1
|
Li Z, Xu J, Zhang F, Wang L, Yue Y, Wang L, Chen J, Ma H, Feng J, Min Y. Dietary starch structure modulates nitrogen metabolism in laying hens via modifying glucose release rate. Int J Biol Macromol 2024; 279:135554. [PMID: 39270891 DOI: 10.1016/j.ijbiomac.2024.135554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
The objective of this study was to investigate the effects of starch structure (Amylopectin/Amylose, AP/AM) in a low-protein diet on production performance, nitrogen utilization efficiency, and cecal flora in laying hens. Four hundred eighty 45-wk-age Hy-Line Gray laying hens were randomly allocated to five dietary groups and subjected to a 12-wk feeding trial. The AP/AM ratios of the five experiment diets were 1.0, 1.5, 2.0, 3.0, and 4.0. The results indicated that compared to other groups, laying hens fed with AP/AM 4.0 diets showed significantly improved average egg weight and feed conversion ratio (P < 0.05). Furthermore, as the AP/AM ratio increased, there was a significant linear enhancement in intestinal amino acids apparent digestibility, apparent metabolizable energy, and villus area (P < 0.05). Compared to the high AP groups, high-AM diets significantly increased eggshell thickness, crude protein digestibility, and reduced energy supply from amino acid oxidation in ileum (P < 0.05). Additionally, moderate-AM diets enriched with short-chain fatty acid-producing bacteria in the cecum, such as Lactobacillus, Rikenellaceae_RC9_gut_group, and Christensenellaceae_R-7_group, which are associated with the promoting nitrogen utilization. These findings may offer useful information on optimizing starch structure for the design of food products and relevant therapies due to the potential effects on nutrient metabolism and gut homeostasis.
Collapse
Affiliation(s)
- Zhuorui Li
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingya Xu
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengdong Zhang
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Leiqing Wang
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanrui Yue
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lijun Wang
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Chen
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Ma
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Feng
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuna Min
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Sittiya J, Nii T. Effects of oligosaccharides on performance, intestinal morphology, microbiota and immune reactions in laying hens challenged with dextran sodium sulfate. Poult Sci 2024; 103:104062. [PMID: 39067127 PMCID: PMC11331963 DOI: 10.1016/j.psj.2024.104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/30/2024] Open
Abstract
The aim of this study was to determine the effect of oligosaccharide extract from bamboo shoot (BOS) on the performance, intestinal morphology, microbiota and immune reaction of laying hens challenged with dextran sodium sulfate (DSS). Thirty-two White Leghorn hens (480 days old) were divided into 4 groups (8 hens each) with similar mean body weights: C (basal diet), D (basal diet + DSS), B (5 g/kg BOS diet), and BD (5 g/kg BOS diet + DSS). They were administered a single oral dose of 4 mL of distilled water/kg body weight with or without 0.45 g of DSS for 7 consecutive days from the 14th d to the 21st d of the experiment. The important findings were that (1) The egg yolk ratio was decreased by DSS treatment, but it was improved by BOS treatment, which also increased the egg shell ratio. (2) The diversity of intestinal microbiota and relative abundance of 4 bacteria genera were increased by BOS treatment. (3) Intestinal morphology was not affected by DSS and BOS, but the leukocytes accumulation in the liver was increased by DSS treatment and suppressed by BOS treatment. (4) Dietary BOS treatment influenced the mRNA expression of Th-1 and Treg cytokines in the liver and Th-17 cytokines in both intestine and liver of laying hens. These results suggest that BOS may enhance egg quality, Th-1 and Th-17 immune function without causing tissue damage under normal condition, and may suppress the excessive inflammatory responses during inflammation.
Collapse
Affiliation(s)
- Janjira Sittiya
- Faculty of Animal Science and Agricultural Technology, Silpakorn University, Phetchaburi 76120, Thailand
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
3
|
Xiong S, Zhang K, Wang J, Bai S, Zeng Q, Liu Y, Peng H, Xuan Y, Mu Y, Tang X, Ding X. Effects of xylo-oligosaccharide supplementation on the production performance, intestinal morphology, cecal short-chain fatty acid levels, and gut microbiota of laying hens. Poult Sci 2024; 103:104371. [PMID: 39405830 PMCID: PMC11525217 DOI: 10.1016/j.psj.2024.104371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
This study investigated the effects of xylo-oligosaccharide supplementation on the production performance, intestinal morphology, cecal short-chain fatty acid levels, and gut microbiota of laying hens. A total of 800 Lohmann pink layers, each 48 wk old, were randomly divided into 5 dietary treatment groups, namely XOS at 0 (CON), 100 (XOS1), 200 (XOS2), 300 (XOS3) and 400 (X0S4) mg/kg. The experimental period was 24 wk. The results revealed that the egg production rate and the number of eggs laid by each layer between 1 to 12 wk increased as the XOS concentration increased (Plinear < 0.05). The sand-shell egg percentage decreased significantly from 1 to 12 wk in the XOS1, XOS2, and XOS3 groups (PANOVA < 0.05). Compared with the CON group, the 4 XOS dosage groups presented significant increases in the villus height and the ratio of villus height to crypt depth in the jejunum (PANOVA < 0.05), whereas a linear decrease in jejunal crypt depth (Plinear < 0.05) was noted. In addition, XOS supplementation significantly increased the concentrations of butyric acid and isovaleric acid in the caeca (PANOVA < 0.05). High-throughput sequencing analysis of bacterial 16S rRNA revealed that dietary XOS supplementation influenced the cecal microbiota. The alpha diversity analysis indicated that the richness of cecal bacteria was greater in the laying hens fed XOS. The modulation of the cecal microbiota composition upon the addition of XOS was characterized by an increased abundance of Firmicutes and Bifidobacteriaceae, and decreased abundance of Bacteroidetes. At the genus level, dietary XOS supplementation resulted in decreases in the abundances of Bacteroides and Rikenellaceae_RC9_gut_group and an increase in the abundance of Lactobacillus. In conclusion, dietary XOS supplementation improved the production performance of laying hens by increasing the production of short-chain fatty acids and improving their intestinal morphology, which was achieved mainly through changes in the composition of the intestinal microbiota. The recommended level of XOS in the diet of laying hens is 200 mg/kg.
Collapse
Affiliation(s)
- Siyu Xiong
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Yan Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Yue Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Yadong Mu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China
| | - Xiaobing Tang
- Yibin Yatai Biotechnology Co., Ltd, Yibin 644000, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
4
|
Dockman RL, Ottesen EA. Purified fibers in chemically defined synthetic diets destabilize the gut microbiome of an omnivorous insect model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594388. [PMID: 38798626 PMCID: PMC11118275 DOI: 10.1101/2024.05.15.594388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The macronutrient composition of a host's diet shapes its gut microbial community, with dietary fiber in particular escaping host digestion to serve as a potent carbon source for gut microbiota. Despite widespread recognition of fiber's importance to microbiome health, nutritional research often fails to differentiate hyper-processed fibers from cell-matrix derived intrinsic fibers, limiting our understanding of how individual polysaccharides influence the gut community. We use the American cockroach (Periplaneta americana) as a model system to dissect the response of complex gut microbial communities to diet modifications that are impossible to test in traditional host models. Here, we designed synthetic diets from lab-grade, purified ingredients to identify how the cockroach microbiome responds to six different carbohydrates (chitin, methylcellulose, microcrystalline cellulose, pectin, starch, xylan) in otherwise balanced diets. We show via 16S rRNA gene profiling that these synthetic diets reduce bacterial diversity and alter the phylogenetic composition of cockroach gut microbiota in a fiber-dependent manner, regardless of the vitamin and protein content of the diet. Comparisons with cockroaches fed whole-food diets reveal that synthetic diets induce blooms in common cockroach-associated taxa and subsequently fragment previously stable microbial correlation networks. Our research leverages an unconventional microbiome model system and customizable lab-grade artificial diets to shed light on how purified polysaccharides, as opposed to nutritionally complex intrinsic fibers, exert substantial influence over a normally stable gut community.
Collapse
Affiliation(s)
- Rachel L. Dockman
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
5
|
Wu L, Hu Z, Lv Y, Ge C, Luo X, Zhan S, Huang W, Shen X, Yu D, Liu B. Hericium erinaceus polysaccharides ameliorate nonalcoholic fatty liver disease via gut microbiota and tryptophan metabolism regulation in an aged laying hen model. Int J Biol Macromol 2024; 273:132735. [PMID: 38825293 DOI: 10.1016/j.ijbiomac.2024.132735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Polysaccharides extracted from Hericium erinaceus (HEP) exhibit hepatoprotective activity in the alleviation of non-alcoholic fatty liver disease (NAFLD); however, the mechanisms underlying whether and how HEP regulation of the gut microbiota to alleviate liver-associated metabolic disorders are not well understood. This study used an aged laying hen model to explore the mechanisms through which HEP alleviates NAFLD, with a focus on regulatory function of HEP in the gut microbiome. The results showed that HEP ameliorated hepatic damage and metabolic disorders by improving intestinal barrier function and shaping the gut microbiota and tryptophan metabolic profiles. HEP increased the abundance of Lactobacillus and certain tryptophan metabolites, including indole-3-carboxylic acid, kynurenic acid, and tryptamine in the cecum. These metabolites upregulated the expression of ZO-1 and Occludin by activating the AhR and restoring the intestinal barrier integrity. The increased intestinal barrier functions decreased LPS transferring from the intestine to the liver, inhibited hepatic LPS/TLR4/MyD88/NF-κB pathway activation, and reduced hepatic inflammatory response and apoptosis. Fecal microbiota transplantation experiments further confirmed that the hepatoprotective effect is likely mediated by HEP-altered gut microbiota and their metabolites. Overall, dietary HEP could ameliorate the hepatic damage and metabolic disorders of NAFLD through regulating the "gut-liver" axis.
Collapse
Affiliation(s)
- Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang 312500, China.
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang 312500, China.
| |
Collapse
|
6
|
Rao Z, Li Y, Yang X, Guo Y, Zhang W, Wang Z. Diet xylo-oligosaccharide supplementation improves growth performance, immune function, and intestinal health of broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:165-176. [PMID: 38779325 PMCID: PMC11109738 DOI: 10.1016/j.aninu.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 05/25/2024]
Abstract
The effects of xylo-oligosaccharides (XOS) on broiler growth performance, immune function, and intestinal health were investigated. A total of 540 one-d-old Arbor Acres Plus broilers were randomly divided into 5 groups with 6 replicates per group and 18 chickens per replicate. Broilers in the control (CON) group received a corn-soybean meal based basal diet, those in the antibiotics (ANT) group received the basal diet plus 500 mg/kg oxytetracycline, and those in XOS groups received the basal diet plus 150, 300, or 450 mg/kg XOS. Compared with CON, the body weight at 42 d and average daily gain from 1 to 42 d were significantly increased in the 150, 450 mg/kg XOS-added and ANT groups (P = 0.018), and the relative expression of claudin-1 and ZO-1 mRNA in the ileum was significantly higher in the 300 and 450 mg/kg XOS-added groups (P < 0.001). The feed conversion ratios (P < 0.001) and abdominal fat rates (P = 0.012) of broilers from 1 to 42 d of age were significantly lower in all XOS-added groups than in the control group. Splenic index (P = 0.036) and bursa of Fabricius index (P = 0.009) were significantly better in the ANT group and each XOS-added group than in the control group. Compared to CON and ANT, serum IgA (P = 0.007) and IgG (P = 0.002) levels were significantly higher in the 300 mg/kg XOS-added group, and the relative abundance of short-chain fatty acid-producing genera (Alistipes) was also significantly higher (P < 0.001). Meanwhile, ileal villus height (P < 0.001) and ratio of villus height to crypt depth (V:C) (P = 0.001) were significantly increased in XOS-added broilers. In analysis of relationships between cecal microbes and the physical barrier of the gut, [Ruminococcus]_torques_group was positively correlated with mRNA expression of ileal ZO-1 and claudin-1 (P < 0.05), and Bacteroides was positively correlated with increased ileal villus height and V:C (P < 0.05). Overall, XOS addition to broiler diets improved growth performance, promoted intestinal health by enhancing intestinal barrier function and regulating cecal microbiota diversity, and had positive effects on immunity.
Collapse
Affiliation(s)
- Zhiyong Rao
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue Li
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaopeng Yang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongpeng Guo
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Wei Zhang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhixiang Wang
- School of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
7
|
Zhang R, Bai D, Zhen W, Hu X, Zhang H, Zhong J, Zhang Y, Ito K, Zhang B, Yang Y, Li J, Ma Y. Aspirin eugenol ester affects ileal barrier function, inflammatory response and microbiota in broilers under lipopolysaccharide-induced immune stress conditions. Front Vet Sci 2024; 11:1401909. [PMID: 38872795 PMCID: PMC11169880 DOI: 10.3389/fvets.2024.1401909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Aims The aim of this study was to investigate the effects of aspirin eugenol ester (AEE) on ileal immune function in broilers under lipopolysaccharide (LPS)-induced immune stress. Methods Two hundred and forty one-day-old male Arbor Acres chicks were randomly divided into four groups (saline, LPS, saline + AEE and LPS + AEE) with six replicates of ten broilers each. The saline group and LPS group were fed the normal diet, while the other two groups received normal diet plus 0.1 g/kg AEE. Broilers in the LPS and LPS + AEE groups were injected intraperitoneally with 0.5 mg/kg B.W LPS in saline for seven consecutive days beginning at 14 days of age, while broilers in the saline and saline + AEE groups were injected with saline only. Results The results showed that AEE improved the ileal morphology and increased the ratio of villus height to crypt depth of immune-stressed broilers. LPS-induced immune stress significantly reduced the expression of the genes for the tight junction proteins occludin, zonula occludens-1 (ZO-1), claudin-1 and claudin-2, in the ileum, while AEE significantly up-regulated the expression of these genes. Compared with the saline group, the LPS-treated chickens showed significantly increased mRNA expression of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), cyclooxygenase-2 (COX-2), and microsomal Prostaglandin E Synthesase-1 (mPGES-1) in the ileum, while they were significantly decreased by AEE supplementation. In addition, analysis of the ileal bacterial composition showed that compared with saline and LPS + AEE groups, the proportion of Firmicutes and Lactobacillus in the LPS group was lower, while the proportion of Proteobacteria and Escherichia-Shigella was higher. Similarly, Line Discriminant Analysis Effect Size (LEfSe) analysis showed that compared with the LPS group, Brevibacillus was dominant in the saline group, while the LPS + AEE group was rich in Rhizobium, Lachnoclostridium, Ruminococcaceae, Faecalibacterium, Negativibacillus, Oscillospiraceae, and Flavonifractor. Conclusion These results indicate that dietary supplementation with 0.1 g/kg AEE could protect the intestinal health by improving the intestinal villus morphology, enhancing the expression of tight junction genes and alleviating inflammation to resist the immune stress caused by LPS stimulation in broilers, and the mechanism may involve COX-2-related signal transduction and improved intestinal microbiota composition.
Collapse
Affiliation(s)
- Ruilin Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wenrui Zhen
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiaodi Hu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Haojie Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jiale Zhong
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yi Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajun Yang
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianyong Li
- Key Lab of New Animal Drug of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Science of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Longmen Laboratory, Science and Technology Innovation Center for Completed Set Equipment, Luoyang, China
| |
Collapse
|
8
|
Deryabin D, Lazebnik C, Vlasenko L, Karimov I, Kosyan D, Zatevalov A, Duskaev G. Broiler Chicken Cecal Microbiome and Poultry Farming Productivity: A Meta-Analysis. Microorganisms 2024; 12:747. [PMID: 38674691 PMCID: PMC11052200 DOI: 10.3390/microorganisms12040747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The cecal microbial community plays an important role in chicken growth and development via effective feed conversion and essential metabolite production. The aim of this study was to define the microbial community's variants in chickens' ceca and to explore the most significant association between the microbiome compositions and poultry farming productivity. The meta-analysis included original data from 8 control broiler chicken groups fed with a standard basic diet and 32 experimental groups supplemented with various feed additives. Standard Illumina 16S-RNA gene sequencing technology was used to characterize the chicken cecal microbiome. Zootechnical data sets integrated with the European Production Effectiveness Factor (EPEF) were collected. Analysis of the bacterial taxa abundance and co-occurrence in chicken cecal microbiomes revealed two alternative patterns: Bacteroidota-dominated with decreased alpha biodiversity; and Bacillota-enriched, which included the Actinomycetota, Cyanobacteriota and Thermodesulfobacteriota phyla members, with increased biodiversity indices. Bacillota-enriched microbiome groups showed elevated total feed intake (especially due to the starter feed intake) and final body weight, and high EPEF values, while Bacteroidota-dominated microbiomes were negatively associated with poultry farming productivity. The meta-analysis results lay the basis for the development of chicken growth-promoting feed supplementations, aimed at the stimulation of beneficial and inhibition of harmful bacterial patterns, where relevant metagenomic data can be a tool for their control and selection.
Collapse
Affiliation(s)
- Dmitry Deryabin
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, January 9 Street, 29, 460000 Orenburg, Russia; (C.L.); (L.V.); (D.K.); (G.D.)
| | - Christina Lazebnik
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, January 9 Street, 29, 460000 Orenburg, Russia; (C.L.); (L.V.); (D.K.); (G.D.)
| | - Ludmila Vlasenko
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, January 9 Street, 29, 460000 Orenburg, Russia; (C.L.); (L.V.); (D.K.); (G.D.)
| | - Ilshat Karimov
- Orenburg State Medical University of the Ministry of Health of Russia, Sovetskaya Street, 6, 460014 Orenburg, Russia;
| | - Dianna Kosyan
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, January 9 Street, 29, 460000 Orenburg, Russia; (C.L.); (L.V.); (D.K.); (G.D.)
| | - Alexander Zatevalov
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Admiral Makarov Street, 10, 125212 Moscow, Russia;
| | - Galimzhan Duskaev
- Federal Research Centre of Biological Systems and Agrotechnologies of the Russian Academy of Sciences, January 9 Street, 29, 460000 Orenburg, Russia; (C.L.); (L.V.); (D.K.); (G.D.)
| |
Collapse
|
9
|
Zhao M, Zhang Y, Li Y, Liu K, Bao K, Li G. Impact of Pediococcus acidilactici GLP06 supplementation on gut microbes and metabolites in adult beagles: a comparative analysis. Front Microbiol 2024; 15:1369402. [PMID: 38633690 PMCID: PMC11021720 DOI: 10.3389/fmicb.2024.1369402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
There is growing interest in the potential health benefits of probiotics for both humans and animals. The study aimed to investigate the effects of feeding the canine-derived probiotic Pediococcus acidilactici GLP06 to adult beagles by analysing the microbiome and metabolome. Twenty-four healthy adult beagles were randomly assigned to four groups. The CK group received a standard diet, while the three probiotic groups, the LG group (2 × 108 CFU/day/dog), MG group (2 × 109 CFU/day/dog), and HG group (2 × 1010 CFU/day/dog), received the standard diet supplemented with varying amounts of probiotics. The results show that, compared to the CK group, total antioxidant capacity was significantly increased in the MG and HG groups (p < 0.05), and superoxide dismutase and catalase were significantly increased in the HG group (p < 0.05). Compared to the CK group, malondialdehyde and blood urea nitrogen content were significantly decreased in the MG and HG groups (p < 0.05). Additionally, secretory immunoglobulin A activity was significantly increased in the HG group compared to the CK and LG groups (p < 0.05), and immunoglobulin G activity was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). In addition, compared with the CK group, the abundance of Faecalitalea and Collinsella increased in the LG group, and the relative abundance of Tyzzerella and Parasutterella increased in the MG group. The α diversity and the relative abundances of beneficial bacteria (Faecalibacterium, Lachnospiraceae_NK4A1316, and Ruminococcaceae_UCG-005) were higher in the HG group than in the CK group. Furthermore, acetic acid content was significantly increased in the HG group compared to the CK, LG, and MG groups (p < 0.05). Butyric acid, isobutyric acid, and the total SCFA content were significantly increased in the HG group compared to the CK group (p < 0.05). Moreover, metabolome analysis revealed 111 upregulated and 171 downregulated metabolites in the HG group. In conclusion, this study presents evidence that supplementing with P. acidilactici GLP06 can have a positive impact on antioxidant activity, immunoproteins, SCFAs, and gut microbiota in adult beagles. These findings highlight the potential of probiotics as a dietary intervention to enhance gut health and overall wellbeing in companion animals.
Collapse
Affiliation(s)
- Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Yueyao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Kun Bao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Walker H, Vartiainen S, Apajalahti J, Taylor-Pickard J, Nikodinoska I, Moran CA. The Effect of including a Mixed-Enzyme Product in Broiler Diets on Performance, Metabolizable Energy, Phosphorus and Calcium Retention. Animals (Basel) 2024; 14:328. [PMID: 38275788 PMCID: PMC10812510 DOI: 10.3390/ani14020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The importance of enzymes in the poultry industry is ever increasing because they help to extract as many nutrients as possible from the raw material available and reduce environmental impacts. Therefore, an experiment was conducted to examine the effect of a natural enzyme complex (ASC) on diets low in AME, Ca and P. Male Ross 308 broilers (n = 900) were fed one of four diets: (1) positive control (PC) with no enzyme added (AME 12.55 MJ/kg, AVPhos 4.8 g/kg and AVCal 9.6 g/kg); (2) negative control (NC) with no enzyme added and reduced AME, Ca and P (AME 12.18 MJ/kg, AVPhos 3.3 g/kg, AVCal 8.1 g/kg); (3) negative control plus ASC at 200 g/t; and (4) negative control plus ASC at 400 g/t. Broiler performance, digesta viscosity, tibia mineralization and mineral content were analyzed at d 21. Between d 18 and 20, excreted DM, GE, total nitrogen, Ca, and P were analyzed. ASC at 200 g/t and 400 g/t improved the FCR (p = 0.0014) significantly when compared with that of the NC. There were no significant differences in BW or FI between the treatments. Birds fed ASC at 200 g/t and 400 g/t had significantly improved digesta viscosity (p < 0.0001) compared with that of the PC and NC birds and had significantly higher excreted DM digestibility (p < 0.01) than the NC and the PC birds with 400 g/t ASC. ASC inclusion significantly improved P retention (p < 0.0001) compared to that in the PC. Ca retention was significantly increased by 400 g/t ASC compared to that in the PC and NC (p < 0.001). AME was significantly higher (p < 0.0001) for all treatments compared to that in the NC. There were no significant differences between treatments for any of the bone measurements. This study showed that feeding with ASC can support the performance of broilers when fed a diet formulated to have reduced Ca, P and AME, with the greatest results being seen with a higher level of ASC inclusion.
Collapse
Affiliation(s)
- Harriet Walker
- Solutions Deployment Team, Alltech (UK) Ltd., Stamford PE9 1TZ, UK; (H.W.); (J.T.-P.)
| | - Suvi Vartiainen
- Alimetrics Research Ltd., 02920 Espoo, Finland; (S.V.); (J.A.)
| | - Juha Apajalahti
- Alimetrics Research Ltd., 02920 Espoo, Finland; (S.V.); (J.A.)
| | - Jules Taylor-Pickard
- Solutions Deployment Team, Alltech (UK) Ltd., Stamford PE9 1TZ, UK; (H.W.); (J.T.-P.)
| | - Ivana Nikodinoska
- Alltech’s European Bioscience Centre, Dunboyne, A86 X006 Co. Meath, Ireland;
| | | |
Collapse
|
11
|
Shi P, Yan Z, Chen M, Li P, Wang D, Zhou J, Wang Z, Yang S, Zhang Z, Li C, Yin Y, Huang P. Effects of dietary supplementation with Radix Isatidis polysaccharide on egg quality, immune function, and intestinal health in hens. Res Vet Sci 2024; 166:105080. [PMID: 37952298 DOI: 10.1016/j.rvsc.2023.105080] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
This study aimed to investigate the effects of supplementing laying hen diets with Radix Isatidis Polysaccharide (RIPS) on egg quality, immune function, and intestinal health. The research was conducted using 288 Hyland Brown hens, which were randomly assigned to four dietary treatments: control (without RIPS), low dose (200 g/t), medium dose (500 g/t), and high dose (1000 g/t) of RIPS. Each dietary treatment was administered to eight replicates of nine hens for nine weeks. The results revealed that RIPS inclusion in diets significantly improved egg quality parameters such as egg shape index, yolk color, haugh unit, and protein height (P < 0.05). Additionally, RIPS supplementation enhanced immune function as evidenced by an alteration in serum biochemical parameters, an increase in the spleen index, and a decrease in the liver index. Further, an evaluation of intestinal health showed that RIPS fortified the intestinal barrier, thus increasing the population of beneficial intestinal bacteria and reducing the abundance of harmful ones. Such mechanisms promoted intestinal health, digestion, and nutrient absorption, ultimately leading to enhanced egg quality. In conclusion, supplementing laying hen diets with RIPS has been demonstrated to improve egg quality by boosting immunity and optimizing intestinal digestion and absorption.
Collapse
Affiliation(s)
- Panpan Shi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zenghao Yan
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China
| | - Miaofen Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Pingping Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Deqin Wang
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China
| | - Junjuan Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhaojie Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shihao Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhikun Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Chuyuan Li
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Co., Ltd, Guangzhou 510515, China.
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| | - Peng Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
12
|
Ma Y, Shi J, Jia L, He P, Wang Y, Zhang X, Huang Y, Cheng Q, Zhang Z, Dai Y, Xu M, Lei Z. Oregano essential oil modulates colonic homeostasis and intestinal barrier function in fattening bulls. Front Microbiol 2023; 14:1293160. [PMID: 38116527 PMCID: PMC10728825 DOI: 10.3389/fmicb.2023.1293160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Oregano essential oil (OEO) primarily contains phenolic compounds and can serve as a dietary supplement for fattening bulls. However, the precise molecular mechanism underlying this phenomenon remains largely elusive. Therefore, this study investigated the impact of adding OEO to diet on the integrity of the intestinal barrier, composition of the colonic microbiome, and production of microbial metabolites in fattening bulls. Our goal was to provide insights into the utilization of plant essential oil products in promoting gastrointestinal health and welfare in animals. We employed amplicon sequencing and metabolome sequencing techniques to investigate how dietary supplementation with OEO impacted the intestinal barrier function in bulls. The inclusion of OEO in the diet resulted in several notable effects on the colon of fattening bulls. These effects included an increase in the muscle thickness of the colon, goblet cell number, short-chain fatty acid concentrations, digestive enzyme activity, relative mRNA expression of intestinal barrier-related genes, and relative expression of the anti-inflammatory factor IL-10. Additionally, α-amylase activity and the relative mRNA expression of proinflammatory cytokines decreased. Moreover, dietary OEO supplementation increased the abundance of intestinal Bacteroides, Coprobacillus, Lachnospiraceae_UCG_001, and Faecalitalea. Metabolomic analysis indicated that OEO primarily increased the levels of 5-aminovaleric acid, 3-methoxysalicylic acid, and creatinine. In contrast, the levels of maltose, lactulose, lactose, and D-trehalose decreased. Correlation analysis showed that altered colonic microbes and metabolites affected intestinal barrier function. Taken together, these results demonstrate that OEO facilitates internal intestinal environmental homeostasis by promoting the growth of beneficial bacteria while inhibiting harmful ones.
Collapse
Affiliation(s)
- Yue Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengjia He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ying Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiao Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiang Cheng
- Gansu Xu Kang Food Co., Ltd., Pingliang, China
| | - Zhao Zhang
- Gansu Huarui Agriculture Co., Ltd., Zhangye, China
| | - Youchao Dai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Meiling Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
13
|
Fiecke C, Simsek S, Sharma AK, Gallaher DD. Effect of red wheat, aleurone, and testa layers on colon cancer biomarkers, nitrosative stress, and gut microbiome composition in rats. Food Funct 2023; 14:9617-9634. [PMID: 37814914 DOI: 10.1039/d3fo03438k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
We previously found greater reduction of colon cancer (CC) biomarkers for red wheat compared to white wheat regardless of refinement state. In the present study we examined whether the phenolic-rich aleurone and testa layers are drivers of chemoprevention by red wheat and their influence on gut microbiota composition using a 1,2-dimethylhydrazine-induced CC rat model. Rats were fed a low-fat diet (16% of energy as fat), high-fat diet (50% of energy as fat), or high-fat diet containing whole red wheat, refined red wheat, refined white wheat, or aleurone- or testa-enriched fractions for 12 weeks. Morphological markers (aberrant crypt foci, ACF) were assessed after methylene blue staining and biochemical markers (3-nitrotyrosine [3-NT], Dclk1) by immunohistochemical determination of staining positivity within aberrant crypts. Gut microbiota composition was evaluated from 16S rRNA gene sequencing of DNA extracted from cecal contents. Relative to the high-fat diet, the whole and refined red wheat, refined white wheat, and testa-enriched fraction decreased ACF, while only the refined red wheat and aleurone-enriched fraction decreased 3-NT. No significant differences were observed for Dclk1. An increase in microbial diversity was observed for the aleurone-enriched fraction (ACE index) and whole red wheat (Inverse Simpson Index). The diet groups significantly modified overall microbiome composition, including altered abundances of Lactobacillus, Mucispirillum, Phascolarctobacterium, and Blautia coccoides. These results suggest that red wheat may reduce CC risk through modifications to the gut microbiota and nitrosative stress, which may be due, in part, to the influence of dietary fiber and the phenolic-rich aleurone layer.
Collapse
Affiliation(s)
- Chelsey Fiecke
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Senay Simsek
- North Dakota State University, Department of Plant Sciences, Cereal Science Graduate Program, Fargo, ND, 58105, USA
| | - Ashok Kumar Sharma
- Department of Animal Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Daniel D Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
14
|
He H, Yang M, Li W, Lu Z, Wang Y, Jin M. Fecal microbial and metabolic characteristics of swine from birth to market. Front Microbiol 2023; 14:1191392. [PMID: 37789849 PMCID: PMC10543884 DOI: 10.3389/fmicb.2023.1191392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Recently, the research on pig intestinal microbiota has become a hot topic in the field of animal husbandry. There are few articles describing the dynamic changes of porcine fecal microbiota and metabolites at different time points from birth to market. Methods In the present study, 381 fecal samples were collected from 633 commercial pigs at 7 time points, including the 1st day, the 10th day, the 25th day, the 45th day, the 70th day, the 120th day, and the 180th day after the birth of swine, were used for microbiome analysis by Illumina MiSeq sequencing methods while 131 fecal samples from 3 time points, the 10th day, the 25th day, and 70th day after birth, were used for metabolome analysis by LC-MS methods. Results For the microbiome analysis, the fecal microbial richness increased over time from day 1 to 180 and the β-diversity of fecal microbiota was separated significantly at different time points. Firmicutes were the main phyla from day 10 to 180, followed by Bacteroides. The abundance of Lactobacillus increased significantly on day 120 compared with the previous 4 time points. From day 120 to day 180, the main porcine fecal microbes were Lactobacillus, Clostridium_sensu_stricto_1, Terrisporobacter and Streptococcus. Clostridium_sensu_stricto_1 and Terrisporobacter increased over time, while Lactobacillus, Escherichia-Shigella, Lachnoclostridium decreased with the time according to the heatmap, which showed the increase or decrease in microbial abundance over time. For the metabolome analysis, the PLS-DA plot could clearly distinguish porcine fecal metabolites on day 10, 25, and 70. The most different metabolic pathways of the 3 time points were Tryptophan metabolism, Sphingolipid signaling pathway, Protein digestion and absorption. Some metabolites increased significantly over time, such as Sucrose, L-Arginine, Indole, 2,3-Pyridinedicarboxylic acid and so on, while D-Maltose, L-2-Aminoadipic acid, 2,6-diaminohexanoic acid, L-Proline were opposite. The correlation between fecal metabolites and microbiota revealed that the microbes with an increasing trend were positively correlated with the metabolites affecting the tryptophan metabolic pathway from the overall trend, while the microbes with a decreasing trend were opposite. In addition, the microbes with an increasing trend were negatively correlated with the metabolites affecting the lysine pathway. Discussion In conclusion, this study elucidated the dynamic changes of porcine fecal microbiota and metabolites at different stages from birth to market, which may provide a reference for a comprehensive understanding of the intestinal health status of pigs at different growth stages.
Collapse
Affiliation(s)
- Huan He
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingzhi Yang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wentao Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Zhang L, Ge J, Gao F, Yang M, Li H, Xia F, Bai H, Piao X, Sun Z, Shi L. Rosemary extract improves egg quality by altering gut barrier function, intestinal microbiota and oviductal gene expressions in late-phase laying hens. J Anim Sci Biotechnol 2023; 14:121. [PMID: 37667318 PMCID: PMC10476401 DOI: 10.1186/s40104-023-00904-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/04/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Rosemary extract (RE) has been reported to exert antioxidant property. However, the application of RE in late-phase laying hens on egg quality, intestinal barrier and microbiota, and oviductal function has not been systematically studied. This study was investigated to detect the potential effects of RE on performance, egg quality, serum parameters, intestinal heath, cecal microbiota and metabolism, and oviductal gene expressions in late-phase laying hens. A total of 210 65-week-old "Jing Tint 6" laying hens were randomly allocated into five treatments with six replicates and seven birds per replicate and fed basal diet (CON) or basal diet supplemented with chlortetracycline at 50 mg/kg (CTC) or RE at 50 mg/kg (RE50), 100 mg/kg (RE100), and 200 mg/kg (RE200). RESULTS Our results showed that RE200 improved (P < 0.05) Haugh unit and n-6/n-3 of egg yolk, serum superoxide dismutase (SOD) compared with CON. No significant differences were observed for Haugh unit and n-6/n-3 of egg yolk among CTC, RE50, RE100 and RE200 groups. Compared with CTC and RE50 groups, RE200 increased serum SOD activity on d 28 and 56. Compared with CON, RE supplementation decreased (P < 0.05) total cholesterol (TC) level. CTC, RE100 and RE200 decreased (P < 0.05) serum interleukin-6 (IL-6) content compared with CON. CTC and RE200 increased jejunal mRNA expression of ZO-1 and Occludin compared with CON. The biomarkers of cecal microbiota and metabolite induced by RE 200, including Firmicutes, Eisenbergiella, Paraprevotella, Papillibacter, and butyrate, were closely associated with Haugh unit, n-6/n-3, SOD, IL-6, and TC. PICRUSt2 analysis indicated that RE altered carbohydrate and amino acid metabolism of cecal microbiota and increased butyrate synthesizing enzymes, including 3-oxoacid CoA-transferase and butyrate-acetoacetate CoA-transferase. Moreover, transcriptomic analysis revealed that RE200 improved gene expressions and functional pathways related to immunity and albumen formation in the oviductal magnum. CONCLUSIONS Dietary supplementation with 200 mg/kg RE could increase egg quality of late-phase laying hens via modulating intestinal barrier, cecal microbiota and metabolism, and oviductal function. Overall, RE could be used as a promising feed additive to improve egg quality of laying hens at late stage of production.
Collapse
Affiliation(s)
- Lianhua Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Junwei Ge
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Fei Gao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Yang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hui Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Fei Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hongtong Bai
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhiying Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Lei Shi
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
16
|
Li X, Wu X, Ma W, Xu H, Chen W, Zhao F. Feeding Behavior, Growth Performance and Meat Quality Profile in Broiler Chickens Fed Multiple Levels of Xylooligosaccharides. Animals (Basel) 2023; 13:2582. [PMID: 37627372 PMCID: PMC10451349 DOI: 10.3390/ani13162582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
A total of 240 1-day-old Arbor Acres broiler chickens were randomly distributed to 4 treatment groups with 6 replicates and 10 birds per replicate. Chickens were fed with corn-soybean meal diet supplementation with additions of 0, 150, 300, and 450 mg/kg XOS for 42 days. At 4 weeks of age, the average feeding time was reduced in the 450 mg/kg XOS group (p < 0.05), and the percentage of feeding time was increased in the 300 mg/kg XOS group (p < 0.05). At 5 weeks of age, broilers fed with 300 mg/kg XOS had increased the percentage of feeding time (p < 0.05), and 450 mg/kg XOS had increased the feeding frequency and percentage of feeding time (p < 0.05). At 6 weeks of age, the feeding frequency was highest in the 450 mg/kg XOS group (p < 0.05). During 4 to 6 weeks of age, the average feeding time was increased in 300 mg/kg XOS group (p < 0.05), the frequency was improved in the 450 mg/kg XOS group (p < 0.05), and the percentage of feeding time was longer in the XOS group than that in the control group (p < 0.05). The average daily gain was improved during days 22-42 and days 1-42 in the 150 mg/kg XOS group (p < 0.05). Broilers fed with 300 mg/kg XOS had an increased eviscerated rate (p < 0.05). The pH45min of breast muscle was highest in the 450 mg/kg XOS group (p < 0.05), as well as the pH45min and pH24h of thigh muscle, which improved in the 300 mg/kg and 450 mg/kg XOS groups (p < 0.05). In addition, the cooking loss of thigh muscle was reduced in the 300 mg/kg XOS group (p < 0.05). In conclusion, dietary supplementation with XOS had positive effects on the feeding behavior, growth performance, and meat quality of broiler chickens.
Collapse
Affiliation(s)
- Xixi Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| | - Xiaohong Wu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| | - Wenfeng Ma
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China; (H.X.); (W.C.)
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Guizhou University, Guiyang 550025, China; (H.X.); (W.C.)
| | - Furong Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (X.L.); (X.W.); (W.M.)
| |
Collapse
|
17
|
Gui J, Azad MAK, Lin W, Meng C, Hu X, Cui Y, Lan W, He J, Kong X. Dietary supplementation with Chinese herb ultrafine powder improves intestinal morphology and physical barrier function by altering jejunal microbiota in laying hens. Front Microbiol 2023; 14:1185806. [PMID: 37260679 PMCID: PMC10227515 DOI: 10.3389/fmicb.2023.1185806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Chinese medicinal herbs play important roles in anti-inflammatory, antioxidant, and antibacterial activities. However, the effects of Chinese herb ultrafine powder (CHUP) on laying hens still need to be elucidated. Therefore, this study aimed to evaluate the effects of dietary CHUP supplementation on jejunal morphology, physical barrier function, and microbiota in laying hens. Methods A total of 576 Xinyang black-feather laying hens (300 days old) were randomly assigned into eight groups, with eight replicates per group and nine hens per replicate. The hens were fed a basal diet (control group) and a basal diet supplemented with 0.5% Leonuri herba (LH group), 0.25% Ligustri lucidi fructus (LF group), 0.25% Taraxaci herba (TH group), 0.5% LH + 0.25% LF (LH-LF group), 0.5% LH + 0.25% TH (LH-TH group), 0.25% LF + 0.25% TH (LF-TH group), and 0.5% LH + 0.25% LF + 0.25% TH (LH-LF-TH group), respectively, for 120 days. Results The results showed that dietary LH-LF and LH-LF-TH supplementation increased (p < 0.05) the jejunal villus height to crypt depth ratio of laying hens. Dietary LF-TH supplementation up-regulated jejunal claudin-5 expression, while LH supplementation up-regulated jejunal claudin-1 expression and increased the jejunal abundances of potentially beneficial bacteria related to short-chain fatty acids and bacteriocins production, such as Blautia, Carnobacterium, Clostridiales, and Erysipelotrichales (p < 0.05). In addition, dietary LH supplementation enriched (p < 0.05) the tetracycline biosynthesis, butirosin/neomycin biosynthesis, and D-arginine/D-ornithine metabolism, whereas steroid biosynthesis and limonene/pinene degradation were enriched (p < 0.05) in the LH-LF and LH-LF-TH groups. Moreover, Spearman's correlation analysis revealed the potential correlation between the abundance of the jejunal microbiota and jejunal morphology and the physical barrier function of laying hens. Discussion Collectively, these findings suggest that dietary CHUP supplementation could enhance the beneficial bacteria abundance, physical barrier function, and metabolic function associated with short-chain fatty acids and bacteriocins production. Moreover, combined supplementation of dietary CHUP showed better effects than the sole CHUP supplementation.
Collapse
Affiliation(s)
- Jue Gui
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Wenchao Lin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Chengwen Meng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Xin Hu
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Yadong Cui
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
18
|
Cao Z, Liu Z, Zhang N, Bao C, Li X, Liu M, Yuan W, Wu H, Shang H. Effects of dietary dandelion (Taraxacum mongolicum Hand.-Mazz.) polysaccharides on the performance and gut microbiota of laying hens. Int J Biol Macromol 2023; 240:124422. [PMID: 37068539 DOI: 10.1016/j.ijbiomac.2023.124422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/19/2023]
Abstract
This experiment was designed to evaluate the influences of dietary dandelion polysaccharides (DP) on the performance and cecum microbiota of laying hens. Three hundred laying hens were assigned to five treatment groups: the basal diet group (CK group), three DP groups (basal diets supplemented with 0.5, 1.0, and 1.5 % DP), and the inulin group (IN group, basal diet supplemented with 1.5 % inulin). Increased daily egg weight and a decreased feed conversion rate were observed when the diets were supplemented with inulin or DP. The calcium metabolism rate in the 0.5 % and 1.0 % DP groups was greater than that in the CK group. The DP groups increased the short-chain fatty acid concentration, decreased pH, and enhanced the relative abundances of Parabacteroides, Alloprevotella, and Romboutsia in the cecum. These results showed that DP supplementation in the diets of laying hens can improve their performance, which might be associated with the regulation of the cecal microbiota.
Collapse
Affiliation(s)
- Zihang Cao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Liu
- The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130118, China
| | - Nanyi Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Chenguang Bao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xinyu Li
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Mengxue Liu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Wei Yuan
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Hongxin Wu
- Institute of Grassland Research, CAAS, Hohhot 010010, China
| | - Hongmei Shang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
19
|
Fangueiro JF, de Carvalho NM, Antunes F, Mota IF, Pintado ME, Madureira AR, Costa PS. Lignin from sugarcane bagasse as a prebiotic additive for poultry feed. Int J Biol Macromol 2023; 239:124262. [PMID: 37003388 DOI: 10.1016/j.ijbiomac.2023.124262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Diet is a crucial factor on health and well-being of livestock animals. Nutritional strengthening with diet formulations is essential to the livestock industry and animal perfor-mance. Searching for valuable feed additives among by-products may promote not only circular economy, but also functional diets. Lignin from sugarcane bagasse was proposed as a potential prebiotic additive for chickens and incorporated at 1 % (w/w) in commercial chicken feed, tested in two feed forms, namely, mash and pellets. Physico-chemical characterization of both feed types with and without lignin was performed. Also, the prebiotic potential for feeds with lignin was assessed by in vitro gastrointestinal model and evaluated the impact on chicken cecal Lactobacillus and Bifidobacterium. As for the pellet's physical quality, there was a higher cohesion of the pellets with lignin, indicating a higher resistance to breakout and lignin decreases the tendency of the pellets for microbial contamination. Regarding the prebiotic potential, mash feed with lignin showed higher promotion of Bifidobacterium in comparison with mash feed without lignin and to pellet feed with lignin. Lignin from sugarcane bagasse has prebiotic potential as additive to chicken feed when supplemented in mash feed diets, presenting itself as a sustainable and eco-friendly alternative to chicken feed additives supplementation.
Collapse
Affiliation(s)
- Joana F Fangueiro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Nelson Mota de Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Filipa Antunes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal Unipessoal Lda, Portugal
| | - Inês F Mota
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Manuela Estevez Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - Patrícia Santos Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| |
Collapse
|
20
|
Du M, Cheng Y, Chen Y, Wang S, Zhao H, Wen C, Zhou Y. Dietary supplementation with synbiotics improves growth performance, antioxidant status, immune function, and intestinal barrier function in broilers subjected to cyclic heat stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18026-18038. [PMID: 36207632 DOI: 10.1007/s11356-022-23385-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effects of synbiotics supplementation on growth performance, antioxidant status, immune function, and intestinal barrier function in broilers subjected to cyclic heat stress. One hundred and forty-four 22-day-old male broilers were randomly assigned to one of three treatment groups of six replicates each for a 21-day study, with eight birds per replicate. Broilers in the control group were reared at a thermoneutral temperature and received a basal diet. Broilers in the other two heat-stressed groups were fed a basal diet supplemented without (heat-stressed group) and with 1.5 g/kg synbiotic (synbiotic group). One and a half gram of the synbiotic consisted with 3 × 109 colony forming units (CFU) Clostridium butyricum, 1.5 × 109 CFU Bacillus licheniformis, 4.5 × 1010 CFU Bacillus subtilis, 600 mg yeast cell wall, and 150 mg xylooligosaccharide. Compared with the control group, heat stress increased rectal temperatures at 28, 35, and 42 days of age, respectively (P < 0.05). Birds subjected to heat stress had reduced weight gain, feed intake, and feed efficiency during 22 to 42 days (P < 0.05). In contrast, supplementation with the synbiotic decreased rectal temperature at 42 days of age and elevated weight gain of heat stress-challenged broilers (P < 0.05). Heat-stressed broilers exhibited a lower superoxide dismutase (SOD) activity in jejunal mucosa and a higher malondialdehyde accumulation in serum, liver and jejunal mucosa (P < 0.05), and the regressive SOD activity was normalized to control level when supplementing synbiotic (P < 0.05). Heat stress increased interleukin-1β (IL-1β) and interferon-γ (IFN-γ) levels in serum and IL-1β content in jejunal mucosa of broilers (P < 0.05). Synbiotic reduced IL-1β level in serum of broilers subjected to heat stress (P < 0.05). Compared with the control group, elevated serum diamine oxidase activity and reduced jejunal villus height were observed in broilers of the heat-stressed group (P < 0.05), and the values of these two parameters in the synbiotic group were intermediate (P > 0.05). Heat stress upregulated mRNA abundance of IL-1β and IFN-γ and downregulated gene expression levels of occluding and zonula occluden-1 (ZO-1) in jejunal mucosa of broilers (P < 0.05). The alterations in the mRNA expression levels of jejunal IL-1β and ZO-1 were reversed by the synbiotic (P > 0.05). In conclusion, dietary synbiotics could improve growth performance, antioxidant capacity, immune function, and intestinal barrier function in heat-stressed broilers.
Collapse
Affiliation(s)
- Mingfang Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yefei Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shiqi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Haoran Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
21
|
Morgan NK, Wallace A, Bedford MR, González-Ortiz G. Impact of fermentable fiber, xylo-oligosaccharides and xylanase on laying hen productive performance and nutrient utilization. Poult Sci 2022; 101:102210. [PMID: 36334432 PMCID: PMC9627098 DOI: 10.1016/j.psj.2022.102210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
This study evaluated the impact of feeding xylo-oligosaccharides (XOS), fermentable fiber in the form of wheat bran (WB), and xylanase (XYL) on laying hen productive performance and nutrient digestibility. The hypothesis was that the WB would provide the microbiota in the hindgut with fermentable dietary xylan, and the XOS and XYL would further upregulate xylan fermentation pathways, resulting in improved nutrient utilization. Isa Brown hens (n = 96) were obtained at 39 wk of age. They were fed 12 dietary treatments, 8 hens per treatment, for 56 d. A commercial laying hen ration was fed, and for half of the treatments 10% of this ration was directly replaced with WB. The diets were then supplemented with either 1) no supplements; 2) XOS 50 g/t; 3) XOS 2000 g/t; 4) XYL (16,000 BXU/kg); 5) XYL + XOS 50 g/t, or 6) XYL + XOS 2,000 g/t. Hen performance and egg quality were measured every 14 d. On d56, ileum digesta samples were collected for determination of starch, nonstarch polysaccharide (NSP), XOS, protein, energy, and starch digestibility. Ceca digesta samples were also collected for analysis of XOS, short chain fatty acid (SCFA), xylanase and cellulase activity and microbial counts. Feeding 2,000 g/t XOS increased ileal protein digestibility. Combined 2,000 g/t XOS and XYL increased cecal Bifidobacteria concentration. This combination also increased cecal xylanase activity in birds fed the control diet. Cecal cellulase activity was improved by feeding WB, XYL, and 2,000 g/t XOS. XYL increased cecal lactate production. Feeding 2,000 g/t XOS with WB increased insoluble NSP degradability and shell breaking strength at d56. In summary, supplementing laying hen diets with fermentable fiber, XYL and XOS increases utilization of dietary xylan, improving nutrient utilization, performance, and gastrointestinal health.
Collapse
Affiliation(s)
- N K Morgan
- University of New England, School of Environmental and Rural Science, Armidale, New South Wales, 2351, Australia; Curtin University, School of Molecular and Life Sciences, Bentley, Western Australia, 6152, Australia.
| | - A Wallace
- University of New England, School of Environmental and Rural Science, Armidale, New South Wales, 2351, Australia
| | - M R Bedford
- AB Vista, Woodstock Court, Blenheim Road, Marlborough Business Park, Marlborough, Wiltshire, United Kingdom
| | - G González-Ortiz
- AB Vista, Woodstock Court, Blenheim Road, Marlborough Business Park, Marlborough, Wiltshire, United Kingdom
| |
Collapse
|
22
|
Zhou J, Fu Y, Qi G, Dai J, Zhang H, Wang J, Wu S. Yeast cell-wall polysaccharides improve immunity and attenuate inflammatory response via modulating gut microbiota in LPS-challenged laying hens. Int J Biol Macromol 2022; 224:407-421. [DOI: 10.1016/j.ijbiomac.2022.10.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
|
23
|
Yan F, Tian S, Du K, Xue X, Gao P, Chen Z. Preparation and nutritional properties of xylooligosaccharide from agricultural and forestry byproducts: A comprehensive review. Front Nutr 2022; 9:977548. [PMID: 36176637 PMCID: PMC9513447 DOI: 10.3389/fnut.2022.977548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Xylooligosaccharide (XOS) are functional oligosaccharides with prebiotic activities, which originate from lignocellulosic biomass and have attracted extensive attention from scholars in recent years. This paper summarizes the strategies used in the production of XOS, and introduces the raw materials, preparation methods, and purification technology of XOS. In addition, the biological characteristics and applications of XOS are also presented. The most commonly recommended XOS production strategy is the two-stage method of alkaline pre-treatment and enzymatic hydrolysis; and further purification by membrane filtration to achieve the high yield of XOS is required for prebiotic function. At the same time, new strategies and technologies such as the hydrothermal and steam explosion have been used as pre-treatment methods combined with enzymatic hydrolysis to prepare XOS. XOS have many critical physiological activities, especially in regulating blood glucose, reducing blood lipid, and improving the structure of host intestinal flora.
Collapse
Affiliation(s)
| | - Shuangqi Tian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | | | | | | | - Zhicheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
24
|
Huang C, Yu Y, Li Z, Yan B, Pei W, Wu H. The preparation technology and application of xylo-oligosaccharide as prebiotics in different fields: A review. Front Nutr 2022; 9:996811. [PMID: 36091224 PMCID: PMC9453253 DOI: 10.3389/fnut.2022.996811] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/04/2022] [Indexed: 12/17/2022] Open
Abstract
Xylo-oligosaccharide (XOS) is a class of functional oligosaccharides that have been demonstrated with prebiotic activity over several decades. XOS has several advantages relative to other oligosaccharide molecules, such as promoting root development as a plant regulator, a sugar supplement for people, and prebiotics to promote intestinal motility utilization health. Now, the preparation and extraction process of XOS is gradually mature, which can maximize the extraction and avoid waste. To fully understand the recent preparation and application of XOS in different areas, we summarized the various technologies for obtaining XOS (including acid hydrolysis, enzymatic hydrolysis, hydrothermal pretreatment, and alkaline extraction) and current applications of XOS, including in animal feed, human food additives, and medicine. It is hoped that this review will serve as an entry point for those looking into the prebiotic field of research, and perhaps begin to dedicate their work toward this exciting classification of bio-based molecules.
Collapse
Affiliation(s)
- Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Yuxin Yu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Zheng Li
- The Affiliated Zhongda Hospital of Southeast University Medical School, Nanjing, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Hao Wu
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- *Correspondence: Hao Wu,
| |
Collapse
|
25
|
Li S, Liu G, Xu Y, Liu J, Chen Z, Zheng A, Cai H, Chang W. Comparison of the effects of applying xylooligosaccharides alone or in combination with calcium acetate in broiler chickens. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Lin Y, Teng PY, Olukosi OA. The effects of xylo-oligosaccharides on regulating growth performance, nutrient utilization, gene expression of tight junctions, nutrient transporters, and cecal short chain fatty acids profile in Eimeria-challenged broiler chickens. Poult Sci 2022; 101:102125. [PMID: 36088820 PMCID: PMC9468463 DOI: 10.1016/j.psj.2022.102125] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
A 21-d experiment was conducted to investigate the effects of xylo-oligosaccharides (XOS) on growth performance, nutrient utilization, gene expression of tight junctions, nutrient transporters, and cecal short chain fatty acids (SCFA) profile of broiler chickens challenged with mixed Eimeria spp. Two hundred fifty-two zero-day-old chicks were allocated to 6 treatments in a 3 × 2 factorial arrangement (corn-soybean meal diets supplemented with 0, 0.5, or 1.0 g/kg XOS; with or without Eimeria challenge). Challenged groups were inoculated with a solution containing E. maxima, E. acervulina, and E. tenella oocysts on d 15. During the infection period (d 15 to d 21), there was a significant (P < 0.05) Eimeria × XOS interaction for weight gain (WG). XOS significantly (P < 0.05) increased WG in the unchallenged birds but not in the challenged treatments. There was no significant Eimeria × XOS interaction for N and minerals utilization responses. XOS supplementation at 0.5 g/kg tended to alleviate Eimeria-induced depression in apparent ileal digestibility of DM (P = 0.052). Challenged birds had lower (P < 0.01) AME, AMEn, and total retention of N, Ca, and P. Eimeria upregulated (P < 0.01) gene expression of tight junction proteins claudin-1, junctional adhesion molecule-2, and glucose transporter GLUT1; but downregulated (P < 0.01) the peptide transporter PepT1, amino acid transporters rBAT, CAT2, y+LAT2, and zinc transporter ZnT1. XOS alleviated (P < 0.05) Eimeria-induced claudin-1 upregulation. Eimeria decreased (P < 0.05) cecal saccharolytic SCFA acetate, butyrate, and total SCFA, but increased (P < 0.05) branched chain fatty acids isobutyrate and isovalerate. The supplementation of XOS tended to decrease the concentration of isobutyrate (P = 0.08) and isovalerate (P = 0.062). In conclusion, 0.5 g/kg XOS supplementation alleviated depression in growth performance and nutrient utilization from the Eimeria challenge. In addition, supplemental XOS reversed the gene expression changes of claudin-1, also showed the potentials of alleviating the negative cecal fermentation pattern induced by Eimeria infection.
Collapse
|
27
|
Zhou H, Guo Y, Liu Z, Wu H, Zhao J, Cao Z, Zhang H, Shang H. Comfrey polysaccharides modulate the gut microbiota and its metabolites SCFAs and affect the production performance of laying hens. Int J Biol Macromol 2022; 215:45-56. [PMID: 35718145 DOI: 10.1016/j.ijbiomac.2022.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 06/11/2022] [Indexed: 12/24/2022]
Abstract
Effects of dietary supplementation of comfrey polysaccharides (CPs) on production performance, egg quality, and microbial composition of cecum in laying hens were evaluated. A total of 240 laying hens were allocated into 4 groups with 6 replicates per group. The laying hens were fed diets containing CPs at levels of 0, 0.5, 1.0, and 1.5 %, respectively. The results showed that the egg production rate increased by 5.97 %, the egg mass improved by 6.71 %, and the feed conversion rate reduced by 5.43 % in the 1.0 % supplementation group of CPs compared with those in the control group. The digestibility of ash, crude fat, and phosphorus was notably improved by the addition of CPs at 1.0 % (P < 0.05). The relative abundances of Bacteroidetes at the phylum level, Bacteroidaceae, Rikenellaceae, and Prevotellaceae at the family level were increased by CPs (P < 0.05). The relative abundances of Bacteroides, Megamonas, Rikenellaceae_RC9_gut_group, [Ruminococcus]_torques_group, Methanobrevibacter, Desulfovibrio, Romboutsia, Alistipes, and Intestinimonas at the genus level were increased by CPs (P < 0.05). Dietary supplementation of CPs could enhance the production performance of laying hens, which might be related to the improvement of nutrient digestibility and microbial community modulations in the cecum. Therefore, CPs have potential application value as prebiotics in laying hens.
Collapse
Affiliation(s)
- Haizhu Zhou
- College of Forestry and Pratacultural Science, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yang Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Liu
- The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Hongxin Wu
- Institute of Grassland Research, CAAS, Hohhot 010010, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville 72701, USA
| | - Zihang Cao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hexiang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongmei Shang
- College of Forestry and Pratacultural Science, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
28
|
Xylooligosaccharide-mediated gut microbiota enhances gut barrier and modulates gut immunity associated with alterations of biological processes in a pig model. Carbohydr Polym 2022; 294:119776. [DOI: 10.1016/j.carbpol.2022.119776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022]
|
29
|
Bari MS, Kheravii SK, Bajagai YS, Wu SB, Keerqin C, Campbell DLM. Cecal Microbiota of Free-Range Hens Varied With Different Rearing Enrichments and Ranging Patterns. Front Microbiol 2022; 12:797396. [PMID: 35222302 PMCID: PMC8881003 DOI: 10.3389/fmicb.2021.797396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/27/2021] [Indexed: 01/04/2023] Open
Abstract
Free-range pullets are reared indoors but the adult hens can go outside which is a mismatch that may reduce adaptation in the laying environment. Rearing enrichments might enhance pullet development and adaptations to subsequent free-range housing with impact on behavior and health measures including gut microbiota. Adult free-range hens vary in range use which may also be associated with microbiota composition. A total of 1,700 Hy-Line Brown® chicks were reared indoors across 16 weeks with three enrichment treatment groups: “control” with standard litter housing, “novelty” with weekly changed novel objects, and “structural” with custom-designed perching structures in the pens. At 15 weeks, 45 pullet cecal contents were sampled before moving 1,386 pullets to the free-range housing system. At 25 weeks, range access commenced, and movements were tracked via radio-frequency identification technology. At 65 weeks, 91 hens were selected based on range use patterns (“indoor”: no ranging; “high outdoor”: daily ranging) across all rearing enrichment groups and cecal contents were collected for microbiota analysis via 16S rRNA amplicon sequencing at V3-V4 regions. The most common bacteria in pullets were unclassified Barnesiellaceae, Prevotella, Blautia and Clostridium and in hens Unclassified, Ruminococcus, unclassified Lachnospiraceae, unclassified Bacteroidales, unclassified Paraprevotellaceae YRC22, and Blautia. The microbial alpha diversity was not significant within the enrichment/ranging groups (pullets: P ≥ 0.17, hen rearing enrichment groups: P ≥ 0.06, hen ranging groups: P ≥ 0.54), but beta diversity significantly varied between these groups (pullets: P ≤ 0.002, hen rearing enrichment groups: P ≤ 0.001, hen ranging groups: P ≤ 0.008). Among the short-chain fatty acids (SCFAs), the propionic acid content was higher (P = 0.03) in the novelty group of pullets than the control group. There were no other significant differences in the SCFA contents between the rearing enrichment groups (all P ≥ 0.10), and the ranging groups (all P ≥ 0.17). Most of the genera identified were more abundant in the indoor than high outdoor hens. Overall, rearing enrichments affected the cecal microbiota diversity of both pullets and adult hens and was able to distinguish hens that remained inside compared with hens that ranging daily for several hours.
Collapse
Affiliation(s)
- Md Saiful Bari
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW, Australia
- Department of Dairy and Poultry Science, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- *Correspondence: Md Saiful Bari,
| | - Sarbast K. Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Yadav S. Bajagai
- Institute for Future Farming Systems, Central Queensland University, Rockhampton, QLD, Australia
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Chake Keerqin
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Dana L. M. Campbell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Armidale, NSW, Australia
- Dana L. M. Campbell,
| |
Collapse
|
30
|
Shen CL, Wang R, Ji G, Elmassry MM, Zabet-Moghaddam M, Vellers H, Hamood AN, Gong X, Mirzaei P, Sang S, Neugebauer V. Dietary supplementation of gingerols- and shogaols-enriched ginger root extract attenuate pain-associated behaviors while modulating gut microbiota and metabolites in rats with spinal nerve ligation. J Nutr Biochem 2022; 100:108904. [PMID: 34748918 PMCID: PMC8794052 DOI: 10.1016/j.jnutbio.2021.108904] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
Neuroinflammation is a central factor in neuropathic pain (NP). Ginger is a promising bioactive compound in NP management due to its anti-inflammatory property. Emerging evidence suggests that gut microbiome and gut-derived metabolites play a key role in NP. We evaluated the effects of two ginger root extracts rich in gingerols (GEG) and shogaols (SEG) on pain sensitivity, anxiety-like behaviors, circulating cell-free mitochondrial DNA (ccf-mtDNA), gut microbiome composition, and fecal metabolites in rats with NP. Sixteen male rats were divided into four groups: sham, spinal nerve ligation (SNL), SNL+0.75%GEG in diet, and SNL+0.75%SEG in diet groups for 30 days. Compared to SNL group, both SNL+GEG and SNL+SEG groups showed a significant reduction in pain- and anxiety-like behaviors, and ccf-mtDNA level. Relative to the SNL group, both SNL+GEG and SNL+SEG groups increased the relative abundance of Lactococcus, Sellimonas, Blautia, Erysipelatoclostridiaceae, and Anaerovoracaceae, but decreased that of Prevotellaceae UCG-001, Rikenellaceae RC9 gut group, Mucispirillum and Desulfovibrio, Desulfovibrio, Anaerofilum, Eubacterium siraeum group, RF39, UCG-005, Lachnospiraceae NK4A136 group, Acetatifactor, Eubacterium ruminantium group, Clostridia UCG-014, and an uncultured Anaerovoracaceae. GEG and SEG had differential effects on gut-derived metabolites. Compared to SNL group, SNL+GEG group had higher level of 1'-acetoxychavicol acetate, (4E)-1,7-Bis(4-hydroxyphenyl)-4-hepten-3-one, NP-000629, 7,8-Dimethoxy-3-(2-methyl-3-buten-2-yl)-2H-chromen-2-one, 3-{[4-(2-Pyrimidinyl)piperazino]carbonyl}-2-pyrazinecarboxylic acid, 920863, and (1R,3R,7R,13S)-13-Methyl-6-methylene-4,14,16-trioxatetracyclo[11.2.1.0∼1,10∼.0∼3,7∼]hexadec-9-en-5-one, while SNL+SEG group had higher level for (±)-5-[(tert-Butylamino)-2'-hydroxypropoxy]-1_2_3_4-tetrahydro-1-naphthol and dehydroepiandrosteronesulfate. In conclusion, ginger is a promising functional food in the management of NP, and further investigations are necessary to assess the role of ginger on gut-brain axis in pain management.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Integrative Health, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Technical University Health Sciences Center, Lubbock, Texas.
| | - Rui Wang
- Department of Pathology, Texas Technical University Health Sciences Center, Lubbock, Texas
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Technical University Health Sciences Center, Lubbock, Texas
| | - Moamen M Elmassry
- Department of Biological Sciences, Texas Technical University, Lubbock, Texas
| | | | - Heather Vellers
- Department of Kinesiology and Sport Management, Texas Technical University, Lubbock, Texas
| | - Abdul N Hamood
- Department of Immunology and Molecular Microbiology, Texas Technical University Health Sciences Center, Lubbock, Texas; Department of Surgery, Texas Technical University Health Sciences Center, Lubbock, Teaxs
| | - Xiaoxia Gong
- Center for Biotechnology and Genomics, Texas Technical University, Lubbock, Texas
| | - Parvin Mirzaei
- Center for Biotechnology and Genomics, Texas Technical University, Lubbock, Texas
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post Harvest Technologies, North Carolina A&T State University, North Carolina Research Campus, Kannapolis, North Carolina
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Technical University Health Sciences Center, Lubbock, Texas; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Technical University Health Sciences Center, Lubbock, Texas; Department of Pharmacology and Neuroscience, Texas Technical University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
31
|
Pang J, Zhou X, Ye H, Wu Y, Wang Z, Lu D, Wang J, Han D. The High Level of Xylooligosaccharides Improves Growth Performance in Weaned Piglets by Increasing Antioxidant Activity, Enhancing Immune Function, and Modulating Gut Microbiota. Front Nutr 2021; 8:764556. [PMID: 34938759 PMCID: PMC8685398 DOI: 10.3389/fnut.2021.764556] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to investigate the effects of the high level of xylooligosaccharides (XOS) on growth performance, antioxidant capability, immune function, and fecal microbiota in weaning piglets. The results showed that 28 d body weight exhibited linear and quadratic increases (P < 0.05) with increasing dietary XOS level, as well as average daily feed intake (ADFI) on d 15–28, average daily gain (ADG) on d 15–28 and 1–28. There was a linear decrease (P < 0.05) between XOS levels and feed conversion rate (FCR) on d 1–14 and 1–28. Additionally, glutathione peroxidase (GSH-Px) showed a linear increase (P < 0.05), while the malondialdehyde (MDA) level decreased linearly and quadratically (P < 0.05) with the increasing dietary level of XOS. Moreover, the XOS treatments markedly increased the levels of immunoglobulin A (Ig A) (linear, P < 0.05; quadratic, P < 0.05), IgM (quadratic, P < 0.05), IgG (linear, P < 0.05), and anti-inflammatory cytokine interleukin-10 (IL-10) (quadratic, P < 0.05) in serum, while the IL-1β (linear, P < 0.05; quadratic, P < 0.05) and IL-6 (linear, P < 0.05) decreased with increasing level of XOS. Microbiota analysis showed that dietary supplementation with 1.5% XOS decreased (P < 0.05) the α-diversity and enriched (P < 0.05) beneficial bacteria including Lactobacillus, Bifidobacterium, and Fusicatenibacter at the genus level, compared with the control group. Importantly, linearly increasing responses (P < 0.05) to fecal acetate, propionate, butyrate, and total short-chain fatty acids (SCFAs) were observed with increasing level of XOS. Spearman correlation analyses found that Lactobacillus abundance was positively correlated with ADG, acetate, propionate, and IgA (P < 0.05), but negatively correlated with IL-1β (P < 0.05). Bifidobacterium abundance was positively related with ADFI, total SCFAs, IgG, and IL-10 (P < 0.05), as well as g_Fusicatenibacter abundance with ADFI, total SCFAs, and IL-10. However, Bifidobacterium and Fusicatenibacter abundances were negatively associated with MDA levels (P < 0.05). In summary, dietary supplementation with XOS can improve the growth performance in weaning piglets by increasing antioxidant capability, enhancing immune function, and promoting beneficial bacteria counts.
Collapse
Affiliation(s)
- Jiaman Pang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xingjian Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Ye
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Adaptation Physiology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongdong Lu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Lv J, Guo L, Chen B, Hao K, Ma H, Liu Y, Min Y. Effects of different probiotic fermented feeds on production performance and intestinal health of laying hens. Poult Sci 2021; 101:101570. [PMID: 34852968 PMCID: PMC8639472 DOI: 10.1016/j.psj.2021.101570] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/18/2021] [Accepted: 08/15/2021] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to investigate the effects of different probiotic fermented diets on production performance and intestinal health of laying hens. A total of 360 healthy 22-wk-age Jingfen No. 6 layers were randomly divided into 4 treatments: basal diet (CON); supplemented with 6% Clostridium butyricum fermented feed (CB); supplemented with 6% Lactobacillus crispatus fermented feed (LC); supplemented with 6% Lactobacillus salivarius fermented feed (LS). The experiment lasted for 8 wk. The results showed that the levels of crude fiber, β-glucan and pH of feed decreased significantly after fermentation (P < 0.05). Compared with CON group, the feed conversion ratio (FCR) was decreased significantly (P < 0.05), and albumen height and Haugh unit in LC group and LS group were increased significantly (P < 0.05). Fermented feed supplementation significantly improved villus height (VH) of the jejunum and the ratio of villus height to crypt depth (VH/CD) of the ileum (P < 0.05). Additionally, the VH and VH/CD of the duodenum were significantly increased in LS group (P < 0.05). Furthermore, the ACE and chao1 indexes in LS group were extremely significant higher than that in the other 3 groups (P < 0.05). In addition, compared with CON group, the abundance of Rikenellaceae and Methanobacteriaceae was significantly decreased at the family level in LC group and LS group (P < 0.05), while the abundance of Ruminocaceae was significantly higher (P < 0.05). Collectively, feeding Lactobacillus salivarius and Lactobacillus crispatus fermented feed improved the FCR, albumen height and Haugh unit of laying hens, and Lactobacillus salivarius fermented feed supplementation could improve intestinal health by ameliorating intestinal morphology, altering microbial composition and enhancing microbial community richness.
Collapse
|
33
|
Xylooligosaccharides: prebiotic potential from agro-industrial residue, production strategies and prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Liu Y, Lin Q, Huang X, Jiang G, Li C, Zhang X, Liu S, He L, Liu Y, Dai Q, Huang X. Effects of Dietary Ferulic Acid on the Intestinal Microbiota and the Associated Changes on the Growth Performance, Serum Cytokine Profile, and Intestinal Morphology in Ducks. Front Microbiol 2021; 12:698213. [PMID: 34326826 PMCID: PMC8313987 DOI: 10.3389/fmicb.2021.698213] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
The present study investigated the effects of ferulic acid (FA) on the growth performance, serum cytokine profile, intestinal morphology, and intestinal microbiota in ducks at the growing stage. 300 female Linwu ducks at 28 days of age with similar body weights were randomly divided into five groups. Each group contained six replicates of 10 birds. The dietary treatments were corn-soybean-based diet supplemented with FA at the concentrations of 0 (control), 100, 200, 400, and 800 mg/kg diet. The results demonstrated that dietary FA at the levels of 200, 400, and 800 mg/kg increased the average daily gain (P = 0.01), 400 and 800 mg/kg FA increased the final body weight (P = 0.02), 100, 200, and 800 mg/kg FA increased the serum glutathione (P = 0.01), and 100, 400, and 800 mg/kg FA increased the glutathione peroxidase activities in birds (P < 0.01). Additionally, 200, 400, and 800 mg/kg dietary FA lowered the serum levels of interleukin-2 (P = 0.02) and interleukin-6 (P = 0.04). Moreover, the morphometric study of the intestines indicated that 400 mg/kg FA decreased the crypt depth in jejunum (P = 0.01) and caecum (P = 0.04), and increased the ratio of villus height to crypt depth in jejunum (P = 0.02). Significant linear and/or quadratic relationships were found between FA concentration and the measured parameters. 16S rRNA sequencing revealed that dietary FA increased the populations of genera Faecalibacterium, Paludicola, RF39, and Faecalicoccus in the cecum (P < 0.05), whereas decreased the populations of Anaerofilum and UCG-002 (P < 0.05). The Spearman correlation analysis indicated that phylum Proteobacteria were negatively, but order Oscillospirales, and family Ruminococcaceae were positively related to the parameters of the growth performance. Phylum Bacteroidetes, class Negativicutes and family Rikenellaceae were negatively associated with the parameters of the antioxidative capability. And phylum Cyanobacteria, Elusimicrobia, and Bacteroidetes, class Bacilli, family Rikenellaceae, and genus Prevotella were positively associated with the parameters of the immunological capability. Thus, it was concluded that the supplementations of 400 mg/kg FA in diet was able to improve the growth performance, antioxidative and immunological capabilities, intestinal morphology, and modulated the gut microbial construction of Linwu ducks at the growing stage.
Collapse
Affiliation(s)
- Yang Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.,Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xuan Huang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Guitao Jiang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Chuang Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Xu Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Shengli Liu
- Shandong Lonct Enzymes Co., Ltd., Linyi, China
| | - Lingyun He
- Animal Husbandry and Fisheries Affairs Center, Huaihua, China
| | - Yali Liu
- Hunan Perfly Biotech Co., Ltd., Changsha, China
| | - Qiuzhong Dai
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| |
Collapse
|