1
|
Wang YM, Feng LS, Xu A, Ma XH, Zhang MT, Zhang J. Copper ions: The invisible killer of cardiovascular disease (Review). Mol Med Rep 2024; 30:210. [PMID: 39301641 PMCID: PMC11425066 DOI: 10.3892/mmr.2024.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Copper, a vital trace element, is indispensable for the maintenance of physiological functioning, particularly in the cardiac system. Unlike other forms of cell death such as iron death and apoptosis, copper‑induced cell death has gained increasing recognition as a significant process influencing the development of cardiovascular diseases. The present review highlights the significance of maintaining copper homeostasis in addressing cardiovascular diseases. This review delves into the crucial roles of copper in physiology, including the metabolic pathways and its absorption, transport and excretion. It provides detailed insights into the mechanisms underlying cardiovascular diseases resulting from both excess and deficient copper levels. Additionally, it summarizes strategies for treating copper imbalances through approaches such as copper chelators and ion carriers while discussing their limitations and future prospects.
Collapse
Affiliation(s)
- Yi-Ming Wang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Lan-Shuan Feng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Ao Xu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Xiao-Han Ma
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Miao-Tiao Zhang
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Jie Zhang
- Cardiovascular Department, Xi'an Fifth Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
2
|
Soto Ocaña J, Friedman ES, Keenan O, Bayard NU, Ford E, Tanes C, Munneke MJ, Beavers WN, Skaar EP, Bittinger K, Zemel BS, Wu GD, Zackular JP. Metal availability shapes early life microbial ecology and community succession. mBio 2024:e0153424. [PMID: 39440978 DOI: 10.1128/mbio.01534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
The gut microbiota plays a critical role in human health and disease. Microbial community assembly and succession early in life are influenced by numerous factors. In turn, assembly of this microbial community is known to influence the host, including immune system development, and has been linked to outcomes later in life. To date, the role of host-mediated nutritional immunity and metal availability in shaping microbial community assembly and succession early in life has not been explored in depth. Using a human infant cohort, we show that the metal-chelating protein calprotectin is highly abundant in infants. Taxa previously shown to be successful early colonizers of the infant gut, such as Enterococcus, Enterobacteriaceae, and Bacteroides, are highly resistant to experimental metal starvation in culture. Lactobacillus, meanwhile, is highly susceptible to metal restriction, pointing to a possible mechanism by which host-mediated metal limitation shapes the fitness of early colonizing taxa in the infant gut. We further demonstrate that formula-fed infants harbor markedly higher levels of metals in their gastrointestinal tract compared to breastfed infants. Formula-fed infants with high levels of metals harbor distinct microbial communities compared to breastfed infants, with higher levels of Enterococcus, Enterobacter, and Klebsiella, taxa which show increased resistance to the toxic effects of high metal concentrations. These data highlight a new paradigm in microbial community assembly and suggest an unappreciated role for nutritional immunity and dietary metals in shaping the earliest colonization events of the microbiota.IMPORTANCEEarly life represents a critical window for microbial colonization of the human gastrointestinal tract. Surprisingly, we still know little about the rules that govern the successful colonization of infants and the factors that shape the success of early life microbial colonizers. In this study, we report that metal availability is an important factor in the assembly and succession of the early life microbiota. We show that the host-derived metal-chelating protein, calprotectin, is highly abundant in infants and successful early life colonizers can overcome metal restriction. We further demonstrate that feeding modality (breastmilk vs formula) markedly impacts metal levels in the gut, potentially influencing microbial community succession. Our work suggests that metals, a previously unexplored aspect of early life ecology, may play a critical role in shaping the early events of microbiota assembly in infants.
Collapse
Affiliation(s)
- Joshua Soto Ocaña
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elliot S Friedman
- Division of Gastroenterology & Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Orlaith Keenan
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nile U Bayard
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eileen Ford
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Matthew J Munneke
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William N Beavers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- The Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gary D Wu
- Division of Gastroenterology & Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph P Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Matar A, Damianos JA, Jencks KJ, Camilleri M. Intestinal Barrier Impairment, Preservation, and Repair: An Update. Nutrients 2024; 16:3494. [PMID: 39458489 PMCID: PMC11509958 DOI: 10.3390/nu16203494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Our objective was to review published studies of the intestinal barrier and permeability, the deleterious effects of dietary components (particularly fat), the impact of altered intestinal permeability in disease models and human diseases, the role of the microbiome and epigenomics in control of barrier function, and the opportunities to restore normal barrier function with dietary interventions and products of the microbiota. METHODS We conducted a literature review including the following keywords alone or in combination: intestinal barrier, permeability, microbiome, epigenomics, diet, irritable bowel syndrome, inflammatory bowel disease, probiotics. RESULTS Intestinal permeability is modified by a diet including fat, which increases permeability, and nutrients such as fiber, glutamine, zinc, vitamin D, polyphenols, emulsifiers, and anthocyanins, which decrease permeability. There is significant interaction of the microbiome and barrier function, including the inflammatory of luminal/bacterial antigens, and anti-inflammatory effects of commensals or probiotics and their products, including short-chain fatty acids. Epigenomic modification of barrier functions are best illustrated by effects on junction proteins or inflammation. Detailed documentation of the protective effects of diet, probiotics, prebiotics, and microbiota is provided. CONCLUSION intestinal permeability is a critical factor in protection against gastrointestinal diseases and is impacted by nutrients that preserve or heal and repair the barrier and nurture anti-inflammatory effects.
Collapse
Affiliation(s)
| | | | | | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.); (J.A.D.)
| |
Collapse
|
4
|
Peng Z, Liao Y, Yang W, Liu L. Metal(loid)-gut microbiota interactions and microbiota-related protective strategies: A review. ENVIRONMENT INTERNATIONAL 2024; 192:109017. [PMID: 39317009 DOI: 10.1016/j.envint.2024.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Human exposure to metal(loid)s has dramatically increased over the past five decades, which has triggered public concern worldwide. Recently, gut microbiota has been considered a target for metal(loid)s, and some literature has reviewed the interactions between gut microbiota and heavy metal(loid)s (HMs) with high toxicity. However, whether there is an interaction between gut microbiota and metal(loid)s with essential roles or some normal functions are far from clear to date. Importantly, in addition to traditional probiotics that have been clarified to alleviate the adverse effect of HMs on the body, some novel probiotics, prebiotics, synbiotics, and postbiotics may also exhibit comparable or even better abilities of metal(loid) remediation. In this review, we mainly outline and discuss recent research findings on the metal(loid)-gut microbiota interactions and microbiota-related protective strategies.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
5
|
Yang JC, Zhao M, Chernikova D, Arias-Jayo N, Zhou Y, Situ J, Gutta A, Chang C, Liang F, Lagishetty V, Jacobs JP. ZIP8 A391T Crohn's Disease-Linked Risk Variant Induces Colonic Metal Ion Dyshomeostasis, Microbiome Compositional Shifts, and Inflammation. Dig Dis Sci 2024; 69:3760-3772. [PMID: 39322808 PMCID: PMC11489278 DOI: 10.1007/s10620-024-08647-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND The pathogenesis of Crohn's disease involves genetic and environmental factors, with the gut microbiome playing a crucial role. The Crohn's disease-associated variant rs13107325 in the SLC39A8 gene results in an A391T substitution in the ZIP8 metal ion transporter and has previously been linked to alterations in the colonic microbiome in variant carriers. We hypothesized that the A391T substitution alters metal ion homeostasis in the colonic mucosal-luminal interface, thereby inducing dysbiosis which may promote intestinal inflammation. METHODS To evaluate this hypothesis, we generated a SLC39A8 A393T mouse model (matching human A391T). We first examined trace element abundance in the colonic mucosal epithelium and lumen of homozygous A393T and wild-type (WT) mice to determine if the variant affected metal distribution. We also performed 16S rRNA gene sequencing on colon samples at 2 months, 3-4 months, and 12 months of age, and conducted histological scoring of colon tissue collected from 5-month and 10-month old mice. RESULTS Consistent with an effect of the variant on ZIP8 function, homozygous A393T mice exhibited increased cobalt in the colonic mucosa, but reduced iron, zinc, manganese, cobalt, copper, and cadmium in the colonic lumen. 16S rRNA gene sequencing of colon samples revealed variant-linked effects on microbiome beta diversity in 2-month-, 3-4-month-, and 12-month-old mice. Histological scoring showed spontaneous intestinal inflammation in 10-month but not in 5-month-old mice. Lastly, predicted pathway analysis of the microbiome samples revealed differential enrichment of iron-, zinc-, and cobalt-dependent pathways in A393T mice compared to wild-type controls. CONCLUSION These results suggest that the variant in SLC39A8 primarily restricts metal availability to the microbiota, resulting in compositions that can adapt to the environment and that A393T-linked dysbiosis occurs prior to the onset of inflammation. This study paves the way for future studies investigating risk variants as microbiome-disease modifiers.
Collapse
Affiliation(s)
- Julianne C Yang
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Matthew Zhao
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Diana Chernikova
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Pediatrics, Division of Immunology, Allergy, and Rheumatology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90073, USA
| | - Nerea Arias-Jayo
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yi Zhou
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- West China Hospital, Sichuan University, Chengdu, China
| | - Jamilla Situ
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Arjun Gutta
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Candace Chang
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Fengting Liang
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jonathan P Jacobs
- The Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA.
- Goodman-Luskin Microbiome Center, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
6
|
Cui Y, Zhang M, Wang H, Yu T, Zhang A, Lin G, Guo Y, Wu Y. Organic Trace Minerals Enhance the Gut Health of British Shorthair Cats by Regulating the Structure of Intestinal Microbiota. Metabolites 2024; 14:494. [PMID: 39330501 PMCID: PMC11434296 DOI: 10.3390/metabo14090494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Trace minerals are essential for biological processes, including enzyme function, immune response, and hormone synthesis. The study assessed the effects of different dietary trace minerals on the gut health, microbiota composition, and immune function of cats. Eighteen adult British Shorthair cats were divided into three groups receiving inorganic trace minerals (ITM), a 50/50 mix of inorganic and organic trace minerals (ITM + OTM), or organic trace minerals (OTM) for 28 days. The OTM showed enhanced immune capacities, reduced intestinal barrier function, and lower inflammation condition. The OTM altered gut microbiota diversity, with a lower Simpson index and higher Shannon index (p < 0.05). Specifically, the abundance of Bacteroidota, Lachnospiraceae, and Prevotella in the OTM group were higher than the ITM group (p < 0.05). Metabolomic analysis identified 504 differential metabolites between the OTM and ITM groups (p < 0.05, VIP-pred-OPLS-DA > 1), affecting pathways related to steroid hormone biosynthesis and glycerophospholipid metabolism (p < 0.05, VIP-pred-OPLS-DA > 2). Additionally, there was a significant correlation between intestinal microbiota and differential metabolites. To conclude, dietary OTM can modulate the gut metabolite and microbiota composition, enhance immune and intestinal barrier function, and mitigate inflammation in cats, highlighting the benefit of using OTM in feline diet to promote the intestinal and overall health.
Collapse
Affiliation(s)
- Yingyue Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (M.Z.); (H.W.); (T.Y.); (A.Z.)
| | - Mingrui Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (M.Z.); (H.W.); (T.Y.); (A.Z.)
| | - Haotian Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (M.Z.); (H.W.); (T.Y.); (A.Z.)
| | - Tong Yu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (M.Z.); (H.W.); (T.Y.); (A.Z.)
| | - Anxuan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (M.Z.); (H.W.); (T.Y.); (A.Z.)
| | - Gang Lin
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing 100600, China; (G.L.); (Y.G.)
| | - Yuhan Guo
- Beijing Alltech Biological Products (China) Co., Ltd., Beijing 100600, China; (G.L.); (Y.G.)
| | - Yi Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.C.); (M.Z.); (H.W.); (T.Y.); (A.Z.)
| |
Collapse
|
7
|
Lei Q, Divakarla SK, Winsley T, Roux S, Chrzanowski W. Bioprocessing strategies for enhanced probiotic extracellular vesicle production: culture condition modulation. Front Bioeng Biotechnol 2024; 12:1441552. [PMID: 39280339 PMCID: PMC11392866 DOI: 10.3389/fbioe.2024.1441552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Probiotic extracellular vesicles are biochemically active structures responsible for biological effects elicited by probiotic bacteria. Lactobacillus spp., which are abundant in the human body (e.g., gut), are known to have anti-inflammatory and antimicrobial properties, and are commonly used in food products, supplements, and in discovery research. There is increasing evidence that Lactobacillus-derived extracellular vesicles (LREVs) have potent immunomodulatory capacity that is superior to probiotics themselves. However, key mechanistic insights into the process that controls production and thus, the function of LREVs, are lacking. Currently, it is unknown how the probiotic culture microenvironment orchestrates the type, yield and function of LREVs. Here, we investigated how multifactor modulation of the biomanufacturing process controls the yield and biological functionality of the LREVs. To achieve this, we selected Lacticaseibacillus rhamnosus as the candidate probiotic, initially cultivated under traditional culture conditions, i.e., 100% broth concentration and pH 5.5. Subsequently, we systematically modified the culture conditions of the probiotic by adjusting three critical process parameters: (1) culture medium pH (pH 3.5, 5.5 and 7.5), (2) growth time (48 and 72 h), and (3) broth concentration (50% and 10% of original broth concentration). EVs were then isolated separately from each condition. The critical quality attributes (CQA) of LREVs, including physical characteristics (size, distribution, concentration) and biological composition (protein, carbohydrate, lipid), were analysed. Functional impacts of LREVs on human epidermal keratinocytes and Staphylococcus aureus were also assessed as CQA. Our findings show that the production of LREVs is influenced by environmental stresses induced by the culture conditions. Factors like broth concentration, pH levels, and growth time significantly impact stress levels in L. rhamnosus, affecting both the production and composition of LREVs. Additionally, we have observed that LREVs are non-toxicity for keratinocytes, the major cell type of the epidermis, and possess antimicrobial properties against S. aureus, a common human skin pathogen. These properties are prerequisites for the potential application of EVs to treat skin conditions, including infected wounds. However, the functionality of LREVs depends on the culture conditions and stress levels experienced by L. rhamnosus during production. Understanding this relationship between the culture microenvironment, probiotic stress response, and LREV characteristics, can lead to the biomanufacturing of customised probiotic-derived EVs for various medical and industrial applications.
Collapse
Affiliation(s)
- Qingyu Lei
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, VIC, Australia
| | - Shiva Kamini Divakarla
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, VIC, Australia
- BiomeCentric PTY LTD., Molendinar, QLD, Australia
| | | | - Shaun Roux
- BiomeCentric PTY LTD., Molendinar, QLD, Australia
| | - Wojciech Chrzanowski
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, VIC, Australia
- Department of Laboratory Medicine, Division of Biomolecular and Cellular Medicine, Division of Clinical Immunology, Karolinska Institute, Stockholm, Sweden
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Liu R, Wang J, Liu Y, Gao Y, Yang R. Regulation of gut microbiota on immune cell ferroptosis: A novel insight for immunotherapy against tumor. Cancer Lett 2024; 598:217115. [PMID: 39025428 DOI: 10.1016/j.canlet.2024.217115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiota contributes to the homeostasis of immune system and is related to various diseases such as tumorigenesis. Ferroptosis, a new type of cell death, is also involved in the disease pathogenesis. Recent studies have found the correlations of gut microbiota mediated ferroptosis and immune cell death. Gut microbiota derived immunosuppressive metabolites, which can promote differentiation and function of immune cells, tend to inhibit ferroptosis through their receptors, whereas inflammatory metabolites from gut microbiota also affect the differentiation and function of immune cells and their ferroptosis. Thus, it is possible for gut microbiota to regulate immune cell ferroptosis. Indeed, gut microbiota metabolite receptor aryl hydrocarbon receptor (AhR) can affect ferroptosis of intestinal intraepithelial lymphocytes, leading to disease pathogenesis. Since immune cell ferroptosis in tumor microenvironment (TME) affects the occurrence and development of tumor, the modulation of gut microbiota in these cell ferroptosis might influence on the tumorigenesis, and also immunotherapy against tumors. Here we will summarize the recent advance of ferroptosis mediated by gut microbiota metabolites, which potentially acts as regulator(s) on immune cells in TME for therapy against tumor.
Collapse
Affiliation(s)
- Ruobing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China.
| |
Collapse
|
9
|
Tang-Wing C, Mohanty I, Bryant M, Makowski K, Melendez D, Dorrestein PC, Knight R, Caraballo-Rodríguez AM, Allaband C, Jenné K. Impact of diet change on the gut microbiome of common marmosets ( Callithrix jacchus). mSystems 2024; 9:e0010824. [PMID: 38975760 PMCID: PMC11334461 DOI: 10.1128/msystems.00108-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Gastrointestinal diseases are the most frequently reported clinical problems in captive common marmosets (Callithrix jacchus), often affecting the health and welfare of the animal and ultimately their use as a research subject. The microbiome has been shown to be intimately connected to diet and gastrointestinal health. Here, we use shotgun metagenomics and untargeted metabolomics in fecal samples of common marmosets collected before, during, and after a dietary transition from a biscuit to a gel diet. The overall health of marmosets, measured as weight recovery and reproductive outcome, improved after the diet transition. Moreover, each marmoset pair had significant shifts in the microbiome and metabolome after the diet transition. In general, we saw a decrease in Escherichia coli and Prevotella species and an increase in Bifidobacterium species. Untargeted metabolic profiles indicated that polyamine levels, specifically cadaverine and putrescine, were high after diet transition, suggesting either an increase in excretion or a decrease in intestinal reabsorption at the intestinal level. In conclusion, our data suggest that Bifidobacterium species could potentially be useful as probiotic supplements to the laboratory marmoset diet. Future studies with a larger sample size will be beneficial to show that this is consistent with the diet change. IMPORTANCE Appropriate diet and health of the common marmoset in captivity are essential both for the welfare of the animal and to improve experimental outcomes. Our study shows that a gel diet compared to a biscuit diet improves the health of a marmoset colony, is linked to increases in Bifidobacterium species, and increases the removal of molecules associated with disease. The diet transition had an influence on the molecular changes at both the pair and time point group levels, but only at the pair level for the microbial changes. It appears to be more important which genes and functions present changed rather than specific microbes. Further studies are needed to identify specific components that should be considered when choosing an appropriate diet and additional supplementary foods, as well as to validate the benefits of providing probiotics. Probiotics containing Bifidobacterium species appear to be useful as probiotic supplements to the laboratory marmoset diet, but additional work is needed to validate these findings.
Collapse
Affiliation(s)
- Cassandra Tang-Wing
- Animal Care Program, University of California, San Diego, La Jolla, California, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy, University of California, San Diego, La Jolla, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Katherine Makowski
- Animal Care Program, University of California, San Diego, La Jolla, California, USA
| | - Daira Melendez
- Bioinformatics Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, California, USA
| | | | - Celeste Allaband
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Keith Jenné
- Animal Care Program, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Zhang Z, Zhong Q, Qian Z, Zeng X, Zhang J, Xu X, Hylkema MN, Nolte IM, Snieder H, Huo X. Alterations of gut microbiota and its metabolomics in children with 6PPDQ, PBDE, PCB, and metal(loid) exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134862. [PMID: 38885585 DOI: 10.1016/j.jhazmat.2024.134862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu, an e-waste dismantling and recycling area, and 34 children from Haojiang, a healthy environment. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in kindergarten dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and the composition of gut microbiota and specific metabolites. The Bayesian kernel machine regression model showed negative correlations between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the composition of gut microbiota. The EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid, while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our study suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the composition and metabolites of the gut microbiota. These alterations may be associated with children's health.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ziyi Qian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Jian Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; Laboratory of Environmental Medicine and Developmental Toxicology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
11
|
Inaudi P, Mercurio LM, Marchis D, Bosusco A, Malandrino M, Abollino O, Favilli L, Bertinetti S, Giacomino A. Inorganic Characterization of Feeds Based on Processed Animal Protein Feeds. Molecules 2024; 29:3845. [PMID: 39202924 PMCID: PMC11356946 DOI: 10.3390/molecules29163845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The potential of utilizing inorganic constituents in processed animal proteins (PAPs) for species identification in animal feeds was investigated, with the aim of using these constituents to ensure the quality and authenticity of the products. This study aimed to quantify the inorganic content across various PAP species and assess whether inorganic analysis could effectively differentiate between PAP species, ultimately aiding in the identification of PAP fractions in animal feeds. Four types of PAPs, namely bovine, swine, poultry, and fish-based, were analyzed and compared to others made up of feathers of vegetal-based feed. Also, three insect-based PAPs (Cricket, Silkworm, Flour Moth) were considered in this study to evaluate the differences in terms of the nutrients present in this type of feed. Ionic chromatography (IC) was used to reveal the concentrations of NO3-, NO2, Cl-, and SO42-, and inductively coupled plasma optical emission spectroscopy (ICP-OES) to detect Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Si, Sr, Ti, and Zn. The application of multivariate chemometric techniques to the experimental results allowed us to determine the identification capability of the inorganic composition to identify correlations among the variables and to reveal similarities and differences among the different species. The results show the possibility of using this component for discriminating between different PAPS; in particular, fish PAPs are high in Cd, Sr, Na, and Mg content; swine PAPs have lower metal content due to high fat; feathers and vegetal feed have similar Al, Si, and Ni, but feathers are higher in Fe and Zn; and insect PATs have nutrient levels comparable to PAPs of other origins but are very high in Zn, Cu, and K.
Collapse
Affiliation(s)
- Paolo Inaudi
- Department of Drug Science and Technology, University of Torino, Via Giuria 9, 10125 Torino, Italy; (O.A.); (L.F.)
| | - Luca Maria Mercurio
- Department of Chemistry, University of Torino, Via Giuria 5, 10125 Torino, Italy; (L.M.M.); (M.M.); (S.B.)
| | - Daniela Marchis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta (IZSPLV), 10100 Torino, Italy; (D.M.); (A.B.)
| | - Andrea Bosusco
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta (IZSPLV), 10100 Torino, Italy; (D.M.); (A.B.)
| | - Mery Malandrino
- Department of Chemistry, University of Torino, Via Giuria 5, 10125 Torino, Italy; (L.M.M.); (M.M.); (S.B.)
| | - Ornella Abollino
- Department of Drug Science and Technology, University of Torino, Via Giuria 9, 10125 Torino, Italy; (O.A.); (L.F.)
| | - Laura Favilli
- Department of Drug Science and Technology, University of Torino, Via Giuria 9, 10125 Torino, Italy; (O.A.); (L.F.)
| | - Stefano Bertinetti
- Department of Chemistry, University of Torino, Via Giuria 5, 10125 Torino, Italy; (L.M.M.); (M.M.); (S.B.)
| | - Agnese Giacomino
- Department of Drug Science and Technology, University of Torino, Via Giuria 9, 10125 Torino, Italy; (O.A.); (L.F.)
| |
Collapse
|
12
|
Sandez Penidez SH, De Moreno De Le Blanc A, Gerez CL, Rollán GC. Quinoa snack elaborated with Lactiplantibacillus plantarum CRL 1964 sourdough increases the mineral bioavailability in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39132918 DOI: 10.1002/jsfa.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2024] [Accepted: 07/21/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Consumption of pseudocereal-based foods decreased in phytate concentration can provide better nutrition concerning mineral bioavailability. This study aimed to evaluate the mineral bioavailability of quinoa sourdough-based snacks in a murine model. The mice were divided into five groups. One group was fed with basal snacks; three control groups received quinoa-based snacks made from non-fermented dough, dough without inoculum, and chemically acidified dough; and the test group (GF) received quinoa snacks elaborated from sourdough fermented by a phytase-positive strain, Lactiplantibacillus plantarum CRL 1964. Food intake, body weight, and mineral concentration in blood and organs (liver, kidney, and femur) were determined. RESULTS Food consumption increased during the feeding period and had the highest (16.2-24.5%) consumption in the GF group. Body weight also increased during the 6-weeks of trial. The GF group showed higher (6.0-10.2%) body weight compared with the other groups from the fifth week. The concentrations of iron, zinc, calcium, magnesium, and phosphorus in blood, iron and phosphorus in the liver, manganese and magnesium in the kidney, and calcium and phosphorus in the femur increased significantly (1.1-2.7-fold) in the GF group compared to the control groups. CONCLUSION The diet that includes quinoa snacks elaborated with sourdough fermented by phytase-positive strain L. plantarum CRL 1964 increased the concentrations of minerals in the blood, liver, kidney, and femur of mice, counteracting the antinutritional effects of phytate. This study demonstrates that the diminution in phytate content and the consequent biofortification in minerals are a suitable tool for producing novel foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Carla L Gerez
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, San Miguel de Tucumán, Argentina
| | - Graciela C Rollán
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, San Miguel de Tucumán, Argentina
| |
Collapse
|
13
|
Wang ZM, Wang S, Bai H, Zhu LL, Yan HB, Peng L, Wang YB, Li H, Song YD, Liu JZ. Characterization and application of Bacillus velezensis D6 co-producing α-amylase and protease. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39087633 DOI: 10.1002/jsfa.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Research on the co-production of multiple enzymes by Bacillus velezensis as a novel species is still a topic that needs to be studied. This study aimed to investigate the fermentation characteristics of B. velezensis D6 co-producing α-amylase and protease and to explore their enzymatic properties and applications in fermentation. RESULTS The maximum co-production of α-amylase and protease reached 13.13 ± 0.72 and 2106.63 ± 64.42 U mL-1, respectively, under the optimal fermented conditions (nutrients: 20.0 g L-1 urea, 20.0 g L-1 glucose, 0.7 g L-1 MnCl2; incubation conditions: initial pH 7.0, temperature 41 °C, 8% inoculation size and 30% working volume). Moreover, the genetic co-expression of α-amylase and protease increased from 0 to 24 h and then decreased after 36 h at the transcriptional level, which coincided with the growth trend of B. velezensis D6. The optimal reaction temperature of α-amylase was 55-60 °C, while that of protease was 35-40 °C. The activities of α-amylase and protease were retained by over 80% after thermal treatment (90 °C, 1 h), which indicated that two enzymes co-produced by B. velezensis D6 demonstrated excellent thermal stability. Moreover, the two enzymes were stable over a wide pH range (pH 4.0-8.0 for α-amylase; pH 4.0-9.0 for protease). Finally, the degrees of hydrolysis of corn, rice, sorghum and soybeans by α-amylase from B. velezensis D6 reached 44.95 ± 2.95%, 57.16 ± 2.75%, 52.53 ± 4.01% and 20.53 ± 2.42%, respectively, suggesting an excellent hydrolysis effect on starchy raw materials. The hydrolysis degrees of mackerel heads and soybeans by protease were 43.93 ± 2.19% and 26.38 ± 1.72%, respectively, which suggested that the protease from B. velezensis D6 preferentially hydrolyzed animal-based protein. CONCLUSION This is a systematic study on the co-production of α-amylase and protease by B. velezensis D6, which is crucial in widening the understanding of this species co-producing multi-enzymes and in exploring its potential application. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zong-Min Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shuang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hua Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Lan-Lan Zhu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hong-Bo Yan
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Lin Peng
- School of Life Science, Taizhou University, Taizhou, China
| | - Yan-Bo Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - He Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Heze, China
| | - Yue-Dong Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Ji-Zhou Liu
- Shandong Xinfurui Agricultural Science and Technology Co., Ltd, Liaocheng, China
| |
Collapse
|
14
|
Habib SS, Naz S, Saeed MQ, Ujan JA, Masud S, Mushtaq A, Ullah M, Khan K, Zahid M, Al-Rejaie SS, Mohany M. Assessment of heavy metal levels in polyculture fish farms and their aquatic ecosystems: an integrative study addressing environmental and human health risks associated with dam water usage. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:267. [PMID: 38954229 DOI: 10.1007/s10653-024-02042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
This study examines the levels of heavy metals in polyculture fish (Labeo rohita, Cyprinus carpio, and Catla catla), water, and sediment in Tanda Dam, Kohat, Pakistan, aiming to understand environmental and health risks. Samples of fish, water, and sediment were collected from 3 fish farms, and heavy metal concentrations were measured using a Flame Atomic Absorption Spectrophotometer (AAS). Results reveal that C. catla exhibited significantly higher (p < 0.05) levels of Zn than other fish species. Conversely, C. carpio showed significantly higher (p < 0.05) concentrations of Pb, Cd, Cr, Mn, Cu, As, and Ni than other species. The heavy metal hierarchy in C. carpio was found to be Zn > Cu > Pb > Cr > Cd > Mn > As > Ni. While heavy metal levels in L. rohita and C. catla generally fell within reference ranges, exceptions were noted for Zn, Pb, and Cd. Conversely, in C. carpio, all metals exceeded reference ranges except for Cu and Ni. Principal Component Analysis (PCA) indicated a close relationship between water and sediment. Additionally, cluster analysis suggested that C. catla formed a distinct cluster from L. rohita and C. carpio, implying different responses to the environment. Despite concerns raised by the Geoaccumulation Index (Igeo) and Contamination Factor (CF), particularly for Cd, which exhibited a high CF. Furthermore, Hazard Index (HI) values for all three fish species were below 1, suggesting low health risks. However, elevated Igeo and CF values for Cd suggest significant pollution originating from anthropogenic sources. This study underscores the importance of monitoring heavy metals in water for both environmental preservation and human health protection. Future research efforts should prioritize pollution control measures to ensure ecosystem and public health safety.
Collapse
Affiliation(s)
- Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, 40100, Punjab, Pakistan.
| | - Saira Naz
- Centre for Research on Fish Nutrition and Environmental Ecology of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Muhammad Qamar Saeed
- Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University Multan, Punjab, 60800, Pakistan
| | - Javed Ahmed Ujan
- Department of Zoology, Shah Abdul Latif University, Khairpur, 66020, Sindh, Pakistan
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32608, USA
| | - Samrah Masud
- Institute of Zoology, Bahauddin Zakariya University, Multan, 60800, Punjab, Pakistan
| | - Alia Mushtaq
- Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, 45500, Pakistan
| | - Mujeeb Ullah
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Khan
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahid
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Fu Y, Jia F, Su J, Xu X, Zhang Y, Li X, Jiang X, Schäffer A, Virta M, Tiedje JM, Wang F. Co-occurrence patterns of gut microbiome, antibiotic resistome and the perturbation of dietary uptake in captive giant pandas. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134252. [PMID: 38657507 DOI: 10.1016/j.jhazmat.2024.134252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The microbiome is a key source of antibiotic resistance genes (ARGs), significantly influenced by diet, which highlights the interconnectedness between diet, gut microbiome, and ARGs. Currently, our understanding is limited on the co-occurrence among gut microbiome, antibiotic resistome in the captive giant panda and the perturbation of dietary uptake, especially for the composition and forms in dietary nutrition. Here, a qPCR array with 384 primer sets and 16 S rRNA gene amplicon sequencing were used to characterize the antibiotic resistome and microbiomes in panda feces, dietary bamboo, and soil around the habitat. Diet nutrients containing organic and mineral substances in soluble and insoluble forms were also quantified. Organic and mineral components in water-unextractable fractions were 7.5 to 139 and 637 to 8695 times higher than those in water-extractable portions in bamboo and feces, respectively, while the latter contributed more to the variation (67.5 %) of gut microbiota. Streptococcus, Prevotellaceae, and Bacteroides were the dominant genera in giant pandas. The ARG patterns in panda guts showed higher diversity in old individuals but higher abundance in young ones, driven directly by the bacterial community change and mobile genetic element mediation and indirectly by dietary intervention. Our results suggest that dietary nutrition mainly accounts for the shift of gut microbiota, while bacterial community and mobile genetic elements influenced the variation of gut antibiotic resistome.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feiran Jia
- University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jingfang Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinyao Xu
- University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Yuqin Zhang
- University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Xiangzhen Li
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Helsinki 00014, Finland
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany.
| |
Collapse
|
16
|
Liu CF, Zhang XF, Yu TL, Lee CL. Utilizing deep ocean water in yeast fermentation for enhanced mineral-rich biomass production and fermentative regulation by proteomics modulation. Heliyon 2024; 10:e31031. [PMID: 38778955 PMCID: PMC11109828 DOI: 10.1016/j.heliyon.2024.e31031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Deep Ocean Water (DOW) is rich in minerals and serves as a natural source of nutrients. However, due to the inorganic nature of these minerals, cultivating yeast in DOW could aid in the fermentation process, and simultaneously, the yeast can assimilate the minerals from DOW, resulting in a mineral-enriched yeast biomass. Focusing on three DOW sources off the eastern coast of Taiwan (TT-1, HL-1, HL-2), we fermented various yeast strains of Saccharomyces cerevisiae. Therefore, this study investigates the effects of DOW on yeast growth, alcohol dehydrogenase activity, and the biological absorption of mineral ions by the yeast. Additionally, this research employs two-dimensional electrophoresis techniques to examine how the absorbed minerals influence the regulation of yeast proteins, thereby affecting biomass and metabolism. In the result, S. cerevisiae BCRC 21689 demonstrated a remarkable ability to bio-absorb minerals such as magnesium, calcium, potassium, and zinc from DOW, enhancing its growth and fermentation performance. Proteomic analysis revealed significant shifts in the expression of 21 proteins related to glycolytic and energy metabolism, alcohol metabolism, and growth regulation, all influenced by DOW's mineral-rich environment. This indicates that DOW's mineral content is a key factor in upregulating essential enzymes in glycolytic metabolism and alcohol dehydrogenase. An increase in proteins involved in synthesis and folding processes was also observed, leading to a substantial increase in yeast biomass. This study underscores the potential of DOW as a natural enhancer in yeast fermentation processes, enriching the yeast with diverse minerals and modulating proteomic expression to optimize yeast growth and fermentation.
Collapse
Affiliation(s)
- Chin-Feng Liu
- Continuing Education Program of Food Biotechnology Applications, National Taiwan University, Taitung, Taiwan, ROC
| | - Xuan-Fang Zhang
- Department of Life Science, National Taitung University, 369, Sec. 2, University Rd., Taitung, 95092, Taitung, Taiwan, ROC
| | - Tsai-Luen Yu
- Marine Industry and Engineer Research Center, National Academy of Marine Research, Kaohsiung, 806614, Taiwan, ROC
| | - Chun-Lin Lee
- Department of Life Science, National Taitung University, 369, Sec. 2, University Rd., Taitung, 95092, Taitung, Taiwan, ROC
| |
Collapse
|
17
|
Porru S, Esplugues A, Llop S, Delgado-Saborit JM. The effects of heavy metal exposure on brain and gut microbiota: A systematic review of animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123732. [PMID: 38462196 DOI: 10.1016/j.envpol.2024.123732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
The gut-brain axis is a crucial interface between the central nervous system and the gut microbiota. Recent evidence shows that exposure to environmental contaminants, such as heavy metals, can cause dysbiosis in gut microbiota, which may affect the gut-brain communication, impacting aspects of brain function and behavior. This systematic review of the literature aims to evaluate whether deleterious effects on brain function due to heavy metal exposure could be mediated by changes in the gut microbiota profile. Animal studies involving exposure to heavy metals and a comparison with a control group that evaluated neuropsychological outcomes and/or molecular outcomes along with the analysis of microbiota composition were reviewed. The authors independently assessed studies for inclusion, extracted data and assessed risk of bias using the protocol of Systematic Review Center for Laboratory Animal Experimentation (SYRCLE) for preclinical studies. A search in 3 databases yielded 16 eligible studies focused on lead (n = 10), cadmium (n = 1), mercury (n = 3), manganese (n = 1), and combined exposure of lead and manganese (n = 1). The animal species were rats (n = 7), mice (n = 4), zebrafish (n = 3), carp (n = 1) and fruit fly (n = 1). Heavy metals were found to adversely affect cognitive function, behavior, and neuronal morphology. Moreover, heavy metal exposure was associated with changes in the abundance of specific bacterial phyla, such as Firmicutes and Proteobacteria, which play crucial roles in gut health. In some studies, these alterations were correlated with learning and memory impairments and mood disorders. The interplay of heavy metals, gut microbiota, and brain suggests that heavy metals can induce direct brain alterations and indirect effects through the microbiota, contributing to neurotoxicity and the development of neuropsychological disorders. However, the small number of papers under review makes it difficult to draw definitive conclusions. Further research is warranted to unravel the underlying mechanisms and evaluate the translational implications for human health.
Collapse
Affiliation(s)
- Simona Porru
- Department of Medicine, Faculty of Health Sciences. Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain
| | - Ana Esplugues
- Faculty of Nursing and Podiatry, Universitat de València, C/Menendez Pelayo S/n, 46010, València, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valencia, Av. Catalunya 21, 46020, València, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valencia, Av. Catalunya 21, 46020, València, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029, Madrid, Spain
| | - Juana María Delgado-Saborit
- Department of Medicine, Faculty of Health Sciences. Universitat Jaume I, Avenida de Vicent Sos Baynat s/n, 12071, Castellón de la Plana, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de Valencia, Av. Catalunya 21, 46020, València, Spain.
| |
Collapse
|
18
|
Zhen C, Zhang G, Wang S, Wang J, Fang Y, Shang P. Electromagnetic fields regulate iron metabolism in living organisms: A review of effects and mechanism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:43-54. [PMID: 38447710 DOI: 10.1016/j.pbiomolbio.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
The emergence, evolution, and spread of life on Earth have all occurred in the geomagnetic field, and its extensive biological effects on living organisms have been documented. The charged characteristics of metal ions in biological fluids determine that they are affected by electromagnetic field forces, thus affecting life activities. Iron metabolism, as one of the important metal metabolic pathways, keeps iron absorption and excretion in a relatively balanced state, and this process is precisely and completely controlled. It is worth paying attention to how the iron metabolism process of living organisms is changed when exposed to electromagnetic fields. In this paper, the processes of iron absorption, storage and excretion in animals (mammals, fish, arthropods), plants and microorganisms exposed to electromagnetic field were summarized in detail as far as possible, in order to discover the regulation of iron metabolism by electromagnetic field. Studies and data on the effects of electromagnetic field exposure on iron metabolism in organisms show that exposure profiles vary widely across species and cell lines. This process involves a variety of factors, and the complexity of the results is not only related to the magnetic flux density/operating frequency/exposure time and the heterogeneity of the observed object. A systematic review of the biological regulation of iron metabolism by electromagnetic field exposure will not only contributes to a more comprehensive understanding of its biological effects and mechanism, but also is necessary to improve human awareness of the health related risks of electromagnetic field exposure.
Collapse
Affiliation(s)
- Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; Research & Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; Research & Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shenghang Wang
- Department of Spine Surgery, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, 518109, China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China; Research & Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd, Huzhou, 313300, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
19
|
Lan L, Feng Z, Liu X, Zhang B. The roles of essential trace elements in T cell biology. J Cell Mol Med 2024; 28:e18390. [PMID: 38801402 PMCID: PMC11129730 DOI: 10.1111/jcmm.18390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
T cells are crucial for adaptive immunity to regulate proper immune response and immune homeostasis. T cell development occurs in the thymus and mainly differentiates into CD4+ and CD8+ T cell subsets. Upon stimulation, naive T cells differentiate into distinct CD4+ helper and CD8+ cytotoxic T cells, which mediate immunity homeostasis and defend against pathogens or tumours. Trace elements are minimal yet essential components of human body that cannot be overlooked, and they participate in enzyme activation, DNA synthesis, antioxidant defence, hormone production, etc. Moreover, trace elements are particularly involved in immune regulations. Here, we have summarized the roles of eight essential trace elements (iron, zinc, selenium, copper, iodine, chromium, molybdenum, cobalt) in T cell development, activation and differentiation, and immune response, which provides significant insights into developing novel approaches to modulate immunoregulation and immunotherapy.
Collapse
Affiliation(s)
- Linbo Lan
- Department of Medical Immunology, College of Basic Medical SciencesYan'an UniversityYan'anChina
- Clinical Teaching and Research Center, School of NursingWeinan vocational and technical collegeWeinanChina
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Xi'an Jiaotong University Health Science Center, Institute of Infection and Immunity, Translational Medicine InstituteXi'anShaanxiChina
| | - Xiaobin Liu
- Department of Medical Immunology, College of Basic Medical SciencesYan'an UniversityYan'anChina
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
- Xi'an Jiaotong University Health Science Center, Institute of Infection and Immunity, Translational Medicine InstituteXi'anShaanxiChina
- Key Laboratory of Environment and Genes Related to DiseasesXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
20
|
Zheng Y, Qin C, Wen M, Zhang L, Wang W. The Effects of Food Nutrients and Bioactive Compounds on the Gut Microbiota: A Comprehensive Review. Foods 2024; 13:1345. [PMID: 38731716 PMCID: PMC11083588 DOI: 10.3390/foods13091345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
It is now widely recognized that gut microbiota plays a critical role not only in the development and progression of diseases, but also in its susceptibility to dietary patterns, food composition, and nutritional intake. In this comprehensive review, we have compiled the latest findings on the effects of food nutrients and bioactive compounds on the gut microbiota. The research indicates that certain components, such as unsaturated fatty acids, dietary fiber, and protein have a significant impact on the composition of bile salts and short-chain fatty acids through catabolic processes, thereby influencing the gut microbiota. Additionally, these compounds also have an effect on the ratio of Firmicutes to Bacteroides, as well as the abundance of specific species like Akkermansia muciniphila. The gut microbiota has been found to play a role in altering the absorption and metabolism of nutrients, bioactive compounds, and drugs, adding another layer of complexity to the interaction between food and gut microbiota, which often requires long-term adaptation to yield substantial outcomes. In conclusion, understanding the relationship between food compounds and gut microbiota can offer valuable insights into the potential therapeutic applications of food and dietary interventions in various diseases and health conditions.
Collapse
Affiliation(s)
- Yijun Zheng
- Clinical Pharmacy (Sino-Foreign Cooperation) Class, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (C.Q.); (M.W.)
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (C.Q.); (M.W.)
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (C.Q.); (M.W.)
| | - Weinan Wang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Blvd, Dongguan 523808, China
| |
Collapse
|
21
|
Ran Y, Li Y, Shen X. Studies of a Naturally Occurring Selenium-Induced Microcytic Anemia in the Przewalski's Gazelle. Animals (Basel) 2024; 14:1114. [PMID: 38612353 PMCID: PMC11010896 DOI: 10.3390/ani14071114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Due to the fencing of the Przewalski's gazelle (Procapra przewalskii), the microcytic anemia incidence rate continues to increase. The primary pathological symptoms include emaciation, anemia, pica, inappetence, and dyskinesia. To investigate the cause of microcytic anemia ailment in the Przewalski's gazelle, the Upper Buha River Area with an excessive incidence was chosen as the experimental pasture, and the Bird Island Area without microcytic anemia disease was chosen as the control field. Then, the mineral contents in the soil, forage, blood, and liver, as well as the blood routine parameters and biochemical indexes were measured. The findings showed that the experimental pasture had much lower Se content in the soil and forage than the control field (p < 0.01), while the impacted pasture had significantly higher S content in the forage. The damaged gazelles had considerably lower Se and Cu contents and higher S content in the blood and liver than the healthy gazelles (p < 0.01). The presences of Hb, HCT, MCV, and MCH were significantly decreased compared to those in healthy gazelles (p < 0.01). The experimental group had a significantly lower level of GSH-Px activity in their serums compared to the control group (p < 0.01). In the treatment experiment, ten gazelles from the affected pasture were orally administered CuSO4, 6 g/animal once every 10 days for two consecutive times, and all gazelles were successfully cured. Therefore, it is possible that low Se content in the soil induced an increase in the absorption of S content by forage, leading to the deficiency of secondary Cu in the Przewalski's gazelles, resulting in microcytic anemia.
Collapse
Affiliation(s)
| | | | - Xiaoyun Shen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Y.R.); (Y.L.)
| |
Collapse
|
22
|
Budi HS, Catalan Opulencia MJ, Afra A, Abdelbasset WK, Abdullaev D, Majdi A, Taherian M, Ekrami HA, Mohammadi MJ. Source, toxicity and carcinogenic health risk assessment of heavy metals. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:77-90. [PMID: 36181731 DOI: 10.1515/reveh-2022-0096] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals are chemical elements with unique properties that are toxic even in low concentrations and affect human health with different functions. Agricultural and industrial activities, improper disposal of household solid waste and residues related to industrial producers, discharge of household wastewater and agricultural fertilizers are the most important ways in which toxic heavy metals enter the environment, which harms human health and life. A narrative review of the literature was done from 2000 to 2022 based on searched databases included Google Scholar, PubMed, Springer, Web of Science, and Science Direct (Scopus). All relevant studies published 2000 until 2022 gathered. According to the databases, 820 articles were retrieved. 186 and 50 articles were found and selected based on records identified through database searching and additional records identified through other sources. In the next stage, 97 studies were screened after review and 64 full-text articles entered into the analysis process. Finally, 45 articles were selected in this study. Adverse effects of heavy metals on various conditions in the body depend on a number of factors, including dose, route of exposure and chemical species, as well as age, sex, genetics, nutritional status, and duration of exposure to the heavy metal. The existence of significant relationships between long-term and short-term exposure to toxic heavy metals and their adverse effects, including carcinogenicity, has been extensively studied and proven through numerous experiments. However, the mechanisms associated with this complication have not been properly identified, so in future research, there is a great need for comprehensive studies on the carcinogenicity of heavy metals.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, 60132 Indonesia
| | | | - Arghavan Afra
- Department of Nursing, School of Nursing, Abadan University of Medical Sciences, Abadan, Iran
| | - Walid Kamal Abdelbasset
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Dilmurod Abdullaev
- Dean of the Pediatric Dentistry, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Research Scholar, Department of Scientific affairs, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Ali Majdi
- Al-Mustaqbal University College: Civil Engineering Al-Hilla, Babylon, Iraq
| | - Masoume Taherian
- Student Research Komiteh, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hafez Ajam Ekrami
- Student Research Komiteh, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
23
|
Afzal A, Mahreen N. Emerging insights into the impacts of heavy metals exposure on health, reproductive and productive performance of livestock. Front Pharmacol 2024; 15:1375137. [PMID: 38567355 PMCID: PMC10985271 DOI: 10.3389/fphar.2024.1375137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Heavy metals, common environmental pollutants with widespread distribution hazards and several health problems linked to them are distinguished from other toxic compounds by their bioaccumulation in living organisms. They pollute the food chain and threaten the health of animals. Biologically, heavy metals exhibit both beneficial and harmful effects. Certain essential heavy metals such as Co, Mn, Se, Zn, and Mg play crucial roles in vital physiological processes in trace amounts, while others like As, Pb, Hg, Cd, and Cu are widely recognized for their toxic properties. Regardless of their physiological functions, an excess intake of all heavy metals beyond the tolerance limit can lead to toxicity. Animals face exposure to heavy metals through contaminated feed and water, primarily as a result of anthropogenic environmental pollution. After ingestion heavy metals persist in the body for an extended duration and the nature of exposure dictates whether they induce acute or chronic, clinical or subclinical, or subtle toxicities. The toxic effects of metals lead to disruption of cellular homeostasis through the generation of free radicals that develop oxidative stress. In cases of acute heavy metal poisoning, characteristic clinical symptoms may arise, potentially culminating in the death of animals with corresponding necropsy findings. Chronic toxicities manifest as a decline in overall body condition scoring and a decrease in the production potential of animals. Elevated heavy metal levels in consumable animal products raise public health concerns. Timely diagnosis, targeted antidotes, and management strategies can significantly mitigate heavy metal impact on livestock health, productivity, and reproductive performance.
Collapse
Affiliation(s)
- Ali Afzal
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- School of Zoology, Minhaj University Lahore, Lahore, Pakistan
| | - Naima Mahreen
- National Institute for Biotechnology and Genetics Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
24
|
Midya V, Nagdeo K, Lane JM, Torres-Olascoaga LA, Torres-Calapiz M, Gennings C, Horton MK, Téllez-Rojo MM, Wright RO, Arora M, Eggers S. Prenatal metal exposures and childhood gut microbial signatures are associated with depression score in late childhood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170361. [PMID: 38278245 PMCID: PMC10922719 DOI: 10.1016/j.scitotenv.2024.170361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Childhood depression is a major public health issue worldwide. Previous studies have linked both prenatal metal exposures and the gut microbiome to depression in children. However, few, if any, have studied their interacting effect in specific subgroups of children. OBJECTIVES Using an interpretable machine-learning method, this study investigates whether children with specific combinations of prenatal metals and childhood microbial signatures (cliques or groups of metals and microbes) were more likely to have higher depression scores at 9-11 years of age. METHODS We leveraged data from a well-characterized pediatric longitudinal birth cohort in Mexico City and its microbiome substudy (n = 112). Eleven metal exposures were measured in maternal whole blood samples in the second and third trimesters of pregnancy. The gut microbial abundances were measured at 9-11-year-olds using shotgun metagenomic sequencing. Depression symptoms were assessed using the Child Depression Index (CDI) t-scores at 9-11 years of age. We used Microbial and Chemical Exposure Analysis (MiCxA), which combines interpretable machine-learning into a regression framework to identify and estimate joint associations of metal-microbial cliques in specific subgroups. Analyses were adjusted for relevant covariates. RESULTS We identified a subgroup of children (11.6 % of the sample) characterized by a four-component metal-microbial clique that had a significantly high depression score (15.4 % higher than the rest) in late childhood. This metal-microbial clique consisted of high Zinc in the second trimester, low Cobalt in the third trimester, a high abundance of Bacteroides fragilis, a high abundance of Faecalibacterium prausnitzii. All combinations of cliques (two-, three-, and four-components) were significantly associated with increased log-transformed t-scored CDI (β = 0.14, 95%CI = [0.05,0.23], P < 0.01 for the four-component clique). SIGNIFICANCE This study offers a new approach to chemical-microbial analysis and a novel demonstration that children with specific gut microbiome cliques and metal exposures during pregnancy may have a higher likelihood of elevated depression scores.
Collapse
Affiliation(s)
- Vishal Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kiran Nagdeo
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jamil M Lane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Libni A Torres-Olascoaga
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Mariana Torres-Calapiz
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shoshannah Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| |
Collapse
|
25
|
Ilakiyalakshmi M, Napoleon AA. Phenothiazine appended thiophene derivative: a trilateral approach to copper ion detection in living cells and aqueous samples. RSC Adv 2024; 14:8885-8895. [PMID: 38500619 PMCID: PMC10945519 DOI: 10.1039/d3ra07608c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
This research paper unveils a fluorescent probe (PTZ-SCN) engineered for the specific detection of Cu2+, featuring a 10-ethyl-10H-phenothiazine-3-carbaldehyde and 2-(thiophen-2-yl) acetonitrile moiety. The fluorescence sensing behavior of PTZ-SCN towards various metal cations was scrutinized in CH3CN : HEPES (9 : 1) buffer aqueous solution. The UV absorbance of PTZ-SCN displayed a distinct red shift in the presence of Cu2+ cations, whereas other metal cations did not cause any interference. Similarly, the fluorescence emission of the probe was also only quenched by Cu2+ cations. The limit of detection (LOD) was calculated as 1.0461 × 10-8 M. PTZ-SCN showed the ability to identify Cu2+ using the colorimetric method, the fluorometric method and even through visual observation in a trilateral detection. We studied the recognition mechanism of PTZ-SCN for Cu2+ using 1H-NMR, HRMS analysis, and time-dependent density functional theory (TDDFT) calculations. Furthermore, our study encompassed the investigation of PTZ-SCN's practical applicability, bridging the gap from research to real-world implementation. This was achieved by employing test strips and water samples for the detection of Cu2+. Additionally, the PTZ-SCN probe's low cytotoxicity and effective imaging properties for Cu2+ in living cells were confirmed, indicating that PTZ-SCN shows the potential to serve as a promising probe for detecting Cu2+in vivo.
Collapse
Affiliation(s)
- Mohan Ilakiyalakshmi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 Tamil Nadu India
| | - Ayyakannu Arumugam Napoleon
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 Tamil Nadu India
| |
Collapse
|
26
|
Law K, Garcia ERM, Hastad C, Murray D, Urriola PE, Gomez A. Interactions between maternal parity and feed additives drive the composition of pig gut microbiomes in the post-weaning period. J Anim Sci Biotechnol 2024; 15:33. [PMID: 38431668 PMCID: PMC10909285 DOI: 10.1186/s40104-024-00993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/07/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Nursery pigs undergo stressors in the post-weaning period that result in production and welfare challenges. These challenges disproportionately impact the offspring of primiparous sows compared to those of multiparous counterparts. Little is known regarding potential interactions between parity and feed additives in the post-weaning period and their effects on nursery pig microbiomes. Therefore, the objective of this study was to investigate the effects of maternal parity on sow and offspring microbiomes and the influence of sow parity on pig fecal microbiome and performance in response to a prebiotic post-weaning. At weaning, piglets were allotted into three treatment groups: a standard nursery diet including pharmacological doses of Zn and Cu (Con), a group fed a commercial prebiotic only (Preb) based on an Aspergillus oryzae fermentation extract, and a group fed the same prebiotic plus Zn and Cu (Preb + ZnCu). RESULTS Although there were no differences in vaginal microbiome composition between primiparous and multiparous sows, fecal microbiome composition was different (R2 = 0.02, P = 0.03). The fecal microbiomes of primiparous offspring displayed significantly higher bacterial diversity compared to multiparous offspring at d 0 and d 21 postweaning (P < 0.01), with differences in community composition observed at d 21 (R2 = 0.03, P = 0.04). When analyzing the effects of maternal parity within each treatment, only the Preb diet triggered significant microbiome distinctions between primiparous and multiparous offspring (d 21: R2 = 0.13, P = 0.01; d 42: R2 = 0.19, P = 0.001). Compositional differences in pig fecal microbiomes between treatments were observed only at d 21 (R2 = 0.12, P = 0.001). Pigs in the Con group gained significantly more weight throughout the nursery period when compared to those in the Preb + ZnCu group. CONCLUSIONS Nursery pig gut microbiome composition was influenced by supplementation with an Aspergillus oryzae fermentation extract, with varying effects on performance when combined with pharmacological levels of Zn and Cu or for offspring of different maternal parity groups. These results indicate that the development of nursery pig gut microbiomes is shaped by maternal parity and potential interactions with the effects of dietary feed additives.
Collapse
Affiliation(s)
- Kayla Law
- Department of Animal Science, University of Minnesota, 1364 Eckles Avenue, Saint Paul, MN, 55108, USA
| | | | - Chad Hastad
- New Fashion Pork, 164 Industrial Parkway, Jackson, MN, 56143, USA
| | - Deborah Murray
- New Fashion Pork, 164 Industrial Parkway, Jackson, MN, 56143, USA
| | - Pedro E Urriola
- Department of Animal Science, University of Minnesota, 1364 Eckles Avenue, Saint Paul, MN, 55108, USA
| | - Andres Gomez
- Department of Animal Science, University of Minnesota, 1364 Eckles Avenue, Saint Paul, MN, 55108, USA.
| |
Collapse
|
27
|
Wang Z, Cai W, Ning F, Sun W, Du J, Long S, Fan J, Chen X, Peng X. Dipicolylamine-Zn Induced Targeting and Photo-Eliminating of Pseudomonas aeruginosa and Drug-Resistance Gram-Positive Bacteria. Adv Healthc Mater 2024; 13:e2302490. [PMID: 37909241 DOI: 10.1002/adhm.202302490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/29/2023] [Indexed: 11/02/2023]
Abstract
The emergence of drug-resistant bacteria, particularly resistant strains of Gram-negative bacteria, such as Pseudomonas aeruginosa, poses a significant threat to public health. Although antibacterial photodynamic therapy (APDT) is a promising strategy for combating drug-resistant bacteria, actively targeted photosensitizers (PSs) remain unknown. In this study, a PS based on dipicolylamine (DPA), known as WZK-DPA-Zn, is designed for the selective identification of P. aeruginosa and drug-resistant Gram-positive bacteria. WZK-DPA-Zn exploits the synergistic effects of DPA-Zn2+ coordination and cellular uptake, which could effectively anchor P. aeruginosa within a brief period (10 min) without interference from other Gram-negative bacteria. Simultaneously, the cationic nature of WZK-DPA-Zn enhances its interaction with Gram-positive bacteria via electrostatic forces. Compared to traditional clinical antibiotics, WZK-DPA-Zn shows exceptional antibacterial activity without inducing drug resistance. This effectiveness is achieved using the APDT strategy when irradiated with white light or sunlight. The combination of WZK-DPA-Zn with Pluronic-based thermosensitive hydrogel dressings (WZK-DPA-Zn@Gel) effectively eliminates mixed bacterial infections and accelerates wound healing, thereby achieving a synergistic effect where "1+1>2." In summary, this study proposes a precise strategy employing DPA-Zn as the targeting moiety of a PS, facilitating the rapid elimination of P. aeruginosa and drug-resistant Gram-positive bacteria using APDT.
Collapse
Affiliation(s)
- Zuokai Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wenlin Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fangrui Ning
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiaoqiang Chen
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, P. R. China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518071, P. R. China
| |
Collapse
|
28
|
Hou J, Yang M, Wu X, Chen Q, Lu Y, Zhang J, Lin D. Epidermal microorganisms contributed to the toxic mechanism of nZVI and TCEP in earthworms by robbing metal elements and nutrients. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:80-88. [PMID: 38323088 PMCID: PMC10844675 DOI: 10.1016/j.eehl.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 02/08/2024]
Abstract
Disrupting effects of pollutants on symbiotic microbiota have been regarded as an important mechanism of host toxicity, with most current research focusing on the intestinal microbiota. In fact, the epidermal microbiota, which participates in the nutrient exchange between hosts and environments, could play a crucial role in host toxicity via community changes. To compare the contributions of intestinal and epidermal symbiotic microorganisms to host toxicity, this study designed single and combined scenarios of soil contamination [nano zero-valent iron (nZVI) and tris (2-chloroethyl) phosphate (TCEP)], and revealed the coupling mechanisms between intestinal/epidermal symbiotic bacterial communities and earthworm toxicological endpoints. Microbiome analysis showed that 15% of intestinal microbes were highly correlated with host endpoints, compared to 45% of epidermal microbes showing a similar correlation. Functional comparisons revealed that key species on the epidermis were mainly heterotrophic microbes with genetic abilities to utilize metal elements and carbohydrate nutrients. Further verifications demonstrated that when facing the co-contamination of nZVI and TCEP, certain symbiotic microorganisms became dominant and consumed zinc, copper, and manganese along with saccharides and amino acids, which may be responsible for the nutritional deficiencies in the host earthworms. The findings can enrich the understanding of the coupling relationship between symbiotic microorganisms and host toxicity, highlighting the importance of epidermal microorganisms in host resistance to environmental pollution.
Collapse
Affiliation(s)
- Jie Hou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Meirui Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Qiqi Chen
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Lu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jianying Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- National Demonstration Center for Experimental Environment and Resources Education (Zhejiang University), Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
29
|
Liu Q, Wang Y, Wan Y, Liang Y, Tan Y, Wei M, Hou T. Selenium- and/or Zinc-Enriched Egg Diet Improves Oxidative Damage and Regulates Gut Microbiota in D-Gal-Induced Aging Mice. Nutrients 2024; 16:512. [PMID: 38398836 PMCID: PMC10893158 DOI: 10.3390/nu16040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Eggs, with their high nutritional value, are great carriers for enriching nutrients. In this study, selenium- and/or zinc-enriched eggs (SZE) were obtained and their effects on ameliorating oxidative stress injury, alleviating cognitive impairment, and maintaining intestinal flora balance in a D-gal-induced aging mice model were investigated. As determined by the Y-maze test, SZE restored the learning and memory abilities and increased the Ach level and AChE activity of aging mice (p < 0.05). Meanwhile, supplementation of low-dose SZE increased antioxidant levels and decreased inflammation levels (p < 0.05). High-dose SZE increased anti-inflammatory levels but were less effective than low dose. Additionally, SZE maintained the intestinal flora balance and significantly increased the ratio of Firmicutes and Bacteroidota. Blautia, as a probiotic, was negatively correlated with pro-inflammatory factors and positively correlated with antioxidant levels (p < 0.05). These results suggest that SZE might improve organ damage and cognitive function by attenuating oxidative stress and inflammatory response and maintaining healthy gut flora.
Collapse
Affiliation(s)
- Qiaocui Liu
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China; (Q.L.); (Y.W.); (Y.L.); (Y.T.); (M.W.)
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yulin Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yuan Wan
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China; (Q.L.); (Y.W.); (Y.L.); (Y.T.); (M.W.)
| | - Yu Liang
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China; (Q.L.); (Y.W.); (Y.L.); (Y.T.); (M.W.)
| | - Yali Tan
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China; (Q.L.); (Y.W.); (Y.L.); (Y.T.); (M.W.)
| | - Mengya Wei
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China; (Q.L.); (Y.W.); (Y.L.); (Y.T.); (M.W.)
| | - Tao Hou
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China; (Q.L.); (Y.W.); (Y.L.); (Y.T.); (M.W.)
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
30
|
Sun B, Tan B, Zhang P, Zhu L, Wei H, Huang T, Li C, Yang W. Iron deficiency anemia: a critical review on iron absorption, supplementation and its influence on gut microbiota. Food Funct 2024; 15:1144-1157. [PMID: 38235788 DOI: 10.1039/d3fo04644c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Iron deficiency anemia (IDA) caused by micronutrient iron deficiency has attracted global attention due to its adverse health effects. The regulation of iron uptake and metabolism is finely controlled by various transporters and hormones in the body. Dietary iron intake and regulation are essential in maintaining human health and iron requirements. The review aims to investigate literature concerning dietary iron intake and systemic regulation. Besides, recent IDA treatment and dietary iron supplementation are discussed. Considering the importance of the gut microbiome, the interaction between bacteria and micronutrient iron in the gut is also a focus of this review. The iron absorption efficiency varies considerably according to iron type and dietary factors. Iron fortification remains the cost-effective strategy, although challenges exist in developing suitable iron fortificants and food vehicles regarding bioavailability and acceptability. Iron deficiency may alter the microbiome structure and promote the growth of pathogenic bacteria in the gut, affecting immune balance and human health.
Collapse
Affiliation(s)
- Bolun Sun
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
- School of Nursing, Wenzhou Medical University, Wenzhou 325035, China
| | - Beibei Tan
- School of Agriculture and Food, Faculty of Science, University of Melbourne, Australia
| | - Panxue Zhang
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| | - Lianlian Zhu
- School of Nursing, Wenzhou Medical University, Wenzhou 325035, China
| | - Huamao Wei
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| | - Chao Li
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
31
|
Kaur R, Rawal R. Influence of heavy metal exposure on gut microbiota: Recent advances. J Biochem Mol Toxicol 2023; 37:e23485. [PMID: 37593904 DOI: 10.1002/jbt.23485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Gut microbiota plays a functionally important part in retaining the homeostasis of host physiology, however, under exposure of various heavy metals, the composition of gut biota is disturbed in relation to species diversity and richness. Ever since the increase of microbiome-related studies during the last decade, many research studies have delivered an understanding of the reasons and concerns of gut microbiota-related modifications. During the past decade, it's been confirmed from various studies that heavy metals poisoning alters the microbial composition, which results in changes in gene expression, alteration in metabolism, immunity, neurological dysfunction, and causes various other disorders. The present comprehensive review is summarizing an attempt to enumerate the key findings from recent clinical or preclinical studies related to the influence of heavy metals on gut microbiota published recently. Google, PubMed, Science Direct, Scopus, and Google Scholar were employed as primary search engines using the keywords such as "heavy metals, gut microbiota, dysbiosis, and intestinal microbiota" for finding relevant research articles from the past 10 years and some old important articles. Here, we tried to provide insight into some of the key timelines and scientific findings from reported literature, like the effects of heavy metals such as arsenic, cadmium, lead, and mercury on the general body and specifically on the gut microbiota of different model organisms. So, it is important to increase awareness against heavy metal-induced toxicity and formulate guidelines for the benefit of the environment.
Collapse
Affiliation(s)
- Ravidarshdeep Kaur
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh Rawal
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
32
|
Golbeck L, Cohrs I, Humann-Ziehank E, Grünberg W. Effects of oral or parenteral iron supplementation on haematological parameters, blood iron status and growth in newborn calves fed milk replacer. Vet Rec 2023; 193:e3265. [PMID: 37518851 DOI: 10.1002/vetr.3265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND This study aimed to assess the influence of early life iron supplementation on the haematological parameters of calves fed milk replacer on a high plane of nutrition. METHODS Thirty calves were allocated to receive either a sham treatment (CON), injection of 1000 mg Fe3+ (INJ) or oral administration of 1050 mg Fe3+ (ORAL), all administered less than 1 hour after birth. Blood was obtained before treatment, on days 1, 3, 5 and 7 of life and once weekly until week 9. Samples were analysed for haemoglobin (Hb), packed cell volume (PCV) and estimated transferrin saturation (%TSAT). RESULTS The Hb and PCV of calves in the INJ and ORAL groups were above the values of those in the CON group throughout the study. Hb and PCV of the CON group remained within the reference range for calves. The %TSAT exceeded reported ranges in the ORAL group in the first week. Values for the CON group were below the INJ and ORAL groups throughout the entire study. Average daily gain did not differ between treatments. LIMITATIONS The sample size was insufficient to assess the influence of iron supplementation on disease development. Furthermore, the study was set in a controlled environment and not performed under field conditions. CONCLUSIONS Oral and subcutaneous iron administration had similar effects on haematological development but resulted in numerically different transferrin saturation. Control animals showed lower Hb and PCV but did not develop overt anaemia.
Collapse
Affiliation(s)
- Lennart Golbeck
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hanover, Germany
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Merelbeke, Belgium
| | - Imke Cohrs
- Educational and Research Center for Animal Husbandry, Hofgut Neumühle, Münchweiler and der Alsenz, Germany
- Clinic for Ruminants, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Walter Grünberg
- Clinic for Cattle, University of Veterinary Medicine Hannover, Hanover, Germany
- Clinic for Ruminants, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
33
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
34
|
Gorini F, Tonacci A. Tumor Microbial Communities and Thyroid Cancer Development-The Protective Role of Antioxidant Nutrients: Application Strategies and Future Directions. Antioxidants (Basel) 2023; 12:1898. [PMID: 37891977 PMCID: PMC10604861 DOI: 10.3390/antiox12101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Thyroid cancer (TC), the most frequent malignancy of the endocrine system, has recorded an increasing incidence in the last decades. The etiology of TC remains at least partly unknown and, among modifiable risk factors, the gut microbiota and dietary nutrients (vitamins, essential microelements, polyphenols, probiotics) have been recognized to not only influence thyroid function, but exert critical effects on TC development and progression. Recent discoveries on the existence of tumor microbiota also in the TC microenvironment provide further evidence for the essential role of tumor microorganisms in TC etiology and severity, as well as acting as prognostic markers and as a potential target of adjuvant care in the treatment of TC patients. Therefore, in this review, we summarize current knowledge on the relationship of the tumor microbiome with the clinical tumor characteristics and TC progression, also illustrating the molecular mechanisms underlying this association, and how antioxidant nutrients may be used as a novel strategy to both control gut health and reduce the risk for TC. Furthermore, we discuss how new technologies might be exploited for the development of new foods with high nutritional values, antioxidant capability, and even attractiveness to the individual in terms of sensory and emotional features.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
35
|
Scanga R, Scalise M, Marino N, Parisi F, Barca D, Galluccio M, Brunocilla C, Console L, Indiveri C. LAT1 (SLC7A5) catalyzes copper(histidinate) transport switching from antiport to uniport mechanism. iScience 2023; 26:107738. [PMID: 37692288 PMCID: PMC10492218 DOI: 10.1016/j.isci.2023.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 09/12/2023] Open
Abstract
LAT1 (SLC7A5) is one of the most studied membrane transporters due to its relevance to physiology in supplying essential amino acids to brain and fetus, and to pathology being linked to nervous or embryo alterations; moreover, LAT1 over-expression is always associated with cancer development. Thus, LAT1 is exploited as a pro-drug vehicle and as a target for anti-cancer therapy. We here report the identification of a new substrate with pathophysiological implications, i.e., Cu-histidinate, and an unconventional uniport mechanism exploited for the Cu-histidinate transport. Crystals of the monomeric species Cu(His)2 were obtained in our experimental conditions and the actual transport of the complex was evaluated by a combined strategy of bioinformatics, site-directed mutagenesis, radiolabeled transport, and mass spectrometry analysis. The LAT1-mediated transport of Cu(His)2 may have profound implications for both the treatment of copper dysmetabolism diseases, such as the rare Menkes disease, and of cancer as an alternative to platinum-based therapies.
Collapse
Affiliation(s)
- Raffaella Scanga
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Nadia Marino
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Francesco Parisi
- MAT-INLAB (Laboratorio di Materiali Molecolari Inorganici), Department of Chemistry and Chemical Technologies (CTC), University of Calabria—UNICAL, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Donatella Barca
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), 87036 Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Chiara Brunocilla
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, 87036 Arcavacata di Rende, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70126 Bari, Italy
| |
Collapse
|
36
|
Ciocîlteu MV, Scorei IR, Rău G, Nicolicescu C, Biţă A, Ene VL, Simionescu A, Turcu-Ştiolică A, Dinescu VC, Neamţu J, Mogoantă L, Mogoşanu GD. Zinc-Boron-PLGA biocomposite material: preparation, structural characterization, and in vitro assessment. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:567-577. [PMID: 38184838 PMCID: PMC10863689 DOI: 10.47162/rjme.64.4.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Nowadays, the state-of-the-art discoveries in the field of delivery systems for therapeutic purposes have redefined the importance of biocompatible and biodegradable poly(lactic-co-glycolic acid (PLGA) nanocomposites. The study aimed to obtain a biocomposite material, with improved properties of its constituents [zinc-boron (Zn-B) complex and PLGA], by a simple, cost-effective method. The water∕oil∕water double emulsion technique allowed the adjustment of the synthesis parameters, to maximize the degree of Zn-B complex encapsulation. The morphological aspects of the samples were established by scanning electron microscopy (SEM). Particle size distribution was determined by dynamic light scattering (DLS). Morphology was typical for PLGA, spherical one. Depending on the synthesis conditions, the obtained particles have diameters between 10-450 nm. Zeta potential (ZP) showed that the particles have electronegative surface charge, offering a favorable perspective on aggregation, flocculation, and dispersion phenomena. It was observed, applying the design of experiments, that the particles size increased with increasing amounts of PLGA and polyvinyl alcohol (PVA), while ZP increased with higher PLGA and smaller PVA amounts in the formulation. The encapsulation efficiency was determined by ultra-high performance liquid chromatography∕mass spectrometry (UHPLC∕MS). The in vitro assessment was performed using Vero CCL-81 epithelial cell line and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. Zn-B-PLGA biocomposite has promising characteristics and can be used for future biomedical applications.
Collapse
Affiliation(s)
- Maria Viorica Ciocîlteu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Ion Romulus Scorei
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
| | - Gabriela Rău
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Claudiu Nicolicescu
- Department of Engineering and Management of Technological Systems, Faculty of Mechanics, University of Craiova, Drobeta Turnu-Severin, Romania
| | - Andrei Biţă
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Vladimir Lucian Ene
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Polytechnic Bucharest, Romania
| | - Andreea Simionescu
- Department of Chemistry, Faculty of Exact Sciences, University of Craiova, Romania
| | - Adina Turcu-Ştiolică
- Department of Pharmacoeconomics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Romania
| | - Johny Neamţu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
- Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| | - Laurenţiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, Romania
- Romanian Academy of Medical Sciences, Craiova Subsidiary, Romania
| | - George Dan Mogoşanu
- Department of Biochemistry, BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
37
|
He H, Yang M, Li W, Lu Z, Wang Y, Jin M. Fecal microbial and metabolic characteristics of swine from birth to market. Front Microbiol 2023; 14:1191392. [PMID: 37789849 PMCID: PMC10543884 DOI: 10.3389/fmicb.2023.1191392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Recently, the research on pig intestinal microbiota has become a hot topic in the field of animal husbandry. There are few articles describing the dynamic changes of porcine fecal microbiota and metabolites at different time points from birth to market. Methods In the present study, 381 fecal samples were collected from 633 commercial pigs at 7 time points, including the 1st day, the 10th day, the 25th day, the 45th day, the 70th day, the 120th day, and the 180th day after the birth of swine, were used for microbiome analysis by Illumina MiSeq sequencing methods while 131 fecal samples from 3 time points, the 10th day, the 25th day, and 70th day after birth, were used for metabolome analysis by LC-MS methods. Results For the microbiome analysis, the fecal microbial richness increased over time from day 1 to 180 and the β-diversity of fecal microbiota was separated significantly at different time points. Firmicutes were the main phyla from day 10 to 180, followed by Bacteroides. The abundance of Lactobacillus increased significantly on day 120 compared with the previous 4 time points. From day 120 to day 180, the main porcine fecal microbes were Lactobacillus, Clostridium_sensu_stricto_1, Terrisporobacter and Streptococcus. Clostridium_sensu_stricto_1 and Terrisporobacter increased over time, while Lactobacillus, Escherichia-Shigella, Lachnoclostridium decreased with the time according to the heatmap, which showed the increase or decrease in microbial abundance over time. For the metabolome analysis, the PLS-DA plot could clearly distinguish porcine fecal metabolites on day 10, 25, and 70. The most different metabolic pathways of the 3 time points were Tryptophan metabolism, Sphingolipid signaling pathway, Protein digestion and absorption. Some metabolites increased significantly over time, such as Sucrose, L-Arginine, Indole, 2,3-Pyridinedicarboxylic acid and so on, while D-Maltose, L-2-Aminoadipic acid, 2,6-diaminohexanoic acid, L-Proline were opposite. The correlation between fecal metabolites and microbiota revealed that the microbes with an increasing trend were positively correlated with the metabolites affecting the tryptophan metabolic pathway from the overall trend, while the microbes with a decreasing trend were opposite. In addition, the microbes with an increasing trend were negatively correlated with the metabolites affecting the lysine pathway. Discussion In conclusion, this study elucidated the dynamic changes of porcine fecal microbiota and metabolites at different stages from birth to market, which may provide a reference for a comprehensive understanding of the intestinal health status of pigs at different growth stages.
Collapse
Affiliation(s)
- Huan He
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingzhi Yang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wentao Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, China
- National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Shi C, Cheng C, Lin X, Qian Y, Du Y, Chen G. Flammulina velutipes polysaccharide-iron(III) complex used to treat iron deficiency anemia after being absorbed via GLUT2 and SGLT1 transporters. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
39
|
Li G, Feng Y, Cui J, Hou Q, Li T, Jia M, Lv Z, Jiang Q, Wang Y, Zhang M, Wang L, Lv Z, Li J, Guo Y, Zhang B. The ionome and proteome landscape of aging in laying hens and relation to egg white quality. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2020-2040. [PMID: 37526911 DOI: 10.1007/s11427-023-2413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/25/2023] [Indexed: 08/02/2023]
Abstract
The ionome is essential for maintaining body function and health status by participating in diverse key biological processes. Nevertheless, the distribution and utilization of ionome among different organs and how aging impacts the ionome leading to a decline in egg white quality remain unknown. Thus, we used inductively coupled plasma mass spectrometry (ICP-MS) to analyze 35 elements and their isotopic contents in eight organs of laying hens at 35, 72, and 100 weeks. Moreover, the magnum proteome, amino acids in egg white, and egg white quality were analyzed in laying hens at three different ages using 4D proteomics techniques, an amino acid analyzer, and an egg quality analyzer. Across the organs, we identified varying distribution patterns among macroelements (Mg24, Ca43/44, K39, and P31), transition metals (Zn64/66, Cu63/65, Fe56/57, and Mn55), and toxic elements (Pb208, Ba137, and Sr86). We observed an organ-specific aging pattern characterized by the accumulation of toxic elements (Pb208, Ba137, and Sr86) and calcification in the small intestine. Additionally, a decrease in the utilization of essential trace elements selenium (Se78/82) and manganese (Mn55) was noted in the oviduct. By analyzing ionome in tandem with egg quality, egg white amino acids, and proteome, we unveiled that the reduction of selenium and manganese concentrations in the magnum during the aging process affected amino acid metabolism, particularly tryptophan metabolism, thereby inhibiting the amino acid synthesis in the magnum. Furthermore, it accelerated the senescence of magnum cells through necroptosis activation, leading to a decline in the albumen secretion function of the magnum and subsequently reducing egg white quality. Overall, this study provides insights into the evolution of 35 elements and their isotopes across 8 organs of laying hens with age. It also reveals the elemental composition, interactions, and utilization patterns of these organs, as well as their correlation with egg white quality. The present study highlights the significance of ionome and offers a comprehensive perspective on the selection of ionome for regulating the aging of laying hens.
Collapse
Affiliation(s)
- Guang Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Jian Cui
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Qihang Hou
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Tanfang Li
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Meiting Jia
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhengtian Lv
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Qiuyu Jiang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Ying Wang
- Sichuan Tieqilishi Industrial Co., Ltd., Mianyang, 621010, China
| | - Ming Zhang
- Sichuan Tieqilishi Industrial Co., Ltd., Mianyang, 621010, China
| | - Lin Wang
- Sichuan Sundaily Farm Ecological Food Co., Ltd., Mianyang, 621010, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Junyou Li
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
40
|
Liu Y, Wang Y, Li C, Feng H, Liu Y, Ma L. An effective prognostic model in colon adenocarcinoma composed of cuproptosis-related epigenetic regulators. Front Pharmacol 2023; 14:1254918. [PMID: 37701039 PMCID: PMC10494936 DOI: 10.3389/fphar.2023.1254918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Background: Colorectal adenocarcinoma (COAD) is a common malignant tumor with little effective prognostic markers. Cuproptosis is a newly discovered mode of cell death that may be related to epigenetic regulators. This study aimed to explore the association between epigenetic regulators and cuproptosis, and to establish a prognostic prediction model for COAD based on epigenetic regulators associated with cuproptosis (EACs). Methods: RNA sequencing data and clinical data of 524 COAD patients were obtained from the TCGA-COAD database, cuproptosis-related genes were from the FerrDb database, and epigenetic-related genes were from databases such as GO and EpiFactors. LASSO regression analysis and other methods were used to screen out epigenetic regulators associated with cuproptosis and prognosis. The risk score of each patient was calculated and the patients were divided into high-risk group and low-risk group. Next, the survival difference, functional enrichment analyses, tumor mutation burden, chemotherapy drug sensitivity and other indicators between the two groups were compared and analyzed. Results: We found 716 epigenetic regulators closely related to cuproptosis, among which 35 genes were related to prognosis of COAD. We further screened out 7 EACs from the 35 EACs to construct a prognostic prediction model. We calculated the risk score of each patient based on these 7 genes, and divided the patients into high-risk group and low-risk group. We found that the overall survival rate and progression-free survival rate of the high-risk group were significantly lower than those of the low-risk group. This model showed good predictive ability in the training set, test set and overall data set. We also constructed a prognostic prediction model based on risk score and other clinical features, and drew the corresponding Nomogram. In addition, we found significant differences between the high-risk group and the low-risk group in tumor mutation burden, chemotherapy drug sensitivity and other clinical aspects. Conclusion: We established an effective predictive prediction model for COAD based on EACs, revealing the association between epigenetic regulators and cuproptosis in COAD. We hope that this model can not only facilitate the treatment decision of COAD patients, but also promote the research progress in the field of cuproptosis.
Collapse
Affiliation(s)
- Yang Liu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yizhao Wang
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chang Li
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huijin Feng
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanqing Liu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Lianjun Ma
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Huynh U, Nguyen HN, Trinh BK, Elhaj J, Zastrow ML. A bioinformatic analysis of zinc transporters in intestinal Lactobacillaceae. Metallomics 2023; 15:mfad044. [PMID: 37463796 PMCID: PMC10391621 DOI: 10.1093/mtomcs/mfad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
As the second most abundant transition element and a crucial cofactor for many proteins, zinc is essential for the survival of all living organisms. To maintain required zinc levels and prevent toxic overload, cells and organisms have a collection of metal transport proteins for uptake and efflux of zinc. In bacteria, metal transport proteins are well defined for model organisms and many pathogens, but fewer studies have explored metal transport proteins, including those for zinc, in commensal bacteria from the gut microbiota. The healthy human gut microbiota comprises hundreds of species and among these, bacteria from the Lactobacillaceae family are well documented to have various beneficial effects on health. Furthermore, changes in dietary metal intake, such as for zinc and iron, are frequently correlated with changes in abundance of Lactobacillaceae. Few studies have explored zinc requirements and zinc homeostasis mechanisms in Lactobacillaceae, however. Here we applied a bioinformatics approach to identify and compare predicted zinc uptake and efflux proteins in several Lactobacillaceae genera of intestinal relevance. Few Lactobacillaceae had zinc transporters currently annotated in proteomes retrieved from the UniProt database, but protein sequence-based homology searches revealed that high-affinity ABC transporter genes are likely common, albeit with genus-specific domain features. P-type ATPase transporters are probably also common and some Lactobacillaceae genera code for predicted zinc efflux cation diffusion facilitators. This analysis confirms that Lactobacillaceae harbor genes for various zinc transporter homologs, and provides a foundation for systematic experimental studies to elucidate zinc homeostasis mechanisms in these bacteria.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Brittany K Trinh
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Joanna Elhaj
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
42
|
Brown HA, DeVeaux AL, Juliano BR, Photenhauer AL, Boulinguiez M, Bornschein RE, Wawrzak Z, Ruotolo BT, Terrapon N, Koropatkin NM. BoGH13A Sus from Bacteroides ovatus represents a novel α-amylase used for Bacteroides starch breakdown in the human gut. Cell Mol Life Sci 2023; 80:232. [PMID: 37500984 PMCID: PMC10540511 DOI: 10.1007/s00018-023-04812-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 07/29/2023]
Abstract
Members of the Bacteroidetes phylum in the human colon deploy an extensive number of proteins to capture and degrade polysaccharides. Operons devoted to glycan breakdown and uptake are termed polysaccharide utilization loci or PUL. The starch utilization system (Sus) is one such PUL and was initially described in Bacteroides thetaiotaomicron (Bt). BtSus is highly conserved across many species, except for its extracellular α-amylase, SusG. In this work, we show that the Bacteroides ovatus (Bo) extracellular α-amylase, BoGH13ASus, is distinguished from SusG in its evolutionary origin and its domain architecture and by being the most prevalent form in Bacteroidetes Sus. BoGH13ASus is the founding member of both a novel subfamily in the glycoside hydrolase family 13, GH13_47, and a novel carbohydrate-binding module, CBM98. The BoGH13ASus CBM98-CBM48-GH13_47 architecture differs from the CBM58 embedded within the GH13_36 of SusG. These domains adopt a distinct spatial orientation and invoke a different association with the outer membrane. The BoCBM98 binding site is required for Bo growth on polysaccharides and optimal enzymatic degradation thereof. Finally, the BoGH13ASus structure features bound Ca2+ and Mn2+ ions, the latter of which is novel for an α-amylase. Little is known about the impact of Mn2+ on gut bacterial function, much less on polysaccharide consumption, but Mn2+ addition to Bt expressing BoGH13ASus specifically enhances growth on starch. Further understanding of bacterial starch degradation signatures will enable more tailored prebiotic and pharmaceutical approaches that increase starch flux to the gut.
Collapse
Affiliation(s)
- Haley A Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Anna L DeVeaux
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Brock R Juliano
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda L Photenhauer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Matthieu Boulinguiez
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | | | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Science Collaborative Access Team, Northwestern University, Lemont, IL, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, UMR 7257, CNRS AMU; USC1408 INRAE, 13288, Marseille, France
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
43
|
Zhang H, Guan W, Shu J, Yu S, Xiong Y, Liu G, Zhong Y, Chen J, Zhao Z, He N, Xing Q, Guo D, Li L, Hongbing O. Graphene nano zinc oxide reduces the expression and release of antibiotic resistance-related genes and virulence factors in animal manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163520. [PMID: 37061060 DOI: 10.1016/j.scitotenv.2023.163520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Animal manure contains many antibiotic resistance genes (ARGs) and virulence factors (VFs), posing significant health threats to humans. However, the effects of graphene nano zinc oxide (GZnONP), a zinc bioaugmentation substitute, on bacterial chemotaxis, ARGs, and VFs in animal manure remain scanty. Herein, the effect of GZnONP on the in vivo anaerobic expression of ARGs and VFs in cattle manure was assessed using high-throughput sequencing. Results showed that GZnONP inhibited bacterial chemotaxis by reducing the zinc pressure under anaerobic fermentation, altering the microbial community structure. The expression of ARGs was significantly lower in GZnONP than in zinc oxide and nano zinc oxide (ZnONP) groups. The expression of VFs was lower in the GZnONP than in the zinc oxide and ZnONP groups by 9.85 % and 13.46 %, respectively. Co-occurrence network analysis revealed that ARGs and VFs were expressed by the Spirochaetes phylum, Paraprevotella genus, and Treponema genus et al. The ARGs-VFs coexistence was related to the expression/abundance of ARGs and VFs genes. GZnONP reduces the abundance of certain bacterial species by disrupting chemotaxis, minimizing the transfer of ARGs and VFs. These findings suggest that GZnONP, a bacterial chemotaxis suppressor, effectively reduces the expression and release of ARGs and VFs in animal manure.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Weikun Guan
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jun Shu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Sen Yu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yingmin Xiong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Gao Liu
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Yuhong Zhong
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Jia Chen
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Zhigang Zhao
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Ning He
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Qingfeng Xing
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Dongsheng Guo
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China
| | - Lizhi Li
- College of Life Science and Resources and Environment, Yichun University, Yi Chun 336000, China.
| | | |
Collapse
|
44
|
Ray S, Gaudet R. Structures and coordination chemistry of transporters involved in manganese and iron homeostasis. Biochem Soc Trans 2023; 51:897-923. [PMID: 37283482 PMCID: PMC10330786 DOI: 10.1042/bst20210699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
A repertoire of transporters plays a crucial role in maintaining homeostasis of biologically essential transition metals, manganese, and iron, thus ensuring cell viability. Elucidating the structure and function of many of these transporters has provided substantial understanding into how these proteins help maintain the optimal cellular concentrations of these metals. In particular, recent high-resolution structures of several transporters bound to different metals enable an examination of how the coordination chemistry of metal ion-protein complexes can help us understand metal selectivity and specificity. In this review, we first provide a comprehensive list of both specific and broad-based transporters that contribute to cellular homeostasis of manganese (Mn2+) and iron (Fe2+ and Fe3+) in bacteria, plants, fungi, and animals. Furthermore, we explore the metal-binding sites of the available high-resolution metal-bound transporter structures (Nramps, ABC transporters, P-type ATPase) and provide a detailed analysis of their coordination spheres (ligands, bond lengths, bond angles, and overall geometry and coordination number). Combining this information with the measured binding affinity of the transporters towards different metals sheds light into the molecular basis of substrate selectivity and transport. Moreover, comparison of the transporters with some metal scavenging and storage proteins, which bind metal with high affinity, reveal how the coordination geometry and affinity trends reflect the biological role of individual proteins involved in the homeostasis of these essential transition metals.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, U.S.A
| |
Collapse
|
45
|
Liu XY, Hong Y, Liang M, Zhai QY. Bioremediation of zinc and manganese in swine wastewater by living microalgae: Performance, mechanism, and algal biomass utilization. BIORESOURCE TECHNOLOGY 2023:129382. [PMID: 37352991 DOI: 10.1016/j.biortech.2023.129382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The remediation effects of living Chlorella sp. HL on zinc and manganese in swine wastewater was investigated, and the responses of algal cells and the mechanism were explored. In the wastewater with Zn(II) concentration of 1.85 mg/L and Mn(II) of 1 or 6 mg/L, the highest removal of Zn(II) by Chlorella reached 86.72% and 97.16%, respectively, and the Mn(II) removal were 42.74% and 30.33%, respectively. The antioxidant system of cells was activated by a significant increase in superoxide dismutase and catalase enzyme activities and a significant decrease in malondialdehyde in the mixed system compared to the single system. The presence of Mn(II) could positively regulate the differentially expressed genes related to catalytic activity and metabolic processes between the single Zn system and the mixed systems, reducing the stress of Zn(II) on Chlorella and more favorable to chlorophyll synthesis. The heavy metal-containing microalgal biomass obtained has the potential as feed additives.
Collapse
Affiliation(s)
- Xiao-Ya Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Man Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qing-Yu Zhai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
46
|
Lu H, Liu P, Liu S, Zhao X, Bai B, Cheng J, Zhang Z, Sun C, Hao L, Xue Y. Effects of sources and levels of dietary supplementary manganese on growing yak's in vitro rumen fermentation. Front Vet Sci 2023; 10:1175894. [PMID: 37360409 PMCID: PMC10288112 DOI: 10.3389/fvets.2023.1175894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Manganese (Mn) is an essential trace element for livestock, but little is known about the optimal Mn source and level for yak. Methods To improve yak's feeding standards, a 48-h in vitro study was designed to examine the effect of supplementary Mn sources including Mn sulfate (MnSO4), Mn chloride (MnCl2), and Mn methionine (Met-Mn) at five Mn levels, namely 35 mg/kg, 40 mg/kg, 50 mg/kg, 60 mg/kg, and 70 mg/kg dry matter (includes Mn in substrates), on yak's rumen fermentation. Results Results showed that Met-Mn groups showed higher acetate (p < 0.05), propionate, total volatile fatty acids (p < 0.05) levels, ammonia nitrogen concentration (p < 0.05), dry matter digestibility (DMD), and amylase activities (p < 0.05) compared to MnSO4 and MnCl2 groups. DMD (p < 0.05), amylase activities, and trypsin activities (p < 0.05) all increased firstly and then decreased with the increase of Mn level and reached high values at 40-50 mg/kg Mn levels. Cellulase activities showed high values (p < 0.05) at 50-70 mg/kg Mn levels. Microbial protein contents (p < 0.05) and lipase activities of Mn-Met groups were higher than those of MnSO4 and MnCl2 groups at 40-50 mg/kg Mn levels. Discussion Therefore, Mn-met was the best Mn source, and 40 to 50 mg/kg was the best Mn level for rumen fermentation of yaks.
Collapse
Affiliation(s)
- Huizhen Lu
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Biotechnology Center, Anhui Agricultural University, Hefei, China
- Qinghai Pure Yak Biotechnology Co., LTD., Xining, China
| | - Pengpeng Liu
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shujie Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Xinsheng Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Binqiang Bai
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Jianbo Cheng
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Cai Sun
- Qinghai Pure Yak Biotechnology Co., LTD., Xining, China
| | - Lizhuang Hao
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Yanfeng Xue
- Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Qinghai Pure Yak Biotechnology Co., LTD., Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|
47
|
Kosiorek K, Koryszewska-Bagińska A, Skoneczny M, Aleksandrzak-Piekarczyk T. Control of Bacterial Phenotype and Chromosomal Gene Expression by Single Plasmids of Lactococcus lactis IL594. Int J Mol Sci 2023; 24:9877. [PMID: 37373024 DOI: 10.3390/ijms24129877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Plasmid-free Lactococcus lactis IL1403 is one of the best-characterized representatives of lactic acid bacteria (LAB), intensively used in broad microbiology worldwide. Its parent strain, L. lactis IL594, contains seven plasmids (pIL1-pIL7) with resolved DNA sequences and an indicated role for overall plasmid load in enhancing host-adaptive potential. To determine how individual plasmids manipulate the expression of phenotypes and chromosomal genes, we conducted global comparative phenotypic analyses combined with transcriptomic studies in plasmid-free L. lactis IL1403, multiplasmid L. lactis IL594, and its single-plasmid derivatives. The presence of pIL2, pIL4, and pIL5 led to the most pronounced phenotypic differences in the metabolism of several carbon sources, including some β-glycosides and organic acids. The pIL5 plasmid also contributed to increased tolerance to some antimicrobial compounds and heavy metal ions, especially those in the toxic cation group. Comparative transcriptomics showed significant variation in the expression levels of up to 189 chromosomal genes due to the presence of single plasmids and 435 unique chromosomal genes that were resultant of the activity of all plasmids, which may suggest that the observed phenotypic changes are not only the result of a direct action of their own genes but also originate from indirect actions through crosstalk between plasmids and the chromosome. The data obtained here indicate that plasmid maintenance leads to the development of important mechanisms of global gene regulation that provide changes in the central metabolic pathways and adaptive properties of L. lactis and suggest the possibility of a similar phenomenon among other groups of bacteria.
Collapse
Affiliation(s)
- Katarzyna Kosiorek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS), Pawińskiego 5a, 02-106 Warsaw, Poland
| | | | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences (IBB PAS), Pawińskiego 5a, 02-106 Warsaw, Poland
| | | |
Collapse
|
48
|
Xiong Y, Cui B, He Z, Liu S, Wu Q, Yi H, Zhao F, Jiang Z, Hu S, Wang L. Dietary replacement of inorganic trace minerals with lower levels of organic trace minerals leads to enhanced antioxidant capacity, nutrient digestibility, and reduced fecal mineral excretion in growing-finishing pigs. Front Vet Sci 2023; 10:1142054. [PMID: 37303716 PMCID: PMC10248082 DOI: 10.3389/fvets.2023.1142054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction More effective and environment-friendly organic trace minerals have great potential to replace the inorganic elements in the diets of livestock. This study aimed to investigate the effects of dietary replacement of 100% inorganic trace minerals (ITMs) with 30-60% organic trace minerals (OTMs) on the performance, meat quality, antioxidant capacity, nutrient digestibility, and fecal mineral excretion and to assess whether low-dose OTMs could replace whole ITMs in growing-finishing pigs' diets. Methods A total of 72 growing-finishing pigs (Duroc × Landrace × Yorkshire) with an initial average body weight of 74.25 ± 0.41 kg were selected and divided into four groups with six replicates per group and three pigs per replicate. The pigs were fed either a corn-soybean meal basal diet containing commercial levels of 100% ITMs or a basal diet with 30, 45, or 60% amino acid-chelated trace minerals instead of 100% ITMs, respectively. The trial ended when the pigs' weight reached ~110 kg. Results The results showed that replacing 100% ITMs with 30-60% OTMs had no adverse effect on average daily gain, average daily feed intake, feed/gain, carcass traits, or meat quality (P > 0.05) but significantly increased serum transferrin and calcium contents (P < 0.05). Meanwhile, replacing 100% ITMs with OTMs tended to increase serum T-SOD activity (0.05 ≤ P < 0.1), and 30% OTMs significantly increased muscle Mn-SOD activity (P < 0.05). Moreover, replacing 100% ITMs with OTMs tended to increase the apparent digestibility of energy, dry matter, and crude protein (0.05 ≤ P < 0.1) while significantly reducing the contents of copper, zinc, and manganese in feces (P < 0.05). Discussion In conclusion, dietary supplementation with 30-60% OTMs has the potential to replace 100% ITMs for improving antioxidant capacity and nutrient digestibility and for reducing fecal mineral excretion without compromising the performance of growing-finishing pigs.
Collapse
Affiliation(s)
- Yunxia Xiong
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bailei Cui
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhentao He
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shuai Liu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fei Zhao
- DeBon Bio-Tech Co., Ltd., Hengyang, Hunan, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China Ministry of Agriculture, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
49
|
Qiu K, Chen Z, Chang W, Zheng A, Cai H, Liu G. Integrated evaluation of the requirements and excretions of Cu, Fe, Zn, and Mn for broilers via a uniform design method. Front Vet Sci 2023; 10:1132189. [PMID: 37256002 PMCID: PMC10225570 DOI: 10.3389/fvets.2023.1132189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
This study aimed to determine the ideal balance profile of Cu, Fe, Zn, and Mn for broilers of 1-21 days of age via a uniform experimental design. In Experiment 1, 900 1-day-old Arbor Acres male broilers were randomly allotted to 15 dietary treatments with six replicates of 10 birds. A total of 14 experimental diets were formulated with the supplementation of 8~16, 123~160, 40~80, and 60~120 mg/kg of Cu, Fe, Zn, and Mn, respectively, in the basal diet, according to the uniform design method. The excretion of Cu, Fe, Zn, and Mn in the manure and the broiler performance were determined to build the ideal balance profile of these elements. Experiment 2 was conducted based on the ideal balance profile built in Experiment 1, to test its practicability using 720 broilers with two treatments. The dietary concentrations of Cu, Fe, Zn, and Mn in the control group were 15.19, 203.08, 76.78, and 86.13 mg/kg, respectively. In Experiment 1, the concentrations of Cu, Fe, Zn, and Mn in the diets were 16.96, 166.66, 46.01, and 60.26 mg/kg, respectively, when the average daily gain reached the optimum value. When the dietary concentrations of Cu, Fe, Zn, and Mn were 8.54, 130.66, 38.19, and 64.07 mg/kg, respectively, the total excretion of Cu, Fe, Zn, and Mn got the minimum value. There are corresponding ideal balance profiles for minimum excretion of a certain element. In Experiment 2, the dietary levels of Fe, Zn, and Mn were decreased by 17.93%, 40.08%, and 30.04%, respectively, which had no significant effect on average daily gain, average daily feed intake, and feed gain for 1~21 day-old broilers but markedly decreased the excretion of Cu and Mn and total excretion. It was concluded that there is a dilemma between growth performance and mineral excretion. Although dietary levels of Cu, Fe, Zn, and Mn supporting optimal growth are higher than those for minimizing mineral excretion, supplementing too many trace elements in the diets of broilers is unnecessary.
Collapse
|
50
|
Hierons SJ, Catchpole A, Abbas K, Wong W, Giles MS, Miller GV, Ajjan RA, Stewart AJ. Total plasma magnesium, zinc, copper and selenium concentrations in obese patients before and after bariatric surgery. Biometals 2023; 36:241-253. [PMID: 35138503 PMCID: PMC10082111 DOI: 10.1007/s10534-022-00368-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/21/2022] [Indexed: 01/02/2023]
Abstract
Obesity enhances the risk of type-2 diabetes, cardiovascular disease and inflammatory conditions and often leads to metal dyshomeostasis, which contributes to the negative health aspects associated with the disease. In severe cases, bariatric surgery can be recommended to achieve sustained weight loss and improvement in health. Here, magnesium, zinc, copper and selenium concentrations were examined in 24 obese patients (7 males; 17 females) before and 9 months after undergoing Roux-en-Y gastric bypass surgery. All patients lost weight over this period, with the mean BMI reducing from 51.2±7.1 kg/m2 to 37.2±5.5 kg/m2. Moreover, whole-blood glycated haemoglobin (HbA1c), as a marker of average glycaemia, was also measured and a correlative analysis of this parameter with metal concentrations performed. Significant alterations in the plasma concentrations of magnesium, zinc (both increased by 13.2% and 25.2% respectively) and copper (decreased by 7.9%) were observed over this period (plasma selenium concentration was unchanged), with BMI values correlating with plasma magnesium (p = 0.004) and zinc (p = 0.022) concentrations. At 9 months post-surgery, an increase in mean zinc/copper ratio was observed (0.86±0.29 compared to 0.63±0.14 pre-surgery). Comparison of whole-blood HbA1c concentrations pre- and post-surgery revealed a reduction from 6.50±1.28% pre-surgery to 5.51±0.49% post-surgery. Differences in plasma HbA1c and magnesium at either pre- and post-surgery correlated significantly, as did HbA1c and magnesium levels when pre- and post-surgery values were analysed together. Collectively, this work reveals that bariatric surgery, in conjunction with lifestyle/dietary changes, lead to improvements in the nutritional status of magnesium, zinc and copper. Furthermore, the observed improvements in magnesium and zinc were associated with weight loss and in the case of magnesium, to better glycaemic control.
Collapse
Affiliation(s)
- Stephen J Hierons
- School of Medicine, University of St Andrews, Medical and Biological Sciences Building, St Andrews, Fife, UK
| | - Anthony Catchpole
- Scottish Trace Element and Micronutrient Diagnostic and Reference Laboratory, Department of Biochemistry, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Kazim Abbas
- Renal Transplant Unit, Manchester Royal Infirmary, Manchester, UK
| | - Wingzou Wong
- Endoscopy and GI Physiology Unit, York Hospital, York, UK
| | - Mathew S Giles
- Endoscopy and GI Physiology Unit, York Hospital, York, UK
| | - Glenn V Miller
- Endoscopy and GI Physiology Unit, York Hospital, York, UK
| | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews, Medical and Biological Sciences Building, St Andrews, Fife, UK.
| |
Collapse
|