1
|
Schokker D, van den Esker MH, Bossers A, Allaart JG, van Hees H, de Greeff A, Rebel JMJ. Neonatal and maternal dietary interventions driving microbiota and functionality in piglet gut compartments. Sci Rep 2025; 15:6771. [PMID: 40000703 PMCID: PMC11861315 DOI: 10.1038/s41598-025-90781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Feed additives aiming to improve gastrointestinal health are frequently supplied to piglets after weaning (d28) but might be more effective when administered before weaning. In this period, feed additives can either be administered directly to neonates, or indirectly via sow's feed. It is yet unknown what the effect of the administration route is on gut functionality and health in the piglets. Therefore, we compared the effect of different dietary interventions on gut functionality after maternal administration (lactation feed) to the neonatal administration route (oral gavage). These feed interventions included medium chain fatty acids (MCFA), beta-glucans (BG), and galacto-oligosaccharides (GOS). For the maternal administration route, MCFA showed a significant difference in alpha diversity parameter, observed species at d1 and one differentially expressed gene (DEG), and 99 DEG at d31. Pathway enrichment analysis showed association to immune processes and metabolism. For BG, only 21 DEG were observed at d31, these DEGs were associated to signal transduction and sympathetic nerve pathway. For GOS, 816 DEG were observed for GOS at d1, and 77 at d31, where DEGs at d1 were associated to immune processes. For the neonatal administration route, MCFA showed 94 DEG and GOS 6 DEG. Where DEGs in MCFA were mainly associated to cell adhesion processes. When comparing the administration routes directly between treatment groups, we observed significant differences in alpha diversity parameters, observed species at d31 for MCFA, Shannon for GOS, as well as for beta diversity in GOS. For MCFA 515 DEG were observed, for BG 503 DEG, and for GOS 996 DEG. Where for MCFA most pathways were associated to immunological processes, BG showed more metabolism, and GOS mainly metabolism with a few immunological processes. The type of intervention and the administration route influence gut functionality of the piglets. MCFA administration led to a more differentially orchestrated response when comparing the neonatal and maternal administration route then the other two additives. This implies that for each nutritional intervention in early life of a pig the optimal route of administration needs to be determined.
Collapse
Affiliation(s)
- Dirkjan Schokker
- Wageningen Bioveterinary Research, Lelystad, The Netherlands.
- , Postbus 338, Wageningen, 6700 AH, The Netherlands.
| | | | - Alex Bossers
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Hubèrt van Hees
- Trouw Nutrition Research and Development, Boxmeer, The Netherlands
| | | | | |
Collapse
|
2
|
Ji X, Tong W, Sun X, Xiao L, Wu M, Li P, Hu Y, Liang Y. Dietary Effects of Different Proportions of Fermented Straw as a Corn Replacement on the Growth Performance and Intestinal Health of Finishing Pigs. Animals (Basel) 2025; 15:459. [PMID: 39943228 PMCID: PMC11816350 DOI: 10.3390/ani15030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/15/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The aim of the present study was to investigate the dietary effects of replacing corn with different proportions of fermented straw on the growth performance and intestinal health of finishing pigs. A total of 275 healthy commercial finishing pigs aged 126 days (average body weight, 82.96 ± 3.07 kg) were randomly allocated into three groups: the control (CTR, basal diet) group, the 5% fermented straw (FJJG5, replacing 5% of the corn) group, and the 10% fermented straw (FJJG10, replacing 10% of the corn) group. There were six replicates in each group and 14-16 pigs per replicate. On day 39 of the experiment, one animal from each replicate was slaughtered for sampling and for further analysis. The results showed that the finishing pigs in the FJJG10 group had a reduced average daily weight gain and an increased feed-to-gain ratio. The FJJG5 group had reduced total cholesterol, high-density lipoprotein, and low-density lipoprotein in their serum, while the FJJG5 and FJJG10 groups had reduced contents of lactate dehydrogenase. In addition, the FJJG5 group exhibited increased T-SOD activity and MDA content in the colon, while the FJJG10 group also showed increased T-AOC activity in their serum and increased contents of MDA in the colon. The FJJG5 group exhibited increased activities of jejunal disaccharidase and lipase, while the FJJG10 group exhibited decreased jejunal crypt depths. Moreover, the FJJG5 group presented an increased relative expression of APOA4, LPL, and MUC2 but decreased SLC7A7 and IL-10 in the jejunum and APOA4 in the colon. The FJJG10 group exhibited a decreased relative expression of SLC7A7 and IL-10 in the jejunum and decreased MMP13, KCNJ13, APOA4, SLC7A7, LPL, and IL-10 in the colon. Furthermore, the FJJG5 group exhibited an increased relative abundance of Lactobacillus in colon contents, while the FJJG10 group had a reduced relative abundance of streptococcus. In conclusion, 5% fermented straw can improve the lipid metabolism and colon microbiota structure of finishing pigs, while 10% fermented straw has adverse effects on the growth performance and intestinal health of finishing pigs.
Collapse
Affiliation(s)
- Xiaoguang Ji
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Wenfei Tong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (W.T.); (M.W.); (P.L.)
| | - Xiangxue Sun
- Hubei Lan Good Microbial Technology Co., Ltd., Yichang 443100, China; (X.S.); (L.X.)
| | - Lei Xiao
- Hubei Lan Good Microbial Technology Co., Ltd., Yichang 443100, China; (X.S.); (L.X.)
| | - Mengjun Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (W.T.); (M.W.); (P.L.)
| | - Peng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China; (W.T.); (M.W.); (P.L.)
| | - Yonggang Hu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yunxiang Liang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
3
|
Zhang Y, Liu J, Li M, Dong Y, Li Z, Yi D, Wu T, Wang L, Zhao D, Hou Y. Zinc Oxide Administration Relieves the Diarrhea of ETEC K88-Infected Piglets by Reducing Ileal Apoptosis and Maintaining Gut Microbial Balance. Vet Sci 2025; 12:115. [PMID: 40005874 PMCID: PMC11861302 DOI: 10.3390/vetsci12020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
The impact of ZnO as a feed additive on growth-performance and intestinal function of Enterotoxigenic Escherichia coli (ETEC) K88-infected piglets remains unclear. Fecal scores of piglets in ETEC group were significantly increased compared to control group. ETEC K88 significantly damages the small intestine, including a reduction in villus height in the jejunum, duodenum, and ileum, and a decrease in total superoxide dismutase activity in the jejunum and catalase activity in the ileum and jejunum. Compared to control group, ETEC K88 infection significantly elevated the mRNA level of gene IL-1β and the level of ileal epithelial cell apoptosis. ZnO administration significantly alleviated these negative effects and improved the antioxidative capability of the ileum. Moreover, ZnO supplementation alleviated the imbalance of gut microbiota by restoring the reduced amount of Enterococcus and Lactobacillus in the jejunum, Clostridium in the ileum, and Lactobacillus in the cecum, as well as the increased amount of total eubacteria in the ileum and Enterococcus in the cecum induced by the ETEC K88 infection. In conclusion, ZnO administration can reduce the diarrhea of piglets infected with ETEC K88 by reducing the structural damage of the intestine, attenuating intestinal oxidative stress and epithelial cell apoptosis, and modulating the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yongqing Hou
- Engineering Research Center of Feed Protein Resources on Agricultural By-Products, Ministry of Education, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430024, China
| |
Collapse
|
4
|
Choi H, Garavito-Duarte Y, Gormley AR, Kim SW. Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals. Toxins (Basel) 2025; 17:43. [PMID: 39852996 PMCID: PMC11768593 DOI: 10.3390/toxins17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB1), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin B1 contamination in feeds disrupts intestinal microbiota, induces immune responses and oxidative damage, increases antioxidant activity, and impairs jejunal cell viability, barrier function, and morphology in the small intestine. These changes compromise nutrient digestion and reduce growth performance in animals. The negative impact of AFB1 on the % change in average daily gain (ΔADG) of chickens and pigs was estimated based on meta-analysis: ΔADG (%)chicken = -0.13 × AFB1 intake per body weight (ng/g·d) and ΔADG (%)pig = -0.74 × AFB1 intake per body weight (µg/kg·d), indicating that increasing AFB1 contamination linearly reduces the growth of animals. To mitigate the harmful impacts of AFB1, various dietary strategies have been effective. Mycotoxin-detoxifying agents include mycotoxin-adsorbing agents, such as clay and yeast cell wall compounds, binding to AFB1 and mycotoxin-biotransforming agents, such as specific strains of Bacillus subtilis and mycotoxin-degrading enzyme, degrading AFB1 into non-toxic metabolites such as aflatoxin D1. Multiple mycotoxin-detoxifying agents are often combined and used together to improve the intestinal health and growth of chickens and pigs fed AFB1-contaminated feeds. In summary, AFB1 negatively impacts intestinal microbiota, induces immune responses and oxidative stress, disrupts intestinal morphology, and impairs nutrient digestion in the small intestine, leading to reduced growth performance. Supplementing multi-component mycotoxin-detoxifying agents in feeds could effectively adsorb and degrade AFB1 co-contaminated with other mycotoxins prior to its absorption in the small intestine, preventing its negative impacts on the intestinal health and growth performance of chickens and pigs.
Collapse
Affiliation(s)
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (H.C.); (Y.G.-D.); (A.R.G.)
| |
Collapse
|
5
|
Wei M, He Y, Wu H, Wang Y, Zhang F, Zhou L, Zhang J, Chamba Y, Shang P. Effects of fecal sewage and antibiotic exposure stress on the intestinal microflora of weaned Tibetan piglets. Microb Pathog 2025; 202:107135. [PMID: 39818324 DOI: 10.1016/j.micpath.2024.107135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025]
Abstract
Unregulated pig farming practices expose pigs to fecal sewage and antibiotic stress, which are common health risk factors. Thus, its effects on the animals' intestinal microflora were investigated herein. In total, 2,315,563 high-quality sequences were obtained via amplitude sequencing and, after OUT clustering, the fecal sewage group was identified to have the highest number and the antibiotic exposure group the lowest. The dominant phyla of the intestinal flora in the Antibiotic exposure (Ant); Fecal sewage (Fec) and Normal (Nor) groups were Firmicutes, Bacteroidetes, Spirochaetota, and Spirochaetota. The most abundant families in the intestinal floras of the three groups were Streptococcaceae, Lactobacillaceae, Firmicutes, Bacteroidetes, and Spirochaetota. At the level of genus, Streptococcus, Lactobacillus, and Treponema were predominant. Dominant species were Porphyromonadaceae_bacterium_DJF_B175, Trepo-nemabryantii, and Treponema porcinum. Lactobacillus is the most commonly used probiotic agent and at the family level, Lactobacillaceae made up the largest proportion of Fec1; the addition of fecal supernatant increased the proportion of Lactobacillaceae in the gut microflora. At the level of genus, Streptococcus spp. accounted for the largest percentage of Ant1, and it was hypothesized that these have developed resistance to lincomycin. In summary, exposure to fecal sewage in the environment allows piglets to acquire beneficial microorganisms such as Lactobacillus, which influences their production. These findings highlight a potential solution for the usage of fecal sewage in agricultural environments.
Collapse
Affiliation(s)
- Mingbang Wei
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, 860000, China
| | - Yuxuan He
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, 860000, China
| | - Haibin Wu
- Tibet Autonomous Region Veterinary Biological Drug Manufacturing Factory, Lhasa, 850000, China
| | - Yushi Wang
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, 860000, China
| | - Feifan Zhang
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, 860000, China
| | - Ling Zhou
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, 860000, China
| | - Jian Zhang
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, 860000, China
| | - Yangzom Chamba
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, 860000, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China; The Provincial and Ministerial Co-founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, 860000, China.
| |
Collapse
|
6
|
Guo R, Song X, Li X, Zeng C, Chen Y, Li C, Yang J, Ou D. Effects of Red Clover Isoflavones on Growth Performance, Immune Function, and Cecal Microflora of Mice. Animals (Basel) 2025; 15:150. [PMID: 39858150 PMCID: PMC11758327 DOI: 10.3390/ani15020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Isoflavone components extracted from red clover have anti-inflammatory, antioxidant and immune boosting effects. We hypothesize that red clover isoflavones (RCIs) achieve health-promoting effects via altering the gut microbiota. A total of 48 mice (20 ± 2 g) were randomly divided into a control group, low-dose group (0.05% RCIs in feed), middle-dose group (0.1% RCIs in feed), and high-dose group (0.2% RCIs in feed) with 12 mice per group. The feeding period was 20 d. The results showed that RCIs can increase the daily gain and decrease the ratio of feed to gain in mice. The organ indexes and blood biochemical indexes of the mice in each RCI group were in the normal range, indicating that RCIs do not damage liver or kidney function. RCI supplementation increased serum immunity and altered the microbial community structure in the cecum of the mice. RCIs can increase the diversity of beneficial bacteria such as Bacteroidaceae, Muribaculaceae, and Akkermansiaceae, and reduced the pathogenic Staphylococcaceae. Therefore, supplementing the diet with RCIs results in improved growth performance and notable alterations in the cecal microbiota in mice, and has potential applications as a feed additive to improve livestock production.
Collapse
Affiliation(s)
- Rongrong Guo
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Xuqin Song
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Xiaodie Li
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Cheng Zeng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Ying Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Chunjie Li
- Laboratory of Pulmonary and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, Sichuan University, Chengdu 610000, China;
| | - Jian Yang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| | - Deyuan Ou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang 550025, China; (R.G.); (X.S.); (X.L.); (C.Z.); (Y.C.)
| |
Collapse
|
7
|
Choi H, Rocha GC, Kim SW. Effects of dietary supplementation of myristic acid on jejunal mucosa-associated microbiota, mucosal immunity, and growth performance of nursery pigs. Anim Sci J 2025; 96:e70027. [PMID: 39777830 PMCID: PMC11707569 DOI: 10.1111/asj.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
The objective of this study was to investigate the effects of myristic acid on jejunal mucosal microbiota, mucosal immunity, and growth performance of nursery pigs. Thirty-six pigs (6.6 ± 0.4 kg of body weight) were assigned to three treatments (n = 12) for 35 d in three phases: (NC) basal diet; (PC) NC + bacitracin; and (MA) NC + myristic acid compound. Pigs were euthanized to collect jejunal mucosa, jejunal tissues, and ileal digesta. The PC increased (p < 0.05) the relative abundance (RA) of Lactobacillus spp., and Bifidobacterium boum than the NC group. The MA increased (p < 0.05) RA of Bifidobacterium dentium and Megasphaera spp. than the NC group. The PC tended to decrease IL-8 (p = 0.053) and protein carbonyl (p = 0.075) whereas IgG (p = 0.051) and IL-8 (p = 0.090) in jejunal mucosa were decreased by the MA. The PC increased (p < 0.05) the villus height to crypt depth ratio than the NC group. Both bacitracin and myristic acid improved the intestinal health and growth performance of nursery pigs. Effects of bacitracin were rather immediate whereas the effects of myristic acid were obtained after a 3-week feeding.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Animal ScienceNorth Carolina State UniversityRaleighNCUSA
| | | | - Sung Woo Kim
- Department of Animal ScienceNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
8
|
Veerapagu M, Jeya K, Sankara Narayanan A. Gastrointestinal microbiome engineering in pig. HUMAN AND ANIMAL MICROBIOME ENGINEERING 2025:265-290. [DOI: 10.1016/b978-0-443-22348-8.00016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
9
|
Gormley AR, Duarte ME, Deng Z, Kim SW. Saccharomyces yeast postbiotics mitigate mucosal damages from F18 + Escherichia coli challenges by positively balancing the mucosal microbiota in the jejunum of young pigs. Anim Microbiome 2024; 6:73. [PMID: 39707576 DOI: 10.1186/s42523-024-00363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (E. coli) is one of the most prevalent causes of diarrhea in young animals. Postbiotics derived from yeast have the potential to positively influence the mucosal microbiota in the jejunum, therefore it was hypothesized that Saccharomyces yeast postbiotics could enhance the microbiota and mucosal immune response in the jejunum, mitigating the effects of infection with enterotoxigenic E. coli. The purpose of this study was to investigate the effects of a Saccharomyces yeast postbiotic on the mucosal microbiota and mucosal immune response in the jejunum of newly weaned pigs challenged with F18+ E. coli. RESULTS Thirty-six individually housed nursery pigs were allotted into three treatments utilizing a randomized complete block design; negative control (NC: basal diet, no challenge), positive control (PC: basal diet, challenge), and SYP (basal diet + Saccharomyces yeast postbiotics at 175 g/ton, challenge). On d 7, PC and SYP were orally inoculated with F18+ E. coli, whereas NC received saline. On d 28, pigs were euthanized for sampling of the jejunum to analyze the mucosal microbiota, oxidative stress, immune status, and intestinal morphology. The PC reduced (P < 0.05) growth performance compared to NC. The SYP improved (P < 0.05) fecal score from d 7-18 when compared with PC. SYP reduced (P < 0.05) protein carbonyl, reduced (P < 0.05) gene expression of Toll-like receptor 4, and increased (P < 0.05) gene expression of mammalian target of rapamycin, compared with PC. CONCLUSIONS Challenge with F18+ E. coli negatively impacted jejunal mucosa-associated microbiota and jejunal morphology, affecting growth performance. Saccharomyces yeast postbiotics could reduce the negative effects associated with F18+ E. coli infection.
Collapse
Affiliation(s)
- Alexa R Gormley
- Department of Animal Science, North Carolina State University, 116 Polk Hall, 120 W Broughton Dr, Raleigh, NC, 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, 120 W Broughton Dr, Raleigh, NC, 27695, USA
| | - Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, 120 W Broughton Dr, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, 120 W Broughton Dr, Raleigh, NC, 27695, USA.
| |
Collapse
|
10
|
Huaman SOB, de Souza FA, Bonato MA, Dias CP, Callegari MA, Oba A, de Carvalho RH, da Silva CA. Effects of prebiotic and multispecies probiotic supplementation on the gut microbiota, immune function, and growth performance of weaned piglets. PLoS One 2024; 19:e0313475. [PMID: 39570882 PMCID: PMC11581253 DOI: 10.1371/journal.pone.0313475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024] Open
Abstract
In this study, we evaluated the impact of yeast cell wall prebiotics and multispecies probiotics on the gut microbiota, immune response, and growth performance of weaned piglets, as alternatives to antibiotics as growth promoters (AGPs). A randomized complete block design was employed, involving 160 piglets divided into four treatment groups during the nursery phase. The treatments applied throughout the experimental period were as follows: CONT+ = basal diet with halquinol (AGP); YCW = basal diet with yeast cell wall (cell wall of Saccharomyces cerevisiae yeast); SIM+ = basal diet with yeast cell wall + multispecies probiotic (Bacillus subtilis (2.0 x 109 CFU/g), Bacillus coagulans (5.0 x 108 CFU/g), Clostridium butyricum (5.0 x 107 CFU/g), and Bacillus licheniformis (2.0 x 109 CFU/g)); SIM- = basal diet with yeast cell wall + multispecies probiotic (half dose). The parameters assessed included daily feed intake, weight gain, feed conversion ratio (FCR), diarrhea score, serum cytokine levels, and chemokine concentrations, as well as microbiota analysis. During the 21 to 63-day study period, only FCR differed significantly (p = 0.0076). CONT+ and PREB had superior FCRs of 1.543 and 1.585, while SIM- had the least favorable FCR at 1.654. At 35 days, IL-10 levels were greater in the SIM- group, showing a 271.25% increase over those in the other groups. By 49 days, the IL-8 concentration was lower in the PREB group than in the CONT+ group, with a reduction of 247%, while the IL-8 concentrations in the SIM+ and SIM- groups were not significantly different from those in the other groups. The Firmicutes/Bacteroidetes (F/B) ratio in the CONT+ group was lower than that in the PREB, SIM+, and SIM- treatment groups. The Lactobacillaceae family was more abundant in the SIM+ treatment, followed by the SIM- and PREB treatments. The CONT+ treatment had the lowest abundance. The abundance of the genus Lactobacillus differed between the CONT+ group and the PREB, SIM+, and SIM- treatment groups. Prebiotics, used either alone or combined with probiotics, serve as effective substitutes for AGPs, boosting piglets' health and performance throughout the nursery phase.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandre Oba
- Department of Animal Science, State University of Londrina, Londrina, Paraná, Brazil
| | - Rafael Humberto de Carvalho
- Department of Animal Science, State University of Londrina, Londrina, Paraná, Brazil
- Akei Animal Research, Fartura, São Paulo, Brazil
| | - Caio Abércio da Silva
- Department of Animal Science, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
11
|
Palumbo F, Trevisi P, Correa F, Bee G, Girard M. Increasing the level of hemicelluloses in the lactation diet affects the faecal microbiota of sows and their piglets without affecting their performances. Anim Microbiome 2024; 6:68. [PMID: 39563440 DOI: 10.1186/s42523-024-00354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Specific sources of dietary fibres in sow gestation and lactation diets, such as inulin or wheat bran, have been shown to affect both the sow and its litter health by modulating the piglet's intestinal microbial population and composition. However, only a few studies have reported the effects of some specific fractions of the cell wall of the plants in the sow's lactation diet. Therefore, this study investigates the effect of increasing the level of HCs in a sow's lactation diet on the nutrient apparent total tract digestibility (ATTD), the faecal volatile fatty acid (VFA) profile, the microbiota of the sow and the microbiota and the performances of slow-growing (SG) and fast-growing (FG) piglets. RESULTS Increasing HCs level increased (P < 0.05) the proportions of butyrate and valerate on day 3, and the ATTD of acid detergent fibres (ADF), neutral detergent fibres (NDF), and gross energy and decreased (P < 0.05) the proportion of propionate on day 17, and the ATTD of crude protein. The beta diversity was affected (r2 = 0.11; P = 0.02) by the maternal dietary treatments with 11 common genera differing (P < 0.05) in the sow's faecal microbiota, and five in the piglet's microbiota. Regardless of the maternal dietary treatment, SG piglets had a lower (P < 0.05) proportion of isobutyrate and isovalerate, a lower (P < 0.05) abundance of Lachnospiraceae_XPB1014_group, Enterococcus, and Succinovibrio genera, and a greater (P < 0.05) abundance of Olsenella than FG piglets. CONCLUSIONS Increased HCs level in a sow's lactation diet affects the ATTD of nutrients, the faecal VFA and microbiota profiles of the sows with limited effects on SG and FG piglets' faecal microbiota and no effects on the performance or VFA profile of these piglets.
Collapse
Affiliation(s)
- Francesco Palumbo
- Swine Research Group, Agroscope, 1725, Posieux, Switzerland
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Giuseppe Bee
- Swine Research Group, Agroscope, 1725, Posieux, Switzerland
| | - Marion Girard
- Swine Research Group, Agroscope, 1725, Posieux, Switzerland.
| |
Collapse
|
12
|
Zhang J, Chen Y, Guo X, Li X, Zhang R, Wang M, Zhu W, Yu K. The gut microbial metabolite indole-3-aldehyde alleviates impaired intestinal development by promoting intestinal stem cell expansion in weaned piglets. J Anim Sci Biotechnol 2024; 15:150. [PMID: 39511673 PMCID: PMC11545576 DOI: 10.1186/s40104-024-01111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Weaning stress-induced diarrhea is widely recognized as being associated with gut microbiota dysbiosis. However, it has been challenging to clarify which specific intestinal microbiota and their metabolites play a crucial role in the antidiarrhea process of weaned piglets. RESULTS In this study, we first observed that piglets with diarrhea exhibited a lower average daily gain and higher diarrhea score, and elevated levels of lipopolysaccharide (LPS) and D-lactate (D-LA) compared to healthy piglets. Subsequently, we analyzed the differences in intestinal microbial composition and metabolite levels between healthy and diarrheal weaned piglets. Diarrheal piglets demonstrated intestinal microbiota dysbiosis, characterized primarily by a higher Firmicutes to Bacteroidota ratio, a deficiency of Lactobacillus amylovorus and Lactobacillus reuteri, and an increased abundance of Bacteroides sp.HF-5287 and Bacteroides thetaiotaomicron. Functional profiling of the gut microbiota based on Kyoto Encyclopedia of Genes and Genomes (KEGG) data was performed, and the results showed that tryptophan metabolism was the most significantly inhibited pathway in piglets with diarrhea. Most tryptophan metabolites were detected at lower concentrations in diarrheal piglets than in healthy piglets. Furthermore, we explored the effects of dietary indole-3-aldehyde (IAld), a key tryptophan metabolite, on intestinal development and gut barrier function in weaned piglets. Supplementation with 100 mg/kg IAld in the diet increased the small intestine index and improved intestinal barrier function by promoting intestinal stem cell (ISC) expansion in piglets. The promotion of ISC expansion by IAld was also confirmed in porcine intestinal organoids. CONCLUSIONS These findings revealed that intestinal microbial tryptophan metabolite IAld alleviates impaired intestinal development by promoting ISC expansion in weaned piglets.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yahui Chen
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Guo
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruofan Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
- Wujiang Animal Health Inspection Institute, Suzhou, 215200, China
| | - Mengting Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
13
|
Duarte ME, Deng Z, Kim SW. Effects of dietary Lactobacillus postbiotics and bacitracin on the modulation of mucosa-associated microbiota and pattern recognition receptors affecting immunocompetence of jejunal mucosa in pigs challenged with enterotoxigenic F18 + Escherichia coli. J Anim Sci Biotechnol 2024; 15:139. [PMID: 39390608 PMCID: PMC11468193 DOI: 10.1186/s40104-024-01098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (E. coli) is a threat to humans and animals that causes intestinal disorders. Antimicrobial resistance has urged alternatives, including Lactobacillus postbiotics, to mitigate the effects of enterotoxigenic E. coli. METHODS Forty-eight newly weaned pigs were allotted to NC: no challenge/no supplement; PC: F18+ E. coli challenge/no supplement; ATB: F18+ E. coli challenge/bacitracin; and LPB: F18+ E. coli challenge/postbiotics and fed diets for 28 d. On d 7, pigs were orally inoculated with F18+ E. coli. At d 28, the mucosa-associated microbiota, immune and oxidative stress status, intestinal morphology, the gene expression of pattern recognition receptors (PRR), and intestinal barrier function were measured. Data were analyzed using the MIXED procedure in SAS 9.4. RESULTS PC increased (P < 0.05) Helicobacter mastomyrinus whereas reduced (P < 0.05) Prevotella copri and P. stercorea compared to NC. The LPB increased (P < 0.05) P. stercorea and Dialister succinatiphilus compared with PC. The ATB increased (P < 0.05) Propionibacterium acnes, Corynebacterium glutamicum, and Sphingomonas pseudosanguinis compared to PC. The PC tended to reduce (P = 0.054) PGLYRP4 and increased (P < 0.05) TLR4, CD14, MDA, and crypt cell proliferation compared with NC. The ATB reduced (P < 0.05) NOD1 compared with PC. The LPB increased (P < 0.05) PGLYRP4, and interferon-γ and reduced (P < 0.05) NOD1 compared with PC. The ATB and LPB reduced (P < 0.05) TNF-α and MDA compared with PC. CONCLUSIONS The F18+ E. coli challenge compromised intestinal health. Bacitracin increased beneficial bacteria showing a trend towards increasing the intestinal barrier function, possibly by reducing the expression of PRR genes. Lactobacillus postbiotics enhanced the immunocompetence of nursery pigs by increasing the expression of interferon-γ and PGLYRP4, and by reducing TLR4, NOD1, and CD14.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
14
|
Zhang H, Yan S, Du R, Xue Y, Yao W, Teligun, Zhao Y, Li Y, Bao H, Cao S, Li X, Bao S, Song Y. Cadmium exposure promotes inflammation through the PPAR signaling pathway in the small intestine and colon of Hu sheep. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117004. [PMID: 39270416 DOI: 10.1016/j.ecoenv.2024.117004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
With the increase of cadmium content in the environment, the losses caused by cadmium-induced intestinal diseases to animal husbandry are increasing year by year. However, most of the on-going research activities focus on zoonotic diseases rather than exploring the mechanisms of animal disease occurrence from an anthropogenic environmental perspective. In this study, stressed Hu sheep under cadmium environmental exposure were selected to explore the mechanism of inflammatory bowel disease development. 16 s, untargeted metabolomics and transcriptomic multiomics were used to analyze the changes of their intestinal tract and intestinal contents. The results showed that the beneficial microorganisms (s_Ruminococcus_sp) in the Cd group were significantly decreased and the potentially harmful microorganisms were significantly enriched, and the changes of these microorganisms affected the changes of metabolites (caprylic acid) to a certain extent, resulting in a decrease in fatty acids in the intestine. Due to the combined effect of cadmium ion and fatty acid reduction, the PPAR signaling pathway was inhibited, and the fatty acid transport and binding were further reduced, causing very serious damage to the intestine. We revealed for the first time the mechanism of intestinal injury in Hu sheeps under cadmium environmental exposure and provided new prevention and treatment methods of intestinal diseases under the environmental exposure to trace metals.
Collapse
Affiliation(s)
- Huimin Zhang
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Shuo Yan
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Ruilin Du
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yue Xue
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Wenna Yao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Teligun
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yulong Zhao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yongfa Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Hanggai Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Shuo Cao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Xihe Li
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China.
| | - Siqin Bao
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China.
| | - Yongli Song
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China.
| |
Collapse
|
15
|
Tao A, Wang J, Luo B, Liu B, Wang Z, Chen X, Zou T, Chen J, You J. Research progress on cottonseed meal as a protein source in pig nutrition: An updated review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:220-233. [PMID: 39281049 PMCID: PMC11402386 DOI: 10.1016/j.aninu.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/24/2024] [Accepted: 03/30/2024] [Indexed: 09/18/2024]
Abstract
At a global level, the supply of protein sources is insufficient to support the current magnitude of pig production. Moreover, given the exorbitant expense of conventional protein feed options like soybean meal and fish meal, it becomes imperative to promptly explore alternative sources of protein feed for the sustainable advancement of the pig industry. Cottonseed meal, a by-product from the extraction of cottonseed oil, exhibits significant potential as a protein source for pig feed owing to its high protein content, high yield, low cost, well-balanced amino acid composition, and sufficient accessibility. However, cottonseed meal possesses several anti-nutritional factors, especially gossypol, which adversely affect growth and reproductive performance, resulting in the limited utilization of cottonseed meal in pig feed. To maximize the benefits of cottonseed meal and promote its application in pig production, it is imperative to acquire comprehensive knowledge regarding its nutritional value and current utilization. In this review, we initially presented a summary of the nutritional values of cottonseed meal, primary anti-nutritional factors, and effective approaches for improving its utilization as a protein source feed. Subsequently, we comprehensively summarized the latest research progress of cottonseed meal application in pig nutrition over the past decade. The outcome of this review serves as a theoretical foundation and practical guidance for the research and application of cottonseed meal in pig nutrition and promotes the reduction of soybean meal utilization in the pig industry.
Collapse
Affiliation(s)
- An Tao
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiahao Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Luo
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bowen Liu
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zirui Wang
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xingping Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
16
|
Gormley A, Garavito-Duarte Y, Kim SW. The Role of Milk Oligosaccharides in Enhancing Intestinal Microbiota, Intestinal Integrity, and Immune Function in Pigs: A Comparative Review. BIOLOGY 2024; 13:663. [PMID: 39336091 PMCID: PMC11428639 DOI: 10.3390/biology13090663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
The objective of this review was to identify the characteristics and functional roles of milk coproducts from human, bovine, and porcine sources and their impacts on the intestinal microbiota and intestinal immunity of suckling and nursery pigs. Modern pig production weans piglets at 3 to 4 weeks of age, which is earlier than pigs would naturally be weaned outside of artificial rearing. As a result, the immature intestines of suckling and nursery pigs face many challenges associated with intestinal dysbiosis, which can be caused by weaning stress or the colonization of the intestines by enteric pathogens. Milk oligosaccharides are found in sow milk and function as a prebiotic in the intestines of pigs as they cannot be degraded by mammalian enzymes and are thus utilized by intestinal microbial populations. The consumption of milk oligosaccharides during suckling and through the nursery phase can provide benefits to young pigs by encouraging the proliferation of beneficial microbial populations, preventing pathogen adhesion to enterocytes, and through directly modulating immune responses. Therefore, this review aims to summarize the specific functional components of milk oligosaccharides from human, bovine, and porcine sources, and identify potential strategies to utilize milk oligosaccharides to benefit young pigs through the suckling and nursery periods.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (A.G.); (Y.G.-D.)
| |
Collapse
|
17
|
Duarte ME, Kim SW. Efficacy of Saccharomyces yeast postbiotics on cell turnover, immune responses, and oxidative stress in the jejunal mucosa of young pigs. Sci Rep 2024; 14:19235. [PMID: 39164530 PMCID: PMC11336137 DOI: 10.1038/s41598-024-70399-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024] Open
Abstract
This study aimed to determine the effects of Saccharomyces yeast postbiotics on cell turnover, immune responses, and oxidative stress in the jejunal mucosa of pigs. Thirty-two newly weaned pigs at 6.05 ± 0.24 kg were assigned to two dietary treatments based on a randomized complete block design. The treatments were control group receiving a basal diet and a group supplemented with Saccharomyces yeast postbiotics (175 g/ton diet) in the basal diet. After 35 d of the study, pigs were euthanized and jejunal mucosa were collected to assess immune status, oxidative stress, barrier markers, cell proliferation, and apoptosis. Saccharomyces yeast postbiotics reduced (P < 0.05) the fecal score from d 3 to d 7 and tended to increase the gene expression of interferon-γ (IFN-γ) (P = 0.071) and mammalian/mechanistic target of rapamycin (mTOR) (P = 0.080), decrease the gene expression of B-cell lymphoma 2-associated X protein 1 (BAX1) (P < 0.05), tended to decrease the gene expression of serum and glucocorticoid-induced protein kinase 1 (SGK1) (P = 0.066), increased (P < 0.05) cell proliferation in the crypts, and tended to increase the villus height (P = 0.078) and crypt depth (P = 0.052) in the jejunum. In conclusion, the supplementation of Saccharomyces yeast postbiotics in nursery diets reduced diarrhea within the first week after weaning and provided protection to the villi in the jejunum by enhancing the immune responses of nursery pigs, promoting crypt cell proliferation, and reducing the expression of genes associated with apoptosis without affecting inflammatory and oxidative stress status in the jejunum of the nursery pigs.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
18
|
Choi H, Kim SW. Dietary Intervention of Benzoic Acid for Intestinal Health and Growth of Nursery Pigs. Animals (Basel) 2024; 14:2394. [PMID: 39199928 PMCID: PMC11350768 DOI: 10.3390/ani14162394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
The objectives of this review are to investigate how benzoic acid can mitigate the negative effects of weaning stress, improve the intestinal microbiota, intestinal health, and growth of nursery pigs, determine the optimal dose level of benzoic acid for the growth rate in nursery pigs, and compare the efficacy of benzoic acid and other acids in pig feeds. After weaning, pigs are exposed to less lactose and solid feed with high acid-binding capacity at infrequent intervals, causing an increase in digesta pH, reducing protein digestion, and increasing ammonia-producing bacteria in the stomach. Benzoic acid supplementation has improved the intestinal health and growth of nursery pigs through its antimicrobial properties and pH reduction in the digesta. The positive modulation of luminal microbiota in the small intestine of pigs by benzoic acid improves intestinal morphology and enhances nutrient utilization, especially nitrogen, of nursery pigs. Benzoic acid supplementation of up to 1% in feeds also increases hippuric acid contents in the urine of nursery pigs, decreasing urinary pH, which is related to ammonia emission and barn conditions in intensive pig production. Supported by the beneficial impacts of benzoic acid, the growth performance of nursery pigs was also improved. However, excessive benzoic acid (over 2.5% up to 5%) in feeds reduces the growth performance of nursery pigs. Thus, this review conducted a meta-analysis of the results from 16 papers to determine the optimal dose level of benzoic acid for body weight gain of nursery pigs, which was found to be 0.60%. The efficacy of benzoic acid was similar to that of other organic acids, including citric acid, fumaric acid, formic acid, and formate salts. Collectively, benzoic acid supplementation can positively modulate the luminal and mucosal microbiota in the small intestine, increase nutrient utilization and intestinal health, decrease urinary pH, and improve the growth performance of nursery pigs.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
19
|
Liang J, Zeng Y, Hu H, Yin Y, Zhou X. Prevotella copri Improves Selenium Deposition and Meat Quality in the longissimus dorsi Muscle of Fattening Pigs. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10340-1. [PMID: 39105886 DOI: 10.1007/s12602-024-10340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 08/07/2024]
Abstract
Selenium is among the important trace elements that influence the quality of meat. Although it has been established that the gut microbiota is closely associated with selenium metabolism, it has yet to be determined whether these microbes influence the accumulation of selenium in muscles. To identify gut microbiota that potentially influence the deposition of selenium in muscles, we compared the colonic microbial composition of pigs characterized by high and low contents of selenium in the longissimus dorsi muscle and accordingly detected a higher abundance of the bacterium Prevotella copri (P. copri) in pigs with a higher muscle selenium content. To verify the effect of P. copri, 16 pigs weighing approximately 61 kg were fed either a basal diet or a basal diet supplemented with P. copri (1.0 × 1010 CFU/kg feed) for 45 days. The results revealed significant increases in the contents of selenium and selenoprotein in the serum and longissimus dorsi muscle of fattening pigs fed the P. copri-supplemented diet. Moreover, supplementing the feed of pigs with P. copri was observed to promote significant improvement in the antioxidant capacity and quality of meat, including drip loss, pH, and meat color. In conclusion, our findings in this study indicate that P. copri has potential utility as a dietary supplement for improving the selenium status and meat quality in fattening pigs.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture the Chinese Academy of Sciences, Changsha, 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yan Zeng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture the Chinese Academy of Sciences, Changsha, 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hong Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture the Chinese Academy of Sciences, Changsha, 410125, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Xihong Zhou
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture the Chinese Academy of Sciences, Changsha, 410125, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410208, China.
| |
Collapse
|
20
|
Camargo A, Páez-Triana L, Camargo D, García-Corredor D, Pulido-Medellín M, Camargo M, Ramírez JD, Muñoz M. Carriage of Clostridium perfringens in domestic and farm animals across the central highlands of Colombia: implications for gut health and zoonotic transmission. Vet Res Commun 2024; 48:2857-2862. [PMID: 38907814 DOI: 10.1007/s11259-024-10345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 06/24/2024]
Abstract
Clostridium perfringens inhabits the guts of humans and animal species. C. perfringens can proliferate and express an arsenal of toxins, promoting the development of multiple gut illnesses. Healthy animals carrying C. perfringens represents a risk of transmission to other animals or humans through close contact and an increased likelihood of acquisition of toxin plasmids. The aim of this study was to evaluate the frequency of C. perfringens carriage in domestic and farm animals in the central highlands of Colombia. C. perfringens was detected in six animal species using PCR targeting alpha toxin (cpa) and 16S ribosomal RNA (16S-rRNA) genes from 347 fecal samples collected in two Departments: 177 from farm animals of Boyacá and 170 from domestic animals of both Cundinamarca and Boyacá. The overall frequency of C. perfringens detection was 22.1% (n = 77/347), with the highest frequency observed in cats 34.2% (n = 41/120), followed by dogs 30.0% (n = 15/50). The lowest frequency was detected in ruminants: goats 11.1% (n = 3/27), sheep 8.0% (n = 4/50) and cattle 6.0% (n = 6/50). Domestic animals showed a higher frequency of C. perfringens carriage than farm animals. This difference could be associated with dietary patterns, as domestic animals have diets rich in proteins and carbohydrates, while ruminants have low-carbohydrate diets, resulting in high production of endopeptidase-type enzymes and differences in pH due to the anatomy of gastrointestinal tract, which can influence bacterial proliferation. These findings indicate a potential risk of transmission of C. perfringens among animals and from animals to humans through close contact.
Collapse
Affiliation(s)
- Anny Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Diego Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Diego García-Corredor
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia
| | - Martin Pulido-Medellín
- Grupo de Investigación en Medicina Veterinaria y Zootecnia (GIDIMEVETZ), Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Funza, Cundinamarca, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
21
|
Jin S, Xu H, Yang C, O K. Regulation of oxidative stress in the intestine of piglets after enterotoxigenic Escherichia coli (ETEC) infection. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119711. [PMID: 38574824 DOI: 10.1016/j.bbamcr.2024.119711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is recognized globally as a major gastrointestinal pathogen that impairs intestinal function. ETEC infection can lead to oxidative stress and disruption of intestinal integrity. The present study investigated the mechanism of increased oxidative stress and whether restoration of antioxidant defense could improve intestinal integrity in a piglet model with ETEC infection. Weaned piglets were divided into three groups: control, ETEC-infection and ETEC-infection with antibiotic supplementation. The infection caused a significant elevation of serum diamine oxidase activity and D-lactate levels coupled with a reduced intestinal (mid-jejunum) tight-junction protein expression, suggesting increased intestinal permeability and impaired gut function. The infection also inhibited nuclear factor erythroid 2-related factor 2 (Nrf2) activation, decreased the expression of glutathione synthesizing enzymes, superoxide dismutase-1 (SOD1), and heme oxygenase-1 (HO-1) in the intestine. This led to a decreased antioxidant glutathione level and an increased lipid peroxidation in the intestine and serum, indicating oxidative stress. The infection stimulated the expression of pro-inflammatory cytokines (IL-6, TNF-α). Antibiotic supplementation attenuated oxidative stress, in part, through restoration of glutathione levels and antioxidant enzyme expression in the intestine. Such a treatment enhanced tight-junction protein expression and improved intestinal function. Furthermore, induction of oxidative stress in Caco2 cells by hydrogen peroxide inhibited tight-junction protein expression and stimulated inflammatory cytokine expression. Glutathione supplementation effectively attenuated oxidative stress and restored tight-junction protein expression. These results suggest that downregulation of Nrf2 activation may weaken antioxidant defense and increase oxidative stress in the intestine. Mitigation of oxidative stress can improve intestinal function after infection.
Collapse
Affiliation(s)
- Shunshun Jin
- Department of Animal Science, University of Manitoba, Canada; St. Boniface Hospital Research Centre, Canada
| | - Haoxiang Xu
- Department of Animal Science, University of Manitoba, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Canada
| | - Karmin O
- Department of Animal Science, University of Manitoba, Canada; St. Boniface Hospital Research Centre, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada.
| |
Collapse
|
22
|
Wang Y, Zhou J, Cao N, Wang L, Tu J, Zeng X, Qiao S. Dietary crude protein time-dependently modulates the bacterial community and metabolites and changes dietary nutrient efficiency in growing pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:1-10. [PMID: 38434773 PMCID: PMC10904165 DOI: 10.1016/j.aninu.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 03/05/2024]
Abstract
The reduced nutrient digestibility of low-protein (LP) diets has been shown to be caused by the weakened fermentative capacity of the post-gut flora. The dynamic regulation of dietary protein contents on post-gut microbial population and fermentative metabolism is unclear. Twelve growing barrows (19.9 ± 0.8 kg) fitted with a T-cannula at the blind end of the cecum were randomly administered a high-protein (HP, 21.5% crude protein [CP]) diet or an LP (15.5% CP) diet for 28 d. The cecal content and feces were collected at d 1, 14, and 28 of the experiment for microflora structures and metabolite concentrations analysis. The nutrient digestibility coefficient and plasma biochemical parameters were also determined. Compared with the HP treatment, the LP treatment showed decreased plasma urea nitrogen concentration and apparent total tract digestibility of dry matter, gross energy, and CP (P < 0.01). In addition, urinary nitrogen losses, total nitrogen losses, and daily nitrogen retention in the LP treatment were lower than those in the HP treatment (P < 0.01), and the nitrogen retention-to-nitrogen intake ratio in the LP treatment was increased (P < 0.01). The HP group showed increased cecal total short-chain fatty acids (SCFA) concentration and fecal propionate, butyrate, and total SCFA concentrations (P < 0.05) on d 14 and 28, which may be mainly related to the elevated abundance of SCFA-producing bacteria, such as Ruminococcus, Lactobacillus, and Prevotella (P < 0.05). Probiotics, such as Bifidobacterium, Bacteroidales S24-7, and Rikenella, enriched in the LP treatment possibly contributed to reduced plasma endotoxin content. The differences in the abundances of almost all the above-mentioned flora appeared on d 28 but not d 14. Likewise, differences in the Simpson and Shannon indices and clustering patterns of the microbiota between treatments were also only observed on d 28. To sum up, in a time-dependent manner, the LP diet increased probiotics with gut-improving functions and decreased SCFA-producing bacteria, which may cause enhanced intestine health and reduced nutrient digestibility.
Collapse
Affiliation(s)
- Yuming Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Junyan Zhou
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Ning Cao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Wang
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Jiayu Tu
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China
| |
Collapse
|
23
|
Kim HY, Moon JO, Kim SW. Development and application of a multi-step porcine in vitro system to evaluate feedstuffs and feed additives for their efficacy in nutrient digestion, digesta characteristics, and intestinal immune responses. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:265-282. [PMID: 38800740 PMCID: PMC11127235 DOI: 10.1016/j.aninu.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024]
Abstract
In vitro model provides alternatives to the use of live animals in research. In pig nutrition, there has been a tremendous increase in in vivo research over the decades. Proper utilization of in vitro models could provide a screening tool to reduce the needs of in vivo studies, research duration, cost, and the use of animals and feeds. This study aimed to develop a multi-step porcine in vitro system to simulate nutrient digestion and intestinal epithelial immune responses affected by feedstuffs and feed additives. Seven feedstuffs (corn, corn distillers dried grains with solubles [corn DDGS], barley, wheat, soybean meal, soy protein concentrates, and Corynebacterium glutamicum cell mass [CGCM]), feed enzymes (xylanase and phytase), and supplemental amino acids (arginine, methionine, and tryptophan), were used in this in vitro evaluation for their efficacy on digestibility, digesta characteristics, and intestinal health compared with the results from previously published in vivo studies. All in vitro evaluations were triplicated. Data were analyzed using Mixed procedure of SAS9.4. Evaluations included (1) nutrient digestibility of feedstuffs, (2) the effects of feed enzymes, xylanase and phytase, on digestibility of feedstuffs and specific substrates, and (3) the effects of amino acids, arginine, tryptophan, and methionine, on anti-inflammatory, anti-oxidative, and anti-heat stress statuses showing their effects (P < 0.05) on the measured items. Differences in dry matter and crude protein digestibility among the feedstuffs as well as effects of xylanase and phytase were detected (P < 0.05), including xylo-oligosaccharide profiles and phosphorus release from phytate. Supplementation of arginine, tryptophan, and methionine modulated (P < 0.05) cellular inflammatory and oxidative stress responses. The use of this in vitro model allowed the use of 3 experimental replications providing sufficient statistical power at P < 0.05. This indicates in vitro models can have increased precision and consistency compared with in vivo animal studies.
Collapse
Affiliation(s)
- Hee Yeon Kim
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Jun-Ok Moon
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
24
|
Liu G, Liu X, Wang F, Jia G, Zhao H, Chen X, Wang J. Effects of Dietary Glutamine Supplementation on the Modulation of Microbiota and Th17/Treg Immune Response Signaling Pathway in Piglets after Lipopolysaccharide Challenge. J Nutr 2024; 154:1711-1721. [PMID: 38367809 DOI: 10.1016/j.tjnut.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Glutamine (Gln) has an important effect on the growth performance and immune function of piglets. However, the effect of Gln on intestinal immunity in piglets through modulating the signaling pathways of the helper T cells 17 (Th17)/regulatory T cells (Treg) immune response has not been reported. OBJECTIVE This study aimed to determine the effect of Gln on piglet growth performance and immune stress response and its mechanism in piglets. METHODS Twenty-four weaned piglets were randomly assigned to 4 treatments with 6 replicates each, using a 2 × 2 factorial arrangement: diet (basal diet or 1% Gln diet) and immunological challenge [saline or lipopolysaccharide (LPS)]. After 21 d, half of the piglets on the basal diet and 1% Gln diet received the intraperitoneal injection of LPS and the other half received the same volume of normal saline. RESULTS The results showed that Gln increased average daily feed intake and average daily weight gain in comparison with the control group (P < 0.05). Dietary Gln increased the villus height, villus height-to-crypt depth ratio, and the abundance of Bacteroidetes, Lactobacillus sp., and Ruminococcus sp. while reducing the abundance of Firmicutes, Clostridium sensu stricto 1 sp., and Terrisporobacter sp. (P < 0.05). Furthermore, Gln increased the concentration of short-chain fatty acids in the colon and the expression of genes of interleukin (IL)-10, transforming growth factor-beta-1, forkhead box P3 while downregulating the expression of genes of IL-6, IL-8, IL-1β, tumor necrosis factor-α, IL-17A, IL-21, signal transducer and activator of transcription 3, and rar-related orphan receptor c in ileum (P < 0.05). Correlation analysis demonstrated a strong association between colonic microbiota, short-chain fatty acids, and ileal inflammatory cytokines. CONCLUSIONS These results suggest that dietary Gln could improve growth performance and attenuate LPS-challenged intestinal inflammation by modulating microbiota and the Th17/Treg immune response signaling pathway in piglets.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China.
| | - Xinlian Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Fang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
García Viñado I, Correa F, Trevisi P, Bee G, Ollagnier C. A non-invasive tool to collect small intestine content in post weaning pigs: validation study. Sci Rep 2024; 14:9964. [PMID: 38693207 PMCID: PMC11063154 DOI: 10.1038/s41598-024-59950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The Capsule for Sampling (CapSa) is an ingestible capsule that collects small intestine content while transiting through the natural digestive pathway. In this study, 14 Swiss Large White pigs weighing less than 12 kg (Category < 12 kg) and 12 weighing between 12 and 20 kg (Category [12-20 kg]) were given two CapSas and monitored for three days. The animals were euthanized for post-mortem sampling, allowing us to directly obtain gut microbiota samples from the gastrointestinal tract. This post-mortem approach enabled a direct comparison between the microbial content from the gut and the samples collected via the CapSas, and it also facilitated precise identification of the CapSas' sampling sites within the gastrointestinal tract. For the category under 12 kg, only 2.3% of the administered CapSas were recovered from the feces. In contrast, in the 12-20 kg category, 62.5% of the CapSas were successfully retrieved from the feces within 48 h. Of these recovered CapSas, 73.3%-equating to 11 capsules from eight pigs-had a pH > 5.5 and were therefore selected for microbiome analysis. Bacterial composition of the CapSas was compared with that of the three segments of the small intestine, the large intestine and feces of the corresponding pig. The results were tested using a PERMANOVA model (Adonis) including sample type as a factor, and then pairwise comparisons were made. The bacterial composition found in the CapSas differed from that of the large intestine and feces (P < 0.01), while it did not differ from the first segment of the small intestine (P > 0.10). This study provides evidence that the CapSa effectively samples the intestinal microbiota from the upper section of the small intestine in post-weaning pigs. Furthermore, it was found that the collection of CapSas could only be successfully achieved in pigs classified within the heavier weight category.
Collapse
Affiliation(s)
- Inés García Viñado
- Pig Research Unit, Agroscope, 1725, Posieux, Switzerland
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Giuseppe Bee
- Pig Research Unit, Agroscope, 1725, Posieux, Switzerland
| | | |
Collapse
|
26
|
Duarte ME, Parnsen W, Zhang S, Abreu MLT, Kim SW. Low crude protein formulation with supplemental amino acids for its impacts on intestinal health and growth performance of growing-finishing pigs. J Anim Sci Biotechnol 2024; 15:55. [PMID: 38528636 PMCID: PMC10962153 DOI: 10.1186/s40104-024-01015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Low crude protein (CP) formulations with supplemental amino acids (AA) are used to enhance intestinal health, reduce costs, minimize environmental impact, and maintain growth performance of pigs. However, extensive reduction of dietary CP can compromise growth performance due to limited synthesis of non-essential AA and limited availability of bioactive compounds from protein supplements even when AA requirements are met. Moreover, implementing a low CP formulation can increase the net energy (NE) content in feeds causing excessive fat deposition. Additional supplementation of functional AA, coupled with low CP formulation could further enhance intestinal health and glucose metabolism, improving nitrogen utilization, and growth performance. Three experiments were conducted to evaluate the effects of low CP formulations with supplemental AA on the intestinal health and growth performance of growing-finishing pigs. METHODS In Exp. 1, 90 pigs (19.7 ± 1.1 kg, 45 barrows and 45 gilts) were assigned to 3 treatments: CON (18.0% CP, supplementing Lys, Met, and Thr), LCP (16.0% CP, supplementing Lys, Met, Thr, Trp, and Val), and LCPT (16.1% CP, LCP + 0.05% SID Trp). In Exp. 2, 72 pigs (34.2 ± 4.2 kg BW) were assigned to 3 treatments: CON (17.7% CP, meeting the requirements of Lys, Met, Thr, and Trp); LCP (15.0% CP, meeting Lys, Thr, Trp, Met, Val, Ile, and Phe); and VLCP (12.8% CP, meeting Lys, Thr, Trp, Met, Val, Ile, Phe, His, and Leu). In Exp. 3, 72 pigs (54.1 ± 5.9 kg BW) were assigned to 3 treatments and fed experimental diets for 3 phases (grower 2, finishing 1, and finishing 2). Treatments were CON (18.0%, 13.8%, 12.7% CP for 3 phases; meeting Lys, Met, Thr, and Trp); LCP (13.5%, 11.4%, 10.4% CP for 3 phases; meeting Lys, Thr, Trp, Met, Val, Ile, and Phe); and LCPG (14.1%, 12.8%, 11.1% CP for 3 phases; LCP + Glu to match SID Glu with CON). All diets had 2.6 Mcal/kg NE. RESULTS In Exp. 1, overall, the growth performance did not differ among treatments. The LCPT increased (P < 0.05) Claudin-1 expression in the duodenum and jejunum. The LCP and LCPT increased (P < 0.05) CAT-1, 4F2hc, and B0AT expressions in the jejunum. In Exp. 2, overall, the VLCP reduced (P < 0.05) G:F and BUN. The LCP and VLCP increased (P < 0.05) the backfat thickness (BFT). In Exp. 3, overall, growth performance and BFT did not differ among treatments. The LCPG reduced (P < 0.05) BUN, whereas increased the insulin in plasma. The LCP and LCPG reduced (P < 0.05) the abundance of Streptococcaceae, whereas the LCP reduced (P < 0.05) Erysipelotrichaceae, and the alpha diversity. CONCLUSIONS When implementing low CP formulation, CP can be reduced by supplementation of Lys, Thr, Met, Trp, Val, and Ile without affecting the growth performance of growing-finishing pigs when NE is adjusted to avoid increased fat deposition. Supplementation of Trp above the requirement or supplementation of Glu in low CP formulation seems to benefit intestinal health as well as improved nitrogen utilization and glucose metabolism.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Wanpuech Parnsen
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shihai Zhang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Márvio L T Abreu
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
27
|
Fan MZ, Kim SW. Modulation of Porcine Gut Microbiota and Microbiome: Hologenomic, Dietary, and Endogenous Factors. Pathogens 2024; 13:225. [PMID: 38535568 PMCID: PMC10974161 DOI: 10.3390/pathogens13030225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 02/11/2025] Open
Abstract
Global pig production contributes to about 35% of the world's meat production and consumption [...].
Collapse
Affiliation(s)
- Ming Z. Fan
- Department of Animal Biosciences, One Health Institute, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sung Woo Kim
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
28
|
Pico-Rodríguez JT, Martínez-Jarquín H, Gómez-Chávez JDJ, Juárez-Ramírez M, Martínez-Chavarría LC. Effect of Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) deletion on intestinal colonization and systemic dissemination in chickens. Vet Res Commun 2024; 48:49-60. [PMID: 37490241 PMCID: PMC10811122 DOI: 10.1007/s11259-023-10185-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Salmonella's virulence genes are located in two regions known as Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). SPI-1 allows the bacteria to invade the intestine, while SPI-2 is important for intracellular survival and replication, although it is also necessary for intestinal disease. The aim of this study was to evaluate the effect of the deletion of SPI-1 or SPI-2 genes on the intestinal and systemic salmonellosis using the avian model. Groups of chickens were orally infected with 1010 Colony-Forming Units (CFU) of S. Typhimurium SL1344 WT strain, as well as mutants ∆SPI-1 or ∆SPI-2. At different times post-infection, 5 chickens from each group were euthanized and examined postmortem. Cecum and liver were taken from each chicken for determination of CFU's, histopathological analysis and immunochemistry. Bacterial colonies were recovered from the liver and cecum samples infected with WT strain, while in the cultures from the organs infected with the mutant strains no colonies were recovered or were drastically affected in the ability to survive. In histopathological analysis, the WT strain produced lesions in liver and ceca, and it was detected by immunohistochemistry throughout the course of the infection. On the other hand, organs of chickens infected with ∆SPI-1 or ∆SPI-2 showed attenuated lesions and the immunohistochemistry revealed less bacteria compared to the WT strain. Taken together, our results show the importance of SPI-1 and SPI-2 genes for the complete intestinal and systemic disease in an in vivo avian model.
Collapse
Affiliation(s)
- Jwerlly Tatiana Pico-Rodríguez
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, México
| | - Hugo Martínez-Jarquín
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, México
| | - José de Jesús Gómez-Chávez
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, México
| | - Mireya Juárez-Ramírez
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, México
| | - Luary Carolina Martínez-Chavarría
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, México.
| |
Collapse
|
29
|
Liu H, Ma L, Fu J, Ma X, Gao Y, Xie Y, Yuan X, Wang Y, Yang W, Jiang S. Effect of zearalenone on the jejunum of weaned gilts through the Epac1/Rap1/JNK pathway. J Anim Sci 2024; 102:skae208. [PMID: 39051732 PMCID: PMC11367561 DOI: 10.1093/jas/skae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024] Open
Abstract
Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin produced by Fusarium strains that is harmful to the intestinal health of animals and is widely present in contaminated crops. The objective of this study was to investigate the potential therapeutic target of ZEN-induced jejunal damage in weaned gilts. Sixteen weaned gilts either received a basal diet or a basal diet supplemented with 3.0 mg/kg ZEN in a 32-d experiment. The results showed that ZEN at the concentration of 3.0 mg/kg diet activated the inflammatory response and caused oxidative stress of gilts (P < 0.05). ZEN exposure resulted in the upregulation (P < 0.05) of the Exchange protein directly activated by the cAMP 1/Ras-related protein1/c-Jun N-terminal kinase (Epac1/Rap1/JNK) signaling pathway in the jejunum of gilts in vivo and in the intestinal porcine epithelial cells in vitro. The cell viability, EdU-positive cells, and the mRNA expression of B-cell lymphoma-2 (Bcl-2) were decreased, whereas the reactive oxygen species production and the mRNA expressions of Bcl-2-associated X (Bax) and Cysteine-aspartic acid protease 3 (Caspase3) were increased (P < 0.05) by ZEN. However, ZEN increased the mRNA expression of Bcl-2 and decreased the mRNA expressions of Bax and caspase3 (P < 0.05) after the Epac1 was blocked. These results collectively indicated that a 3.0 mg ZEN /kg diet induced jejunal damage via the Epac1/Rap1/JNK signaling pathway.
Collapse
Affiliation(s)
- Heng Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Lulu Ma
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Chengdu, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jiawei Fu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Xiangyu Ma
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Yufei Gao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Yiping Xie
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Xuejun Yuan
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| | - Shuzhen Jiang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
30
|
Song YS, Ha DU, Park K, Kim BG. Dietary full-fat or defatted black soldier fly larvae can replace protein sources with no detrimental effect on growth performance or intestinal health of nursery pigs. J Anim Sci 2024; 102:skae333. [PMID: 39470409 PMCID: PMC11586662 DOI: 10.1093/jas/skae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/26/2024] [Indexed: 10/30/2024] Open
Abstract
This work aimed to determine the effects of dietary full-fat or defatted black soldier fly larvae (BSFL) to replace protein sources on growth performance, blood parameters, intestinal morphology, and intestinal microbiota in nursery pigs and to investigate the effects of dietary defatted BSFL at up to 30% at the expense of protein sources on growth performance in nursery pigs. In Exp. 1, a total of 36 barrows with an initial body weight of 7.0 kg (SD = 0.8) were allotted to three dietary treatments in a randomized complete block design with four replicate pens per treatment and three barrows per pen. A corn-soybean meal (SBM)-whey-based control diet was prepared with soy protein concentrate and fish meal as additional protein supplements. Two additional diets were prepared to include 20% full-fat BSFL or 20% defatted BSFL to replace soy protein concentrate and fish meal to maintain the same energy and nutrient concentrations in all diets. In the 28-d feeding trial, pigs fed the diet containing defatted BSFL tended to consume more feeds (P < 0.10) than other groups during days 14 to 28 and the overall period. On day 28, the serum blood urea nitrogen in pigs fed the control diet was less (P < 0.05) than that fed the full-fat or defatted BSFL, but fecal score and jejunal morphology did not differ among the treatment groups. Relative abundance of Mycoplasma in the ileal digesta was less (P < 0.05) in the pigs fed the diet containing full-fat or defatted BSFL compared with the control group. In Exp. 2, a total of 192 pigs with an initial body weight of 7.8 (SD = 1.2 kg) were randomly allotted to one of four dietary treatments in a randomized complete block design with six replicate pens per treatment and four barrows and four gilts per pen. A control diet was mainly based on corn, SBM, fermented SBM, fish meal, and spray-dried plasma protein (SDPP). Three additional diets were prepared to contain 10%, 20%, and 30% defatted BSFL to replace SBM, fermented SBM, fish meal, and SDPP to maintain for the same energy and nutrient concentrations. Average daily gain, average daily feed intake, gain:feed, and fecal score were not affected by increasing dietary defatted BSFL. Overall, dietary BSFL did not compromise growth performance or intestinal health in nursery pigs. BSFL can be used in nursery pig diets to replace other protein sources without negative effects.
Collapse
Affiliation(s)
- Yoon Soo Song
- Department of Animal Science, Konkuk University, Seoul, Republic of Korea
| | - Dong Uk Ha
- Department of Animal Science, Konkuk University, Seoul, Republic of Korea
| | - Kwanho Park
- Industrial Insect and Sericulture Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Beob Gyun Kim
- Department of Animal Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Zentek J, Vahjen W, Grześkowiak Ł, Martínez-Vallespín B, Holthausen JS, Saliu EM. The Gut Microbiome in Pigs and Its Impact on Animal Health. PRODUCTION DISEASES IN FARM ANIMALS 2024:157-177. [DOI: 10.1007/978-3-031-51788-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
Luo G, Gebeyew K, Zhou C, Tan Z, Yang W, Niu D, Ran T, Liu Y. The ileal microbiome and mucosal immune profiles in response to dietary supplementation of ultra-grinded Astragalus membranaceus in weaned goats. Front Microbiol 2023; 14:1309520. [PMID: 38179443 PMCID: PMC10764543 DOI: 10.3389/fmicb.2023.1309520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Weaning goats are susceptible to diarrhea and have weakened immune functions due to physiological, dietary and environmental stresses. Astragalus membranaceus (A. membranaceus), a traditional Chinese medicinal herb, has been shown to improve growth performance and immunity in weaned ruminants. However, the influence mechanism of A. membranaceus on intestinal microbiota and mucosal immunity in weaned goats is still unknown. This study investigated the effects of ultra-grinded A. membranaceus (UGAM) on the immune function and microbial community in the ileum of weaned goats. Eighteen healthy weaned Xiangdong black goats (BW, 5.30 ± 1.388 kg) were used in a study of completely randomized block design with 28 days long. The animals were randomly assigned to either a basal diet supplemented with 10 g/d of milk replacer (CON, n = 9) or the CON diet supplemented with 10 g/head UGAM (UGAM, n = 9). Supplementation of UGAM increased (p < 0.05) the plasma concentrations of total protein and albumin. Meanwhile, the addition of UGAM reduced (p < 0.05) the relative mRNA expression of the IL-6 gene (a marker of inflammation), indicating the potential immunomodulatory effect of UGAM. Moreover, the relative abundances of Verrucomicrobiota and Mycoplasma were lower (p < 0.05) in the ileum of goats supplemented with UGAM than CON. These findings suggest that dietary supplementation of UGAM may have enhanced the ileum health of weaned goats by reducing inflammation factor expression and reducing the relative abundance of pathogenic microbes. The observed beneficial effects of ultra-grinded A. membranaceus on ileal mucosal immune and the community of ileal microbiota indicate its potential to be used as a viable option for promoting the well-being of weaned goats under weaning stress.
Collapse
Affiliation(s)
- Guowang Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Dongyan Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Tao Ran
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yong Liu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, and Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, the Chinese Academy of Sciences, Changsha, Hunan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
33
|
Zhang J, Shu Z, Lv S, Zhou Q, Huang Y, Peng Y, Zheng J, Zhou Y, Hu C, Lan S. Fermented Chinese Herbs Improve the Growth and Immunity of Growing Pigs through Regulating Colon Microbiota and Metabolites. Animals (Basel) 2023; 13:3867. [PMID: 38136904 PMCID: PMC10740985 DOI: 10.3390/ani13243867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: the development of new antibiotic substitutes to promote pig growth and health has become an important way to solve the current dilemma and promote the pig industry. (2) Methods: to assess the effects of a fermented Chinese herbal (FCH) formula on the growth and immunity of growing pigs, 100 Duroc × Landrace × Yorshire three-way crossed growing pigs were randomly divided into control and treatment groups that were fed a basal diet, and a basal diet with 1% (group A), 2% (group B), and 3% (group C) FCH formulas, respectively. A sixty-day formal experiment was conducted, and their growth and serum indices, colonic microbiota, and metabolites were analyzed. (3) Results: the daily gain of growing pigs in groups A, B, and C increased by 7.93%, 17.68%, and 19.61%, respectively, and the feed-to-gain ratios decreased by 8.33%, 15.00%, and 14.58%, respectively. Serum immunity and antioxidant activities were significantly increased in all treatment groups. Particularly, adding a 2% FCH formula significantly changed the colon's microbial structure; the Proteobacteria significantly increased and Firmicutes significantly decreased, and the metabolite composition in the colon's contents significantly changed. (4) Conclusions: these results indicate that the FCH formula is a good feed additive for growing pigs, and the recommended addition ratio was 3%.
Collapse
Affiliation(s)
- Junhao Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Zhiheng Shu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Sixiao Lv
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Qingwen Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yuanhao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yingjie Peng
- Guangdong Chuangzhan Bona Agricultural Technology Co., Ltd., Guangning 526339, China;
| | - Jun Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Yi Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Chao Hu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| | - Shile Lan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Z.S.); (S.L.); (Q.Z.); (Y.H.); (J.Z.); (Y.Z.)
| |
Collapse
|
34
|
Correia AM, Genova JL, Saraiva A, Rocha GC. Effects of crude protein and non-essential amino acids on growth performance, blood profile, and intestinal health of weaned piglets. Front Vet Sci 2023; 10:1243357. [PMID: 38098993 PMCID: PMC10720428 DOI: 10.3389/fvets.2023.1243357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
This study investigated the effect of crude protein (CP) and non-essential amino acid (NEAA) supplementation on the growth performance, blood profile, intestinal morphology, mRNA relative abundance of inflammatory and antioxidant markers, and tight junction proteins in piglets over the first 2 weeks after weaning. Ninety 21-day-old piglets (7.55 ± 0.72 kg) were assigned in a randomized block design to one of three dietary treatments: (1) high CP, a diet with 24% CP; (2) low CP, a diet with 18% CP; and (3) low CP + NEAA, a diet with 18% CP supplemented with 5 g/kg Arg (L-arginine; purity >99%) and 10 g/kg Glu + Gln (minimum 10% L-glutamine and minimum 10% L-glutamate). Piglets were fed with corn-soybean meal basal diets in a 14-day trial. There was an improvement (p < 0.05) in the feed conversion ratio of piglets fed the high-CP diet compared to treatments with low CP or low CP + NEAA. Serum urea nitrogen was higher (p < 0.05) in piglets fed high CP compared to other dietary treatments. In the duodenum, the villus height of animals fed the low-CP + NEAA diets was greater (p < 0.05) than those fed with the high- and low-CP diets. The goblet cell proportion of piglets fed low CP + NEAA or high CP was higher (p < 0.05) compared to low CP. In the jejunum, the crypt depth of the piglets with the high-CP dietary treatment was greater (p < 0.05) in comparison with low CP + NEAA. In the jejunum, IFN-γ mRNA expression was higher (p < 0.05) in animals fed the high-CP diets compared to other dietary treatments. However, superoxide dismutase and occludin mRNA expression were higher (p < 0.05) in animals fed low CP + NEAA than in piglets on the high-CP diets. In the ileum, the number of Peyer's patches in piglets fed high CP was higher (p < 0.05) compared to other dietary treatments. In conclusion, the high-CP diet (24% CP) improves the feed conversion of piglets in the first 2 weeks after weaning compared to the low-CP diet (18% CP) supplemented or not with NEAA. However, the low-CP diet supplemented with NEAA (Arg, Gln, and Glu) improves intestinal health in piglets by promoting greater villus height and proportion of goblet cells in the duodenum, reducing jejunal crypt depth, and reducing Peyer's number patches in the ileum. In addition, piglets that received the low-CP + NEAA diet showed an increase in superoxide dismutase and occludin and a lower expression of IFN-γ mRNA.
Collapse
Affiliation(s)
| | | | | | - Gabriel Cipriano Rocha
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
35
|
Yang J, Chen R, Peng Y, Chai J, Li Y, Deng F. The role of gut archaea in the pig gut microbiome: a mini-review. Front Microbiol 2023; 14:1284603. [PMID: 37876779 PMCID: PMC10593451 DOI: 10.3389/fmicb.2023.1284603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The gastrointestinal microbiota of swine harbors an essential but often overlooked component: the gut archaea. These enigmatic microorganisms play pivotal roles in swine growth, health, and yield quality. Recent insights indicate that the diversity of gut archaea is influenced by various factors including breed, age, and diet. Such factors orchestrate the metabolic interactions within the porcine gastrointestinal environment. Through symbiotic relationships with bacteria, these archaea modulate the host's energy metabolism and digestive processes. Contemporary research elucidates a strong association between the abundance of these archaea and economically significant traits in swine. This review elucidates the multifaceted roles of gut archaea in swine and underscores the imperative for strategic interventions to modulate their population and functionality. By exploring the probiotic potential of gut archaea, we envisage novel avenues to enhance swine growth, health, and product excellence. By spotlighting this crucial, yet under-investigated, facet of the swine gut microbiome, we aim to galvanize further scientific exploration into harnessing their myriad benefits.
Collapse
Affiliation(s)
- Jianbo Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Routing Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yunjuan Peng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| |
Collapse
|
36
|
Duarte ME, Garavito-Duarte Y, Kim SW. Impacts of F18 +Escherichia coli on Intestinal Health of Nursery Pigs and Dietary Interventions. Animals (Basel) 2023; 13:2791. [PMID: 37685055 PMCID: PMC10487041 DOI: 10.3390/ani13172791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This review focused on the impact of F18+E. coli on pig production and explored nutritional interventions to mitigate its deleterious effects. F18+E. coli is a primary cause of PWD in nursery pigs, resulting in substantial economic losses through diminished feed efficiency, morbidity, and mortality. In summary, the F18+E. coli induces intestinal inflammation with elevated IL6 (60%), IL8 (43%), and TNF-α (28%), disrupting the microbiota and resulting in 14% villus height reduction. Besides the mortality, the compromised intestinal health results in a 20% G:F decrease and a 10% ADFI reduction, ultimately culminating in a 28% ADG decrease. Among nutritional interventions to counter F18+E. coli impacts, zinc glycinate lowered TNF-α (26%) and protein carbonyl (45%) in jejunal mucosa, resulting in a 39% ADG increase. Lactic acid bacteria reduced TNF-α (36%), increasing 51% ADG, whereas Bacillus spp. reduced IL6 (27%), increasing BW (12%). Lactobacillus postbiotic increased BW (14%) and the diversity of beneficial bacteria. Phytobiotics reduced TNF-α (23%) and IL6 (21%), enhancing feed efficiency (37%). Additional interventions, including low crude protein formulation, antibacterial minerals, prebiotics, and organic acids, can be effectively used to combat F18+E. coli infection. These findings collectively underscore a range of effective strategies for managing the challenges posed by F18+E. coli in pig production.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (M.E.D.); (Y.G.-D.)
| |
Collapse
|
37
|
Deng Z, Duarte ME, Kim SW. Efficacy of soy protein concentrate replacing animal protein supplements in mucosa-associated microbiota, intestinal health, and growth performance of nursery pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:235-248. [PMID: 37600837 PMCID: PMC10432921 DOI: 10.1016/j.aninu.2023.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 08/22/2023]
Abstract
This study investigated the effects of using soy protein concentrate (SPC) to replace animal protein supplements on mucosa-associated microbiota, intestinal health, and growth performance of nursery pigs. Fifty-six newly weaned pigs (BW = 6.4 ± 0.6 kg) were allotted to 5 treatments in a randomized complete block design. Pigs were fed for 35 d in 3 phases (P; 1, 2, 3) for 10, 12, 13 d, respectively. Dietary treatments were: (1) basal diet with fish meal (P1: 4%, P2: 2%, and P3: 1%), poultry meal (P1: 10%, P2: 8%, and P3: 4%), and blood plasma (P1: 4%, P2: 2%, and P3: 1%), where SPC replacing none (NC); (2) basal diet with SPC replacing fish meal (RFM); (3) basal diet with SPC replacing poultry meal (RPM); (4) basal diet with SPC replacing blood plasma (RBP); and (5) basal diet with SPC replacing all animal protein supplements (PC). Growth performance was recorded for each phase. Pigs were euthanized on d 35 to collect jejunal mucosa and tissue to evaluate intestinal health and microbiota, and ileal digesta to measure apparent ileal digestibility (AID) of nutrients. Data were analyzed using the MIXED procedure of SAS. Overall, RFM, RPM, and RBP did not affect growth performance, whereas PC decreased (P < 0.05) ADG and ADFI. The RPM increased (P < 0.05) Prevotella stercorea and decreased (P < 0.05) Helicobacter rappini. The PC decreased (P < 0.05) H. rappini, whilst increasing (P < 0.05) Prevotella copri, Propionibacterium acnes, and Pelomonas aquatica. The RFM tended to increase (P = 0.096) immunoglobulin A in the jejunum. The PC tended to decrease (P = 0.078) jejunal crypt cell proliferation. There were no differences in the villus height, AID of nutrients, intestinal inflammation, and intestinal oxidative stress among treatments. In conclusion, SPC can replace fish meal, poultry meal, or blood plasma individually without affecting growth performance and intestinal health, and AID of nutrients of nursery pigs. Particularly SPC replacing poultry meal benefitted intestinal health by reducing H. rappini and increasing P. stercorea. However, SPC replacing all three animal protein supplements reduced growth of nursery pigs mainly by reducing feed intake.
Collapse
Affiliation(s)
- Zixiao Deng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
38
|
Han X, Ma Y, Ding S, Fang J, Liu G. Regulation of dietary fiber on intestinal microorganisms and its effects on animal health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:356-369. [PMID: 37635930 PMCID: PMC10448034 DOI: 10.1016/j.aninu.2023.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 08/29/2023]
Abstract
The animal gut harbors diverse microbes that play an essential role in the well-being of their host. Specific diets, such as those rich in dietary fiber, are vital in disease prevention and treatment because they affect intestinal flora and have a positive impact on the metabolism, immunity, and intestinal function of the host. Dietary fiber can provide energy to colonic epithelial cells, regulate the structure and metabolism of intestinal flora, promote the production of intestinal mucosa, stimulate intestinal motility, improve glycemic and lipid responses, and regulate the digestion and absorption of nutrients, which is mainly attributed to short-chain fatty acids (SCFA), which is the metabolite of dietary fiber. By binding with G protein-coupled receptors (including GPR41, GPR43 and GPR109A) and inhibiting the activity of histone deacetylases, SCFA regulate appetite and glucolipid metabolism, promote the function of the intestinal barrier, alleviate oxidative stress, suppress inflammation, and maintain immune system homeostasis. This paper reviews the physicochemical properties of dietary fiber, the interaction between dietary fiber and intestinal microorganisms, the role of dietary fiber in maintaining intestinal health, and the function of SCFA, the metabolite of dietary fiber, in inhibiting inflammation. Furthermore, we consider the effects of dietary fiber on the intestinal health of pigs, the reproduction and lactation performance of sows, and the growth performance and meat quality of pigs.
Collapse
Affiliation(s)
- Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Yong Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| |
Collapse
|
39
|
Liu L, Wu P, Guo A, Yang Y, Chen F, Zhang Q. Research progress on the regulation of production traits by gastrointestinal microbiota in dairy cows. Front Vet Sci 2023; 10:1206346. [PMID: 37592942 PMCID: PMC10427726 DOI: 10.3389/fvets.2023.1206346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
The composition and abundance of microorganisms in the gastrointestinal tract of cows are complex and extensive, and they play a crucial role in regulating nutrient digestion, absorption, maintaining digestive tract stability, and promoting the production and health of the host. The fermentation carried out by these microorganisms in the gastrointestinal tract is fundamental to the health and productivity of cows. Rumen microorganisms produce the majority of enzymes required to break down feed substrates, such as cellulose, protein, lipids, and other plant materials, through fermentation. This process provides energy metabolism substrates that satisfy approximately 70% of the host's energy requirements for physiological activities. Gut microorganisms primarily decompose cellulose that is difficult to digest in the rumen, thereby providing heat and energy to the hosts. Additionally, they have an impact on host health and productivity through their role in immune function. Understanding the composition and function of the cow gut microbiota can help regulate dairy cattle breeding traits and improve their health status. As a result, it has become a popular research topic in dairy cattle breeding. This article provides a review of the composition, structure, physiological characteristics, and physiological effects of the cow gut microbiota, serving as a theoretical foundation for future studies that aim to utilize the gut microbiota for dairy cattle breeding or improving production traits. It may also serve as a reference for research on gut microbiota of other ruminants.
Collapse
Affiliation(s)
- Lily Liu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Peifu Wu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Yajin Yang
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Fenfen Chen
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Qin Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
40
|
Adekolurejo OO, McDermott K, Greathead HMR, Miller HM, Mackie AR, Boesch C. Effect of Red-Beetroot-Supplemented Diet on Gut Microbiota Composition and Metabolite Profile of Weaned Pigs-A Pilot Study. Animals (Basel) 2023; 13:2196. [PMID: 37443994 PMCID: PMC10339942 DOI: 10.3390/ani13132196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Red beetroot is a well-recognized and established source of bioactive compounds (e.g., betalains and polyphenols) with anti-inflammatory and antimicrobial properties. It is proposed as a potential alternative to zinc oxide with a focus on gut microbiota modulation and metabolite production. In this study, weaned pigs aged 28 days were fed either a control diet, a diet supplemented with zinc oxide (3000 mg/kg), or 2% and 4% pulverized whole red beetroot (CON, ZNO, RB2, and RB4; respectively) for 14 days. After pigs were euthanized, blood and digesta samples were collected for microbial composition and metabolite analyses. The results showed that the diet supplemented with red beetroot at 2% improved the gut microbial richness relative to other diets but marginally influenced the cecal microbial diversity compared to a zinc-oxide-supplemented diet. A further increase in red beetroot levels (4%-RB4) led to loss in cecal diversity and decreased short chain fatty acids and secondary bile acid concentrations. Also, an increased Proteobacteria abundance, presumably due to increased lactate/lactic-acid-producing bacteria was observed. In summary, red beetroot contains several components conceived to improve the gut microbiota and metabolite output of weaned pigs. Future studies investigating individual components of red beetroot will better elucidate their contributions to gut microbiota modulation and pig health.
Collapse
Affiliation(s)
- Opeyemi O. Adekolurejo
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Katie McDermott
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Henry M. R. Greathead
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Helen M. Miller
- Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.M.); (H.M.R.G.); (H.M.M.)
| | - Alan R. Mackie
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; (O.O.A.); (A.R.M.)
| |
Collapse
|
41
|
Deng Z, Duarte ME, Kim SY, Hwang Y, Kim SW. Comparative effects of soy protein concentrate, enzyme-treated soybean meal, and fermented soybean meal replacing animal protein supplements in feeds on growth performance and intestinal health of nursery pigs. J Anim Sci Biotechnol 2023; 14:89. [PMID: 37393326 DOI: 10.1186/s40104-023-00888-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/03/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Soy protein supplements, with high crude protein and less antinutritional factors, are produced from soybean meal by different processes. This study evaluated the comparative effects of various soy protein supplements replacing animal protein supplements in feeds on the intestinal immune status, intestinal oxidative stress, mucosa-associated microbiota, and growth performance of nursery pigs. METHODS Sixty nursery pigs (6.6 ± 0.5 kg BW) were allotted to five treatments in a randomized complete block design with initial BW and sex as blocks. Pigs were fed for 39 d in 3 phases (P1, P2, and P3). Treatments were: Control (CON), basal diet with fish meal 4%, 2%, and 1%, poultry meal 10%, 8%, and 4%, and blood plasma 4%, 2%, and 1% for P1, P2, and P3, respectively; basal diet with soy protein concentrate (SPC), enzyme-treated soybean meal (ESB), fermented soybean meal with Lactobacillus (FSBL), and fermented soybean meal with Bacillus (FSBB), replacing 1/3, 2/3, and 3/3 of animal protein supplements for P1, P2, and P3, respectively. Data were analyzed using the MIXED procedure in SAS 9.4. RESULTS The SPC did not affect the BW, ADG, and G:F, whereas it tended to reduce (P = 0.094) the ADFI and tended to increase (P = 0.091) crypt cell proliferation. The ESM did not affect BW, ADG, ADFI, and G:F, whereas tended to decrease (P = 0.098) protein carbonyl in jejunal mucosa. The FSBL decreased (P < 0.05) BW and ADG, increased (P < 0.05) TNF-α, and Klebsiella and tended to increase MDA (P = 0.065) and IgG (P = 0.089) in jejunal mucosa. The FSBB tended to increase (P = 0.073) TNF-α, increased (P < 0.05) Clostridium and decreased (P < 0.05) Achromobacter and alpha diversity of microbiota in jejunal mucosa. CONCLUSIONS Soy protein concentrate, enzyme-treated soybean meal, and fermented soybean meal with Bacillus could reduce the use of animal protein supplements up to 33% until 7 kg body weight, up to 67% from 7 to 11 kg body weight, and entirely from 11 kg body weight without affecting the intestinal health and the growth performance of nursery pigs. Fermented soybean meal with Lactobacillus, however, increased the immune reaction and oxidative stress in the intestine consequently reducing the growth performance.
Collapse
Affiliation(s)
- Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
42
|
Chen Q, Zhang X, Shi W, Du X, Ma L, Wang W, Tao S, Xiao Y. Longitudinal Investigation of Enteric Virome Signatures from Parental-Generation to Offspring Pigs. Microbiol Spectr 2023; 11:e0002323. [PMID: 37166318 PMCID: PMC10269631 DOI: 10.1128/spectrum.00023-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023] Open
Abstract
To date, studies on the swine gut microbiome have focused almost exclusively on bacteria. Despite recent advances in the understanding of the swine gut bacteriome at different growth stages, a comprehensive longitudinal study of the lifetime dynamics of the swine gut virome is lacking. Here, we used metagenomic sequencing combined with bioinformatic analysis techniques to characterize the gut viromes of parental-generation and offspring pigs at different biological classification levels. We collected 54 fecal samples from 36 parental-generation pigs (18 breeding boars [Duroc] and 18 pregnant/lactating sows [Landrace]) and 108 fecal samples from 18 offspring pigs during the lactation (day 3), nursery (days 26, 35, and 49), growing (day 120), and finishing (day 180) stages. Alpha diversity, including community richness (richness index) and diversity (Shannon index), showed an overall increasing trend in offspring pigs. Distinct shifts (beta diversity) in the microbiome structure along different growth stages were observed. The linear discriminant analysis effect size (LEfSe) algorithm revealed 53 viral genus that are stage specific. Host prediction results showed that enteric viruses are probably correlated with carbohydrate decomposition. We identified abundant auxiliary carbohydrate-active enzyme (CAZyme) genes from enteric viruses, most of which are glycoside hydrolase genes and participate in the biolysis of complex polysaccharides. IMPORTANCE This study shows that distinct stage-associated swine gut viromes may be determined by age and/or gut physiology at different growth stages, and enteric viruses probably manipulate carbohydrate decomposition by abundant glycoside hydrolases. These findings fill a gap in the longitudinal pattern of the swine gut virome and lay the foundation for research on the function of swine enteric viruses.
Collapse
Affiliation(s)
- Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaojun Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Weiling Shi
- Zhejiang Dovro Animal Health Business Company, Jinhua, China
| | - Xizhong Du
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
43
|
Duarte ME, Stahl CH, Kim SW. Intestinal Damages by F18 +Escherichia coli and Its Amelioration with an Antibacterial Bacitracin Fed to Nursery Pigs. Antioxidants (Basel) 2023; 12:antiox12051040. [PMID: 37237906 DOI: 10.3390/antiox12051040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
This study investigated intestinal oxidative damage caused by F18+Escherichia coli and its amelioration with antibacterial bacitracin fed to nursery pigs. Thirty-six weaned pigs (6.31 ± 0.08 kg BW) were allotted in a randomized complete block design. Treatments were: NC, not challenged/not treated; PC, challenged (F18+E. coli at 5.2 × 109 CFU)/not treated; AGP challenged (F18+E. coli at 5.2 × 109 CFU)/treated with bacitracin (30 g/t). Overall, PC reduced (p < 0.05) average daily gain (ADG), gain to feed ratio (G:F), villus height, and villus height to crypt depth ratio (VH:CD), whereas AGP increased (p < 0.05) ADG, and G:F. PC increased (p < 0.05) fecal score, F18+E. coli in feces, and protein carbonyl in jejunal mucosa. AGP reduced (p < 0.05) fecal score and F18+E. coli in jejunal mucosa. PC reduced (p < 0.05) Prevotella stercorea populations in jejunal mucosa, whereas AGP increased (p < 0.05) Phascolarctobacterium succinatutens and reduced (p < 0.05) Mitsuokella jalaludinii populations in feces. Collectively, F18+E. coli challenge increased fecal score and disrupted the microbiota composition, harming intestinal health by increasing oxidative stress, and damaging the intestinal epithelium, ultimately impairing growth performance. Dietary bacitracin reduced reduced F18+E. coli populations and the oxidative damages they cause, thereby improving intestinal health and the growth performance of nursery pigs.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Chad H Stahl
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
44
|
Zha A, Tan B, Wang J, Qi M, Deng Y, Liao P, Yin Y. The nanocomposites of modified attapulgite with vitamin E and mannan oligosaccharide regulated the intestinal epithelial barrier and improved intestinal microbiota composition to prevent diarrhea in weaned piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37071083 DOI: 10.1002/jsfa.12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/12/2023] [Accepted: 04/18/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Overuse of antibiotics contributes to bacterial resistance in animals. Therefore, it is necessary to find a new way to ensure animal health and promote animal growth. This experiment was conducted to investigate the effect of mannan oligosaccharide (MOS)/vitamin E (VE)/attapulgite (APT) nanocomposites (SLK1, SLK3, SLK5) on growth performance and intestinal health in weaned piglets. Each 1 kg of SLK1, SLK3 or SLK5 contains 50 g of vitamin E, and each had a different MOS concentration [SLK1 (50 g kg -1 MOS), SLK3 (100 g kg -1 MOS), SLK5 (150 g kg -1 MOS)]. In total, 135 piglets were randomly divided into five groups (normal control group, traditional antibiotic substitutes group, SLK1 group, SLK3 group and SLK5 group), and growth performance, diarrhea index, intestinal epithelial barrier function and intestinal microbial composition were measured. RESULTS SLK1 and SLK5 significantly decreased diarrhea frequency in weaned piglets (p < 0.05). Furthermore, SLK5 significantly increased survival rate of weaned piglets compared to the traditional antibiotic substitutes group (p < 0.05). SLK5 also increased villus height of ileum, and increased goblet number of the jejunum (p < 0.05). 16S rRNA sequencing showed that SLK5 significantly regulated intestinal colonic microbiota composition (p < 0.05). Specifically, SLK5 significantly increased the abundance of Phascolarctobacterium succinatutens in the cecum and increased the abundance of Lactobacillus and Bifidobacterium in the colon (p < 0.05). In addition, dietary supplementation with 1 kg T-1 SLK5 also significantly increased the propionate content in the colon, which is significantly correlated with Phascolarctobacterium (p < 0.05). CONCLUSION Dietary supplementation with 1 kg T-1 SLK5 improved intestinal epithelial barrier function, and regulated intestinal microbiota composition to prevent diarrhea in weaned piglets. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Andong Zha
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Institute of Subtropical Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Animal Nutrition Department, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jing Wang
- Animal Nutrition Department, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ming Qi
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Institute of Subtropical Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - Yuankun Deng
- Animal Nutrition Department, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Peng Liao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
45
|
Wen C, Geervliet M, de Vries H, Fabà L, den Hil PJRV, Skovgaard K, Savelkoul HFJ, Schols HA, Wells JM, Tijhaar E, Smidt H. Agaricus subrufescens fermented rye affects the development of intestinal microbiota, local intestinal and innate immunity in suckling-to-nursery pigs. Anim Microbiome 2023; 5:24. [PMID: 37041617 PMCID: PMC10088699 DOI: 10.1186/s42523-023-00244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/23/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Agaricus subrufescens is considered as one of the most important culinary-medicinal mushrooms around the world. It has been widely suggested to be used for the development of functional food ingredients to promote human health ascribed to the various properties (e.g., anti-inflammatory, antioxidant, and immunomodulatory activities). In this context, the interest in A. subrufescens based feed ingredients as alternatives for antibiotics has also been fuelled during an era of reduced/banned antibiotics use. This study aimed to investigate the effects of a fermented feed additive -rye overgrown with mycelium (ROM) of A. subrufescens-on pig intestinal microbiota, mucosal gene expression and local and systemic immunity during early life. Piglets received ROM or a tap water placebo (Ctrl) perorally every other day from day 2 after birth until 2 weeks post-weaning. Eight animals per treatment were euthanized and dissected on days 27, 44 and 70. RESULTS The results showed ROM piglets had a lower inter-individual variation of faecal microbiota composition before weaning and a lower relative abundance of proteobacterial genera in jejunum (Undibacterium and Solobacterium) and caecum (Intestinibacter and Succinivibrionaceae_UCG_001) on day 70, as compared to Ctrl piglets. ROM supplementation also influenced gut mucosal gene expression in both ileum and caecum on day 44. In ileum, ROM pigs showed increased expression of TJP1/ZO1 but decreased expression of CLDN3, CLDN5 and MUC2 than Ctrl pigs. Genes involved in TLR signalling (e.g., TICAM2, IRAK4 and LY96) were more expressed but MYD88 and TOLLIP were less expressed in ROM pigs than Ctrl animals. NOS2 and HIF1A involved in redox signalling were either decreased or increased in ROM pigs, respectively. In caecum, differentially expressed genes between two groups were mainly shown as increased expression (e.g., MUC2, PDGFRB, TOLLIP, TNFAIP3 and MYD88) in ROM pigs. Moreover, ROM animals showed higher NK cell activation in blood and enhanced IL-10 production in ex vivo stimulated MLN cells before weaning. CONCLUSIONS Collectively, these results suggest that ROM supplementation in early life modulates gut microbiota and (local) immune system development. Consequently, ROM supplementation may contribute to improving health of pigs during the weaning transition period and reducing antibiotics use.
Collapse
Affiliation(s)
- Caifang Wen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Mirelle Geervliet
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Hugo de Vries
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lluís Fabà
- Research and Development, Trouw Nutrition, Amersfoort, The Netherlands
| | - Petra J Roubos-van den Hil
- Research and Development, Trouw Nutrition, Amersfoort, The Netherlands
- DSM Food and Beverages - Fresh Dairy, Wageningen, The Netherlands
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Edwin Tijhaar
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
46
|
Storino GY, Petri FAM, Mechler-Dreibi ML, Aguiar GA, Toledo LT, Arruda LP, Malcher CS, Martins TS, Montassier HJ, Sant’Anna OA, Fantini MCA, de Oliveira LG. Use of Nanostructured Silica SBA-15 as an Oral Vaccine Adjuvant to Control Mycoplasma hyopneumoniae in Swine Production. Int J Mol Sci 2023; 24:ijms24076591. [PMID: 37047564 PMCID: PMC10095401 DOI: 10.3390/ijms24076591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/25/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Mycoplasma hyopneumoniae is a difficult-to-control bacterium since commercial vaccines do not prevent colonization and excretion. The present study aimed to evaluate the performance of an orally administered vaccine composed of antigens extracted from Mycoplasma hyopneumoniae and incorporated into mesoporous silica (SBA-15), which has an adjuvant-carrier function, aiming to potentiate the action of the commercial intramuscular vaccine. A total of 60 piglets were divided into four groups (n = 15) submitted to different vaccination protocols as follows, Group 1: oral SBA15 + commercial vaccine at 24 days after weaning, G2: oral vaccine on the third day of life + vaccine commercial vaccine at 24 days, G3: commercial vaccine at 24 days, and G4: commercial vaccine + oral vaccine at 24 days. On the first day, the piglets were weighed and, from the third day onwards, submitted to blood collections for the detection and quantification of anti-Mycoplasma hyopneumoniae IgG. Nasal swabs were collected to monitor IgA by ELISA, and oropharyngeal swabs were used to assess the bacterial load by qPCR. Biological samples were collected periodically from the third day of life until the 73rd day. At 41 days of life, 15 individuals of the same age, experimentally challenged with an inoculum containing M. hyopneumoniae, were co-housed with the animals from groups (1 to 4) in a single pen to increase the infection pressure during the nursery period. At 73 days, all piglets were euthanized, and lungs were evaluated by collecting samples for estimation of bacterial load by qPCR. Quantitative data obtained from physical parameters and laboratory investigation were analyzed by performing parametric or non-parametric statistical tests. Results indicate that animals from G2 showed smaller affected lung areas compared to G3. Animals from G2 and G4 had a low prevalence of animals shedding M. hyopneumoniae at 61 days of age. Additionally, no correlation was observed between lung lesions and M. hyopneumoniae load in lung and BALF samples in animals that received the oral vaccine, while a strong correlation was observed in other groups. In the present study, evidence points to the effectiveness of the oral vaccine developed for controlling M. hyopneumoniae in pig production under field conditions.
Collapse
Affiliation(s)
- Gabriel Y. Storino
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Fernando A. M. Petri
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Marina L. Mechler-Dreibi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Gabriel A. Aguiar
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Leonardo T. Toledo
- Laboratório de Virologia Animal (LVA), Departamento de Veterinária, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs s/n, Campus Universitário, Viçosa 36570-900, MG, Brazil
| | - Laíza P. Arruda
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Clarisse S. Malcher
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | - Tereza S. Martins
- Department of Chemistry, Federal University of São Paulo (UNIFESP), Diadema 09913-030, SP, Brazil
| | - Hélio J. Montassier
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| | | | - Márcia C. A. Fantini
- Physics Institute, University of São Paulo (USP), São Paulo 05508-090, SP, Brazil
| | - Luís Guilherme de Oliveira
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
| |
Collapse
|
47
|
Zhao H, Tian M, Xiong L, Lin T, Zhang S, Yue X, Liu X, Chen F, Zhang S, Guan W. Maternal supplementation with glycerol monolaurate improves the intestinal health of suckling piglets by inhibiting the NF-κB/MAPK pathways and improving oxidative stability. Food Funct 2023; 14:3290-3303. [PMID: 36938595 DOI: 10.1039/d3fo00068k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Glycerol monolaurate (GML) is a food safe emulsifier and a kind of MCFA monoglyceride that has been proven to confer positive benefits in improving animal health, production and feed digestibility as a feed additive. This study aims to evaluate whether supplementation of a sow diet with GML could affect the intestinal barrier function and antioxidant status of newborn piglets and to explore its regulatory mechanism. A total of 80 multiparous sows were divided into two groups, which were fed a basal diet or a basal diet supplemented with 0.1% GML. The results indicated that maternal supplementation with GML significantly increased fat, lactose and protein in sow colostrum, as well as fat and protein in sow 14-day milk (P < 0.05). The results showed that GML significantly reduced the concentrations of IL-12 in the duodenum, TNF-α, IL-1β and IL-12 in the jejunum, and IL-1β in the ileum of piglets (P < 0.05). Higher concentrations of T-AOC, T-SOD, GSH and GSH-Px and lower MDA in the intestine were observed in the GML group than in the control group. Correspondingly, the villi height, crypt depth and the ratio of villi height to crypt depth (V/C) in the jejunum and the V/C in the ileum in the GML group were significantly higher than those in the control group (P < 0.05). Moreover, the GML group displayed significantly increased protein abundance of zonula occludens (ZO)-1, occludin, and claudin-1 in the small intestine (P < 0.05), mRNA expression of mucins (MUCs) in the small intestine (MUC-1, MUC-3 and MUC-4), and mRNA expression of porcine beta defensins (pBDs) in the duodenum (pBD1 and pBD2), jejunum (pBD1, pBD2 and pBD129) (P < 0.05), and ileum (pBD2, pBD3 and pBD114) (P < 0.05). Further research showed that GML significantly reduced the phosphorylation of the NF-κB/MAPK pathways in the small intestine (P < 0.05). In addition, the results of 16S rDNA sequencing showed that maternal supplementation with GML altered the colonic microbiotic structure of piglets, and reduced the relative abundance of Escherichia shigella. In summary, a sow diet supplemented with GML enhanced the offspring's intestinal oxidative stability and barrier function and attenuated the offspring's intestinal inflammatory response, possibly by suppressing the activation of the NF-κB/MAPK pathways.
Collapse
Affiliation(s)
- Hao Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Min Tian
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Liang Xiong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Tongbin Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shuchang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xianhuai Yue
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xinghong Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shihai Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wutai Guan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China. .,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
48
|
Moita VHC, Kim SW. Efficacy of a bacterial 6-phytase supplemented beyond traditional dose levels on jejunal mucosa-associated microbiota, ileal nutrient digestibility, bone parameters, and intestinal health, and growth performance of nursery pigs. J Anim Sci 2023; 101:skad134. [PMID: 37115619 PMCID: PMC10224734 DOI: 10.1093/jas/skad134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to determine the efficacy of a bacterial 6-phytase (Buttiauxella spp.) supplemented beyond traditional dose levels based on jejunal mucosa-associated microbiota, apparent ileal digestibility (AID), intestinal health and bone parameters, and growth performance of nursery pigs. Seventy-two weaned pigs (36 barrows and 36 gilts at 21 d of age with 5.8 ± 0.5 kg BW) were allotted to six treatments based on randomized complete block design with sex and initial BW as blocks and fed in three dietary phases (phase 1 for 14 d, phase 2 for 10 d, and phase 3 for 14 d). The treatments included a negative control (NC) diet without phytase formulated meeting nutrient requirements by NRC and the other five treatments were deficient in calcium (Ca) and phosphorus (P) by 0.12% with increasing levels of a bacterial 6-phytase (0, 500, 1,000, 2,000, and 5,000 FTU/kg feed). Titanium dioxide (0.4%) was added to phase 3 diets as an indigestible marker to measure AID of nutrients. On day 45, all pigs were euthanized to collect ileal digesta to measure AID, the third metacarpus to measure bone parameters, and jejunal mucosa to evaluate intestinal health and microbiota. Data were analyzed using the MIXED procedure for polynomial contrasts and the NLMIXED procedure for broken line analysis using the SAS 9.4. Broken line analysis demonstrated that 948 FTU/kg feed increased (P < 0.05) the ADG and the bone P content. Increasing phytase supplementation increased (linear, P < 0.05) AID of CP, bone P, and ash content. Increasing phytase supplementation reduced (P < 0.05) the fecal score during phases 2 and 3. Broken line analysis demonstrated that 1,889 FTU/kg feed increased (P < 0.05) bone breaking strength. Increasing phytase supplementation (PC vs. Phy) increased (P < 0.05) AID of ether extract (EE) and P. The supplementation of phytase at 2,000 FTU/kg feed tended (P = 0.087) to reduce the relative abundance of Prevotellaceae. In conclusion, the supplementation of a bacterial 6-phytase beyond traditional dose levels improved bone breaking strength, bone ash, and P content, AID of CP, EE, and P, and growth performance of nursery pigs with reduced relative abundance of Bacteroidetes specifically Prevotellaceae in the jejunal mucosa. Supplementation of a bacterial 6-phytase between 1,000 and 2,000 FTU/kg feed provided benefits associated with growth performance and bone parameters of nursery pigs.
Collapse
Affiliation(s)
- Vitor Hugo C Moita
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
49
|
Choi H, Chen Y, Longo F, Kim SW. Comparative effects of benzoic acid and sodium benzoate in diets for nursery pigs on growth performance and acidification of digesta and urine. J Anim Sci 2023; 101:skad116. [PMID: 37115097 PMCID: PMC10184693 DOI: 10.1093/jas/skad116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/27/2023] [Indexed: 04/29/2023] Open
Abstract
The objective of this study was to evaluate the comparative effects of benzoic acid and sodium benzoate in feeds on digesta pH, urinary pH, and growth performance for nursery pigs. A total of 432 pigs (6.9 ± 0.9 kg BW) were assigned to eight treatments (6 pigs per pen, replication = 9) in a randomized complete block design with initial body weight (BW) as a block and fed for 41 d in three phases (7/17/17 d, respectively). Treatments were 1) a basal diet (NC), 2) NC + 0.25% bacitracin methylene disalicylate (antibiotic; bacitracin: 250 g/t feed; PC), 3) NC + 0.25% benzoic acid, 4) NC + 0.35% benzoic acid, 5) NC + 0.50% benzoic acid, 6) NC + 0.30% sodium benzoate, 7) NC + 0.40% sodium benzoate, and 8) NC + 0.60% sodium benzoate. Growth performance and fecal scores were measured for each phase. One gilt representing the median BW of each pen was euthanized to collect digesta from the stomach, proximal jejunum, distal jejunum, and cecum, and urine. The PC tended to improve average daily gain (ADG) in phase 1 (P = 0.052) and phase 2 (P = 0.093) as well as average daily feed intake (ADFI) in phase 2 (P = 0.052). Overall, increasing supplemental benzoic acid tended to have a quadratic effect on ADG (P = 0.094), but no difference in ADFI was observed. Increasing supplemental sodium benzoate showed a quadratic effect (P < 0.05) on ADG and linearly increased (P < 0.05) ADFI. Urinary pH linearly decreased (P < 0.05) with increasing supplemental benzoic acid, but was not affected by supplemental sodium benzoate. Increasing supplemental benzoic acid or sodium benzoate linearly increased (P < 0.05) benzoic acid content in digesta of the stomach. Increasing supplemental benzoic acid or sodium benzoate also linearly increased (P < 0.05) urinary hippuric acid. However, the PC did not decrease urinary pH or increase urinary benzoic acid and hippuric acid. With slope-ratio assay using ADG and urinary hippuric acid as dependent variables and benzoic acid intake as an independent variable, the relative bioavailability of benzoic acid compared to sodium benzoate was not different. In conclusion, supplementation of benzoic acid and sodium benzoate could improve the growth performance of nursery pigs. The relative bioavailability of sodium benzoate to benzoic acid of nursery pigs did not differ based on BW gain and urinary hippuric acid.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Ying Chen
- Animal Nutrition, EASTMAN Chemical Company, Kingsport, TN 37660, USA
| | - Flavio Longo
- Animal Nutrition, EASTMAN Chemical Company, Kingsport, TN 37660, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
50
|
Rocha GC, Duarte ME, Kim SW. Advances, Implications, and Limitations of Low-Crude-Protein Diets in Pig Production. Animals (Basel) 2022; 12:3478. [PMID: 36552397 PMCID: PMC9774321 DOI: 10.3390/ani12243478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Currently, five crystalline essential amino acids (Lys, Met, Thr, Trp, and Val) are generally used, allowing formulation of low-crude-protein (CP) diets. Moreover, Ile may also be used depending on its economic value and the specific feeding program. Experimentally, it has been shown that further reduced CP levels can be achieved by supplemental His, Leu, and Phe to the diets. However, decreasing the dietary CP level while maintaining optimal ratios of amino acids has shown contradictory effects on pigs' growth performance. Due to the divergence in the literature and the importance for practical formulation strategies in the swine industry, a literature review and a meta-analysis were performed to estimate the minimum CP level that would not compromise pig performance. Based on the present review, there is a minimum CP level after which the growth performance of pigs can be compromised, even though diets are balanced for essential amino acids. Considering average daily gain and gain to feed, respectively, these levels were estimated to be 18.4% CP (95% confidence interval [CI]: 16.3 to 18.4) and 18.3% CP (95% CI: 17.4 to 19.2) for nursery, 16.1% CP (95% CI: 16.0 to 16.2) and 16.3% CP (95% CI: 14.5 to 18.0) for growing, and 11.6% CP (95% CI: 10.8 to 12.3) and 11.4% CP (95% CI: 10.3 to 12.5) for finishing pigs.
Collapse
Affiliation(s)
- Gabriel Cipriano Rocha
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|