1
|
Gastelum-Leyva F, Pena-Jasso A, Alvarado-Vera M, Plascencia-López I, Patrón-Romero L, Loera-Castañeda V, Gándara-Mireles JA, Lares-Asseff I, Leal-Ávila MÁ, Alvelais-Palacios JA, Almeida-Pérez J, Bogdanchikova N, Pestryakov A, Almanza-Reyes H. Evaluation of the Efficacy and Safety of Silver Nanoparticles in the Treatment of Non-Neurological and Neurological Distemper in Dogs: A Randomized Clinical Trial. Viruses 2022; 14:2329. [PMID: 36366427 PMCID: PMC9694365 DOI: 10.3390/v14112329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 02/01/2023] Open
Abstract
Canine distemper is caused by canine distemper virus (CDV), a multisystemic infectious disease with a high morbidity and mortality rate in dogs. Nanotechnology represents a development opportunity for new molecules with antiviral effects that may become effective treatments in veterinary medicine. This study evaluated the efficacy and safety of silver nanoparticles (AgNPs) in 207 CDV, naturally infected, mixed-breed dogs exhibiting clinical signs of the non-neurological and neurological phases of the disease. Group 1a included 52 dogs (experimental group) diagnosed with non-neurologic distemper treated with 3% oral and nasal AgNPs in addition to supportive therapy. Group 1b included 46 dogs (control group) diagnosed with non-neurological distemper treated with supportive therapy only. Group 2a included 58 dogs with clinical signs of neurological distemper treated with 3% oral and nasal AgNPs in addition to supportive therapy. Group 2b included 51 dogs (control group) diagnosed with clinical signs of neurological distemper treated with supportive therapy only. Efficacy was measured by the difference in survival rates: in Group 1a, the survival rate was 44/52 (84.6%), versus 7/46 in Group 1b (15.2%), while both showed clinical signs of non-neurological distemper. The survival rate of dogs with clinical signs of neurological distemper in Group 2a (38/58; 65.6%) was significantly higher than those in Control Group 2b (0/51; 0%). No adverse reactions were detected in experimental groups treated with AgNPs. AgNPs significantly improved survival in dogs with clinical signs of neurological and non-neurological distemper. The use of AgNPs in the treatment of neurological distemper led to a drastic increase in the proportion of dogs recovered without sequels compared to dogs treated without AgNPs. The evidence demonstrates that AgNP therapy can be considered as a targeted treatment in dogs severely affected by canine distemper virus.
Collapse
Affiliation(s)
| | | | | | - Ismael Plascencia-López
- Faculty of Accounting and Administration, Autonomous University of Baja California, Tijuana 22390, Mexico
| | - Leslie Patrón-Romero
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22390, Mexico
| | | | | | | | - María Ángeles Leal-Ávila
- School of Heath Sciences, Valle de Las Palmas, Autonomous University of Baja California, Tijuana 22260, Mexico
| | - J. A. Alvelais-Palacios
- School of Heath Sciences, Valle de Las Palmas, Autonomous University of Baja California, Tijuana 22260, Mexico
| | | | - Nina Bogdanchikova
- Center of Nanoscience and Nanotechnology, UNAM (CNyN-UNAM), Ensenada 22860, Mexico
| | - Alexey Pestryakov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Horacio Almanza-Reyes
- Cluster de Bioeconomía de Baja California, A.C., Tijuana 22040, Mexico
- Faculty of Medicine and Psychology, Autonomous University of Baja California, Tijuana 22390, Mexico
| |
Collapse
|
2
|
Liu F, Wang N, Lin J, Wang Q, Huang Y, Zhang Y, Shan H. Rescuing eGFP-Tagged Canine Distemper Virus for 40 Serial Passages Separately in Ribavirin- and Non-Treated Cells: Comparative Analysis of Viral Mutation Profiles. Front Cell Infect Microbiol 2021; 11:746926. [PMID: 34604118 PMCID: PMC8481889 DOI: 10.3389/fcimb.2021.746926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 02/05/2023] Open
Abstract
Due to lacking a proofreading mechanism in their RNA-dependent RNA polymerases (RdRp), RNA viruses generally possess high mutation frequencies, making them evolve rapidly to form viral quasispecies during serial passages in cells, especially treated with mutagens, like ribavirin. Canine distemper virus (CDV) belongs to the genus Morbillivirus. Its L protein functions as an RdRp during viral replication. In this study, a recombinant enhanced green fluorescence protein-tagged CDV (rCDV-eGFP) was rescued from its cDNA clone, followed by viral identification and characterization at passage-7 (P7). This recombinant was independently subjected to extra 40 serial passages (P8 to 47) in ribavirin- and non-treated cells. Two viral progenies, undergoing passages in ribavirin- and non-treated VDS cells, were named rCDV-eGFP-R and -N, respectively. Both progenies were simultaneously subjected to next-generation sequencing (NGS) at P47 for comparing their quasispecies diversities with each other. The rCDV-eGFP-R and -N showed 62 and 23 single-nucleotide mutations (SNMs) in individual antigenomes, respectively, suggesting that the ribavirin conferred a mutagenic effect on the rCDV-eGFP-R. The spectrum of 62 SNMs contained 26 missense and 36 silent mutations, and that of 23 SNMs was composed of 17 missense and 6 silent mutations. Neither the rCDV-eGFP-R nor -N exhibited nonsense mutation in individual antigenomes. We speculate that the rCDV-eGFP-R may contain at least one P47 sub-progeny characterized by high-fidelity replication in cells. If such a sub-progeny can be purified from the mutant swarm, its L protein would elucidate a molecular mechanism of CDV high-fidelity replication.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ning Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiahui Lin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yilan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
3
|
Indari O, Jakhmola S, Manivannan E, Jha HC. An Update on Antiviral Therapy Against SARS-CoV-2: How Far Have We Come? Front Pharmacol 2021; 12:632677. [PMID: 33762954 PMCID: PMC7982669 DOI: 10.3389/fphar.2021.632677] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 pandemic has spread worldwide at an exponential rate affecting millions of people instantaneously. Currently, various drugs are under investigation to treat an enormously increasing number of COVID-19 patients. This dreadful situation clearly demands an efficient strategy to quickly identify drugs for the successful treatment of COVID-19. Hence, drug repurposing is an effective approach for the rapid discovery of frontline arsenals to fight against COVID-19. Successful application of this approach has resulted in the repurposing of some clinically approved drugs as potential anti-SARS-CoV-2 candidates. Several of these drugs are either antimalarials, antivirals, antibiotics or corticosteroids and they have been repurposed based on their potential to negate virus or reduce lung inflammation. Large numbers of clinical trials have been registered to evaluate the effectiveness and clinical safety of these drugs. Till date, a few clinical studies are complete and the results are primary. WHO also conducted an international, multi-country, open-label, randomized trials-a solidarity trial for four antiviral drugs. However, solidarity trials have few limitations like no placebos were used, additionally any drug may show effectiveness for a particular population in a region which may get neglected in solidarity trial analysis. The ongoing randomized clinical trials can provide reliable long-term follow-up results that will establish both clinical safety and clinical efficacy of these drugs with respect to different regions, populations and may aid up to worldwide COVID-19 treatment research. This review presents a comprehensive update on majorly repurposed drugs namely chloroquine, hydroxychloroquine, remdesivir, lopinavir-ritonavir, favipiravir, ribavirin, azithromycin, umifenovir, oseltamivir as well as convalescent plasma therapy used against SARS-CoV-2. The review also summarizes the data recorded on the mechanism of anti-SARS-CoV-2 activity of these repurposed drugs along with the preclinical and clinical findings, therapeutic regimens, pharmacokinetics, and drug-drug interactions.
Collapse
Affiliation(s)
- Omkar Indari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Shweta Jakhmola
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | | | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
4
|
Li Y, Yi L, Cheng S, Wang Y, Wang J, Sun J, Zhang Q, Xu X. Inhibition of canine distemper virus replication by blocking pyrimidine nucleotide synthesis with A77 1726, the active metabolite of the anti-inflammatory drug leflunomide. J Gen Virol 2021; 102. [PMID: 33416466 DOI: 10.1099/jgv.0.001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Canine distemper virus (CDV) is the aetiological agent that causes canine distemper (CD). Currently, no antiviral drugs have been approved for CD treatment. A77 1726 is the active metabolite of the anti-rheumatoid arthritis (RA) drug leflunomide. It inhibits the activity of Janus kinases (JAKs) and dihydroorotate dehydrogenase (DHO-DHase), a rate-limiting enzyme in de novo pyrimidine nucleotide synthesis. A77 1726 also inhibits the activity of p70 S6 kinase (S6K1), a serine/threonine kinase that phosphorylates and activates carbamoyl-phosphate synthetase (CAD), a second rate-limiting enzyme in the de novo pathway of pyrimidine nucleotide synthesis. Our present study focuses on the ability of A77 1726 to inhibit CDV replication and its underlying mechanisms. Here we report that A77 1726 decreased the levels of the N and M proteins of CDV and lowered the virus titres in the conditioned media of CDV-infected Vero cells. CDV replication was not inhibited by Ruxolitinib (Rux), a JAK-specific inhibitor, but by brequinar sodium (BQR), a DHO-DHase-specific inhibitor, and PF-4708671, an S6K1-specific inhibitor. Addition of exogenous uridine, which restores intracellular pyrimidine nucleotide levels, blocked the antiviral activity of A77 1726, BQR and PF-4708671. A77 1726 and PF-4708671 inhibited the activity of S6K1 in CDV-infected Vero cells, as evidenced by the decreased levels of CAD and S6 phosphorylation. S6K1 knockdown suppressed CDV replication and enhanced the antiviral activity of A77 1726. These observations collectively suggest that the antiviral activity of A77 1726 against CDV is mediated by targeting pyrimidine nucleotide synthesis via inhibiting DHO-DHase activity and S6K1-mediated CAD activation.
Collapse
Affiliation(s)
- Yao Li
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| | - Li Yi
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Sipeng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animals and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Yongshan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, PR China
| | - Jiongjiong Wang
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| | - Jing Sun
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| | - Quan Zhang
- Institutes of Agricultural Science and Technology Development, Yangzhou University Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, PR China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China.,College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| | - Xiulong Xu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China.,Institutes of Agricultural Science and Technology Development, Yangzhou University Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, PR China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, PR China
| |
Collapse
|
5
|
Liu F, Wang Q, Huang Y, Wang N, Zhang Y, Shan H. Recovery of NanoLuc Luciferase-Tagged Canine Distemper Virus for Facilitating Rapid Screening of Antivirals in vitro. Front Vet Sci 2020; 7:600796. [PMID: 33363240 PMCID: PMC7758346 DOI: 10.3389/fvets.2020.600796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022] Open
Abstract
Canine distemper virus (CDV), belonging to the genus Morbillivirus in the family Paramyxoviridae, is a highly contagious pathogen, affecting various domestic, and wild carnivores. Conventional methods are too cumbersome to be used for high-throughput screening of anti-CDV drugs. In this study, a recombinant CDV was rescued using reverse genetics for facilitating screening of anti-CDV drug in vitro. The recombinant CDV could stably express the NanoLuc® luciferase (NLuc), a novel enzyme that was smaller and “brighter” than others. The intensity of NLuc-catalyzed luminescence reaction indirectly reflected the anti-CDV effect of a certain drug, due to a positive correlation between NLuc expression and virus propagation in vitro. Based on such a characteristic feature, the recombinant CDV was used for anti-CDV assays on four drugs (ribavirin, moroxydine hydrochloride, 1-adamantylamine hydrochloride, and tea polyphenol) via analysis of luciferase activity, instead of via conventional methods. The result showed that out of these four drugs, only the ribavirin exhibited a detectable anti-CDV effect. The NLuc-tagged CDV would be a rapid tool for high-throughput screening of anti-CDV drugs.
Collapse
Affiliation(s)
- Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yilan Huang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ning Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hu Shan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Balakrishnan A, Mun AB. Ribavirin inhibits Chandipura virus replication in Vero cells. J Med Virol 2020; 92:2969-2975. [PMID: 32543712 DOI: 10.1002/jmv.26184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/10/2020] [Indexed: 01/04/2023]
Abstract
Chandipura virus (CHPV) is an emerging tropical pathogen in India. The virus has been reported to be associated with an acute encephalitis syndrome in young children with a case fatality rate of 55% to 75%. Clinical management with symptomatic treatment is the only option available to treat infected patients. No vaccines are available for prophylaxis. In light of the prophylactic limitations, antiviral therapy would play an important role in control of CHPV infection. In the present study, ribavirin (RBV), an antiviral drug widely accepted for human use and having an antiviral effect on many RNA and DNA viruses, was tested against the CHPV. A screening assay that scores for the virus-mediated plaque formation in the cultured Vero cells was used. RBV exhibited 50% inhibitory concentration (IC50 ) at 89.84 ± 1.8 µM. The drug was very effective when the cells were treated either within an hour postinfection or 4 to 6 hours before infection. The plaque morphology was different in RBV treated cells; the plaques were smaller in size as compared with the plaques in the virus infected cells. The study reports the antiviral activity of RBV against CHPV, and hence, suggests the possible utility of RBV in CHPV infected patients to mitigate the disease. A further clinical trial is needed before introducing the drug for human use against CHPV infection.
Collapse
Affiliation(s)
| | - Amol B Mun
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
7
|
Ozdemir Y, Bekircan O, Baltaş N, Menteşe E. Synthesis and pancreatic lipase inhibitory activities of some 1,2,4‐triazol‐5(3)‐one derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yusuf Ozdemir
- Department of Chemistry, Faculty of Science Karadeniz Technical University Trabzon Turkey
| | - Olcay Bekircan
- Department of Chemistry, Faculty of Science Karadeniz Technical University Trabzon Turkey
| | - Nimet Baltaş
- Department of Chemistry, Art and Science Faculty Recep Tayyip Erdogan University Rize Turkey
| | - Emre Menteşe
- Department of Chemistry, Art and Science Faculty Recep Tayyip Erdogan University Rize Turkey
| |
Collapse
|
8
|
Faramarzi M, Pordel M, Morsali A. Synthesis, Antiviral, Antibacterial, and Cytotoxicity Assessment of Some 3H-Benzo[a]imidazo[4,5-j]acridines and 3H-Benzo[a]pyrazolo[3,4-j]acridines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020080151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Bhuvaneswar C, Rammohan A, Bhaskar BV, Babu PR, Naveen G, Gunasekar D, Madhuri S, Reddanna P, Rajendra W. Sophora interrupta Bedd. root-derived flavonoids as prominent antiviral agents against Newcastle disease virus. RSC Adv 2020; 10:33534-33543. [PMID: 35515074 PMCID: PMC9056705 DOI: 10.1039/d0ra01820a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
The discovery and development of novel antiviral drugs from natural sources is continuously increasing due to limitations of currently available drugs such as toxic side effects, drug residue risk factors, high costs, and poor therapeutic strategies. Also, there are very few known antiviral drugs that are effective against only specific viruses. Hence, the present study is intended to isolate and characterize potent antiviral compounds from the methanolic root extract of Sophora interrupta Bedd. against avian paramyxovirus, Newcastle disease virus (NDV) and to distinguish the molecular basis of antiviral compounds. The two isolated flavonoids, maackiain (SR-1) and echinoisoflavanone (SR-2) exhibited the best antiviral activities against NDV infection in chicken embryo fibroblast cell lines compared to the standard antiviral drug, Ribavirin. Further, the in vitro studies and quantitative PCR analysis suggests that these flavonoids inhibit the viral entry, replication, and transcription, which may be beneficial as a promising strategy for the treatment of viral infections. Besides, the molecular docking studies of SR-1 and SR-2 exhibited high binding affinities of -7.6 and -8.0 kcal mol-1, respectively, and marked interactions with the NDV surface glycoprotein, hemagglutinin neuraminidase (HN). Also, the in silico toxicity properties as well pharmacokinetic studies of isolates revealed them as pharmacologically potent antiviral compounds.
Collapse
Affiliation(s)
- Cherukupalle Bhuvaneswar
- Department of Zoology, Sri Venkateswara University Tirupati-517502 AP India
- Department of Microbiology, Sri Venkateswara University Tirupati-517502 AP India
| | - Aluru Rammohan
- Natural Products Division, Department of Chemistry, Sri Venkateswara University Tirupati-517502 AP India
- Department of Organic and Biomolecular Chemistry, Ural Federal University Yekaterinburg 620002 Russian Federation
| | - Baki Vijaya Bhaskar
- Department of Pathophysiology, Shantou University Medical College Shantou Guangdong China-515031
| | | | - Gujjar Naveen
- National Institute of Animal Biotechnology (NIAB) Hyderabad-500049 AP India
| | - Duvvuru Gunasekar
- Natural Products Division, Department of Chemistry, Sri Venkateswara University Tirupati-517502 AP India
| | - Subbiah Madhuri
- National Institute of Animal Biotechnology (NIAB) Hyderabad-500049 AP India
| | - Pallu Reddanna
- School of Life Sciences, University of Hyderabad (UOH) Hyderabad-500046 Telangana India
| | | |
Collapse
|
10
|
Giuliani A, Balducci AG, Zironi E, Colombo G, Bortolotti F, Lorenzini L, Galligioni V, Pagliuca G, Scagliarini A, Calzà L, Sonvico F. In vivo nose-to-brain delivery of the hydrophilic antiviral ribavirin by microparticle agglomerates. Drug Deliv 2018; 25:376-387. [PMID: 29382237 PMCID: PMC6058489 DOI: 10.1080/10717544.2018.1428242] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nasal administration has been proposed as a potential approach for the delivery of drugs to the central nervous system. Ribavirin (RBV), an antiviral drug potentially useful to treat viral infections both in humans and animals, has been previously demonstrated to attain several brain compartments after nasal administration. Here, a powder formulation in the form of agglomerates comprising micronized RBV and spray-dried microparticles containing excipients with potential absorption enhancing properties, i.e. mannitol, chitosan, and α-cyclodextrin, was developed for nasal insufflation. The agglomerates were characterized for particle size, agglomeration yield, and ex vivo RBV permeation across rabbit nasal mucosa as well as delivery from an animal dry powder insufflator device. Interestingly, permeation enhancers such as chitosan and mannitol showed a lower amount of RBV permeating across the excised nasal tissue, whereas α-cyclodextrin proved to outperform the other formulations and to match the highly soluble micronized RBV powder taken as a reference. In vivo nasal administration to rats of the agglomerates containing α-cyclodextrin showed an overall higher accumulation of RBV in all the brain compartments analyzed as compared with the micronized RBV administered as such without excipient microparticles. Hence, powder agglomerates are a valuable approach to obtain a nasal formulation potentially attaining nose-to-brain delivery of drugs with minimal processing of the APIs and improvement of the technological and biopharmaceutical properties of micronized API and excipients, as they combine optimal flow properties for handling and dosing, suitable particle size for nasal deposition, high surface area for drug dissolution, and penetration enhancing properties from excipients such as cyclodextrins.
Collapse
Affiliation(s)
- Alessandro Giuliani
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Anna Giulia Balducci
- b Department of Food and Drug , University of Parma , Parma , Italy.,c Interdepartmental Center for Health Products - Biopharmanet TEC, University of Parma , Parma , Italy
| | - Elisa Zironi
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Gaia Colombo
- d Department of Life Sciences and Biotechnology , University of Ferrara , Ferrara , Italy
| | - Fabrizio Bortolotti
- d Department of Life Sciences and Biotechnology , University of Ferrara , Ferrara , Italy
| | | | - Viola Galligioni
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Giampiero Pagliuca
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Alessandra Scagliarini
- a Department of Veterinary Medical Science , Alma Mater Studiorum - University of Bologna , Ozzano , Italy
| | - Laura Calzà
- e IRET Foundation , Ozzano , (BO) , Italy.,f Department of Pharmacy and Biotechnology , Ozzano , Italy
| | - Fabio Sonvico
- b Department of Food and Drug , University of Parma , Parma , Italy.,c Interdepartmental Center for Health Products - Biopharmanet TEC, University of Parma , Parma , Italy
| |
Collapse
|
11
|
Dalpiaz A, Pavan B. Nose-to-Brain Delivery of Antiviral Drugs: A Way to Overcome Their Active Efflux? Pharmaceutics 2018; 10:pharmaceutics10020039. [PMID: 29587409 PMCID: PMC6027266 DOI: 10.3390/pharmaceutics10020039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
Although several viruses can easily infect the central nervous system (CNS), antiviral drugs often show dramatic difficulties in penetrating the brain from the bloodstream since they are substrates of active efflux transporters (AETs). These transporters, located in the physiological barriers between blood and the CNS and in macrophage membranes, are able to recognize their substrates and actively efflux them into the bloodstream. The active transporters currently known to efflux antiviral drugs are P-glycoprotein (ABCB1 or P-gp or MDR1), multidrug resistance-associated proteins (ABCC1 or MRP1, ABCC4 or MRP4, ABCC5 or MRP5), and breast cancer resistance protein (ABCG2 or BCRP). Inhibitors of AETs may be considered, but their co-administration causes serious unwanted effects. Nasal administration of antiviral drugs is therefore proposed in order to overcome the aforementioned problems, but innovative devices, formulations (thermoreversible gels, polymeric micro- and nano-particles, solid lipid microparticles, nanoemulsions), absorption enhancers (chitosan, papaverine), and mucoadhesive agents (chitosan, polyvinilpyrrolidone) are required in order to selectively target the antiviral drugs and, possibly, the AET inhibitors in the CNS. Moreover, several prodrugs of antiretroviral agents can inhibit or elude the AET systems, appearing as interesting substrates for innovative nasal formulations able to target anti-Human Immunodeficiency Virus (HIV) agents into macrophages of the CNS, which are one of the most important HIV Sanctuaries of the body.
Collapse
Affiliation(s)
- Alessandro Dalpiaz
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| | - Barbara Pavan
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
12
|
Lanave G, Cavalli A, Martella V, Fontana T, Losappio R, Tempesta M, Decaro N, Buonavoglia D, Camero M. Ribavirin and boceprevir are able to reduce Canine distemper virus growth in vitro. J Virol Methods 2017; 248:207-211. [PMID: 28760649 DOI: 10.1016/j.jviromet.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/21/2017] [Accepted: 07/23/2017] [Indexed: 01/23/2023]
Abstract
Canine distemper virus (CDV) is a major infectious disease of dogs. Although vaccines were successful to control CDV spread in canine population, the disease is still common and may pose a threat to unvaccinated dogs. In the attempt to develop specific anti-viral therapeutic tools, the efficacy of several molecules against CDV has been investigated in vitro. In this study the antiviral efficacy in vitro against CDV of ribavirin and boceprevir alone or in combination was evaluated. CDV growth in VERO cells was inhibited by ribavirin, by boceprevir and by a combination of the two molecules at non-cytotoxic concentrations, as evaluated by end-point viral titration in cell monolayers and by quantification of viral RNA using quantitative RT-PCR. By end-point titration, a statistically significant reduction in CDV replication was observed only using ribavirin and boceprevir in combination. By quantitative RT-PCR, a significant reduction of viral growth was observed either in cells treated with ribavirin or boceprevir or with both the two molecules. The association of ribavirin or boceprevir was able to decrease CDV growth by up to 3.4458 logs with respect to untreated infected cells, chiefly at the highest virus dilutions. The results obtained in this study may constitute an important basis for the development of CDV therapies.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Italy
| | - Alessandra Cavalli
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Italy
| | - Tommaso Fontana
- Department of Infectious Diseases, Hospital Unit of Bisceglie, Bisceglie, Italy
| | - Ruggero Losappio
- Department of Infectious Diseases, Hospital Unit of Bisceglie, Bisceglie, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Italy
| | - Domenico Buonavoglia
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University Aldo Moro of Bari, Valenzano, Italy.
| |
Collapse
|
13
|
de Carvalho OV, Félix DM, de Camargo Tozato C, Fietto JLR, de Almeida MR, Bressan GC, Pena LJ, Silva-Júnior A. 6-methylmercaptopurine riboside, a thiopurine nucleoside with antiviral activity against canine distemper virus in vitro. Virol J 2017. [PMID: 28651549 PMCID: PMC5485505 DOI: 10.1186/s12985-017-0785-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Canine distemper (CD) is a widespread infectious disease that can severely impact a variety of species in the order Carnivora, as well as non-carnivore species such as non-human primates. Despite large-scale vaccination campaigns, several fatal outbreaks have been reported in wild and domestic carnivore populations. This, in association with expansion of the disease host range and the development of vaccine-escape strains, has contributed to an increased demand for therapeutic strategies synergizing with vaccine programs for effectively controlling canine distemper. 6-methylmercaptopurine riboside (6MMPr) is a modified thiopurine nucleoside with known antiviral properties against certain RNA viruses. METHODS We tested the inhibitory effects of 6MMPr against a wild-type CDV strain infection in cell culture. We measured infectious particle production and viral RNA levels in treated and untreated CDV-infected cells. Ribavirin (RIB) was used as a positive control. RESULTS Here, we report for the first time the antiviral effects of 6MMPr against canine distemper virus (CDV) in vitro. 6MMPr was able to reduce viral RNA levels and to inhibit the production of infectious CDV particles. The therapeutic selectivity of 6MMPr was approximately six times higher than that of ribavirin. CONCLUSION Our results indicate that 6MMPr has high anti-CDV potential and warrants further testing against other paramyxoviruses, as well as clinical testing of the compound against CDV.
Collapse
Affiliation(s)
- Otávio Valério de Carvalho
- Laboratory of Animal Virology, Department of Veterinary, Universidade Federal of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil.,Laboratory of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Daniele Mendes Félix
- Laboratory of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Claudia de Camargo Tozato
- Laboratory of Animal and Human Virology, Department of Microbiology and Immunology, Biosciences Institute, Paulista State University, Botucatu, SP, 18618-970, Brazil
| | - Juliana Lopes Rangel Fietto
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Márcia Rogéria de Almeida
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Gustavo Costa Bressan
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Lindomar José Pena
- Laboratory of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| | - Abelardo Silva-Júnior
- Laboratory of Animal Virology, Department of Veterinary, Universidade Federal of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil.
| |
Collapse
|
14
|
Liu PC, Chen CA, Chen CM, Yen CH, Lee MH, Chuang CK, Tu CF, Su BL. Application of xenogeneic anti-canine distemper virus antibodies in treatment of canine distemper puppies. J Small Anim Pract 2016; 57:626-630. [PMID: 27726133 DOI: 10.1111/jsap.12557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/10/2016] [Accepted: 07/31/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The clinical feasibility of passive immunotherapy has not been demonstrated in dogs naturally infected with canine distemper. In this study, porcine anti-canine distemper virus IgG and F(ab')2 antibody fragments were used to treat infected puppies. METHODS A total of 41 naturally infected puppies (age Äsix months) exhibiting severe respiratory signs, but lacking neurological signs, were enrolled in the study. Twenty-five puppies were treated with a combination of IgG or F(ab')2 antibody fragments (Group 1) and supportive therapy and 16 puppies received routine supportive care only (Group 2). RESULTS The survival rate of dogs in Group 1 (19/25; 76%) was significantly higher than that in Group 2 (5/16; 31·3%) (P<0·05). During the therapy, 8 of the 25 dogs (32%) in Group 1 developed neurological signs versus 12 of the 16 dogs (75%) in Group 2 (P<0·05). Adverse reactions were limited to elevated body temperature in dogs that received IgG antibodies. CLINICAL SIGNIFICANCE Porcine anti-canine distemper virus antibodies improved survival in puppies affected with canine distemper with minimal adverse effects. Therefore, this therapy could be considered for treatment of endangered animal species infected with canine distemper virus.
Collapse
Affiliation(s)
- P C Liu
- Graduate Institute of Veterinary Medicine, National Taiwan University, 10617, Taipei, Taiwan
| | - C A Chen
- Institute of Veterinary Clinical Sciences, National Taiwan University, 10617, Taipei, Taiwan
| | - C M Chen
- Division of Animal Medicine, Animal Technology Laboratories, Agriculture Technology Research Institute, 35053, Miaoli, Taiwan
| | - C H Yen
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, 35053, Miaoli, Taiwan
| | - M H Lee
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, 35053, Miaoli, Taiwan
| | - C K Chuang
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, 35053, Miaoli, Taiwan
| | - C F Tu
- Division of Animal Technology, Animal Technology Laboratories, Agriculture Technology Research Institute, 35053, Miaoli, Taiwan
| | - B L Su
- Institute of Veterinary Clinical Sciences, National Taiwan University, 10617, Taipei, Taiwan. .,National Taiwan University Veterinary Hospital, National Taiwan University, 10617, Taipei, Taiwan.
| |
Collapse
|
15
|
In vitro anti-canine distemper virus activity of fucoidan extracted from the brown alga Cladosiphon okamuranus. Virusdisease 2014; 25:474-80. [PMID: 25674625 DOI: 10.1007/s13337-014-0228-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022] Open
Abstract
Canine distemper virus (CDV) is a morbillivirus related to measles virus that infects dogs and other carnivores. CDV has a significant global impact on animal health; however, there is no current antiviral treatment for CDV infection. In recent years, it has been demonstrated that sulfated polysaccharides exhibit antiviral properties both in vivo and in vitro, despite their low cytotoxicity to host cells. Fucoidan is a sulfated polysaccharide found in the cell wall matrix of brown algae. In this study, we evaluated in vitro anti-CDV activity of fucoidan, which was derived from Cladosiphon okamuranus. Fucoidan actively inhibited CDV replication in Vero cells at a 50 % inhibitory concentration (IC50) of 0.1 µg/ml. The derived selectivity index (SI50) was >20,000. This polysaccharide likely inhibits viral infection by interference in the early steps and by inhibiting CDV-mediated cell fusion. Fucoidan may be useful in development of pharmacological strategies to treat and control CDV infection.
Collapse
|
16
|
Mangia SH, Moraes LF, Takahira RK, Motta RG, Franco MM, Megid J, Silva AV, Paes AC. Efeitos colaterais do uso da ribavirina, prednisona e DMSO em cães naturalmente infectados pelo vírus da cinomose. PESQUISA VETERINARIA BRASILEIRA 2014. [DOI: 10.1590/s0100-736x2014000500011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
O estudo tem o objetivo de identificar efeitos indesejáveis da ribavirina, prednisona e DMSO em cães naturalmente infectados com o vírus da cinomose. Foram utilizados 60 cães apresentando quadro neurológico da cinomose com evolução de 10 dias. Os animais foram internados e receberam tratamento de suporte; foram avaliados diariamente e realizados hemograma, dosagem bioquímica e exame de urina tipo I. Os grupos 1 e 2 foram tratados com ribavirina e sua associação com DMSO; os grupos 3 e 4 com DMSO e prednisona e o grupos 5 com ribavirina e prednisona e o grupo 6 com ribavirina, prednisona e DMSO. Os animais foram anestesiados para a colheita de líquor, medula óssea e sangue, antes do tratamento para diagnóstico através da RT-PCR. As amostras negativas foram analisadas pela técnica de hn-PCR. Todos os animais apresentaram resultado positivo em pelo menos uma das duas reações. O efeito adverso da ribavirina e a sua associação com a prednisona foi a anemia hemolítica, que foi confirmada pela observação de bilirrubina na urina apenas dos cães tratados com ribavirina.
Collapse
|
17
|
dos Santos AE, Kuster RM, Yamamoto KA, Salles TS, Campos R, de Meneses MDF, Soares MR, Ferreira D. Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity. Parasit Vectors 2014; 7:130. [PMID: 24678592 PMCID: PMC3973022 DOI: 10.1186/1756-3305-7-130] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/12/2014] [Indexed: 01/24/2023] Open
Abstract
Background The arthropod-borne Mayaro virus (MAYV) causes ‘Mayaro fever’, a disease of medical significance, primarily affecting individuals in permanent contact with forested areas in tropical South America. Recently, MAYV has attracted attention due to its likely urbanization. Currently, there are no licensed drugs against most mosquito-transmitted viruses. Here, we investigated the in vitro anti-MAYV activity of the flavonoids quercetin and its derivatives from the Brazilian shrub Bauhinia longifolia (Bong.) Steud. Methods Flavonoids were purified by chromatographic fractionation from leaf extracts of B. longifolia and chemically identified as quercetin and quercetin glycosides using spectroscopic techniques. Cytotoxicity of purified flavonoids and of EtOAc- and n-BuOH-containing flavonoid mixtures was measured by the dye-uptake assay while their antiviral activity was evaluated by a virus yield inhibition assay. Results The following flavonoids were purified from B. longifolia leaves: non-glycosylated quercetin and its glycosides guaijaverin, quercitrin, isoquercitrin, and hyperin. EtOAc and n-BuOH fractions containing these flavonoids demonstrated the highest antiviral activity of all tested substances, while quercetin had the highest antiviral activity amongst purified flavonoids. Quercetin, EtOAc, or n-BuOH fractions inhibited MAYV production by more than 90% at 25 μg/mL, displaying a stronger antiviral effect than the licensed antiviral ribavirin. A mixture of the isomers isoquercitrin and hyperin had a modest antiviral effect (IC90 = 104.9), while guaijaverin and quercitrin did not show significant antiviral activity. Conclusions B. longifolia is a good source of flavonoids with anti-Mayaro virus activity. This is the first report of the activity of quercetin and its derivatives against an alphavirus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Davis Ferreira
- Microbiology Institute, Virology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Carvalho OV, Botelho CV, Ferreira CGT, Ferreira HCC, Santos MR, Diaz MAN, Oliveira TT, Soares-Martins JAP, Almeida MR, Silva A. In vitro inhibition of canine distemper virus by flavonoids and phenolic acids: implications of structural differences for antiviral design. Res Vet Sci 2013; 95:717-24. [PMID: 23664014 DOI: 10.1016/j.rvsc.2013.04.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 03/13/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
Abstract
Infection caused by canine distemper virus (CDV) is a highly contagious disease with high incidence and lethality in the canine population. Antiviral activity of flavonoids quercetin, morin, rutin and hesperidin, and phenolic cinnamic, trans-cinnamic and ferulic acids were evaluated in vitro against the CDV using the time of addition assay to determine which step of the viral replicative cycle was affected. All flavonoids displayed great viral inhibition when they were added at the times 0 (adsorption) and 1h (penetration) of the viral replicative cycle. Both quercetin and hesperidin presented antiviral activity at the time 2h (intracellular). In the other hand, cinnamic acid showed antiviral activity at the times 0 and 2h while trans-cinnamic acid showed antiviral effect at the times -1h (pre-treatment) and 0 h. Ferulic acid inhibited CDV replicative cycle at the times 0 and 1h. Our study revealed promising candidates to be considered in the treatment of CDV. Structural differences among compounds and correlation to their antiviral activity were also explored. Our analysis suggest that these compounds could be useful in order to design new antiviral drugs against CDV as well as other viruses of great meaning in veterinary medicine.
Collapse
Affiliation(s)
- O V Carvalho
- Laboratório de Virologia Animal (LVA), Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Elizondo-Gonzalez R, Cruz-Suarez LE, Ricque-Marie D, Mendoza-Gamboa E, Rodriguez-Padilla C, Trejo-Avila LM. In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus. Virol J 2012; 9:307. [PMID: 23234372 PMCID: PMC3546940 DOI: 10.1186/1743-422x-9-307] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Newcastle Disease Virus (NDV) causes a serious infectious disease in birds that results in severe losses in the worldwide poultry industry. Despite vaccination, NDV outbreaks have increased the necessity of alternative prevention and control measures. Several recent studies focused on antiviral compounds obtained from natural resources. Many extracts from marine organisms have been isolated and tested for pharmacological purposes, and their antiviral activity has been demonstrated in vitro and in vivo. Fucoidan is a sulfated polysaccharide present in the cell wall matrix of brown algae that has been demonstrated to inhibit certain enveloped viruses with low toxicity. This study evaluated the potential antiviral activity and the mechanism of action of fucoidan from Cladosiphon okamuranus against NDV in the Vero cell line. METHODS The cytotoxicity of fucoidan was determined by the MTT assay. To study its antiviral activity, fusion and plaque-forming unit (PFU) inhibition assays were conducted. The mechanism of action was determined by time of addition, fusion inhibition, and penetration assays. The NDV vaccine strain (La Sota) was used in the fusion inhibition assays. PFU and Western blot experiments were performed using a wild-type lentogenic NDV strain. RESULTS Fucoidan exhibited antiviral activity against NDV La Sota, with an obtained IS50 >2000. In time of addition studies, we observed viral inhibition in the early stages of infection (0-60 min post-infection). The inhibition of viral penetration experiments with a wild-type NDV strain supported this result, as these experiments demonstrated a 48% decrease in viral infection as well as reduced HN protein expression. Ribavirin, which was used as an antiviral control, exhibited lower antiviral activity than fucoidan and high toxicity at active doses. In the fusion assays, the number of syncytia was significantly reduced (70% inhibition) when fucoidan was added before cleavage of the fusion protein, perhaps indicating a specific interaction between fucoidan and the F0 protein. CONCLUSION The results of this study suggest that fucoidan from C. okamuranus represents a potential low-toxicity antiviral compound for the poultry industry, and our findings provide a better understanding of the mode of action of sulfated polysaccharides.
Collapse
Affiliation(s)
- Regina Elizondo-Gonzalez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66450, San Nicolás de los Garza, Nuevo León, México
| | - L Elizabeth Cruz-Suarez
- Programa Maricultura, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66450, San Nicolás de los Garza, Nuevo León, México
| | - Denis Ricque-Marie
- Programa Maricultura, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66450, San Nicolás de los Garza, Nuevo León, México
| | - Edgar Mendoza-Gamboa
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66450, San Nicolás de los Garza, Nuevo León, México
| | - Cristina Rodriguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66450, San Nicolás de los Garza, Nuevo León, México
| | - Laura M Trejo-Avila
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66450, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
20
|
Inhibition of viral RNA synthesis in canine distemper virus infection by proanthocyanidin A2. Antiviral Res 2011; 92:447-52. [DOI: 10.1016/j.antiviral.2011.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/22/2011] [Accepted: 10/06/2011] [Indexed: 02/02/2023]
|
21
|
Colombo G, Lorenzini L, Zironi E, Galligioni V, Sonvico F, Balducci AG, Pagliuca G, Giuliani A, Calzà L, Scagliarini A. Brain distribution of ribavirin after intranasal administration. Antiviral Res 2011; 92:408-14. [PMID: 22001322 DOI: 10.1016/j.antiviral.2011.09.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 08/30/2011] [Accepted: 09/07/2011] [Indexed: 01/28/2023]
Abstract
Ribavirin has proved to be effective in vitro against several RNA viruses responsible for encephalitis in humans and animals. However, the in vivo efficacy towards the cerebral viral load seems to be limited by the blood-brain barrier. Since the nose-to-brain pathway has been indicated for delivering drugs to the brain, we investigated here the distribution of ribavirin in the central nervous system (CNS) after intranasal administration. We first tested in vitro ribavirin diffusion from an aqueous solution across a biological membrane, using Franz cells and rabbit nasal mucosa. About 35% of ribavirin permeated in 4 h across the mucosa, after reaching steady-state flux in less than 30 min. In the first in vivo experiment, ribavirin aqueous solution was administered intranasally to Sprague Dawley rats (10 mg/kg). Animals were sacrificed at 10, 20 or 30 min after administration to collect brain areas (cerebellum, olfactory bulb, cerebral cortex, basal ganglia and hippocampus) and biological fluids (cerebrospinal fluid and plasma). Ribavirin, quantified by LC-MS/MS spectrometry, was detected at each time point in all compartments with the highest concentration in olfactory bulb and decreasing in rostro-caudal direction. Two subsequent in vivo experiments compared the nasal route (ribavirin solution) with the intravenous one and the nasal administration of ribavirin solution with ribavirin powder (10 mg/kg). It was found that 20 min after administration, ribavirin concentration in olfactory bulb was similar after intravenous or nasal administration of the ribavirin solution, whereas the powder led to significantly higher levels. Ribavirin was also present in deeper compartments, such as basal ganglia and hippocampus. Even if the mechanisms involved in ribavirin nose-to-brain transport are not clear, these results suggest a rapid extracellular diffusive flux from the nasal epithelium to the olfactory bulb and different CNS areas.
Collapse
Affiliation(s)
- Gaia Colombo
- Department of Pharmaceutical Sciences, University of Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Singethan K, Hiltensperger G, Kendl S, Wohlfahrt J, Plattet P, Holzgrabe U, Schneider-Schaulies J. N-(3-Cyanophenyl)-2-phenylacetamide, an effective inhibitor of morbillivirus-induced membrane fusion with low cytotoxicity. J Gen Virol 2010; 91:2762-72. [PMID: 20685931 DOI: 10.1099/vir.0.025650-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on the structural similarity of viral fusion proteins within the family Paramyxoviridae, we tested recently described and newly synthesized acetanilide derivatives for their capacity to inhibit measles virus (MV)-, canine distemper virus (CDV)- and Nipah virus (NiV)-induced membrane fusion. We found that N-(3-cyanophenyl)-2-phenylacetamide (compound 1) has a high capacity to inhibit MV- and CDV-induced (IC(50) μM), but not NiV-induced, membrane fusion. This compound is of outstanding interest because it can be easily synthesized and its cytotoxicity is low [50 % cytotoxic concentration (CC(50)) ≥ 300 μM], leading to a CC(50)/IC(50) ratio of approximately 100. In addition, primary human peripheral blood lymphocytes and primary dog brain cell cultures (DBC) also tolerate high concentrations of compound 1. Infection of human PBMC with recombinant wild-type MV is inhibited by an IC(50) of approximately 20 μM. The cell-to-cell spread of recombinant wild-type CDV in persistently infected DBC can be nearly completely inhibited by compound 1 at 50 μM, indicating that the virus spread between brain cells is dependent on the activity of the viral fusion protein. Our findings demonstrate that this compound is a most applicable inhibitor of morbillivirus-induced membrane fusion in tissue culture experiments including highly sensitive primary cells.
Collapse
Affiliation(s)
- K Singethan
- Institut für Virologie und Immunbiologie, University of Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 2010; 26:1-21. [PMID: 20583859 DOI: 10.3109/14756360903524304] [Citation(s) in RCA: 353] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The triazole nucleus is one of the most important and well known heterocycles which is a common and integral feature of a variety of natural products and medicinal agents. Triazole nucleus is present as a core structural component in an array of drug categories such as antimicrobial, anti-inflammatory, analgesic, antiepileptic, antiviral, antineoplastic, antihypertensive, antimalarial, local anaesthetic, antianxiety, antidepressant, antihistaminic, antioxidant, antitubercular, anti-Parkinson's, antidiabetic, antiobesity and immunomodulatory agents, etc. The broad and potent activity of triazole and their derivatives has established them as pharmacologically significant scaffolds. The basic heterocyclic rings present in the various medicinal agents are 1,2,3-triazole and 1,2,4-triazole. A large volume of research has been carried out on triazole and their derivatives, which has proved the pharmacological importance of this heterocyclic nucleus. The present paper is an attempt to review the pharmacological activities reported for triazole derivatives in the current literature with an update of recent research findings on this nuclei.
Collapse
Affiliation(s)
- Rajeev Kharb
- Sanjivani College of Pharmaceutical Sciences, Khetri, India
| | | | | |
Collapse
|
24
|
Cell type mediated resistance of vesicular stomatitis virus and Sendai virus to ribavirin. PLoS One 2010; 5:e11265. [PMID: 20582319 PMCID: PMC2889835 DOI: 10.1371/journal.pone.0011265] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 06/02/2010] [Indexed: 12/14/2022] Open
Abstract
Ribavirin (RBV) is a synthetic nucleoside analog with broad spectrum antiviral activity. Although RBV is approved for the treatment of hepatitis C virus, respiratory syncytial virus, and Lassa fever virus infections, its mechanism of action and therapeutic efficacy remains highly controversial. Recent reports show that the development of cell-based resistance after continuous RBV treatment via decreased RBV uptake can greatly limit its efficacy. Here, we examined whether certain cell types are naturally resistant to RBV even without prior drug exposure. Seven different cell lines from various host species were compared for RBV antiviral activity against two nonsegmented negative-strand RNA viruses, vesicular stomatitis virus (VSV, a rhabdovirus) and Sendai virus (SeV, a paramyxovirus). Our results show striking differences between cell types in their response to RBV, ranging from virtually no antiviral effect to very effective inhibition of viral replication. Despite differences in viral replication kinetics for VSV and SeV in the seven cell lines, the observed pattern of RBV resistance was very similar for both viruses, suggesting that cellular rather than viral determinants play a major role in this resistance. While none of the tested cell lines was defective in RBV uptake, dramatic variations were observed in the long-term accumulation of RBV in different cell types, and it correlated with the antiviral efficacy of RBV. While addition of guanosine neutralized RBV only in cells already highly resistant to RBV, actinomycin D almost completely reversed the RBV effect (but not uptake) in all cell lines. Together, our data suggest that RBV may inhibit the same virus via different mechanisms in different cell types depending on the intracellular RBV metabolism. Our results strongly point out the importance of using multiple cell lines of different origin when antiviral efficacy and potency are examined for new as well as established drugs in vitro.
Collapse
|
25
|
Dal Pozzo F, Galligioni V, Vaccari F, Gallina L, Battilani M, Scagliarini A. Antiviral efficacy of EICAR against canine distemper virus (CDV) in vitro. Res Vet Sci 2009; 88:339-44. [PMID: 19781726 DOI: 10.1016/j.rvsc.2009.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 07/15/2009] [Accepted: 08/20/2009] [Indexed: 11/17/2022]
Abstract
Canine distemper virus (CDV) is a highly contagious pathogen of carnivores. In dogs, the disease is characterized by high lethality rates and no specific antiviral therapy is available. The aim of this study was to verify the in vitro antiviral activity of the 5-ethynyl-1-beta-d-ribofuranosylimidazole-4-carboxamide (EICAR) and to compare it with the 1-(beta-d-ribofuranosyl)-1,2,4-triazole-3-carboxamide (ribavirin, RBV). EICAR was more active than RBV against CDV replication, while both molecules exhibited low selectivity indexes. A reversal of their antiviral activity was observed after addition of guanosine, suggesting their involvement in the inhibition of the inosine monophosphate dehydrogenase enzyme (IMPDH). RBV and EICAR had a time- and concentration-dependent anti-CDV activity, mainly displayed during the first 10h post-infection. The involvement of the inhibition of the viral RNA-dependent RNA polymerase (vRdRp) is discussed, as well as the role of CDV as a model to study more potent and selective antiviral molecules active against other Paramyxoviridae.
Collapse
Affiliation(s)
- Fabiana Dal Pozzo
- Department of Veterinary Public Health and Animal Pathology, Alma Mater Studiorum, Università di Bologna via Tolara di Sopra 50, 40064 Ozzano Emila, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Martella V, Elia G, Buonavoglia C. Canine distemper virus. Vet Clin North Am Small Anim Pract 2008; 38:787-97, vii-viii. [PMID: 18501278 DOI: 10.1016/j.cvsm.2008.02.007] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Vaccine-based prophylaxis has greatly helped to keep distemper disease under control. Notwithstanding, the incidence of canine distemper virus (CDV)-related disease in canine populations throughout the world seems to have increased in the past decades, and several episodes of CDV disease in vaccinated animals have been reported, with nation-wide proportions in some cases. Increasing surveillance should be pivotal to identify new CDV variants and to understand the dynamics of CDV epidemiology. In addition, it is important to evaluate whether the efficacy of the vaccine against these new strains may somehow be affected.
Collapse
Affiliation(s)
- Vito Martella
- Department of Animal Health and Wellbeing, Faculty of Veterinary Medicine, University of Bari, Strada per Casamassima km 3, 70010 Valenzano, Bari, Italy
| | | | | |
Collapse
|