1
|
Meijer MMY, Brand HVD, Palmieri C, Niknafs S, Khaskheli AA, Roura E. Early-life immunomodulation by carvacrol delivered in ovo in broiler chickens. Poult Sci 2024; 103:104286. [PMID: 39326180 PMCID: PMC11470485 DOI: 10.1016/j.psj.2024.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
In the first 2 wk after hatching, broiler chickens are vulnerable to enteric pathogens due to underdeveloped gastrointestinal and immune systems. Carvacrol has been reported to improve digestive and immune functions. This study aimed to optimize immune development of broiler chickens by delivering carvacrol in ovo. Effects of 2 in ovo treatments delivered at embryonic day (E)17.5 (saline or carvacrol) were evaluated at 3 stages (E19.5, hatch, and d 14 posthatch). Hatchability, performance parameters, lymphoid organ and yolk sac weights were determined. Histomorphology assessment was performed for jejunal samples at hatch and bursa of Fabricius samples at hatch and d 14. Gene expression of immune-relevant genes was determined for jejunal, bursal, and yolk sac samples over time. At hatch, BW was 0.85% lower (P = 0.02) after in ovo carvacrol delivery compared to the controls. Interactions between in ovo treatment and age were found for gene expression. At hatch, carvacrol treatment resulted in lower expression of proinflammatory cytokines IL-8 and IFN-γ in the yolk sac compared to the controls (P = 0.05 and < .001, respectively) suggesting a potential role for carvacrol-mediated immune modulation. At d 14, carvacrol treatment led to lower expression of proinflammatory cytokine IL-6 in the bursa compared to the controls (P = 0.002). In ovo carvacrol delivery led to bursal histomorphometric changes, including a larger cortex in the bursal follicles (P = 0.03), and a higher cortex/medulla ratio (P = 0.04) compared to the controls, indicating increased B-cell stimulation and maturation. Main effects were found for carvacrol treatment in the jejunum, with overall higher expression of proinflammatory mediators IL-1β and NF-κB, and anti-inflammatory IL-10 compared to the controls (P = 0.04, 0.02, and 0.02 respectively) from E19.5 to d 14. Age-related main effects showed various alterations in expression dynamics of immune-related genes across all tissues over time. Our findings suggest changes in immune parameters occur as the chicken develops, but these mostly do not interact with in ovo carvacrol treatment. In ovo carvacrol treatment alters immune activity of broiler chickens independent of age.
Collapse
Affiliation(s)
- Mila M Y Meijer
- Centre for Animal Science and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Henry van den Brand
- Department of Animal Sciences, Adaptation Physiology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Chiara Palmieri
- School of Veterinary Science, University of Queensland, Brisbane, Australia
| | - Shahram Niknafs
- Centre for Animal Science and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Asad A Khaskheli
- Centre for Animal Science and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Eugeni Roura
- Centre for Animal Science and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia.
| |
Collapse
|
2
|
Fazel F, Matsuyama-Kato A, Alizadeh M, Zheng J, Fletcher C, Gupta B, St-Denis M, Boodhoo N, Sharif S. A Marek's Disease Virus Messenger RNA-Based Vaccine Modulates Local and Systemic Immune Responses in Chickens. Viruses 2024; 16:1156. [PMID: 39066318 PMCID: PMC11281610 DOI: 10.3390/v16071156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease (MD), caused by the Marek's disease virus, is a lymphoproliferative disease in chickens that can be controlled by vaccination. However, the current vaccines can limit tumor growth and death but not virus replication and transmission. The present study aimed to evaluate host responses following intramuscular injection of an mRNA vaccine encoding gB and pp38 proteins of the MDV within the first 36 h. The vaccine was injected in low and high doses using prime and prime-boost strategies. The expression of type I and II interferons (IFNs), a panel of interferon-stimulated genes, and two key antiviral cytokines, IL-1β and IL-2, were measured in spleen and lungs after vaccination. The transcriptional analysis of the above genes showed significant increases in the expression of MDA5, Myd88, IFN-α, IFN-β, IFN-γ, IRF7, OAS, Mx1, and IL-2 in both the spleen and lungs within the first 36 h of immunization. Secondary immunization increased expression of all the above genes in the lungs. In contrast, only IFN-γ, MDA5, MyD88, Mx1, and OAS showed significant upregulation in the spleen after the secondary immunization. This study shows that two doses of the MDV mRNA vaccine encoding gB and pp38 antigens activate innate and adaptive responses and induce an antiviral state in chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Wang H, Tian J, Zhao J, Zhao Y, Yang H, Zhang G. Current Status of Poultry Recombinant Virus Vector Vaccine Development. Vaccines (Basel) 2024; 12:630. [PMID: 38932359 PMCID: PMC11209050 DOI: 10.3390/vaccines12060630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Inactivated and live attenuated vaccines are the mainstays of preventing viral poultry diseases. However, the development of recombinant DNA technology in recent years has enabled the generation of recombinant virus vector vaccines, which have the advantages of preventing multiple diseases simultaneously and simplifying the vaccination schedule. More importantly, some can induce a protective immune response in the presence of maternal antibodies and offer long-term immune protection. These advantages compensate for the shortcomings of traditional vaccines. This review describes the construction and characterization of primarily poultry vaccine vectors, including fowl poxvirus (FPV), fowl adenovirus (FAdV), Newcastle disease virus (NDV), Marek's disease virus (MDV), and herpesvirus of turkey (HVT). In addition, the pathogens targeted and the immunoprotective effect of different poultry recombinant virus vector vaccines are also presented. Finally, this review discusses the challenges in developing vector vaccines and proposes strategies for improving immune efficacy.
Collapse
Affiliation(s)
- Haoran Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huiming Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (H.W.); (J.T.); (J.Z.); (Y.Z.); (H.Y.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Fazel F, Matsuyama-Kato A, Alizadeh M, Boodhoo N, Sharif S. Efficacy and tolerability of an mRNA vaccine expressing gB and pp38 antigens of Marek's disease virus in chickens. Virology 2024; 590:109970. [PMID: 38134535 DOI: 10.1016/j.virol.2023.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Marek's disease is a contagious proliferative disease of chickens caused by an alphaherpesvirus called Marek's disease virus. A bivalent mRNA vaccine encoding MDV's glycoprotein-B and phosphoprotein-38 antigens was synthesized and encapsulated in lipid nanoparticles. Tumor incidence, lesion score, organ weight indices, MDV genome load and cytokine expression were used to evaluate protection and immunostimulatory effects of the tested mRNA vaccine after two challenge trials. Results from the first trial showed decreased tumor incidence and a reduction in average lesion scores in chickens that received the booster dose. The second trial demonstrated that vaccination with the higher dose of the vaccine (10 μg) significantly decreased tumor incidence, average lesion scores, bursal atrophy, and MDV load in feather tips when compared to the controls. Changes in expression of type I and II interferons suggested a possible role for these cytokines in initiation and maintenance of the vaccine-originated immune responses.
Collapse
Affiliation(s)
- Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
5
|
Boodhoo N, Matsuyama-Kato A, Raj S, Fazel F, St-Denis M, Sharif S. Effect of Pre-Treatment with a Recombinant Chicken Interleukin-17A on Vaccine Induced Immunity against a Very Virulent Marek's Disease Virus. Viruses 2023; 15:1633. [PMID: 37631976 PMCID: PMC10459749 DOI: 10.3390/v15081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The host response to pathogenic microbes can lead to expression of interleukin (IL)-17, which has antimicrobial and anti-viral activity. However, relatively little is known about the basic biological role of chicken IL-17A against avian viruses, particularly against Marek's disease virus (MDV). We demonstrate that, following MDV infection, upregulation of IL-17A mRNA and an increase in the frequency of IL-17A+ T cells in the spleen occur compared to control chickens. To elaborate on the role of chIL-17A in MD, the full-length chIL-17A coding sequence was cloned into a pCDNA3.1-V5/HIS TOPO plasmid. The effect of treatment with pcDNA:chIL-17A plasmid in combination with a vaccine (HVT) and very virulent(vv)MDV challenge or vvMDV infection was assessed. In combination with HVT vaccination, chickens that were inoculated with the pcDNA:chIL-17A plasmid had reduced tumor incidence compared to chickens that received the empty vector control or that were vaccinated only (66.6% in the HVT + empty vector group and 73.33% in HVT group versus 53.3% in the HVT + pcDNA:chIL-17A). Further analysis demonstrated that the chickens that received the HVT vaccine and/or plasmid expressing IL-17A had lower MDV-Meq transcripts in the spleen. In conclusion, chIL-17A can influence the immunity conferred by HVT vaccination against MDV infection in chickens.
Collapse
Affiliation(s)
| | | | | | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (N.B.); (A.M.-K.); (S.R.); (F.F.); (M.S.-D.)
| |
Collapse
|
6
|
Matsuyama-Kato A, Shojadoost B, Boodhoo N, Raj S, Alizadeh M, Fazel F, Fletcher C, Zheng J, Gupta B, Abdul-Careem MF, Plattner BL, Behboudi S, Sharif S. Activated Chicken Gamma Delta T Cells Are Involved in Protective Immunity against Marek's Disease. Viruses 2023; 15:v15020285. [PMID: 36851499 PMCID: PMC9962238 DOI: 10.3390/v15020285] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Gamma delta (γδ) T cells play a significant role in the prevention of viral infection and tumor surveillance in mammals. Although the involvement of γδ T cells in Marek's disease virus (MDV) infection has been suggested, their detailed contribution to immunity against MDV or the progression of Marek's disease (MD) remains unknown. In the current study, T cell receptor (TCR)γδ-activated peripheral blood mononuclear cells (PBMCs) were infused into recipient chickens and their effects were examined in the context of tumor formation by MDV and immunity against MDV. We demonstrated that the adoptive transfer of TCRγδ-activated PBMCs reduced virus replication in the lungs and tumor incidence in MDV-challenged chickens. Infusion of TCRγδ-activated PBMCs induced IFN-γ-producing γδ T cells at 10 days post-infection (dpi), and degranulation activity in circulating γδ T cell and CD8α+ γδ T cells at 10 and 21 dpi in MDV-challenged chickens. Additionally, the upregulation of IFN-γ and granzyme A gene expression at 10 dpi was significant in the spleen of the TCRγδ-activated PBMCs-infused and MDV-challenged group compared to the control group. Taken together, our results revealed that TCRγδ stimulation promotes the effector function of chicken γδ T cells, and these effector γδ T cells may be involved in protection against MD.
Collapse
Affiliation(s)
- Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bahram Shojadoost
- Ceva Animal Health Inc., Research Park Centre, Guelph, ON N1G 4T2, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Charlotte Fletcher
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jiayu Zheng
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bhavya Gupta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Brandon L. Plattner
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 54641); Fax: +1-519-824-5930
| |
Collapse
|
7
|
Delay of Feed Post-Hatch Causes Changes in Expression of Immune-Related Genes and Their Correlation with Components of Gut Microbiota, but Does Not Affect Protein Expression. Animals (Basel) 2022; 12:ani12101316. [PMID: 35625162 PMCID: PMC9138158 DOI: 10.3390/ani12101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/07/2022] Open
Abstract
Simple Summary Newly hatched chicks do not have access to feed until between 48 and 72 h post-hatch based on standard practices in the poultry industry. How these practices affect the chicken’s immune system in not well understood. In this study, we investigated the effect of a delay in access to feed for 48 h in newly hatched chicks on the expression of various immune-related genes in the ileum and analyzed the correlation between these genes and the components of the ileal microbiota. The results suggest that several immune-related genes were affected by delayed access to feed and the age of the birds; however, these changes were transient, occurring mostly within 48 h of the return of birds to feed. In the correlation analysis between gene expression and components of the ileal microbiota, an increased number of significant correlations between immune-related genes and the genera Clostridium, Enterococcus, and the species Clostridium perfringens suggests a perturbation of the immune response and ileal microbiota in response to lack of feed immediately post-hatch. These results point out the complexity of the interplay between microbiota and the immune response and will help further explain the negative effects of delay in access to feed on production parameters in chickens. Abstract Because the delay of feed post-hatch (PH) has been associated with negative growth parameters, the aim of the current study was to determine the effect of delayed access to feed in broiler chicks on the expression of immune-related genes and select proteins. In addition, an analysis of the correlation between gene expression and components of the gut microbiota was carried out. Ross 708 eggs were incubated and hatched, and hatchlings were divided into FED and NONFED groups. The NONFED birds did not have access to feed until 48 h PH, while FED birds were given feed immediately PH. The ileum from both groups (n = 6 per group) was sampled at embryonic day 19 (e19) and day 0 (wet chicks), and 4, 24, 48, 72, 96, 144, 192, 240, 288, and 336 h PH. Quantitative PCR (qPCR) was carried out to measure the expression of avian interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-18, transforming growth factor (TGF-β), toll-like receptor (TLR)2, TLR4, interferon (IFN)-β, IFN-γ, and avian β-defensins (AvBD) I, 2, 3, 5, 6, 7, 8, 9, and 10. Protein expression of IL-10, IL-1β, IL-8, and IL-18 were measured using ELISAs. A correlation analysis was carried out to determine whether any significant association existed between immune gene expression and components of the ileal luminal and mucosal microbiota. Expression of several immune-related genes (TGF-β, TLR4, IFN-γ, IL-1β, IL-4, IL-6, and AvBDs 8 and 9) were significantly affected by the interaction between feed status and age. The effects were transient and occurred between 48 and 96 h PH. The rest of the genes and four proteins were significantly affected by age, with a decrease in expression noted over time. Correlation analysis indicated that stronger correlations exist among gene expression and microbiota in NONFED birds. The data presented here indicates that delay in feed PH can affect genes encoding components of the immune system. Additionally, the correlation analysis between immune gene expression and microbiota components indicates that a delay in feed has a significant effect on the interaction between the immune system and the microbiota.
Collapse
|
8
|
Boodhoo N, Behboudi S. Differential Virus-Specific IFN-Gamma Producing T Cell Responses to Marek's Disease Virus in Chickens With B19 and B21 MHC Haplotypes. Front Immunol 2022; 12:784359. [PMID: 35095857 PMCID: PMC8792850 DOI: 10.3389/fimmu.2021.784359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022] Open
Abstract
Marek’s disease virus (MDV), the etiologic agent for Marek’s disease (MD), causes a deadly lymphoproliferative disease in chickens. Causes of the well-documented association between genetically defined lines of chicken and resistance to MD remain unknown. Here, the frequencies of IFN-gamma producing pp38 and MEQ-specific T cell responses were determined in line N (B21 haplotype; MD-resistant) and line P2a (B19 haplotype, MD-susceptible) chickens after infection with vaccine and/or virulent (RB1B) strains of MDV using both standard ex vivo and cultured chIFN-gamma ELISPOT assays. Notably, MDV infection of naïve and vaccinated MD-resistant chickens induced higher frequencies of IFN-gamma producing MDV-specific T cell responses using the cultured and ex vivo ELISPOT assay, respectively. Remarkably, vaccination did not induce or boost MEQ-specific effector T cells in the susceptible chickens, while it boosted both pp38-and MEQ-specific response in resistant line. Taken together, our results revealed that there is a direct association between the magnitude of T cell responses to pp38 and MEQ of MDV antigens and resistance to the disease.
Collapse
Affiliation(s)
| | - Shahriar Behboudi
- The Pirbright Institute, Woking, United Kingdom.,Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford, United Kingdom
| |
Collapse
|
9
|
Kim T, Hearn C. Vaccinal Efficacy of Recombinant Marek's Disease Vaccine 301B/1 Expressing Chicken Interleukin-15. Avian Dis 2022; 66:79-84. [DOI: 10.1637/21-00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/09/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Taejoong Kim
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 934 College Station Road, Athens, GA 30605
| | - Cari Hearn
- Avian Diseases and Oncology Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 4279 E. Mt. Hope Road, East Lansing, MI 48823
| |
Collapse
|
10
|
Munir MA, Anjum KM, Javid A, Khan N, Jianming C, Naseer J, Anjum A, Usman S, Shahzad M, Hafeez S, Hussain T, Saeed A, Badeni AH, Mansoor MK, Hussain I. Sublethal toxicity of carbofuran in cattle egret (Bubulcus ibis coromandus): hematological, biochemical, and histopathological alterations. BRAZ J BIOL 2022; 84:e255055. [PMID: 35019107 DOI: 10.1590/1519-6984.255055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
This study was aimed to investigate Carbofuran (CF)-induced pathological changes in cattle egret. Two hundred cattle egrets were reared and equally divided into four groups and given different CF concentrations (0.03 mg/L, 0.02 mg/L, 0.01 mg/L and 0 mg/L (control group)). Hematology, serum biochemistry, histopathology, and immunological markers were studied. Our results confirm that CF induces anemic conditions, leukocytosis, elevated liver enzymatic activity, and alterations in renal biomarkers. Moreover, specific microscopic lesions such as multifocal necrosis, pyknotic nuclei, hemorrhages, congestion, and inflammatory cell proliferation were observed in the liver, kidney, spleen, and thymus. These findings suggest that CF can induce harmful effects, so the application of this pesticide in the field must be strictly monitored to mitigate the possibility of exposure to non-target species.
Collapse
Affiliation(s)
- M A Munir
- University of Veterinary and Animal Sciences, Department of Wildlife & Ecology, Ravi Campus, Pattoki, Pakistan
| | - K M Anjum
- University of Veterinary and Animal Sciences, Department of Wildlife & Ecology, Ravi Campus, Pattoki, Pakistan
| | - A Javid
- University of Veterinary and Animal Sciences, Department of Wildlife & Ecology, Ravi Campus, Pattoki, Pakistan
| | - N Khan
- University of Veterinary and Animal Sciences, Department of Fisheries & Aquaculture, Ravi Campus, Pattoki, Pakistan
| | - C Jianming
- Minjiang University, Institute of Oceanography, Fuzhou, China
| | - J Naseer
- The Islamia University of Bahawalpur, Department of Forestry, Range and Wildlife Management, Bahawalpur, Pakistan
| | - A Anjum
- The Islamia University of Bahawalpur, Faculty of Veterinary and Animal Sciences, Department of Pathology, Bahawalpur, Pakistan
| | - S Usman
- University of Veterinary and Animal Sciences, Faculty of Veterinary and Animal Sciences, Department of Pathology, Lahore, Pakistan
| | - M Shahzad
- The Islamia University of Bahawalpur, Faculty of Veterinary and Animal Sciences, Department of Pathology, Bahawalpur, Pakistan
| | - Shahid Hafeez
- University of Agriculture Faisalabad, Department of Forestry and Range Management, Faisalabad, Pakistan
| | - T Hussain
- The Islamia University of Bahawalpur, Department of Forestry, Range and Wildlife Management, Bahawalpur, Pakistan
| | - A Saeed
- The Islamia University of Bahawalpur, Department of Forestry, Range and Wildlife Management, Bahawalpur, Pakistan
| | - A H Badeni
- University of Veterinary and Animal Sciences, Department of Wildlife & Ecology, Ravi Campus, Pattoki, Pakistan
| | - M K Mansoor
- The Islamia University of Bahawalpur, Faculty of Veterinary and Animal Sciences, Department of Microbiology, Bahawalpur, Pakistan
| | - I Hussain
- Bahauddin Zakariya University, Department of Pathobiology, Multan, Pakistan
| |
Collapse
|
11
|
Matsuyama-Kato A, Iseki H, Boodhoo N, Bavananthasivam J, Alqazlan N, Abdul-Careem MF, Plattner BL, Behboudi S, Sharif S. Phenotypic characterization of gamma delta (γδ) T cells in chickens infected with or vaccinated against Marek's disease virus. Virology 2022; 568:115-125. [DOI: 10.1016/j.virol.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022]
|
12
|
Bavananthasivam J, Alizadeh M, Astill J, Alqazlan N, Matsuyama-Kato A, Shojadoost B, Taha-Abdelaziz K, Sharif S. Effects of administration of probiotic lactobacilli on immunity conferred by the herpesvirus of turkeys vaccine against challenge with a very virulent Marek's disease virus in chickens. Vaccine 2021; 39:2424-2433. [PMID: 33781599 DOI: 10.1016/j.vaccine.2021.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
Abstract
Several vaccines have been used to control Marek's disease (MD) in chickens. However, the emergence of new strains of Marek's disease virus (MDV) imposes a threat to vaccine efficacy. Therefore, the current study was carried out to investigate whether concurrent administration of probiotics with the herpesvirus of turkeys (HVT) vaccine enhances its protective efficacy against MDV infection. In this regard, a cocktail comprised of four Lactobacillus species was administered with HVT to chicken embryos at embryonic day 18 (ED18) and/or from day 1 to day 4 post-hatch. The results revealed that the administration of a probiotic Lactobacillus with HVT at ED18 followed by oral gavage with the same lactobacilli cocktail to newly hatched chicks for the first 4 days post-hatch increased the expression of major histocompatibility complex (MHC) II on macrophages and B cells in spleen and decreased the number of CD4+CD25+ T regulatory cells in the spleen. Subsequently, chicks were infected with MDV. The chickens that received in ovo HVT and lactobacilli or HVT had higher expression of IFN-α at 21dpi in the spleen compared to the chickens that were challenged with MDV. Also, the expression of IFN-β in cecal tonsils at 10dpi was higher in the groups that received in ovo HVT and lactobacilli and oral lactobacilli compared to the group that received in ovo HVT alone. Moreover, the expression of tumor growth factor (TGF)-β4 at 4 days post-infection was reduced in the group that received both HVT and probiotics at ED18. Additionally, concurrent probiotics administration reduced tumor incidence by half when compared to HVT vaccine alone indicating enhancing effect of lactobacilli with HVT vaccine on host immune responses. In conclusion, these findings suggest the potential use of probiotic lactobacilli as adjuvants with the HVT vaccine against MDV infection in chickens.
Collapse
Affiliation(s)
- Jegarubee Bavananthasivam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Al Shamlah 62511, Beni-Suef, Egypt
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
13
|
Bavananthasivam J, Astill J, Matsuyama-Kato A, Taha-Abdelaziz K, Shojadoost B, Sharif S. Gut microbiota is associated with protection against Marek's disease virus infection in chickens. Virology 2021; 553:122-130. [PMID: 33271490 DOI: 10.1016/j.virol.2020.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022]
Abstract
Marek's Disease Virus (MDV) infects chickens via respiratory route and causes lymphomas in internal organs including gastrointestinal tract. MDV infection causes a shift in the gut microbiota composition. However, interactions between the gut microbiota and immune responses against MDV infection are not well understood. Therefore, the current study was performed to understand the effect of the gut microbiota on Marek's disease (MD) pathogenesis. The findings showed that depletion of gut microbiota increased the severity of MD in infected chickens. In addition, an increase in the transcription of interferon (IFN)-α, IFN-β and IFN-γ in the bursa of Fabricius at 4 days post-infection (dpi) was observed in the gut microbiota depleted chickens. The observations in this study shed more light on the association between the gut microbiota and MDV infection in chickens. More research is needed to explore the mechanisms of involvement of the gut microbiota in immunity against MD in chickens.
Collapse
Affiliation(s)
- Jegarubee Bavananthasivam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Department of Pathology and Molecular Medicine & McMaster Immunology Research Centre, M.G DeGroote School of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Al Shamlah, 62511, Beni-Suef, Egypt
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
14
|
Yang Y, Dong M, Hao X, Qin A, Shang S. Revisiting cellular immune response to oncogenic Marek's disease virus: the rising of avian T-cell immunity. Cell Mol Life Sci 2020; 77:3103-3116. [PMID: 32080753 PMCID: PMC7391395 DOI: 10.1007/s00018-020-03477-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022]
Abstract
Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes deadly T-cell lymphomas and serves as a natural virus-induced tumor model in chickens. Although Marek's disease (MD) is well controlled by current vaccines, the evolution of MDV field viruses towards increasing virulence is concerning as a better vaccine to combat very virulent plus MDV is still lacking. Our understanding of molecular and cellular immunity to MDV and its immunopathogenesis has significantly improved, but those findings about cellular immunity to MDV are largely out-of-date, hampering the development of more effective vaccines against MD. T-cell-mediated cellular immunity was thought to be of paramount importance against MDV. However, MDV also infects macrophages, B cells and T cells, leading to immunosuppression and T-cell lymphoma. Additionally, there is limited information about how uninfected immune cells respond to MDV infection or vaccination, specifically, the mechanisms by which T cells are activated and recognize MDV antigens and how the function and properties of activated T cells correlate with immune protection against MDV or MD tumor. The current review revisits the roles of each immune cell subset and its effector mechanisms in the host immune response to MDV infection or vaccination from the point of view of comparative immunology. We particularly emphasize areas of research requiring further investigation and provide useful information for rational design and development of novel MDV vaccines.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Maoli Dong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoli Hao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Aijian Qin
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, China.
- Ministry of Education Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Shaobin Shang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, China.
- Ministry of Education Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
15
|
Nitric Oxide Production and Fc Receptor-Mediated Phagocytosis as Functional Readouts of Macrophage Activity upon Stimulation with Inactivated Poultry Vaccines In Vitro. Vaccines (Basel) 2020; 8:vaccines8020332. [PMID: 32580391 PMCID: PMC7350413 DOI: 10.3390/vaccines8020332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Vaccine batches must pass routine quality control to confirm that their ability to induce protection against disease is consistent with batches of proven efficacy from development studies. For poultry vaccines, these tests are often performed in laboratory chickens by vaccination-challenge trials or serological assays. The aim of this study was to investigate innate immune responses against inactivated poultry vaccines and identify candidate immune parameters for in vitro quality tests as alternatives for animal-based quality tests. For this purpose, we set up assays to measure nitric oxide production and phagocytosis by the macrophage-like cell line HD11, upon stimulation with inactivated poultry vaccines for infectious bronchitis virus (IBV), Newcastle disease virus (NDV), and egg drop syndrome virus (EDSV). In both assays, macrophages became activated after stimulation with various toll-like receptor agonists. Inactivated poultry vaccines stimulated HD11 cells to produce nitric oxide due to the presence of mineral oil adjuvant. Moreover, inactivated poultry vaccines were found to enhance Fc receptor-mediated phagocytosis due to the presence of allantoic fluid in the vaccine antigen preparations. We showed that inactivated poultry vaccines stimulated nitric oxide production and Fc receptor-mediated phagocytosis by chicken macrophages. Similar to antigen quantification methods, the cell-based assays described here can be used for future assessment of vaccine batch-to-batch consistency. The ability of the assays to determine the immunopotentiating properties of inactivated poultry vaccines provides an additional step in the replacement of current in vivo batch-release quality tests.
Collapse
|
16
|
Bertzbach LD, Harlin O, Härtle S, Fehler F, Vychodil T, Kaufer BB, Kaspers B. IFNα and IFNγ Impede Marek's Disease Progression. Viruses 2019; 11:v11121103. [PMID: 31795203 PMCID: PMC6950089 DOI: 10.3390/v11121103] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Marek’s disease virus (MDV) is an alphaherpesvirus that causes Marek’s disease, a malignant lymphoproliferative disease of domestic chickens. While MDV vaccines protect animals from clinical disease, they do not provide sterilizing immunity and allow field strains to circulate and evolve in vaccinated flocks. Therefore, there is a need for improved vaccines and for a better understanding of innate and adaptive immune responses against MDV infections. Interferons (IFNs) play important roles in the innate immune defenses against viruses and induce upregulation of a cellular antiviral state. In this report, we quantified the potent antiviral effect of IFNα and IFNγ against MDV infections in vitro. Moreover, we demonstrate that both cytokines can delay Marek’s disease onset and progression in vivo. Additionally, blocking of endogenous IFNα using a specific monoclonal antibody, in turn, accelerated disease. In summary, our data reveal the effects of IFNα and IFNγ on MDV infection and improve our understanding of innate immune responses against this oncogenic virus.
Collapse
Affiliation(s)
- Luca D. Bertzbach
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (L.D.B.); (T.V.)
| | - Olof Harlin
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; (O.H.); (S.H.)
| | - Sonja Härtle
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; (O.H.); (S.H.)
| | | | - Tereza Vychodil
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (L.D.B.); (T.V.)
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (L.D.B.); (T.V.)
- Correspondence: (B.B.K.); (B.K.)
| | - Bernd Kaspers
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80539 Munich, Germany; (O.H.); (S.H.)
- Correspondence: (B.B.K.); (B.K.)
| |
Collapse
|
17
|
Bavananthasivam J, Read L, Astill J, Yitbarek A, Alkie TN, Abdul-Careem MF, Wootton SK, Behboudi S, Sharif S. The effects of in ovo administration of encapsulated Toll-like receptor 21 ligand as an adjuvant with Marek's disease vaccine. Sci Rep 2018; 8:16370. [PMID: 30401976 PMCID: PMC6219601 DOI: 10.1038/s41598-018-34760-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/25/2018] [Indexed: 11/22/2022] Open
Abstract
Marek’s Disease Virus (MDV) is the causative agent of a lymphoproliferative disease, Marek’s disease (MD) in chickens. MD is only controlled by mass vaccination; however, immunity induced by MD vaccines is unable to prevent MDV replication and transmission. The herpesvirus of turkey (HVT) vaccine is one of the most widely used MD vaccines in poultry industry. Vaccines can be adjuvanted with Toll-like receptor ligands (TLR-Ls) to enhance their efficacy. In this study, we examined whether combining TLR-Ls with HVT can boost host immunity against MD and improve its efficacy. Results demonstrated that HVT alone or HVT combined with encapsulated CpG-ODN partially protected chickens from tumor incidence and reduced virus replication compared to the control group. However, encapsulated CpG-ODN only moderately, but not significantly, improved HVT efficacy and reduced tumor incidence from 53% to 33%. Further investigation of cytokine gene profiles in spleen and bursa of Fabricius revealed an inverse association between interleukin (IL)-10 and IL-18 expression and protection conferred by different treatments. In addition, the results of this study raise the possibility that interferon (IFN)-β and IFN-γ induced by the treatments may exert anti-viral responses against MDV replication in the bursa of Fabricius at early stage of MDV infection in chickens.
Collapse
Affiliation(s)
- Jegarubee Bavananthasivam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Leah Read
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Alexander Yitbarek
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Tamiru N Alkie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Biology, Wilfred Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Mohamed Faizal Abdul-Careem
- Department of Ecosystem and public health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.,Department of Pathology and Infectious Disease, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
18
|
Zhang Y, Cui N, Han N, Wu J, Cui Z, Su S. Depression of Vaccinal Immunity to Marek's Disease by Infection with Chicken Infectious Anemia Virus. Front Microbiol 2017; 8:1863. [PMID: 29018431 PMCID: PMC5622928 DOI: 10.3389/fmicb.2017.01863] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/12/2017] [Indexed: 01/26/2023] Open
Abstract
Marek’s disease (MD) has been occurring with increasing frequency in chickens in recent years. To our knowledge, however, there has been no report of the very virulent plus (vv+) MD virus (MDV) field isolate in China. Studies have shown that dual infection with immunosuppressive viruses such as chicken infectious anemia virus (CIAV) occurs frequently in chickens developing MD. In this study, we performed a designed set of in vivo experiments, which comprised five different groups of chickens, including the group of CVI988/Rispens-vaccinated chickens, the groups of CVI988/Rispens-vaccinated chickens infected with MDV or CIAV or both viruses (MDV and CIAV), and the group of MDV-challenged chickens. The effects of CIAV dual infection on the immunization of commercial MDV vaccine CVI988/Rispens were evaluated. The results show that infection of the SD15 strain of CIAV significantly reduced the weight and antibody titers to avian influenza virus (AIV)/Newcastle disease virus (NDV) inactivated vaccines of chickens immunized with the CVI988/Rispens, and resulted in the atrophy of thymus/bursa and the enlargement of spleen. The CVI988/Rispens vaccination conferred good immune protection for chickens challenged with 2000 PFU of the GX0101 strain of MDV. However, dual infection with SD15 significantly reduced the body weight, antibody titers induced by AIV/NDV inactivated vaccines and protective index of CVI988/Rispens, and resulted in the aggravation of the immunosuppression, mortality, and viremia of GX0101 in CVI988/Rispens-immunized/GX0101-challenged chickens. Overall, CIAV infection significantly reduced the protective effects of the CVI988/Rispens vaccine against MDV, implying that concurrent infection with CIAV may be a major contributor in the frequent attacks of MD in China in recent years.
Collapse
Affiliation(s)
- Yankun Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Ning Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Institute of Animal Husbandry and Veterinary, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ni Han
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Jiayan Wu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Zhizhong Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Shuai Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
19
|
Boodhoo N, Gurung A, Sharif S, Behboudi S. Marek's disease in chickens: a review with focus on immunology. Vet Res 2016; 47:119. [PMID: 27894330 PMCID: PMC5127044 DOI: 10.1186/s13567-016-0404-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
Marek's disease (MD), caused by Marek's disease virus (MDV), is a commercially important neoplastic disease of poultry which is only controlled by mass vaccination. Importantly, vaccines that can provide sterile immunity and inhibit virus transmission are lacking; such that vaccines are only capable of preventing neuropathy, oncogenic disease and immunosuppression, but are unable to prevent MDV transmission or infection, leading to emergence of increasingly virulent pathotypes. Hence, to address these issues, developing more efficacious vaccines that induce sterile immunity have become one of the important research goals for avian immunologists today. MDV shares very close genomic functional and structural characteristics to most mammalian herpes viruses such as herpes simplex virus (HSV). MD also provides an excellent T cell lymphoma model for gaining insights into other herpesvirus-induced oncogenesis in mammals and birds. For these reasons, we need to develop an in-depth knowledge and understanding of the host-viral interaction and host immunity against MD. Similarly, the underlying genetic variation within different chicken lines has a major impact on the outcome of infection. In this review article, we aim to investigate the pathogenesis of MDV infection, host immunity to MD and discuss areas of research that need to be further explored.
Collapse
Affiliation(s)
- Nitish Boodhoo
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Angila Gurung
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.
| |
Collapse
|
20
|
Effects of Chicken Interferon Gamma on Newcastle Disease Virus Vaccine Immunogenicity. PLoS One 2016; 11:e0159153. [PMID: 27409587 PMCID: PMC4943709 DOI: 10.1371/journal.pone.0159153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
More effective vaccines are needed to control avian diseases. The use of chicken interferon gamma (chIFNγ) during vaccination is a potentially important but controversial approach that may improve the immune response to antigens. In the present study, three different systems to co-deliver chIFNγ with Newcastle disease virus (NDV) antigens were evaluated for their ability to enhance the avian immune response and their protective capacity upon challenge with virulent NDV. These systems consisted of: 1) a DNA vaccine expressing the Newcastle disease virus fusion (F) protein co-administered with a vector expressing the chIFNγ gene for in ovo and booster vaccination, 2) a recombinant Newcastle disease virus expressing the chIFNγ gene (rZJ1*L/IFNγ) used as a live vaccine delivered in ovo and into juvenile chickens, and 3) the same rZJ1*L/IFNγ virus used as an inactivated vaccine for juvenile chickens. Co-administration of chIFNγ with a DNA vaccine expressing the F protein resulted in higher levels of morbidity and mortality, and higher amounts of virulent virus shed after challenge when compared to the group that did not receive chIFNγ. The live vaccine system co-delivering chIFNγ did not enhanced post-vaccination antibody response, nor improved survival after hatch, when administered in ovo, and did not affect survival after challenge when administered to juvenile chickens. The low dose of the inactivated vaccine co-delivering active chIFNγ induced lower antibody titers than the groups that did not receive the cytokine. The high dose of this vaccine did not increase the antibody titers or antigen-specific memory response, and did not reduce the amount of challenge virus shed or mortality after challenge. In summary, regardless of the delivery system, chIFNγ, when administered simultaneously with the vaccine antigen, did not enhance Newcastle disease virus vaccine immunogenicity.
Collapse
|
21
|
Yuk SS, Lee DH, Park JK, Tseren-Ochir EO, Kwon JH, Noh JY, Lee JB, Park SY, Choi IS, Song CS. Pre-immune state induced by chicken interferon gamma inhibits the replication of H1N1 human and H9N2 avian influenza viruses in chicken embryo fibroblasts. Virol J 2016; 13:71. [PMID: 27121613 PMCID: PMC4847267 DOI: 10.1186/s12985-016-0527-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/17/2016] [Indexed: 12/27/2022] Open
Abstract
Background Interferon gamma (IFN-γ), an immunoregulatory cytokine, is known to control many microbial infections. In a previous study, chicken interferon gamma (chIFN-γ) was found to be up-regulated following avian influenza virus (AIV) infection in specific pathogen-free chickens. We aimed to investigate whether the pre-immune state induced by chIFN-γ could generate an antiviral response against influenza virus. Methods We generated a chIFN-γ-expressing plasmid and transfected it into chicken embryo fibroblasts (CEFs) and then infected the cells with human origin H1N1 or avian origin H9N2 influenza viruses. Viral titers of culture medium were evaluated in MDCK cell and the viral RNA and IFN-stimulated genes (ISGs) were then quantified by real-time reverse transcriptase polymerase. To further evaluate the role of the antiviral effect of chIFN-γ by using a backward approach, synthetic small interfering RNAs (siRNA) targeting chIFN-γ were used to suppress chIFN-γ. Results The chIFN-γ-stimulated CEFs inhibited the replication of viral RNA (vRNA) and showed a mild decrease in the infectious virus load released in the culture medium. Compared to the mock-transfected control, the messenger RNA (mRNA) levels of type I IFNs and IFN-stimulated genes were up-regulated in the cells expressing chIFN-γ. After treatment with the siRNA, we detected a higher expression of viral genes than that observed in the mock-transfected control. Conclusions Our results suggest that apart from the important role played by chIFN-γ in the antiviral state generated against influenza virus infection, the pre-immune state induced by chIFN-γ can be helpful in mitigating the propagation of influenza virus. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0527-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seong-Su Yuk
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Dong-Hun Lee
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jae-Keun Park
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Erdene-Ochir Tseren-Ochir
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jung-Hoon Kwon
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jin-Yong Noh
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Joong-Bok Lee
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Seung-Yong Park
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - In-Soo Choi
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Chang-Seon Song
- Department of Avian Diseases Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Korea.
| |
Collapse
|
22
|
Development of a subunit vaccine containing recombinant chicken anemia virus VP1 and pigeon IFN-γ. Vet Immunol Immunopathol 2015; 167:200-4. [DOI: 10.1016/j.vetimm.2015.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/22/2015] [Accepted: 08/07/2015] [Indexed: 11/23/2022]
|
23
|
Barkhouse DA, Faber M, Hooper DC. Pre- and post-exposure safety and efficacy of attenuated rabies virus vaccines are enhanced by their expression of IFNγ. Virology 2015; 474:174-80. [PMID: 25463615 PMCID: PMC4258908 DOI: 10.1016/j.virol.2014.10.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 12/25/2022]
Abstract
Consistent with evidence of a strong correlation between interferon gamma (IFNγ) production and rabies virus (RABV) clearance from the CNS, we recently demonstrated that engineering a pathogenic RABV to express IFNγ highly attenuates the virus. Reasoning that IFNγ expression by RABV vaccines would enhance their safety and efficacy, we reverse-engineered two proven vaccine vectors, GAS and GASGAS, to express murine IFNγ. Mortality and morbidity were monitored during suckling mice infection, immunize/challenge experiments and mixed intracranial infections. We demonstrate that GASγ and GASγGAS are significantly attenuated in suckling mice compared to the GASGAS vaccine. GASγ better protects mice from lethal DRV4 RABV infection in both pre- and post-exposure experiments compared to GASGAS. Finally, GASγGAS reduces post-infection neurological sequelae, compared to control, during mixed intracranial infection with DRV4. These data show IFNγ expression by a vaccine vector can enhance its safety while increasing its efficacy as pre- and post-exposure treatment.
Collapse
Affiliation(s)
- Darryll A Barkhouse
- Department of Cancer Biology, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107, USA; Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107, USA
| | - Milosz Faber
- Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107, USA; Department of Microbiology and Immunology 1020 Locust St., Jefferson Alumni Hall, Room 465, Philadelphia, PA 19107, USA
| | - D Craig Hooper
- Department of Cancer Biology, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107, USA; Department of Neurological Surgery, 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107, USA; Center for Neurovirology 1020 Locust St., Jefferson Alumni Hall, Room 454, Philadelphia, PA 19107, USA.
| |
Collapse
|
24
|
Barkhouse DA, Garcia SA, Bongiorno EK, Lebrun A, Faber M, Hooper DC. Expression of interferon gamma by a recombinant rabies virus strongly attenuates the pathogenicity of the virus via induction of type I interferon. J Virol 2015; 89:312-22. [PMID: 25320312 PMCID: PMC4301114 DOI: 10.1128/jvi.01572-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/07/2014] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Previous animal model experiments have shown a correlation between interferon gamma (IFN-γ) expression and both survival from infection with attenuated rabies virus (RABV) and reduction of neurological sequelae. Therefore, we hypothesized that rapid production of murine IFN-γ by the rabies virus itself would induce a more robust antiviral response than would occur naturally in mice. To test this hypothesis, we used reverse engineering to clone the mouse IFN-γ gene into a pathogenic rabies virus backbone, SPBN, to produce the recombinant rabies virus designated SPBNγ. Morbidity and mortality were monitored in mice infected intranasally with SPBNγ or SPBN(-) control virus to determine the degree of attenuation caused by the expression of IFN-γ. Incorporation of IFN-γ into the rabies virus genome highly attenuated the virus. SPBNγ has a 50% lethal dose (LD50) more than 100-fold greater than SPBN(-). In vitro and in vivo mouse experiments show that SPBNγ infection enhances the production of type I interferons. Furthermore, knockout mice lacking the ability to signal through the type I interferon receptor (IFNAR(-/-)) cannot control the SPBNγ infection and rapidly die. These data suggest that IFN-γ production has antiviral effects in rabies, largely due to the induction of type I interferons. IMPORTANCE Survival from rabies is dependent upon the early control of virus replication and spread. Once the virus reaches the central nervous system (CNS), this becomes highly problematic. Studies of CNS immunity to RABV have shown that control of replication begins at the onset of T cell entry and IFN-γ production in the CNS prior to the appearance of virus-neutralizing antibodies. Moreover, antibody-deficient mice are able to control but not clear attenuated RABV from the CNS. We find here that IFN-γ triggers the early production of type I interferons with the expected antiviral effects. We also show that engineering a lethal rabies virus to express IFN-γ directly in the infected tissue reduces rabies virus replication and spread, limiting its pathogenicity in normal and immunocompromised mice. Therefore, vector delivery of IFN-γ to the brain may have the potential to treat individuals who would otherwise succumb to infection with rabies virus.
Collapse
Affiliation(s)
- Darryll A Barkhouse
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Samantha A Garcia
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Emily K Bongiorno
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Aurore Lebrun
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Milosz Faber
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Center for Neurovirology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Haq K, Schat KA, Sharif S. Immunity to Marek's disease: where are we now? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:439-446. [PMID: 23588041 DOI: 10.1016/j.dci.2013.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
Marek's disease (MD) in chickens was first described over a century ago and the causative agent of this disease, Marek's disease virus (MDV), was first identified in the 1960's. There has been extensive and intensive research over the last few decades to elucidate the underlying mechanisms of the interactions between the virus and its host. We have also made considerable progress in terms of developing efficacious vaccines against MD. The advent of the chicken genetic map and genome sequence as well as development of approaches for chicken transcriptome and proteome analyses, have greatly facilitated the process of illuminating underlying genetic mechanisms of resistance and susceptibility to disease. However, there are still major gaps in our understanding of MDV pathogenesis and mechanisms of host immunity to the virus and to the neoplastic events caused by this virus. Importantly, vaccines that can disrupt virus transmission in the field are lacking. The current review explores mechanisms of host immunity against Marek's disease and makes an attempt to identify the areas that are lacking in this field.
Collapse
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Canada
| | | | | |
Collapse
|
26
|
Haq K, Wootton SK, Barjesteh N, St Paul M, Golovan S, Bendall AJ, Sharif S. Small interfering RNA-mediated knockdown of chicken interferon-γ expression. J Interferon Cytokine Res 2013; 33:319-27. [PMID: 23458611 DOI: 10.1089/jir.2012.0141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interferon (IFN)-γ is a cytokine with a variety of functions, including direct antiviral activities and the capacity to polarize T-cells. However, there is limited information available about the function of this cytokine in the avian immune system. To gain a better understanding of the biological relevance of IFN-γ in chicken immunity, gain-of-function (upregulation) and loss-of-function (downregulation) studies need to be conducted. RNA interference (RNAi), a technique employed for downregulating gene expression, is mediated by small interfering RNA (siRNA), which can trigger sequence-specific gene silencing. In this regard, sequence specificity and delivery of siRNA molecules remain critical issues, especially to cells of the immune system. Various direct and indirect approaches have been employed to deliver siRNA, including the use of viral vectors. The objectives of the present study were to determine whether RNAi could effectively downregulate expression of chicken IFN-γ in vitro, and investigate the feasibility of recombinant adeno-associated virus to deliver siRNA in vitro as well. Three 27-mer Dicer substrate RNAs were selected based on the chicken IFN-γ coding sequence and transfected into cells or delivered using a recombinant avian adeno-associated virus (rAAAV) into a chicken fibroblast cell line expressing chIFN-γ. The expression of chIFN-γ transcripts was significantly downregulated when a cocktail containing all three siRNAs was used. Expression of endogenous IFN-γ was also significantly downregulated in primary cells after stimulation with a peptide. Further, significant suppression of IFN-γ transcript was also observed in vitro in cells that were treated with rAAAV, expressing siRNA targeting IFN-γ. Off-target effects in the form of triggering IFN responses by RNAi, including expression of chicken 2',5'-oligoadenylate synthetase and IFN-α, were also examined. Our results suggest that siRNAs selected were effective at downregulating IFN-γ in vitro both when delivered directly as well as when expressed by an rAAAV-based vector.
Collapse
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Parvizi P, Mallick AI, Haq K, Haghighi HR, Orouji S, Thanthrige-Don N, St Paul M, Brisbin JT, Read LR, Behboudi S, Sharif S. A toll-like receptor 3 ligand enhances protective effects of vaccination against Marek's disease virus and hinders tumor development in chickens. Viral Immunol 2012; 25:394-401. [PMID: 22857262 DOI: 10.1089/vim.2012.0033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Marek's disease (MD) is caused by Marek's disease virus (MDV). Various vaccines including herpesvirus of turkeys (HVT) have been used to control this disease. However, HVT is not able to completely protect against very virulent strains of MDV. The objective of this study was to determine whether a vaccination protocol consisting of HVT and a Toll-like receptor (TLR) ligand could enhance protective efficacy of vaccination against MD. Hence, chickens were immunized with HVT and subsequently treated with synthetic double-stranded RNA polyriboinosinic polyribocytidylic [poly(I:C)], a TLR3 ligand, before or after being infected with a very virulent strain of MDV. Among the groups that were HVT-vaccinated and challenged with MDV, the lowest incidence of tumors was observed in the group that received poly(I:C) before and after MDV infection. Moreover, the groups that received a single poly(I:C) treatment either before or after MDV infection were better protected against MD tumors compared to the group that only received HVT. No association was observed between viral load, as determined by MDV genome copy number, and the reduction in tumor formation. Overall, the results presented here indicate that poly(I:C) treatment, especially when it is administered prior to and after HVT vaccination, enhances the efficacy of HVT vaccine and improves protection against MDV.
Collapse
Affiliation(s)
- Payvand Parvizi
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|