1
|
Argüeso P, Woodward AM, AbuSamra DB. The Epithelial Cell Glycocalyx in Ocular Surface Infection. Front Immunol 2021; 12:729260. [PMID: 34497615 PMCID: PMC8419333 DOI: 10.3389/fimmu.2021.729260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 12/30/2022] Open
Abstract
The glycocalyx is the main component of the transcellular barrier located at the interface between the ocular surface epithelia and the external environment. This barrier extends up to 500 nm from the plasma membrane and projects into the tear fluid bathing the surface of the eye. Under homeostatic conditions, defense molecules in the glycocalyx, such as transmembrane mucins, resist infection. However, many pathogenic microorganisms have evolved to exploit components of the glycocalyx in order to gain access to epithelial cells and consequently exert deleterious effects. This manuscript reviews the implications of the ocular surface epithelial glycocalyx to bacterial, viral, fungal and parasitic infection. Moreover, it presents some ongoing controversies surrounding the functional relevance of the epithelial glycocalyx to ocular infectious disease.
Collapse
Affiliation(s)
- Pablo Argüeso
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Ashley M Woodward
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Dina B AbuSamra
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Alghamri MS, Sharma P, Williamson TL, Readler JM, Yan R, Rider SD, Hostetler HA, Cool DR, Kolawole AO, Excoffon KJDA. MAGI-1 PDZ2 Domain Blockade Averts Adenovirus Infection via Enhanced Proteolysis of the Apical Coxsackievirus and Adenovirus Receptor. J Virol 2021; 95:e0004621. [PMID: 33762416 PMCID: PMC8437357 DOI: 10.1128/jvi.00046-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Adenoviruses (AdVs) are etiological agents of gastrointestinal, heart, eye, and respiratory tract infections that can be lethal for immunosuppressed people. Many AdVs use the coxsackievirus and adenovirus receptor (CAR) as a primary receptor. The CAR isoform resulting from alternative splicing that includes the eighth exon, CAREx8, localizes to the apical surface of polarized epithelial cells and is responsible for the initiation of AdV infection. We have shown that the membrane level of CAREx8 is tightly regulated by two MAGI-1 PDZ domains, PDZ2 and PDZ4, resulting in increased or decreased AdV transduction, respectively. We hypothesized that targeting the interactions between the MAGI-1 PDZ2 domain and CAREx8 would decrease the apical CAREx8 expression level and prevent AdV infection. Decoy peptides that target MAGI-1 PDZ2 were synthesized (TAT-E6 and TAT-NET1). PDZ2 binding peptides decreased CAREx8 expression and reduced AdV transduction. CAREx8 degradation was triggered by the activation of the regulated intramembrane proteolysis (RIP) pathway through a disintegrin and metalloproteinase (ADAM17) and γ-secretase. Further analysis revealed that ADAM17 interacts directly with the MAGI-1 PDZ3 domain, and blocking the PDZ2 domain enhanced the accessibility of ADAM17 to the substrate (CAREx8). Finally, we validated the efficacy of TAT-PDZ2 peptides in protecting the epithelia from AdV transduction in vivo using a novel transgenic animal model. Our data suggest that TAT-PDZ2 binding peptides are novel anti-AdV molecules that act by enhanced RIP of CAREx8 and decreased AdV entry. This strategy has additional translational potential for targeting other viral receptors that have PDZ binding domains, such as the angiotensin-converting enzyme 2 receptor. IMPORTANCE Adenovirus is a common threat in immunosuppressed populations and military recruits. There are no currently approved treatments/prophylactic agents that protect from most AdV infections. Here, we developed peptide-based small molecules that can suppress AdV infection of polarized epithelia by targeting the AdV receptor, coxsackievirus and adenovirus receptor (CAREx8). The newly discovered peptides target a specific PDZ domain of the CAREx8-interacting protein MAGI-1 and decrease AdV transduction in multiple polarized epithelial models. Peptide-induced CAREx8 degradation is triggered by extracellular domain (ECD) shedding through ADAM17 followed by γ-secretase-mediated nuclear translocation of the C-terminal domain. The enhanced shedding of the CAREx8 ECD further protected the epithelium from AdV infection. Taken together, these novel molecules protect the epithelium from AdV infection. This approach may be applicable to the development of novel antiviral molecules against other viruses that use a receptor with a PDZ binding domain.
Collapse
Affiliation(s)
- Mahmoud S. Alghamri
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Priyanka Sharma
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | | | - James M. Readler
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - Ran Yan
- Department of Biological Sciences, Wright State University, Dayton, Ohio, USA
| | - S. Dean Rider
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - Heather A. Hostetler
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio, USA
| | - David R. Cool
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, USA
| | | | | |
Collapse
|
3
|
Adenovirus and the Cornea: More Than Meets the Eye. Viruses 2021; 13:v13020293. [PMID: 33668417 PMCID: PMC7917768 DOI: 10.3390/v13020293] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Human adenoviruses cause disease at multiple mucosal sites, including the respiratory, gastrointestinal, and genitourinary tracts, and are common agents of conjunctivitis. One site of infection that has received sparse attention is the cornea, a transparent tissue and the window of the eye. While most adenovirus infections are self-limited, corneal inflammation (keratitis) due to adenovirus can persist or recur for months to years after infection, leading to reduced vision, discomfort, and light sensitivity. Topical corticosteroids effectively suppress late adenovirus keratitis but are associated with vision-threatening side effects. In this short review, we summarize current knowledge on infection of the cornea by adenoviruses, including corneal epithelial cell receptors and determinants of corneal tropism. We briefly discuss mechanisms of stromal keratitis due to adenovirus infection, and review an emerging therapy to mitigate adenovirus corneal infections based on evolving knowledge of corneal epithelial receptor usage.
Collapse
|
4
|
Heida R, Bhide YC, Gasbarri M, Kocabiyik Ö, Stellacci F, Huckriede ALW, Hinrichs WLJ, Frijlink HW. Advances in the development of entry inhibitors for sialic-acid-targeting viruses. Drug Discov Today 2020; 26:122-137. [PMID: 33099021 PMCID: PMC7577316 DOI: 10.1016/j.drudis.2020.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/13/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Over the past decades, several antiviral drugs have been developed to treat a range of infections. Yet the number of treatable viral infections is still limited, and resistance to current drug regimens is an ever-growing problem. Therefore, additional strategies are needed to provide a rapid cure for infected individuals. An interesting target for antiviral drugs is the process of viral attachment and entry into the cell. Although most viruses use distinct host receptors for attachment to the target cell, some viruses share receptors, of which sialic acids are a common example. This review aims to give an update on entry inhibitors for a range of sialic-acid-targeting viruses and provides insight into the prospects for those with broad-spectrum potential.
Collapse
Affiliation(s)
- Rick Heida
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| | - Yoshita C Bhide
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands; Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Matteo Gasbarri
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Özgün Kocabiyik
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anke L W Huckriede
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands.
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| |
Collapse
|
5
|
Lactoferrin-Hexon Interactions Mediate CAR-Independent Adenovirus Infection of Human Respiratory Cells. J Virol 2020; 94:JVI.00542-20. [PMID: 32376620 PMCID: PMC7343212 DOI: 10.1128/jvi.00542-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/28/2020] [Indexed: 01/26/2023] Open
Abstract
Many viruses enter target cells using cell adhesion molecules as receptors. Paradoxically, these molecules are abundant on the lateral and basolateral side of intact, polarized, epithelial target cells, but absent on the apical side that must be penetrated by incoming viruses to initiate infection. Our study provides a model whereby viruses use different mechanisms to infect polarized epithelial cells depending on which side of the cell—apical or lateral/basolateral—is attacked. This study may also be useful to understand the biology of other viruses that use cell adhesion molecules as receptors. Virus entry into host cells is a complex process that is largely regulated by access to specific cellular receptors. Human adenoviruses (HAdVs) and many other viruses use cell adhesion molecules such as the coxsackievirus and adenovirus receptor (CAR) for attachment to and entry into target cells. These molecules are rarely expressed on the apical side of polarized epithelial cells, which raises the question of how adenoviruses—and other viruses that engage cell adhesion molecules—enter polarized cells from the apical side to initiate infection. We have previously shown that species C HAdVs utilize lactoferrin—a common innate immune component secreted to respiratory mucosa—for infection via unknown mechanisms. Using a series of biochemical, cellular, and molecular biology approaches, we mapped this effect to the proteolytically cleavable, positively charged, N-terminal 49 residues of human lactoferrin (hLF) known as human lactoferricin (hLfcin). Lactoferricin (Lfcin) binds to the hexon protein on the viral capsid and anchors the virus to an unknown receptor structure of target cells, resulting in infection. These findings suggest that HAdVs use distinct cell entry mechanisms at different stages of infection. To initiate infection, entry is likely to occur at the apical side of polarized epithelial cells, largely by means of hLF and hLfcin bridging HAdV capsids via hexons to as-yet-unknown receptors; when infection is established, progeny virions released from the basolateral side enter neighboring cells by means of hLF/hLfcin and CAR in parallel. IMPORTANCE Many viruses enter target cells using cell adhesion molecules as receptors. Paradoxically, these molecules are abundant on the lateral and basolateral side of intact, polarized, epithelial target cells, but absent on the apical side that must be penetrated by incoming viruses to initiate infection. Our study provides a model whereby viruses use different mechanisms to infect polarized epithelial cells depending on which side of the cell—apical or lateral/basolateral—is attacked. This study may also be useful to understand the biology of other viruses that use cell adhesion molecules as receptors.
Collapse
|
6
|
Sriwilaijaroen N, Suzuki Y. Sialoglycovirology of Lectins: Sialyl Glycan Binding of Enveloped and Non-enveloped Viruses. Methods Mol Biol 2020; 2132:483-545. [PMID: 32306355 PMCID: PMC7165297 DOI: 10.1007/978-1-0716-0430-4_47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
On the cell sur "face", sialoglycoconjugates act as receptionists that have an important role in the first step of various cellular processes that bridge communication between the cell and its environment. Loss of Sia production can cause the developmental of defects and lethality in most animals; hence, animal cells are less prone to evolution of resistance to interactions by rapidly evolved Sia-binding viruses. Obligative intracellular viruses mostly have rapid evolution that allows escape from host immunity, leading to an epidemic variant, and that allows emergence of a novel strain, occasionally leading to pandemics that cause health-social-economic problems. Recently, much attention has been given to the mutual recognition systems via sialosugar chains between viruses and their host cells and there has been rapid growth of the research field "sialoglycovirology." In this chapter, the structural diversity of sialoglycoconjugates is overviewed, and enveloped and non-enveloped viruses that bind to Sia are reviewed. Also, interactions of viral lectins-host Sia receptors, which determine viral transmission, host range, and pathogenesis, are presented. The future direction of new therapeutic routes targeting viral lectins, development of easy-to-use detection methods for diagnosis and monitoring changes in virus binding specificity, and challenges in the development of suitable viruses to use in virus-based therapies for genetic disorders and cancer are discussed.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Yasuo Suzuki
- College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan.
| |
Collapse
|
7
|
Uckeley ZM, Moeller R, Kühn LI, Nilsson E, Robens C, Lasswitz L, Lindqvist R, Lenman A, Passos V, Voss Y, Sommerauer C, Kampmann M, Goffinet C, Meissner F, Överby AK, Lozach PY, Gerold G. Quantitative Proteomics of Uukuniemi Virus-host Cell Interactions Reveals GBF1 as Proviral Host Factor for Phleboviruses. Mol Cell Proteomics 2019; 18:2401-2417. [PMID: 31570497 PMCID: PMC6885706 DOI: 10.1074/mcp.ra119.001631] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/15/2019] [Indexed: 12/20/2022] Open
Abstract
Novel tick-borne phleboviruses in the Phenuiviridae family, which are highly pathogenic in humans and all closely related to Uukuniemi virus (UUKV), have recently emerged on different continents. How phleboviruses assemble, bud, and exit cells remains largely elusive. Here, we performed high-resolution, label-free mass spectrometry analysis of UUKV immunoprecipitated from cell lysates and identified 39 cellular partners interacting with the viral envelope glycoproteins. The importance of these host factors for UUKV infection was validated by silencing each host factor by RNA interference. This revealed Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1), a guanine nucleotide exchange factor resident in the Golgi, as a critical host factor required for the UUKV life cycle. An inhibitor of GBF1, Golgicide A, confirmed the role of the cellular factor in UUKV infection. We could pinpoint the GBF1 requirement to UUKV replication and particle assembly. When the investigation was extended to viruses from various positive and negative RNA viral families, we found that not only phleboviruses rely on GBF1 for infection, but also Flavi-, Corona-, Rhabdo-, and Togaviridae In contrast, silencing or blocking GBF1 did not abrogate infection by the human adenovirus serotype 5 and immunodeficiency retrovirus type 1, the replication of both requires nuclear steps. Together our results indicate that UUKV relies on GBF1 for viral replication, assembly and egress. This study also highlights the proviral activity of GBF1 in the infection by a broad range of important zoonotic RNA viruses.
Collapse
Affiliation(s)
- Zina M Uckeley
- CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany; CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rebecca Moeller
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lars I Kühn
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Emma Nilsson
- Division of Virology, Department of Clinical Microbiology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Claudia Robens
- CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lisa Lasswitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Richard Lindqvist
- Division of Virology, Department of Clinical Microbiology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Annasara Lenman
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Vania Passos
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Instituto De Ciências Biomédicas Abel Salazar, Universidade Do Porto, Porto, Portugal
| | - Yannik Voss
- CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Sommerauer
- CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Kampmann
- CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Goffinet
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Institute of Virology, Charité, Universitätsmedizin Berlin, Berlin, Germany and Berlin Institute of Health (BIH), Berlin, Germany
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Anna K Överby
- Division of Virology, Department of Clinical Microbiology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Pierre-Yves Lozach
- CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany; IVPC UMR754, INRA, Univ. Lyon, EPHE, 50 Av. Tony Garnier, 69007 Lyon, France.
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Clinical Microbiology, Virology & Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-90185 Umeå, Sweden.
| |
Collapse
|
8
|
Chandra N, Frängsmyr L, Imhof S, Caraballo R, Elofsson M, Arnberg N. Sialic Acid-Containing Glycans as Cellular Receptors for Ocular Human Adenoviruses: Implications for Tropism and Treatment. Viruses 2019; 11:v11050395. [PMID: 31035532 PMCID: PMC6563162 DOI: 10.3390/v11050395] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/15/2019] [Accepted: 04/26/2019] [Indexed: 02/04/2023] Open
Abstract
Human adenoviruses (HAdV) are the most common cause of ocular infections. Species B human adenovirus type 3 (HAdV-B3) causes pharyngoconjunctival fever (PCF), whereas HAdV-D8, -D37, and -D64 cause epidemic keratoconjunctivitis (EKC). Recently, HAdV-D53, -D54, and -D56 emerged as new EKC-causing agents. HAdV-E4 is associated with both PCF and EKC. We have previously demonstrated that HAdV-D37 uses sialic acid (SA)-containing glycans as cellular receptors on human corneal epithelial (HCE) cells, and the virus interaction with SA is mediated by the knob domain of the viral fiber protein. Here, by means of cell-based assays and using neuraminidase (a SA-cleaving enzyme), we investigated whether ocular HAdVs other than HAdV-D37 also use SA-containing glycans as receptors on HCE cells. We found that HAdV-E4 and -D56 infect HCE cells independent of SAs, whereas HAdV-D53 and -D64 use SAs as cellular receptors. HAdV-D8 and -D54 fiber knobs also bound to cell-surface SAs. Surprisingly, HCE cells were found resistant to HAdV-B3 infection. We also demonstrated that the SA-based molecule i.e., ME0462, designed to bind to SA-binding sites on the HAdV-D37 fiber knob, efficiently prevents binding and infection of several EKC-causing HAdVs. Surface plasmon resonance analysis confirmed a direct interaction between ME0462 and fiber knobs. Altogether, we demonstrate that SA-containing glycans serve as receptors for multiple EKC-causing HAdVs, and, that SA-based compound function as a broad-spectrum antiviral against known and emerging EKC-causing HAdVs.
Collapse
Affiliation(s)
- Naresh Chandra
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| | - Lars Frängsmyr
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| | - Sophie Imhof
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| | - Rémi Caraballo
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden.
| | - Mikael Elofsson
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden.
| | - Niklas Arnberg
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| |
Collapse
|
9
|
Decoy Receptor Interactions as Novel Drug Targets against EKC-Causing Human Adenovirus. Viruses 2019; 11:v11030242. [PMID: 30870979 PMCID: PMC6466251 DOI: 10.3390/v11030242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/30/2023] Open
Abstract
Epidemic keratoconjunctivitis (EKC) is a severe ocular disease and can lead to visual impairment. Human adenovirus type-37 (HAdV-D37) is one of the major causative agents of EKC and uses sialic acid (SA)-containing glycans as cellular receptors. Currently, there are no approved antivirals available for the treatment of EKC. Recently, we have reported that sulfated glycosaminoglycans (GAGs) bind to HAdV-D37 via the fiber knob (FK) domain of the viral fiber protein and function as decoy receptors. Based on this finding, we speculated that GAG-mimetics may act as artificial decoy receptors and inhibit HAdV-D37 infection. Repurposing of approved drugs to identify new antivirals has drawn great attention in recent years. Here, we report the antiviral effect of suramin, a WHO-approved drug and a widely known GAG-mimetic, against HAdV-D37. Commercially available suramin analogs also show antiviral effects against HAdV-D37. We demonstrate that suramin exerts its antiviral activity by inhibiting the attachment of HAdV-D37 to cells. We also reveal that the antiviral effect of suramin is HAdV species-specific. Collectively, in this proof of concept study, we demonstrate for the first time that virus binding to a decoy receptor constitutes a novel and an unexplored target for antiviral drug development.
Collapse
|
10
|
Chandra N, Liu Y, Liu JX, Frängsmyr L, Wu N, Silva LM, Lindström M, Chai W, Pedrosa Domellöf F, Feizi T, Arnberg N. Sulfated Glycosaminoglycans as Viral Decoy Receptors for Human Adenovirus Type 37. Viruses 2019; 11:E247. [PMID: 30871026 PMCID: PMC6466042 DOI: 10.3390/v11030247] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/13/2022] Open
Abstract
Glycans on plasma membranes and in secretions play important roles in infection by many viruses. Species D human adenovirus type 37 (HAdV-D37) is a major cause of epidemic keratoconjunctivitis (EKC) and infects target cells by interacting with sialic acid (SA)-containing glycans via the fiber knob domain of the viral fiber protein. HAdV-D37 also interacts with sulfated glycosaminoglycans (GAGs), but the outcome of this interaction remains unknown. Here, we investigated the molecular requirements of HAdV-D37 fiber knob:GAG interactions using a GAG microarray and demonstrated that fiber knob interacts with a broad range of sulfated GAGs. These interactions were corroborated in cell-based assays and by surface plasmon resonance analysis. Removal of heparan sulfate (HS) and sulfate groups from human corneal epithelial (HCE) cells by heparinase III and sodium chlorate treatments, respectively, reduced HAdV-D37 binding to cells. Remarkably, removal of HS by heparinase III enhanced the virus infection. Our results suggest that interaction of HAdV-D37 with sulfated GAGs in secretions and on plasma membranes prevents/delays the virus binding to SA-containing receptors and inhibits subsequent infection. We also found abundant HS in the basement membrane of the human corneal epithelium, which may act as a barrier to sub-epithelial infection. Collectively, our findings provide novel insights into the role of GAGs as viral decoy receptors and highlight the therapeutic potential of GAGs and/or GAG-mimetics in HAdV-D37 infection.
Collapse
Affiliation(s)
- Naresh Chandra
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| | - Yan Liu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Umeå University, SE-90185 Umeå, Sweden.
- Department of Clinical Science, Ophthalmology, Umeå University, SE-90185 Umeå, Sweden.
| | - Lars Frängsmyr
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| | - Nian Wu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Lisete M Silva
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Mona Lindström
- Department of Integrative Medical Biology, Umeå University, SE-90185 Umeå, Sweden.
- Department of Clinical Science, Ophthalmology, Umeå University, SE-90185 Umeå, Sweden.
| | - Wengang Chai
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Fatima Pedrosa Domellöf
- Department of Integrative Medical Biology, Umeå University, SE-90185 Umeå, Sweden.
- Department of Clinical Science, Ophthalmology, Umeå University, SE-90185 Umeå, Sweden.
| | - Ten Feizi
- Glycosciences Laboratory, Faculty of Medicine, Imperial College of London, Hammersmith Campus, London W12 0NN, UK.
| | - Niklas Arnberg
- Section of Virology, Department of Clinical Microbiology, Umeå University, SE-90185 Umeå, Sweden.
| |
Collapse
|
11
|
Rajan A, Persson BD, Frängsmyr L, Olofsson A, Sandblad L, Heino J, Takada Y, Mould AP, Schnapp LM, Gall J, Arnberg N. Enteric Species F Human Adenoviruses use Laminin-Binding Integrins as Co-Receptors for Infection of Ht-29 Cells. Sci Rep 2018; 8:10019. [PMID: 29968781 PMCID: PMC6030200 DOI: 10.1038/s41598-018-28255-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
The enteric species F human adenovirus types 40 and 41 (HAdV-40 and -41) are the third most common cause of infantile gastroenteritis in the world. Knowledge about HAdV-40 and -41 cellular infection is assumed to be fundamentally different from that of other HAdVs since HAdV-40 and -41 penton bases lack the αV-integrin-interacting RGD motif. This motif is used by other HAdVs mainly for internalization and endosomal escape. We hypothesised that the penton bases of HAdV-40 and -41 interact with integrins independently of the RGD motif. HAdV-41 transduction of a library of rodent cells expressing specific human integrin subunits pointed to the use of laminin-binding α2-, α3- and α6-containing integrins as well as other integrins as candidate co-receptors. Specific laminins prevented internalisation and infection, and recombinant, soluble HAdV-41 penton base proteins prevented infection of human intestinal HT-29 cells. Surface plasmon resonance analysis demonstrated that HAdV-40 and -41 penton base proteins bind to α6-containing integrins with an affinity similar to that of previously characterised penton base:integrin interactions. With these results, we propose that laminin-binding integrins are co-receptors for HAdV-40 and -41.
Collapse
Affiliation(s)
- Anandi Rajan
- Department of Clinical Microbiology/Virology, and, the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - B David Persson
- Department of Clinical Microbiology/Virology, and, the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Lars Frängsmyr
- Department of Clinical Microbiology/Virology, and, the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | | | - Linda Sandblad
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Jyrki Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| | - Yoshikazu Takada
- Department of Dermatology, Biochemistry and Molecular Medicine, UC Davis School of Medicine, California, USA
| | - A Paul Mould
- Biomolecular Analysis Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lynn M Schnapp
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, USA
| | - Jason Gall
- Vaccine Research Center (VRC), NIAID, NIH, Bethesda, USA
| | - Niklas Arnberg
- Department of Clinical Microbiology/Virology, and, the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden.
| |
Collapse
|
12
|
Lasswitz L, Chandra N, Arnberg N, Gerold G. Glycomics and Proteomics Approaches to Investigate Early Adenovirus-Host Cell Interactions. J Mol Biol 2018; 430:1863-1882. [PMID: 29746851 PMCID: PMC7094377 DOI: 10.1016/j.jmb.2018.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Adenoviruses as most viruses rely on glycan and protein interactions to attach to and enter susceptible host cells. The Adenoviridae family comprises more than 80 human types and they differ in their attachment factor and receptor usage, which likely contributes to the diverse tropism of the different types. In the past years, methods to systematically identify glycan and protein interactions have advanced. In particular sensitivity, speed and coverage of mass spectrometric analyses allow for high-throughput identification of glycans and peptides separated by liquid chromatography. Also, developments in glycan microarray technologies have led to targeted, high-throughput screening and identification of glycan-based receptors. The mapping of cell surface interactions of the diverse adenovirus types has implications for cell, tissue, and species tropism as well as drug development. Here we review known adenovirus interactions with glycan- and protein-based receptors, as well as glycomics and proteomics strategies to identify yet elusive virus receptors and attachment factors. We finally discuss challenges, bottlenecks, and future research directions in the field of non-enveloped virus entry into host cells.
Collapse
Affiliation(s)
- Lisa Lasswitz
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Naresh Chandra
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90185 Umea, Sweden
| | - Niklas Arnberg
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-90185 Umea, Sweden.
| | - Gisa Gerold
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany; Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-90185 Umea, Sweden.
| |
Collapse
|
13
|
Interaction of Human Enterochromaffin Cells with Human Enteric Adenovirus 41 Leads to Serotonin Release and Subsequent Activation of Enteric Glia Cells. J Virol 2018; 92:JVI.00026-18. [PMID: 29367250 DOI: 10.1128/jvi.00026-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 01/17/2023] Open
Abstract
Human adenovirus 41 (HAdV-41) causes acute gastroenteritis in young children. The main characteristics of HAdV-41 infection are diarrhea and vomiting. Nevertheless, the precise mechanism of HAdV-41-induced diarrhea is unknown, as a suitable small-animal model has not been described. In this study, we used the human midgut carcinoid cell line GOT1 to investigate the effect of HAdV-41 infection and the individual HAdV-41 capsid proteins on serotonin release by enterochromaffin cells and on enteric glia cell (EGC) activation. We first determined that HAdV-41 could infect the enterochromaffin cells. Immunofluorescence staining revealed that the cells expressed HAdV-41-specific coxsackievirus and adenovirus receptor (CAR); flow cytometry analysis supported these findings. HAdV-41 infection of the enterochromaffin cells induced serotonin secretion dose dependently. In contrast, control infection with HAdV-5 did not induce serotonin secretion in the cells. Confocal microscopy studies of enterochromaffin cells infected with HAdV-41 revealed decreased serotonin immunofluorescence compared to that in uninfected cells. Incubation of the enterochromaffin cells with purified HAdV-41 short fiber knob and hexon proteins increased the serotonin levels in the harvested cell supernatant significantly. HAdV-41 infection could also activate EGCs, as shown in the significantly altered expression of glia fibrillary acidic protein (GFAP) in EGCs incubated with HAdV-41. The EGCs were also activated by serotonin alone, as shown in the significantly increased GFAP staining intensity. Likewise, EGCs were activated by the cell supernatant of HAdV-41-infected enterochromaffin cells.IMPORTANCE The nonenveloped human adenovirus 41 causes diarrhea, vomiting, dehydration, and low-grade fever mainly in children under 2 years of age. Even though acute gastroenteritis is well described, how human adenovirus 41 causes diarrhea is unknown. In our study, we analyzed the effect of human adenovirus 41 infection on human enterochromaffin cells and found it stimulates serotonin secretion in the cells, which is involved in regulation of intestinal secretion and gut motility and can also activate enteric glia cells, which are found in close proximity to enterochromaffin cells in vivo This disruption of gut barrier homeostasis as maintained by these cells following human adenovirus 41 infection might be a mechanism in enteric adenovirus pathogenesis in humans and could indicate a possible serotonin-dependent cross talk between human adenovirus 41, enterochromaffin cells, and enteric glia cells.
Collapse
|
14
|
Duffy MR, Alonso-Padilla J, John L, Chandra N, Khan S, Ballmann MZ, Lipiec A, Heemskerk E, Custers J, Arnberg N, Havenga M, Baker AH, Lemckert A. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56. J Gen Virol 2017; 99:135-147. [PMID: 29154744 DOI: 10.1099/jgv.0.000978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.
Collapse
Affiliation(s)
- Margaret R Duffy
- Batavia Biosciences BV, Leiden, The Netherlands.,Present address: Department of Oncology, University of Oxford, Oxford, UK
| | - Julio Alonso-Padilla
- Institute of Cardiovascular and Medical Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Present address: Barcelona Institute for Global Health (ISGlobal), Centre for Research in International Health (CRESIB), Hospital Clinic de Barcelona -University of Barcelona, Barcelona, Spain
| | - Lijo John
- Division of Virology, Department of Clinical Microbiology, Umeå University, Sweden
| | - Naresh Chandra
- Division of Virology, Department of Clinical Microbiology, Umeå University, Sweden
| | - Selina Khan
- Viral Vaccine Discovery and Early Development, Janssen Vaccines and Prevention BV, Leiden, The Netherlands
| | | | | | | | - Jerome Custers
- Viral Vaccine Discovery and Early Development, Janssen Vaccines and Prevention BV, Leiden, The Netherlands
| | - Niklas Arnberg
- Division of Virology, Department of Clinical Microbiology, Umeå University, Sweden
| | | | - Andrew H Baker
- Present address: Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Institute of Cardiovascular and Medical Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
15
|
Abstract
Current directions and emerging possibilities under investigation for the integration of synthetic and semi-synthetic multivalent architectures with biology are discussed. Attention is focussed around multivalent interactions, their fundamental role in biology, and current and potential approaches in emulating them in terms of structure and functionality using synthetic architectures.
Collapse
Affiliation(s)
- Eugene Mahon
- Conway Institute for Biomolecular and Biomedical Science, Belfield, Dublin 4, Ireland.
| | - Mihail Barboiu
- Adaptative Supramolecular Nanosystems Group, Institut Européen des Membranes, ENSCM/UMII/UMR-CNRS 5635, Pl. Eugène Bataillon, CC 047, 34095 Montpellier, Cedex 5, France.
| |
Collapse
|
16
|
Multivalent sialylation of β-thio-glycoclusters by Trypanosoma cruzi trans sialidase and analysis by high performance anion exchange chromatography. Glycoconj J 2016; 33:809-18. [DOI: 10.1007/s10719-016-9676-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/22/2016] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
|
17
|
Caraballo R, Saleeb M, Bauer J, Liaci AM, Chandra N, Storm RJ, Frängsmyr L, Qian W, Stehle T, Arnberg N, Elofsson M. Triazole linker-based trivalent sialic acid inhibitors of adenovirus type 37 infection of human corneal epithelial cells. Org Biomol Chem 2015; 13:9194-205. [PMID: 26177934 DOI: 10.1039/c5ob01025j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adenovirus type 37 (Ad37) is one of the principal agents responsible for epidemic keratoconjunctivitis (EKC), a severe ocular infection that remains without any available treatment. Recently, a trivalent sialic acid derivative (ME0322, Angew. Chem. Int. Ed., 2011, 50, 6519) was shown to function as a highly potent inhibitor of Ad37, efficiently preventing the attachment of the virion to the host cells and subsequent infection. Here, new trivalent sialic acid derivatives were designed, synthesized and their inhibitory properties against Ad37 infection of the human corneal epithelial cells were investigated. In comparison to ME0322, the best compound (17a) was found to be over three orders of magnitude more potent in a cell-attachment assay (IC50 = 1.4 nM) and about 140 times more potent in a cell-infection assay (IC50 = 2.9 nM). X-ray crystallographic analysis demonstrated a trivalent binding mode of all compounds to the Ad37 fiber knob. For the most potent compound ophthalmic toxicity in rabbits was investigated and it was concluded that repeated eye administration did not cause any adverse effects.
Collapse
Affiliation(s)
- Rémi Caraballo
- Department of Chemistry, Umeå University, SE90187 Umeå, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lenman A, Liaci AM, Liu Y, Årdahl C, Rajan A, Nilsson E, Bradford W, Kaeshammer L, Jones MS, Frängsmyr L, Feizi T, Stehle T, Arnberg N. Human adenovirus 52 uses sialic acid-containing glycoproteins and the coxsackie and adenovirus receptor for binding to target cells. PLoS Pathog 2015; 11:e1004657. [PMID: 25674795 PMCID: PMC4335501 DOI: 10.1371/journal.ppat.1004657] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/05/2015] [Indexed: 11/25/2022] Open
Abstract
Most adenoviruses attach to host cells by means of the protruding fiber protein that binds to host cells via the coxsackievirus and adenovirus receptor (CAR) protein. Human adenovirus type 52 (HAdV-52) is one of only three gastroenteritis-causing HAdVs that are equipped with two different fiber proteins, one long and one short. Here we show, by means of virion-cell binding and infection experiments, that HAdV-52 can also attach to host cells via CAR, but most of the binding depends on sialylated glycoproteins. Glycan microarray, flow cytometry, surface plasmon resonance and ELISA analyses reveal that the terminal knob domain of the long fiber (52LFK) binds to CAR, and the knob domain of the short fiber (52SFK) binds to sialylated glycoproteins. X-ray crystallographic analysis of 52SFK in complex with 2-O-methylated sialic acid combined with functional studies of knob mutants revealed a new sialic acid binding site compared to other, known adenovirus:glycan interactions. Our findings shed light on adenovirus biology and may help to improve targeting of adenovirus-based vectors for gene therapy.
Collapse
Affiliation(s)
- Annasara Lenman
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - A. Manuel Liaci
- University of Tübingen, Interfaculty Institute of Biochemistry, Tübingen, Germany
| | - Yan Liu
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Carin Årdahl
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Anandi Rajan
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Emma Nilsson
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Will Bradford
- University of Tübingen, Interfaculty Institute of Biochemistry, Tübingen, Germany
| | - Lisa Kaeshammer
- University of Tübingen, Interfaculty Institute of Biochemistry, Tübingen, Germany
| | - Morris S. Jones
- Division of Infectious Diseases, Naval Medical Center, San Diego, California, United States of America
| | - Lars Frängsmyr
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Ten Feizi
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London, United Kingdom
| | - Thilo Stehle
- University of Tübingen, Interfaculty Institute of Biochemistry, Tübingen, Germany
- Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Niklas Arnberg
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
19
|
Intracytoplasmic trapping of influenza virus by a lipophilic derivative of aglycoristocetin. J Virol 2012; 86:9416-31. [PMID: 22740402 DOI: 10.1128/jvi.07032-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We report on a new anti-influenza virus agent, SA-19, a lipophilic glycopeptide derivative consisting of aglycoristocetin coupled to a phenylbenzyl-substituted cyclobutenedione. In Madin-Darby canine kidney cells infected with influenza A/H1N1, A/H3N2, or B virus, SA-19 displayed a 50% antivirally effective concentration of 0.60 μM and a selectivity index (ratio of cytotoxic versus antiviral concentration) of 112. SA-19 was 11-fold more potent than unsubstituted aglycoristocetin and was active in human and nonhuman cell lines. Virus yield at 72 h p.i. was reduced by 3.6 logs at 0.8 μM SA-19. In contrast to amantadine and oseltamivir, SA-19 did not select for resistance upon prolonged virus exposure. SA-19 was shown to inhibit an early postbinding step in virus replication. The compound had no effect on hemagglutinin (HA)-mediated membrane fusion in an HA-polykaryon assay and did not inhibit the low-pH-induced refolding of the HA in a tryptic digestion assay. However, a marked inhibitory effect on the transduction exerted by retroviral pseudoparticles carrying an HA or vesicular stomatitis virus glycoprotein (VSV-G) fusion protein was noted, suggesting that SA-19 targets a cellular factor with a role in influenza virus and VSV entry. Using confocal microscopy with antinucleoprotein staining, SA-19 was proven to completely prevent the influenza virus nuclear entry. This virus arrest was characterized by the formation of cytoplasmic aggregates. SA-19 appeared to disturb the endocytic uptake and trap the influenza virus in vesicles distinct from early, late, or recycling endosomes. The aglycoristocetin derivative SA-19 represents a new class of potent and broad-acting influenza virus inhibitors with potential clinical relevance.
Collapse
|
20
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007-2008. MASS SPECTROMETRY REVIEWS 2012; 31:183-311. [PMID: 21850673 DOI: 10.1002/mas.20333] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 05/31/2023]
Abstract
This review is the fifth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2008. The first section of the review covers fundamental studies, fragmentation of carbohydrate ions, use of derivatives and new software developments for analysis of carbohydrate spectra. Among newer areas of method development are glycan arrays, MALDI imaging and the use of ion mobility spectrometry. The second section of the review discusses applications of MALDI MS to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, biopharmaceuticals, glycated proteins, glycolipids, glycosides and various other natural products. There is a short section on the use of MALDI mass spectrometry for the study of enzymes involved in glycan processing and a section on the use of MALDI MS to monitor products of the chemical synthesis of carbohydrates with emphasis on carbohydrate-protein complexes and glycodendrimers. Corresponding analyses by electrospray ionization now appear to outnumber those performed by MALDI and the amount of literature makes a comprehensive review on this technique impractical. However, most of the work relating to sample preparation and glycan synthesis is equally relevant to electrospray and, consequently, those proposing analyses by electrospray should also find material in this review of interest.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
21
|
Coagulation factor IX mediates serotype-specific binding of species A adenoviruses to host cells. J Virol 2011; 85:13420-31. [PMID: 21976659 DOI: 10.1128/jvi.06088-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human species A adenoviruses (HAdVs) comprise three serotypes: HAdV-12, -18, and -31. These viruses are common pathogens and cause systemic infections that usually involve the airways and/or intestine. In immunocompromised individuals, species A adenoviruses in general, and HAdV-31 in particular, cause life-threatening infections. By combining binding and infection experiments, we demonstrate that coagulation factor IX (FIX) efficiently enhances binding and infection by HAdV-18 and HAdV-31, but not by HAdV-12, in epithelial cells originating from the airways or intestine. This is markedly different from the mechanism for HAdV-5 and other human adenoviruses, which utilize coagulation factor X (FX) for infection of host cells. Surface plasmon resonance experiments revealed that the affinity of the HAdV-31 hexon-FIX interaction is higher than that of the HAdV-5 hexon-FX interaction and that the half-lives of these interactions are profoundly different. Moreover, both HAdV-31-FIX and HAdV-5-FX complexes bind to heparan sulfate-containing glycosaminoglycans (GAGs) on target cells, but binding studies utilizing cells expressing specific GAGs and GAG-cleaving enzymes revealed differences in GAG dependence and specificity between these two complexes. These findings add to our understanding of the intricate infection pathways used by human adenoviruses, and they may contribute to better design of HAdV-based vectors for gene and cancer therapy. Furthermore, the interaction between the HAdV-31 hexon and FIX may also serve as a target for antiviral treatment.
Collapse
|
22
|
Aplander K, Marttila M, Manner S, Arnberg N, Sterner O, Ellervik U. Molecular wipes: application to epidemic keratoconjuctivitis. J Med Chem 2011; 54:6670-5. [PMID: 21838327 DOI: 10.1021/jm200545m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epidemic keratoconjunctivitis (EKC) is a severe disease of the eye, caused by members of the Adenoviridae (Ad) family, with symptoms such as keratitis, conjunctivitis, pain, edema, and reduced vision that may last for months or years. There are no vaccines or antiviral drugs available to prevent or treat EKC. It was found previously that EKC-causing Ads use sialic acid as a cellular receptor and demonstrated that soluble, sialic acid-containing molecules can prevent infection. In this study, multivalent sialic acid constructs based on 10,12-pentacosadiynoic acid (PDA) have been synthesized, and these constructs are shown to be efficient inhibitors of Ad binding (IC(50) = 0.9 μM) and Ad infectivity (IC(50) = 0.7 μM). The mechanism of action is to aggregate virus particles and thereby prevent them from binding to ocular cells. Such formulations may be used for topical treatment of adenovirus-caused EKC.
Collapse
Affiliation(s)
- Karolina Aplander
- Center for Analysis and Synthesis, Chemical Center, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Spjut S, Qian W, Bauer J, Storm R, Frängsmyr L, Stehle T, Arnberg N, Elofsson M. A potent trivalent sialic acid inhibitor of adenovirus type 37 infection of human corneal cells. Angew Chem Int Ed Engl 2011; 50:6519-21. [PMID: 21648036 PMCID: PMC3210828 DOI: 10.1002/anie.201101559] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Sara Spjut
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR) and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Spjut S, Qian W, Bauer J, Storm R, Frängsmyr L, Stehle T, Arnberg N, Elofsson M. A Potent Trivalent Sialic Acid Inhibitor of Adenovirus Type 37 Infection of Human Corneal Cells. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Skevaki CL, Galani IE, Pararas MV, Giannopoulou KP, Tsakris A. Treatment of viral conjunctivitis with antiviral drugs. Drugs 2011; 71:331-47. [PMID: 21319870 DOI: 10.2165/11585330-000000000-00000] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Viral conjunctivitis is one of the most common disorders observed in ophthalmic emergency departments, yet no established treatment exists. Lately, antiviral medications have been introduced into clinical practice; however, a systematic review focusing on their use and effectiveness in the treatment of viral conjunctivitis has not been previously reported. We systemically reviewed the literature to identify studies where antiviral drugs were used to treat viral conjunctivitis. Currently, aciclovir, trifluridine and valaciclovir are commonly used as antiviral agents to treat herpesvirus infections. Cidofovir has been used successfully to treat some cases of adenoviral conjunctivitis, although toxicity has also been reported. The use of other medications, such as idoxuridine, has been minimized in clinical practice due to their high toxicity. Interestingly, most of the antiviral drugs developed are used to treat herpesvirus infections, while less progress has been made in the field of adenoviral infections. For other viral causes of conjunctivitis, no effective remedy is currently available, and treatment focuses on the relief of symptoms. Caution should be exercised when coadministering other pharmacological agents, such as corticosteroids, because of emerging adverse effects.
Collapse
Affiliation(s)
- Chrysanthi L Skevaki
- Department of Microbiology, School of Medicine, University of Athens, Athens, Greece.
| | | | | | | | | |
Collapse
|
26
|
The GD1a glycan is a cellular receptor for adenoviruses causing epidemic keratoconjunctivitis. Nat Med 2010; 17:105-9. [PMID: 21151139 DOI: 10.1038/nm.2267] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 11/05/2010] [Indexed: 11/08/2022]
Abstract
Adenovirus type 37 (Ad37) is a leading cause of epidemic keratoconjunctivitis (EKC), a severe and highly contagious ocular disease. Whereas most other adenoviruses infect cells by engaging CD46 or the coxsackie and adenovirus receptor (CAR), Ad37 binds previously unknown sialic acid-containing cell surface molecules. By glycan array screening, we show here that the receptor-recognizing knob domain of the Ad37 fiber protein specifically binds a branched hexasaccharide that is present in the GD1a ganglioside and that features two terminal sialic acids. Soluble GD1a glycan and GD1a-binding antibodies efficiently prevented Ad37 virions from binding and infecting corneal cells. Unexpectedly, the receptor is constituted by one or more glycoproteins containing the GD1a glycan motif rather than the ganglioside itself, as shown by binding, infection and flow cytometry experiments. Molecular modeling, nuclear magnetic resonance and X-ray crystallography reveal that the two terminal sialic acids dock into two of three previously established sialic acid-binding sites in the trimeric Ad37 knob. Surface plasmon resonance analysis shows that the knob-GD1a glycan interaction has high affinity. Our findings therefore form a basis for the design and development of sialic acid-containing antiviral drugs for topical treatment of EKC.
Collapse
|
27
|
Maier O, Wiethoff CM. N-terminal α-helix-independent membrane interactions facilitate adenovirus protein VI induction of membrane tubule formation. Virology 2010; 408:31-8. [PMID: 20869737 DOI: 10.1016/j.virol.2010.08.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/12/2010] [Accepted: 08/30/2010] [Indexed: 02/06/2023]
Abstract
Adenovirus disrupts endosomal membranes during cell entry. The membrane lytic capsid protein VI (pVI) facilitates entry by fragmenting membranes. Although an N-terminal amphipathic α-helix (VI-Φ) possesses similar membrane affinity as pVI, truncated protein lacking VI-Φ (VIΔ54) still possesses moderate membrane affinity. We demonstrate that incorporation of nickel-NTA lipids in membranes enhances the membrane affinity and the membrane lytic activity of VIΔ54. We also demonstrate that 3 predicted pVI α-helices within residues 54-114 associate with membranes, sitting roughly parallel to the membrane surface. His-tagged VIΔ54 is capable of fragmenting membranes similar to pVI and the VI-Φ peptide. Interestingly, neither VI-Φ nor His-tagged VIΔ54 can induce tubule formation in giant lipid vesicles as observed for pVI. These data suggest cooperativity between the amphipathic α-helix and residues in VIΔ54 to induce positive membrane curvature and tubule formation. These results provide additional details regarding the mechanism of nonenveloped virus membrane penetration.
Collapse
Affiliation(s)
- Oana Maier
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | | |
Collapse
|
28
|
Johansson S, Nilsson E, Qian W, Guilligay D, Crepin T, Cusack S, Arnberg N, Elofsson M. Design, synthesis, and evaluation of N-acyl modified sialic acids as inhibitors of adenoviruses causing epidemic keratoconjunctivitis. J Med Chem 2009; 52:3666-78. [PMID: 19456100 DOI: 10.1021/jm801609s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The adenovirus serotype Ad37 binds to and infects human corneal epithelial (HCE) cells through attachment to cellular glycoproteins carrying terminal sialic acids. By use of the crystallographic structure of the sialic acid-interacting domain of the Ad37 fiber protein in complex with sialyllactose, a set of N-acyl modified sialic acids were designed to improve binding affinity through increased hydrophobic interactions. These N-acyl modified sialic acids and their corresponding multivalent human serum albumin (HSA) conjugates were synthesized and tested in Ad37 cell binding and cell infectivity assays. Compounds bearing small substituents were as effective inhibitors as sialic acid. X-ray crystallography and overlays with the Ad37-sialyllactose complex showed that the N-acyl modified sialic acids were positioned in the same orientation as sialic acid. Their multivalent counterparts achieved a strong multivalency effect and were more effective to prevent infection than the monomers. Unfortunately, they were less active as inhibitors than multivalent sialic acid.
Collapse
|
29
|
Arnberg N. Adenovirus receptors: implications for tropism, treatment and targeting. Rev Med Virol 2009; 19:165-78. [PMID: 19367611 DOI: 10.1002/rmv.612] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adenoviruses (Ads) are the most frequently used viral vectors in gene therapy and cancer therapy. Obstacles to successful clinical application include accumulation of vector and transduction in liver cells, coupled with poor transduction of target cells and tissues such as tumours. Many host molecules, including coagulation factor X, have been identified and suggested to serve as mediators of Ad liver tropism. This review summarises current knowledge concerning these molecules and the mechanisms used by Ads to bind to target cells, and considers the prospects of designing vectors that have been detargeted from the liver and retargeted to cells and tissues of interest in the context of gene therapy and cancer therapy.
Collapse
Affiliation(s)
- Niklas Arnberg
- Division of Virology, Department of Clinical Microbiology, Umeå University, Umeå, SE-901 85, Sweden.
| |
Collapse
|
30
|
Sharma A, Li X, Bangari DS, Mittal SK. Adenovirus receptors and their implications in gene delivery. Virus Res 2009; 143:184-94. [PMID: 19647886 PMCID: PMC2903974 DOI: 10.1016/j.virusres.2009.02.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/15/2009] [Indexed: 12/14/2022]
Abstract
Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
31
|
Coagulation factors IX and X enhance binding and infection of adenovirus types 5 and 31 in human epithelial cells. J Virol 2009; 83:3816-25. [PMID: 19158249 DOI: 10.1128/jvi.02562-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most adenoviruses bind directly to the coxsackie and adenovirus receptor (CAR) on target cells in vitro, but recent research has shown that adenoviruses can also use soluble components in body fluids for indirect binding to target cells. These mechanisms have been identified upon addressing the questions of how to de- and retarget adenovirus-based vectors for human gene and cancer therapy, but the newly identified mechanisms also suggest that the role of body fluids and their components may also be of importance for natural, primary infections. Here we demonstrate that plasma, saliva, and tear fluid promote binding and infection of adenovirus type 5 (Ad5) in respiratory and ocular epithelial cells, which corresponds to the natural tropism of most adenoviruses, and that plasma promotes infection by Ad31. By using a set of binding and infection experiments, we also found that Ad5 and Ad31 require coagulation factors IX (FIX) or X (FX) or just FIX, respectively, for efficient binding and infection. The concentrations of these factors that were required for maximum binding were 1/100th of the physiological concentrations. Preincubation of virions with heparin or pretreatment of cells with heparinase I indicated that the role of cell surface heparan sulfate during FIX- and FX-mediated adenovirus binding and infection is mechanistically serotype specific. We conclude that the use of coagulation factors by adenoviruses may be of importance not only for the liver tropism seen when administering adenovirus vectors to the circulation but also during primary infections by wild-type viruses of their natural target cell types.
Collapse
|
32
|
Lenaerts L, De Clercq E, Naesens L. Clinical features and treatment of adenovirus infections. Rev Med Virol 2008; 18:357-74. [PMID: 18655013 DOI: 10.1002/rmv.589] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adenoviruses (Ads) are common opportunistic pathogens that are rarely associated with severe clinical symptoms in healthy individuals. In contrast, in patients with compromised immunity, Ad infections often result in disseminated and potentially life-threatening disease. Among these are AIDS patients, individuals with hereditary immunodeficiencies and recipients of solid organ or haematopoietic stem cell transplants (HSCT) who receive immunosuppressive therapy. The latter account for the largest number of severe Ad infections. There is currently no formally approved antiviral therapy for the treatment of severe Ad keratoconjunctivitis and life-threatening Ad infections in immunocompromised patients. Here we update current knowledge on Ad biology, the clinical features observed in different patient groups and specific immune responses towards Ad infections. In addition, we review current and future treatment options, including: (i) the antiviral drugs cidofovir, ribavirin and new investigational compounds, as evaluated in the clinic or in relevant animal models, as well as (ii) novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Liesbeth Lenaerts
- Division of Virology and Chemotherapy, Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
33
|
An arginine switch in the species B adenovirus knob determines high-affinity engagement of cellular receptor CD46. J Virol 2008; 83:673-86. [PMID: 18987134 DOI: 10.1128/jvi.01967-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenoviruses (Ads) are icosahedral, nonenveloped viruses with a double-stranded DNA genome. The 51 known Ad serotypes exhibit profound variations in cell tropism and disease types. The number of observed Ad infections is steadily increasing, sometimes leading to fatal outcomes even in healthy individuals. Species B Ads can cause kidney infections, hemorrhagic cystitis, and severe respiratory infections, and most of them use the membrane cofactor protein CD46 as a cellular receptor. The crystal structure of the human Ad type 11 (Ad11) knob complexed with CD46 is known; however, the determinants of CD46 binding in related species B Ads remain unclear. We report here a structural and functional analysis of the Ad11 knob, as well as the Ad7 and Ad14 knobs, which are closely related in sequence to the Ad11 knob but have altered CD46-binding properties. The comparison of the structures of the three knobs, which we determined at very high resolution, provides a platform for understanding these differences and allows us to propose a mechanism for productive high-affinity engagement of CD46. At the center of this mechanism is an Ad knob arginine that needs to switch its orientation in order to engage CD46 with high affinity. Quantum chemical calculations showed that the CD46-binding affinity of Ad11 is significantly higher than that of Ad7. Thus, while Ad7 and Ad14 also bind CD46, the affinity and kinetics of these interactions suggest that these Ads are unlikely to use CD46 productively. The proposed mechanism is likely to determine the receptor usage of all CD46-binding Ads.
Collapse
|
34
|
Sialic acid is a cellular receptor for coxsackievirus A24 variant, an emerging virus with pandemic potential. J Virol 2008; 82:3061-8. [PMID: 18184708 DOI: 10.1128/jvi.02470-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding to target cell receptors is a critical step in the virus life cycle. Coxsackievirus A24 variant (CVA24v) has pandemic potential and is a major cause of acute hemorrhagic conjunctivitis, but its cellular receptor has hitherto been unknown. Here we show that CVA24v fails to bind to and infect CHO cells defective in sialic acid expression. Binding of CVA24v to and infection of corneal epithelial cells are efficiently inhibited by treating cells with a sialic acid-cleaving enzyme or sialic acid-binding lectins and by treatment of the virus with soluble, multivalent sialic acid. Protease treatment of cells efficiently inhibited virus binding, suggesting that the receptor is a sialylated glycoprotein. Like enterovirus type 70 and influenza A virus, CVA24v can cause pandemics. Remarkably, all three viruses use the same receptor. Since several unrelated viruses with tropism for the eye use this receptor, sialic acid-based antiviral drugs that prevent virus entry may be useful for topical treatment of such infections.
Collapse
|