with Cu-ITMF or Cu-OTMF contributes to the selection of Cu tolerant and MDR Enterococcus from rearing to slaughter. Animal faeces [2-3-days-old (n = 18); pre-slaughter (n = 16)] and their meat (n = 18), drinking-water (n = 14) and feed (n = 18) from seven intensive farms with ITMF and OTMF flocks (10.000-64.000 animals each; 2019-2020; Portugal) were sampled. Enterococcus were studied by cultural, molecular and whole-genome sequencing methods and Cu concentrations by ICP-MS. Enterococcus (n = 477; 60 % MDR) were identified in 80 % of the samples, with >50 % carrying isolates resistant to tetracycline, quinupristin-dalfopristin, erythromycin, streptomycin, ampicillin or ciprofloxacin. Enterococcus with Cu tolerance genes, especially tcrB ± cueO, were mainly found in faeces (85 %; E. faecium/E. lactis) of ITMF/OTMF flocks. Similar occurrence and load of tcrB ± cueO Enterococcus in the faeces was detected throughout the chickens' lifespan in the ITMF/OTMF flocks, decreasing in meat. Most of the polyclonal MDR Enterococcus population carrying tcrB ± cueO or only cueO (67 %) showed a wild-type phenotype (MICCuSO4 ≤ 12 mM) linked to absence of tcrYAZB or truncated variants, also detected in 85 % of Enterococcus public genomes from poultry. Finally, < 65 μg/g Cu was found in all faecal and meat samples. In conclusion, Cu present in ITMF/OTMF is not selecting Cu tolerant and MDR Enterococcus during chickens' lifespan. However, more studies are needed to assess the minimum concentration of Cu required for MDR bacterial selection and horizontal transfer of antibiotic resistance genes, which would support sustainable practices mitigating antibiotic resistance spread in animal production and the environment beyond.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal
| | - Bárbara Duarte
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Ana R Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Avenida Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Rui Azevedo
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Edgar Pinto
- ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luísa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Faculty of Nutrition and Food Sciences, University of Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
5
|
Rebelo A, Almeida A, Peixe L, Antunes P, Novais C. Unraveling the Role of Metals and Organic Acids in Bacterial Antimicrobial Resistance in the Food Chain. Antibiotics (Basel) 2023; 12:1474. [PMID: 37760770 PMCID: PMC10525130 DOI: 10.3390/antibiotics12091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has a significant impact on human, animal, and environmental health, being spread in diverse settings. Antibiotic misuse and overuse in the food chain are widely recognized as primary drivers of antibiotic-resistant bacteria. However, other antimicrobials, such as metals and organic acids, commonly present in agri-food environments (e.g., in feed, biocides, or as long-term pollutants), may also contribute to this global public health problem, although this remains a debatable topic owing to limited data. This review aims to provide insights into the current role of metals (i.e., copper, arsenic, and mercury) and organic acids in the emergence and spread of AMR in the food chain. Based on a thorough literature review, this study adopts a unique integrative approach, analyzing in detail the known antimicrobial mechanisms of metals and organic acids, as well as the molecular adaptive tolerance strategies developed by diverse bacteria to overcome their action. Additionally, the interplay between the tolerance to metals or organic acids and AMR is explored, with particular focus on co-selection events. Through a comprehensive analysis, this review highlights potential silent drivers of AMR within the food chain and the need for further research at molecular and epidemiological levels across different food contexts worldwide.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4150-180 Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Kong J, Qiu T, Yan X, Wang L, Chen Z, Xiao G, Feng X, Zhang H. Effect of replacing inorganic minerals with small peptide chelated minerals on production performance, some biochemical parameters and antioxidant status in broiler chickens. Front Physiol 2022; 13:1027834. [PMID: 36330210 PMCID: PMC9623153 DOI: 10.3389/fphys.2022.1027834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 10/15/2023] Open
Abstract
Due to the low bio-availability of inorganic trace minerals, its application in poultry production has been causing many problems such as environment pollution and waste of resources. The current study was designed to evaluate if replacing inorganic trace minerals (ITM) with small peptide chelate trace minerals (SPM) affects production performance, some biochemical parameters and antioxidant status, tibia mineral deposition, and fecal mineral content in 817 white-feathered broilers. A total of 432 broilers (21-day-old) were randomly divided into four groups with six replicates of 18 chicks each. The four groups included inorganic trace minerals group (addition of 1,000 mg/kg ITM; common practice by commercial poultry farms), three organic trace minerals groups with supplementation of 150, 300, and 500 mg/kg SPM, respectively. The experiment lasted for 30 days. The results showed that there was no significant difference in growth performance and slaughter performance among the four groups (p > 0.05). Total cholesterol in the SPM group was significantly lower than those in the ITM groups (p < 0.01). Compared with the ITM group, the serum urea nitrogen in 150 and 300 mg/kg SPM groups decreased significantly (p < 0.01). Among all SPM treatments, 300 mg/kg SPM groups had the highest serum glutathione peroxidase (GSH-Px) activity (p < 0.01). The activity of copper and zinc superoxide dismutase (Cu/Zn SOD) of liver in ITM group was the lowest among the four groups (p < 0.01). The catalase (CAT) activity of liver in the 150 mg/kg SPM group was significantly higher than the ITM group and 300 mg/kg SPM group (p < 0.05). Compared to the ITM group, the iron content of the tibia was significantly increased in 300 mg/kg SPM group (p < 0.05) and 500 mg/kg SPM group (p < 0.01). Compared to the ITM group, dietary supplementation with SPM significantly reduced fecal content of zinc and manganese (p < 0.01). The 150 mg/kg SPM and 300 mg/kg SPM group had significantly reduced content of iron (p < 0.05). This study demonstrated that replacing inorganic minerals with low doses of SPM (300 and 500 mg/kg) did not negatively affect growth and slaughter performance, as well as the antioxidant status of broiler chickens. In addition, SPM can also promote mineral content in the tibia and reduce mineral content in the feces.
Collapse
Affiliation(s)
- Jing Kong
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Ting Qiu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xia Yan
- Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lili Wang
- Guangdong Xingtengke Biotechnology Co., Ltd., Zhaoqing, China
| | - Zhiyong Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Gengsheng Xiao
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
7
|
Broiler responses to copper levels and sources: growth, tissue mineral content, antioxidant status and mRNA expression of genes involved in lipid and protein metabolism. BMC Vet Res 2022; 18:223. [PMID: 35698226 PMCID: PMC9195228 DOI: 10.1186/s12917-022-03286-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Five hundred 8-d old male broilers Cobb500 were randomly allotted into 10 treatments in factorial arrangement with 5 Cu levels (0, 4, 8, 12, and 16 mg/kg), and 2 sources (Cu proteinate, CuPro and Cu sulphate, CuSO4.5H2O) for a 10-d-experiment. RESULTS Feed conversion ratio (FCR) was better (P < 0.05) in CuPro fed chicks compared with CuSO4.5H2O group. Average daily feed intake (ADFI) decreased linearly (P < 0.05) as dietary Cu increased. A quadratic response (P < 0.05) to Cu levels was found for FCR, being optimized at 9.87 and 8.84 mg Cu/kg in CuPro and CuSO4.5H2O diets, respectively. Copper supplementation linearly increased liver Cu content (P < 0.05) and tended to linearly increase (P = 0.07) phosphorus (P) and copper in tibia. Manganese and zinc were higher (P < 0.05) in tibia of CuPro fed birds. Broilers fed CuPro exhibited lower liver iron (P < 0.05) content, lower activities of Cu, Zn superoxide dismutase (CuZnSOD) in breast muscle and liver, and glutathione peroxidase in liver. Glutathione peroxidase reduced linearly (P < 0.05) with CuPro levels and increased linearly (P < 0.05) with CuSO4.5H2O levels and were lower (P < 0.05) in all CuPro levels in breast muscle. Breast muscle malondialdehyde concentration tended to be higher (P = 0.08) in broilers fed CuSO4.5H2O. Copper levels linearly increased (P < 0.05) metallothionein (MT) and malate dehydrogenase (MDH) expression in liver, and six-transmembrane epithelial antigen of the prostate-1 (STEAP-1) in the intestine. Copper elicited a quadratic response (P < 0.050) in AKT-1 and mammalian target of rapamycin (mTOR) in breast muscle, CuZnSOD in liver and antioxidant 1 copper chaperone (ATOX 1) in intestine. Broilers fed CuPro exhibited higher mRNA expression of mTOR in muscle breast and lower CuZnSOD in liver and ATOX 1 in intestine. Interaction (P < 0.05) between levels and sources was found in mRNA expression for GSK-3β, MT, and CuZnSOD in breast muscle, FAS and LPL in liver and MT and CTR1 in intestine. CONCLUSIONS CuPro showed beneficial effects on feed conversion and bone mineralization. Organic and inorganic Cu requirements are 9.87 and 8.84 mg Cu/kg, respectively.
Collapse
|
8
|
Behroozlak MA, Daneshyar M, Farhoomand P, Nikoo A. Potential application of Fe-methionine as a feed supplement on improving the quality of broilers breast meat. Anim Sci J 2021; 92:e13645. [PMID: 34655126 DOI: 10.1111/asj.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
A total of 250 one-day-old Ross 308 male chicks were used to investigate the effects of Fe-methionine (Fe-met) and iron sulfate (FeSO4 .7H2 O) on performance, mineral concentration, meat quality, and oxidative stability of breast. The feeding experiment was performed with five dietary groups including group I (basal diet [BD] + 80 mg/kg FeSO4 ), group II (BD + 60 mg/kg FeSO4 + 20 mg/kg Fe-met), group III (BD + 40 mg/kg FeSO4 + 40 mg/kg Fe-met), group IV (BD + 20 mg/kg FeSO4 + 60 mg/kg Fe-met), and group V (BD + 80 mg/kg Fe-met). The results showed that Fe and Cu content in the breast muscle increased by dietary supplementation of organic and inorganic iron from II to V groups. Dietary groups of II, IV, and V increased L* value and b* value of breast meat. Additionally, redness of breast meat enhanced linearly and quadratically by dietary supplementation of 80 mg/kg Fe as FeSO4 . In addition, dietary supplementation Fe from II to V groups led to a significant increase in pHu at 24-h postmortem while it was negatively correlated with L* value of breast muscle. This study demonstrates that replacing FeSO4 with Fe-Met could improve breast meat yield of broilers. Although 80 mg of Fe-Met improved the iron content of meat, it showed detrimental effects on the lipid oxidation of breast meat.
Collapse
Affiliation(s)
| | - Mohsen Daneshyar
- Department of Animal Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Parviz Farhoomand
- Department of Animal Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Abbas Nikoo
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
9
|
Zampiga M, Calini F, Sirri F. Importance of feed efficiency for sustainable intensification of chicken meat production: implications and role for amino acids, feed enzymes and organic trace minerals. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - F. Calini
- Advisor to the Feed & Animal Industries, Ravenna, Italy
| | - F. Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Ghasemi HA, Hajkhodadadi I, Hafizi M, Fakharzadeh S, Abbasi M, Kalanaky S, Nazaran MH. Effect of advanced chelate compounds-based mineral supplement in laying hen diet on the performance, egg quality, yolk mineral content, fatty acid composition, and oxidative status. Food Chem 2021; 366:130636. [PMID: 34314929 DOI: 10.1016/j.foodchem.2021.130636] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/04/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022]
Abstract
The study aimed to determine the efficiency of advanced chelate compounds-based trace minerals (OTM) in laying hens. Laying hens (240, 32 weeks old) were assigned to one of the following five groups: NOTM (no added trace minerals), CONTM (standard mineral salts), and three experimental groups in which chelates were used to replace 33, 66, and 100% of mineral salts (OTM33, OTM66, and OTM100, respectively). Each treatment had six replicates with eight hens per replicate. After 18 weeks, performance and physicochemical properties of eggs in all experimental groups was better than those in the NOTM group. Among the treatments, OTM66 and OTM100 produced the best results in terms of laying performance, yolk PUFA/SFA ratio, Zn and Se contents, and malondialdehyde concentration in both serum and yolk. In conclusion, up to 66% OTM supplementation was beneficial for performance, lipid and mineral composition of yolk, and oxidative status.
Collapse
Affiliation(s)
- Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| | - Iman Hajkhodadadi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Saideh Fakharzadeh
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Meysam Abbasi
- Iranian Construction Engineering Organization, Markazi Province Branch, Arak, Iran
| | - Somayeh Kalanaky
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | | |
Collapse
|
11
|
Bhagwat VG, Balamurugan E, Rangesh P. Cocktail of chelated minerals and phytogenic feed additives in the poultry industry: A review. Vet World 2021; 14:364-371. [PMID: 33776301 PMCID: PMC7994118 DOI: 10.14202/vetworld.2021.364-371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
This review article delineates the role of chelated minerals and phytogenic feed additives (PFAs) cocktail supplementation in improving the overall health status and production performance of poultry birds and its economic effects in the poultry industry. Organically complexed minerals have many advantages over inorganic sources. It has improved absorption and efficacy, which meets the bird's requirements comfortably with a low-dose level. Hence, inorganic forms can be replaced with lower-dose levels of organic minerals without any adverse effects on production performances in broilers and layers. PFAs possess medicinal properties, such as antimicrobial, antioxidant, adaptogenic, and immunomodulatory, therefore, could be recommended as supplements. They are also growth promoters that enhance the overall health status and augment poultry birds' production performance. Furthermore, the tremendous potential of PFAs could be extracted with the recent advances in science and technology. With the advantages of organically complexed minerals and multiple beneficial applications, there is a resurgence to develop PFAs as a cocktail of organic minerals to improve the overall health status of poultry birds and augment their productivity, which, in turn, helps the poultry industry to grow decisively and economically.
Collapse
|
12
|
Ghasemi HA, Hajkhodadadi I, Hafizi M, Taherpour K, Nazaran MH. Effect of advanced chelate technology based trace minerals on growth performance, mineral digestibility, tibia characteristics, and antioxidant status in broiler chickens. Nutr Metab (Lond) 2020; 17:94. [PMID: 33292310 PMCID: PMC7596981 DOI: 10.1186/s12986-020-00520-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/21/2020] [Indexed: 12/02/2022] Open
Abstract
Background Compared to the corresponding source of inorganic trace minerals (TM), chelated supplements are characterized by better physical heterogeneity and chemical stability and appear to be better absorbed in the gut due to possibly decreased interaction with other feed components. Methods This study was designed in broiler chickens to determine the effects of replacing inorganic trace minerals (TM) with an advanced chelate technology based supplement (Bonzachicken) on growth performance, mineral digestibility, tibia bone quality, and antioxidant status. A total of 625 male 1-day-old broiler chickens were allocated to 25 pens and assigned to 5 dietary treatments in a completely randomized design. Chelated TM (CTM) supplement was compared at 3 levels to no TM (NTM) or inorganic TM. A corn–soy-based control diet was supplemented with inorganic TM at the commercially recommended levels (ITM), i.e., iron, zinc, manganese, copper, selenium, iodine, and chromium at 80, 92, 100, 16, 0.3, 1.2, and 0.1 mg/kg, respectively, and varying concentration of CTM, i.e., match to 25, 50, and 100% of the ITM (diets CTM25, CTM50, and CTM100, respectively). Results Diets CTM50 and CTM100 increased average daily gain (ADG), European performance index (EPI), and tibia length compared to the NTM diet (P < 0.05). Broilers fed the CTM100 diet had lowest overall FCR and serum malondialdehyde level and highest EPI, tibia ash, zinc, manganese, and copper contents, and serum total antioxidant capacity (P < 0.05). The apparent ileal digestibilities of phosphorus and zinc were lower in the ITM group compared with the CTM25 and CTM50 groups (P < 0.05). Broiler chickens fed any of the diets, except diet CTM25, exhibited higher serum glutathione peroxidase and superoxide dismutase activities than those fed the NTM diet, where the best glutathione peroxidase activity was found for CTM100 treatment (P < 0.05). Conclusions These results indicate that while CTM supplementation to 25 and 50% of the commercially recommended levels could support growth performance, bone mineralization, and antioxidant status, a totally replacing ITM by equivalent levels of CTM could also improve performance index and glutathione peroxidase activity of broiler chickens under the conditions of this study.
Collapse
Affiliation(s)
- Hossein Ali Ghasemi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arāk, 38156-8-8349, Iran.
| | - Iman Hajkhodadadi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arāk, 38156-8-8349, Iran
| | - Maryam Hafizi
- Department of Research and Development, Sodour Ahrar Shargh Company, Tehran, Iran
| | - Kamran Taherpour
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | | |
Collapse
|
13
|
Ionescu C, Grill P, Witte H, Boigues C, Blanchard A, Löffler B, Michalke B. Accurate quantification of metal-glycinates-sulphate complexes and free metals in feed by capillary electrophoresis inductively coupled plasma mass spectrometry. J Trace Elem Med Biol 2019; 56:207-212. [PMID: 31541895 DOI: 10.1016/j.jtemb.2019.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 01/05/2023]
Abstract
Traceability of metal-glycinate-sulphate complexes (Metal-GLY) in feed requires specific analysis to differentiate complexes from inorganic forms. A previously described method focused on the quantification of Metal-GLY at one single concentration but not on the quantification of free metal ion forms. The objective of this work was to extend the method to quantify both Metal-GLY and free metal ion forms of various metals at low inclusion levels. A 50/50 w/w mix of corn flour and soybean meal was used as feed. Copper-glycinate(Cu-GLY), Manganese-glycinate (Mn-GLY) and Zinc-glycinate (Zn-GLY) complexes (provided by Pancosma SA) were used for in-feed inclusions. The feed metal background concentrations and species repartitions were assessed. Cu-GLY was spiked on feed at levels matching 5, 15 and 45 mg/kg, corresponding to metal concentrations of 1.2, 3.6 and 10.8 mg/kg. Mn-GLY and Zn-GLY were spiked at 15, 45 and 100 mg/kg, corresponding to 3.3, 9.9, 22 mg/kg Mn and 3.9, 11.7, 26mg/kg Zn, respectively. The water soluble fraction of un-supplemented feed contained 0.06 mg/kg Cu, 0.05 mg/kg Mn and 0.12 mg/kg Zn, with 69.5% of Cu, 33.2% of Mn and 24.3% of Zn being present under free metal ions but 30.4% of Cu being present under Cu-GLY, 66.82% of Mn and 75.7% of Zn being present under Mn-GLY and Zn-GLY, respectively. The supplemented feeds at the 3 tested doses, from the lowest to the highest inclusion levels, contained in total respectively: 1.1, 3.05 and 9.06 mg/kg Cu; 2.99, 8.9 and 18.2 mg/kg Mn; 3.72, 10.9 and 23.4 mg/kg Zn. The M-GLY species recovered by analysis within the different supplemented feeds ranged from 76.26 to 89.32% for Cu-GLY, form 94.5 to 98.51% for Mn-GLY and from 76.05 to 98.96% for Zn-GLY. These results showed that CE-ICP-MS technique can be used to quantify low doses and to measure metal-species repartition between Metal-GLY and free metal ions, when included in feeds. For the first time, this study highlighted that the raw materials used contain Metal-GLY compounds. This raises the question of the occurrence of these compounds within the different raw materials used in feed production that could dramatically affect the way to supplement minerals in animal feed.
Collapse
Affiliation(s)
| | - Peter Grill
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit: Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Heidi Witte
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit: Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | | | | | - Bärbel Löffler
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit: Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - Bernhard Michalke
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit: Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
14
|
Wang G, Liu L, Wang Z, Pei X, Tao W, Xiao Z, Liu B, Wang M, Lin G, Ao T. Comparison of Inorganic and Organically Bound Trace Minerals on Tissue Mineral Deposition and Fecal Excretion in Broiler Breeders. Biol Trace Elem Res 2019; 189:224-232. [PMID: 30062463 DOI: 10.1007/s12011-018-1460-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
This study investigated the effects of replacement of inorganic trace minerals (ITMs) by organic trace minerals (OTMs) on tissue mineral retention and fecal excretion in "Zhen Ning" yellow feather broiler breeders. Six hundred hens (initial BW: 1.70 ± 0.07 kg) aged 40 weeks were randomly divided into five treatments, with four replicates of 30 broiler breeders each. Experimental treatments were as follows: (1) ITM (Cu, Zn, Fe, Mn, Se providing commercially recommended concentrations), (2) L-ITM (50% of the ITM, except for Se), (3) VL-OTM (37.5% of the ITM, except for Se), (4) L-OTM (equivalent to L-ITM), and (5) OTM (62.5% of the ITM, except for Se). The duration of the study was 10 weeks including 2 weeks for adaptation. Compared with the L-ITM treatment, high-level supplementation of minerals in ITM and OTM increased the concentration of serum Mn and Se, pectoral Fe and pancreas Cu, and Fe (P < 0.05). Birds fed with OTM dietary exhibited comparable mineral retention in muscle compared with ITM. Differences were observed between L-ITM and L-OTM in serum Mn and Se, pectoral Fe, Zn, and Se, and heart Se with L-OTM retaining higher mineral concentrations than L-ITM (P < 0.05). L-OTM retained identical concentration with ITM treatment, except for the pancreatic Fe. All three organic diets reduced the Zn in excreta compared with the two inorganic diets (P < 0.05). This study indicates that replacement of dietary ITMs by OTMs improved mineral deposition in tissues and reduced fecal mineral excretion in broiler breeders under the conditions of this study.
Collapse
Affiliation(s)
- Geng Wang
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Lujie Liu
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Zhongpei Wang
- Ninghai Animal Husbandry and Veterinary Bureau, Ninghai, Zhejiang, China
| | - Xun Pei
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Wenjing Tao
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Zhiping Xiao
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Bojing Liu
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China
| | - Minqi Wang
- College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, China.
| | - Gang Lin
- Alltech Biological Products (china) Co., Ltd, Beijing, China
| | - Tuoying Ao
- Center for Animal Nutrigenomics & Applied Animal Nutrition, Alltech Inc, Nicholasville, KY, USA
| |
Collapse
|
15
|
Fe, Zn and Se Bioavailability in Chicken Meat Emulsions Enriched with Minerals, Hydroxytyrosol and Extra Virgin Olive Oil as Measured by Caco-2 Cell Model. Nutrients 2018; 10:nu10080969. [PMID: 30049997 PMCID: PMC6116065 DOI: 10.3390/nu10080969] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/22/2022] Open
Abstract
There is a high demand for functional meat products due to increasing concern about food and health. In this work, Zn and Se bioavailability was increased in chicken meat emulsions that are enriched with Hydroxytyrosol (HXT), a phenolic compound obtained from olive leaf. Six different chicken emulsions were elaborated. Three were made with broiler chicken meat supplemented with inorganic Zn and Se: control, one with HXT (50 ppm) added and one with HXT (50 ppm) and Extra Virgin Olive Oil (EVOO) (9.5%) added; and, three were made with chicken meat from chickens fed a diet that was supplemented with organic Zn and Se: control, one with HXT (50 ppm) added and one with HXT (50 ppm) and EVOO (9.5%) added. The samples were digested in vitro and the percent decomposition of phenolic compounds was measured by HPLC. Mineral availability (Fe, Zn and Se) was measured by cell culture of the Caco-2 cell line and the results were compared with mineral standards (Fe, Zn, and Se). The data obtained showed that neither HXT resistance to digestion nor Fe availability was affected by the presence of organic Zn and Se or phenolic compounds. Zn uptake increased in the presence of HXT, but not when its organic form was used, while Se uptake increased but it was not affected by the presence of HXT. It was concluded that the enrichment of meat—endogenously with organic minerals and exogenously with phenolic compounds—could be considered an interesting strategy for future research and applications in the current meat industry.
Collapse
|