1
|
Shakiba Y, Rahman MM. Testing Oncolytic Myxoma Virus in Immunocompetent Mouse Model for Cancer Therapy. Methods Mol Biol 2025; 2860:353-360. [PMID: 39621278 PMCID: PMC11724751 DOI: 10.1007/978-1-0716-4160-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Oncolytic viruses (OVs) have emerged as a class of novel cancer immunotherapeutic. Members of both DNA and RNA viruses developed as OVs for treating diverse types of human cancers. Preclinical research assessing immunotherapeutic efficacy is an essential step toward further development of these OVs. Mice tumor model systems are widely used in preclinical oncolytic viral therapies for evaluating the treatment regimens' efficacy. However, choosing the most appropriate model for a study can be challenging. Here, we describe a simple method of establishing subcutaneous tumors in immunocompetent mice, intratumoral injection of the virus, measuring tumor burden, and studying the survival of mice for preclinical development of oncolytic myxoma virus (MYXV).
Collapse
Affiliation(s)
- Yasmin Shakiba
- School of Medical and Biological Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Masmudur M Rahman
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Clement DT, Gallinson DG, Hamede RK, Jones ME, Margres MJ, McCallum H, Storfer A. Coevolution promotes the coexistence of Tasmanian devils and a fatal, transmissible cancer. Evolution 2024; 79:100-118. [PMID: 39382349 DOI: 10.1093/evolut/qpae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Emerging infectious diseases threaten natural populations, and data-driven modeling is critical for predicting population dynamics. Despite the importance of integrating ecology and evolution in models of host-pathogen dynamics, there are few wild populations for which long-term ecological datasets have been coupled with genome-scale data. Tasmanian devil (Sarcophilus harrisii) populations have declined range wide due to devil facial tumor disease (DFTD), a fatal transmissible cancer. Although early ecological models predicted imminent devil extinction, diseased devil populations persist at low densities, and recent ecological models predict long-term devil persistence. Substantial evidence supports the evolution of both devils and DFTD, suggesting coevolution may also influence continued devil persistence. Thus, we developed an individual-based, eco-evolutionary model of devil-DFTD coevolution parameterized with nearly 2 decades of devil demography, DFTD epidemiology, and genome-wide association studies. We characterized potential devil-DFTD coevolutionary outcomes and predicted the effects of coevolution on devil persistence and devil-DFTD coexistence. We found a high probability of devil persistence over 50 devil generations (100 years) and a higher likelihood of devil-DFTD coexistence, with greater devil recovery than predicted by previous ecological models. These novel results add to growing evidence for long-term devil persistence and highlight the importance of eco-evolutionary modeling for emerging infectious diseases.
Collapse
Affiliation(s)
- Dale T Clement
- Department of Biology, Wake Forest University, Winston-Salem, NC, United States
| | - Dylan G Gallinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - Rodrigo K Hamede
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- CANECEV: Centre de Recherches Ecologiques et Evolutives sur le Cancer, Montpellier, France
| | - Menna E Jones
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Mark J Margres
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | - Hamish McCallum
- Centre for Planetary Health and Food Security, Griffith University, Nathan Campus, Nathan, Queensland, Australia
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
García-Vicente EJ, Rey-Casero I, Martín M, Pérez A, Benito-Murcia M, Risco D. Oral supplementation with postbiotics modulates the immune response produced by myxomatosis vaccination in wild rabbits. Vaccine 2024; 42:125978. [PMID: 38760270 DOI: 10.1016/j.vaccine.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Rabbits (Oryctolagus cuniculus) are vitally important species in the Iberian Peninsula ecosystem. However, since 1950, there has been a significant population decline, with major repercussions. This situation is mainly due to the presence of infectious diseases, such as myxomatosis, which is expanding and is characterized by severe and fatal clinical manifestations. Current control measures, mainly those based on vaccinations, are ineffective. Therefore, new strategies need to be developed and implemented. This study aimed to evaluate whether supplementation with postbiotic products modulates the immune response in wild rabbits vaccinated against myxomatosis. For this purpose, two groups of rabbits were established: a control group fed with standard feed ad libitum from weaning (28 days) until two months of age, and a treated group, which was fed under the same conditions but supplemented with postbiotics (3 kg/Tm). All the studied rabbits were vaccinated against this disease during weaning. In addition, a blood samples were obtained from all animals immediately before vaccination and 30 days later, which allowed us to evaluate the level of antibodies against myxomatosis virus (ELISA detection) and the relative expression of gene encoding to cytokines related to the immune response (IL6, TNFα and IFNγ), at both times of the experience. Weight and length measurements were also taken at both times to calculate body index and mean daily gain (MDG). No statistically significant differences in growth parameters were observed. There were also no differences in the serological response among groups. However, a relative underexpression of gene codifying to TNFα (p-value = 0.03683) and a higher expression on IFNγ (p-value = 0.045) were observed in the treated group. This modulation in cytokines could lead to less severe lesions in wild rabbit naturally infected with myxomatosis virus.
Collapse
Affiliation(s)
- E J García-Vicente
- Department of Animal Medicine, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain; Neobeitar S.L., Av. Alemania 6, 1° B, 10001, Cáceres, Spain.
| | - I Rey-Casero
- Neobeitar S.L., Av. Alemania 6, 1° B, 10001, Cáceres, Spain
| | - M Martín
- Neobeitar S.L., Av. Alemania 6, 1° B, 10001, Cáceres, Spain
| | - A Pérez
- Neobeitar S.L., Av. Alemania 6, 1° B, 10001, Cáceres, Spain
| | - M Benito-Murcia
- Neobeitar S.L., Av. Alemania 6, 1° B, 10001, Cáceres, Spain.
| | - D Risco
- Department of Animal Medicine, Facultad de Veterinaria, Universidad de Extremadura, Av. de la Universidad s/n, 10003 Cáceres, Spain.
| |
Collapse
|
4
|
Wilber MQ, DeMarchi JA, Briggs CJ, Streipert S. Rapid Evolution of Resistance and Tolerance Leads to Variable Host Recoveries following Disease-Induced Declines. Am Nat 2024; 203:535-550. [PMID: 38635360 DOI: 10.1086/729437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractRecoveries of populations that have suffered severe disease-induced declines are being observed across disparate taxa. Yet we lack theoretical understanding of the drivers and dynamics of recovery in host populations and communities impacted by infectious disease. Motivated by disease-induced declines and nascent recoveries in amphibians, we developed a model to ask the following question: How does the rapid evolution of different host defense strategies affect the transient recovery trajectories of hosts following pathogen invasion and disease-induced declines? We found that while host life history is predictably a major driver of variability in population recovery trajectories (including declines and recoveries), populations that use different host defense strategies (i.e., tolerance, avoidance resistance, and intensity-reduction resistance) experience notably different recoveries. In single-species host populations, populations evolving tolerance recovered on average four times slower than populations evolving resistance. Moreover, while populations using avoidance resistance strategies had the fastest potential recovery rates, these populations could get trapped in long transient states at low abundance prior to recovery. In contrast, the recovery of populations evolving intensity-reduction resistance strategies were more consistent across ecological contexts. Overall, host defense strategies strongly affect the transient dynamics of population recovery and may affect the ultimate fate of real populations recovering from disease-induced declines.
Collapse
|
5
|
Chambers MJ, Scobell S, Sadhu MJ. Systematic characterization of the local evolutionary space available to human PKR and vaccinia virus K3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568178. [PMID: 38076952 PMCID: PMC10705557 DOI: 10.1101/2023.11.21.568178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The interfaces between host and viral proteins can be dynamic spaces in which genetic variants are continually pursued, giving rise to evolutionary arms races. One such scenario is found between the mammalian innate immunity protein PKR (protein kinase R) and the poxvirus antagonist K3. Once activated, PKR phosphorylates the natural substrate eIF2α, which halts protein synthesis within the cell and prevents viral replication. K3 acts as a pseudosubstrate antagonist against PKR by directly antagonizing this halt in protein synthesis, enabling poxviruses to replicate in the cell. Exploring the impact of genetic variants in both PKR and K3 is necessary not only to highlight residues of evolutionary constraint and opportunity but also to elucidate the mechanism by which human PKR is able to subvert a rapidly evolving viral antagonist. To systematically explore this dynamic interface, we have generated a combinatorial library of PKR and K3 missense variants to be co-expressed and characterized in a high-throughput yeast selection assay. This assay allows us to characterize hundreds of thousands of unique PKR-K3 genetic combinations in a single pooled experiment. Our results highlight specific missense variants available to PKR that subvert the K3 antagonist. We find that improved PKR variants are readily available at sites under positive selection, with limited opportunity at sites interfacing with K3 and eIF2α. Additionally, we find many variants that improve and disable K3 antagonism, suggesting a pliable interface. We reason that this approach can be leveraged to explore the evolutionary plasticity of many other host-virus interfaces.
Collapse
Affiliation(s)
- Michael J Chambers
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Microbiology & Immunology, Georgetown University, Washington DC, USA
| | - Sophia Scobell
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Meru J Sadhu
- Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Hu B, Han S, He H. Effect of epidemic diseases on wild animal conservation. Integr Zool 2023; 18:963-980. [PMID: 37202360 DOI: 10.1111/1749-4877.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Patel CN, Mall R, Bensmail H. AI-driven drug repurposing and binding pose meta dynamics identifies novel targets for Monkeypox virus. J Infect Public Health 2023; 16:799-807. [PMID: 36966703 PMCID: PMC10014505 DOI: 10.1016/j.jiph.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
Monkeypox virus (MPXV) was confirmed in May 2022 and designated a global health emergency by WHO in July 2022. MPX virions are big, enclosed, brick-shaped, and contain a linear, double-stranded DNA genome as well as enzymes. MPXV particles bind to the host cell membrane via a variety of viral-host protein interactions. As a result, the wrapped structure is a potential therapeutic target. DeepRepurpose, an artificial intelligence-based compound-viral proteins interaction framework, was used via a transfer learning setting to prioritize a set of FDA approved and investigational drugs which can potentially inhibit MPXV viral proteins. To filter and narrow down the lead compounds from curated collections of pharmaceutical compounds, we used a rigorous computational framework that included homology modeling, molecular docking, dynamic simulations, binding free energy calculations, and binding pose metadynamics. We identified Elvitegravir as a potential inhibitor of MPXV virus using our comprehensive pipeline.
Collapse
Affiliation(s)
- Chirag N. Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad-380009, India,Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institute of Health, Frederick, MD-21702, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee-38105, USA,Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi-9639, United Arab Emirates,Corresponding author at: Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee-38105, USA
| | - Halima Bensmail
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha-34110, Qatar,Corresponding author
| |
Collapse
|
8
|
Brennan G, Stoian AMM, Yu H, Rahman MJ, Banerjee S, Stroup JN, Park C, Tazi L, Rothenburg S. Molecular Mechanisms of Poxvirus Evolution. mBio 2023; 14:e0152622. [PMID: 36515529 PMCID: PMC9973261 DOI: 10.1128/mbio.01526-22] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Poxviruses are often thought to evolve relatively slowly because they are double-stranded DNA pathogens with proofreading polymerases. However, poxviruses have highly adaptable genomes and can undergo relatively rapid genotypic and phenotypic change, as illustrated by the recent increase in human-to-human transmission of monkeypox virus. Advances in deep sequencing technologies have demonstrated standing nucleotide variation in poxvirus populations, which has been underappreciated. There is also an emerging understanding of the role genomic architectural changes play in shaping poxvirus evolution. These mechanisms include homologous and nonhomologous recombination, gene duplications, gene loss, and the acquisition of new genes through horizontal gene transfer. In this review, we discuss these evolutionary mechanisms and their potential roles for adaption to novel host species and modulating virulence.
Collapse
Affiliation(s)
- Greg Brennan
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Ana M. M. Stoian
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Huibin Yu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - M. Julhasur Rahman
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Shefali Banerjee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Jeannine N. Stroup
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Chorong Park
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Loubna Tazi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| | - Stefan Rothenburg
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
9
|
Abade Dos Santos FA, Santos N, Carvalho CL, Martinez-Haro M, Gortázar C, García-Bocanegra I, Capucci L, Duarte M, Alves PC. Retrospective serological and molecular survey of myxoma or antigenically related virus in the Iberian hare, Lepus granatensis. Transbound Emerg Dis 2022; 69:3637-3650. [PMID: 36219552 PMCID: PMC10092749 DOI: 10.1111/tbed.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 08/10/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023]
Abstract
The 2018 outbreak of myxomatosis in the Iberian hare (Lepus granatensis) has been hypothesized to originate from a species jump of the rabbit-associated myxoma virus (MYXV), after natural recombination with an unknown poxvirus. Iberian hares were long considered resistant to myxomatosis as no prior outbreaks were reported. To provide insights into the emergence of this recombinant virus (ha-MYXV), we investigated serum samples from 451 Iberian hares collected over two time periods almost two decades apart, 1994-1999 and 2017-2019 for the presence of antibodies and MYXV-DNA. First, we screened all serum samples using a rabbit commercial indirect ELISA (iELISA) and then tested a subset of these samples in parallel using indirect immunofluorescence test (IFT), competitive ELISA (cELISA) and qPCR targeting M000.5L/R gene conserved in MYXV and ha-MYXV. The cut-off of iELISA relative index 10 = 6.1 was selected from a semiparametric finite mixture analysis aiming to minimize the probability of false positive results. Overall, MYXV related-antibodies were detected in 57 hares (12.6%) including 38 apparently healthy hares (n = 10, sampled in 1994-1999, none MYXV-DNA positive, and n = 28 sampled in 2017-2019 of which four were also ha-MYXV-DNA positive) and 19 found-dead and ha-MYXV-DNA-positive sampled in 2018-2019. Interestingly, four seronegative hares sampled in 1997 were MYXV-DNA positive by qPCR, the result being confirmed by sequencing of three of them. For the Iberian hares hunted or live trapped (both apparently health), seroprevalence was significantly higher in 2017-2019 (13.0%, CI95% 9.2-18.2%) than in 1994-1999 (5.4%, CI95% 3.0-9.6%) (p = .009). Within the second period, seroprevalence was significantly higher in 2019 compared to 2017 (24.7 vs 1.7% considering all the sample, p = .007), and lower during the winter than the autumn (p < .001). While our molecular and serological results show that Iberian hares have been in contact with MYXV or an antigenically similar virus at least since 1996, they also show an increase in seroprevalence in 2018-2019. The remote contact with MYXV may have occurred with strains that circulated in rabbits, or with unnoticed strains already circulating in Iberian hare populations. This work strongly suggests the infection of Iberian hares with MYXV or an antigenically related virus, at least 20 years before the severe virus outbreaks were registered in 2018.
Collapse
Affiliation(s)
- Fábio A Abade Dos Santos
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), Oeiras, Portugal.,Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Nuno Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Carina L Carvalho
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), Oeiras, Portugal
| | - Monica Martinez-Haro
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF). Centro de Investigación Agroambiental El Chaparrillo, Ciudad Real, Spain
| | - Christian Gortázar
- SaBio Instituto de Investigación en Recursos Cinegéticos IREC (UCLM & CSIC), Ciudad Real, Spain
| | | | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna and OIE Reference Laboratory for Rabbit Haemorrhagic Disease, Brescia, Italy
| | - Margarida Duarte
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV, I.P.), Oeiras, Portugal.,Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal.,Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Paulo Célio Alves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,EBM, Estação. Biológica de Mértola, Mértola, Portugal
| |
Collapse
|
10
|
Camacho-Sillero L, Cardoso B, Beato-Benítez A, Gómez-Guillamón F, Díaz-Cao JM, Jiménez-Martín D, Caballero-Gómez J, Castro-Scholten S, Cano-Terriza D, García-Bocanegra I. Spatiotemporal monitoring of myxomatosis in European wild rabbit (Oryctolagus cuniculus) in Spanish Mediterranean ecosystems. Transbound Emerg Dis 2022; 69:3494-3505. [PMID: 36150087 DOI: 10.1111/tbed.14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
A long-term active epidemiological surveillance programme was conducted to determine seroprevalence to myxoma virus (MYXV), infection prevalence and spatiotemporal patterns and factors associated with MYXV circulation in wild rabbits (Oryctolagus cuniculus) in Spanish Mediterranean ecosystems. A total of 2376 animals were sampled over four study periods: 2009-2012 (P1), 2012-2015 (P2), 2015-2018 (P3) and 2018-2021 (P4). Antibodies against MYXV were detected by a commercial indirect ELISA in 59.9% (1424/2376; 95% CI: 58.0-61.9) of wild rabbits. At least one seropositive animal was detected on 131 (96.3%) of 136 game estates sampled. MYXV infection was confirmed by PCR in 94 of 1063 (8.8%; 95% CI: 7.3-10.7) wild rabbits. Circulation of the novel recombinant MYXV (ha-MYXV) was not found in wild rabbits analysed during P4. Five statistically significant spatiotemporal clusters of high MYXV seroprevalence were identified using a Bernoulli model: one in P2 and four in P3. A generalized linear mixed model (GLMM) analysis identified sampling season (autumn), age (adult and juvenile), outbreaks of myxomatosis in the month prior to sampling, mean annual temperature, humidity and seropositivity to rabbit haemorrhagic disease virus as factors potentially linked with MYXV seropositivity. GLMM analysis identified outbreaks of myxomatosis in the month prior to sampling, MYXV seropositivity and presence of lesions compatible with myxomatosis as factors associated with MYXV infection. The results indicate high exposure, widespread but non-homogeneous distribution, and endemic circulation of MYXV in wild rabbit populations in southern Spain during the last decade. Prevalence of antibodies against MYXV showed fluctuations both within the year and over the study periods, revealing variations in the immunity of wild rabbit populations in Mediterranean ecosystems that could increase the risk of MYXV re-emergence in immunologically naïve populations. The present study highlights the importance of long-term surveillance to better understand the epidemiology of MYXV in wild lagomorphs.
Collapse
Affiliation(s)
- Leonor Camacho-Sillero
- Programa Vigilancia Epidemiológica Fauna Silvestre (PVE), Consejería de Sostenibilidad, Medio Ambiente y Economía Azul, Junta de Andalucía, Málaga, Málaga, Spain
| | - Beatriz Cardoso
- Health & Biotechnology (SaBio) Group, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ciudad Real, Spain.,CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Porto, Portugal
| | - Adrián Beato-Benítez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Félix Gómez-Guillamón
- Programa Vigilancia Epidemiológica Fauna Silvestre (PVE), Consejería de Sostenibilidad, Medio Ambiente y Economía Azul, Junta de Andalucía, Málaga, Málaga, Spain
| | - José M Díaz-Cao
- Departamento de Patoloxía Animal (INVESAGA Group), Universidade de Santiago de Compostela, Lugo, Spain
| | - Débora Jiménez-Martín
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain
| | - Javier Caballero-Gómez
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.,Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Sabrina Castro-Scholten
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - David Cano-Terriza
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio García-Bocanegra
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Córdoba, Spain.,CIBERINFEC, ISCIII - CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Sprygin A, Mazloum A, van Schalkwyk A, Babiuk S. Capripoxviruses, leporipoxviruses, and orthopoxviruses: Occurrences of recombination. Front Microbiol 2022; 13:978829. [PMID: 36274700 PMCID: PMC9584655 DOI: 10.3389/fmicb.2022.978829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Poxviruses are double-stranded DNA viruses with several members displaying restricted host ranges. They are genetically stable with low nucleotide mutation rates compared to other viruses, due to the poxviral high-fidelity DNA polymerase. Despite the low accumulation of mutations per replication cycle, poxvirus genomes can recombine with each other to generate genetically rearranged viruses through recombination, a process directly associated with replication and the aforementioned DNA polymerase. Orthopoxvirus replication is intimately tethered to high frequencies of homologous recombination between co-infecting viruses, duplicated sequences of the same virus, and plasmid DNA transfected into poxvirus-infected cells. Unfortunately, the effect of these genomic alterations on the cellular context for all poxviruses across the family Poxviridae remains elusive. However, emerging sequence data on currently circulating and archived poxviruses, such as the genera orthopoxviruses and capripoxviruses, display a wide degree of divergence. This genetic variability cannot be explained by clonality or genetic drift alone, but are probably a result of significant genomic alterations, such as homologous recombination, gene loss and gain, or gene duplications as the major selection forces acting on viral progeny. The objective of this review is to cross-sectionally overview the currently available findings on natural and laboratory observations of recombination in orthopoxviruses, capripoxviruses, and leporipoxviruses, as well as the possible mechanisms involved. Overall, the reviewed available evidence allows us to conclude that the current state of knowledge is limited in terms of the relevance of genetic variations across even a genus of poxviruses as well as fundamental features governing and precipitating intrinsic gene flow and recombination events.
Collapse
Affiliation(s)
- Alexander Sprygin
- Federal Center for Animal Health, Vladimir, Russia
- *Correspondence: Alexander Sprygin,
| | - Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | | | - Shawn Babiuk
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Divergent Evolutionary Pathways of Myxoma Virus in Australia: Virulence Phenotypes in Susceptible and Partially Resistant Rabbits Indicate Possible Selection for Transmissibility. J Virol 2022; 96:e0088622. [PMID: 36197107 PMCID: PMC9599488 DOI: 10.1128/jvi.00886-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To characterize the ongoing evolution of myxoma virus in Australian rabbits, we used experimental infections of laboratory rabbits to determine the virulence and disease phenotypes of recent virus isolates. The viruses, collected between 2012 and 2015, fell into three lineages, one of which, lineage c, experienced a punctuated increase in evolutionary rate. All viruses were capable of causing acute death with aspects of neutropenic septicemia, characterized by minimal signs of myxomatosis, the occurrence of pulmonary edema and bacteria invasions throughout internal organs, but with no inflammatory response. For the viruses of highest virulence all rabbits usually died at this point. In more attenuated viruses, some rabbits died acutely, while others developed an amyxomatous phenotype. Rabbits that survived for longer periods developed greatly swollen cutaneous tissues with very high virus titers. This was particularly true of lineage c viruses. Unexpectedly, we identified a line of laboratory rabbits with some innate resistance to myxomatosis and used these in direct comparisons with the fully susceptible rabbit line. Importantly, the same disease phenotype occurred in both susceptible and resistant rabbits, although virulence was shifted toward more attenuated grades in resistant animals. We propose that selection against inflammation at cutaneous sites prolongs virus replication and enhances transmission, leading to the amyxomatous phenotype. In some virus backgrounds this creates an immunosuppressive state that predisposes to high virulence and acute death. The alterations in disease pathogenesis, particularly the overwhelming bacterial invasions that characterize the modern viruses, suggest that their virulence grades are not directly comparable with earlier studies. IMPORTANCE The evolution of the myxoma virus (MYXV) following its release as a biological control for European rabbits in Australia is the textbook example of the coevolution of virus virulence and host resistance. However, most of our knowledge of MYXV evolution only covers the first few decades of its spread in Australia and often with little direct connection between how changes in virus phenotype relate to those in the underlying virus genotype. By conducting detailed experimental infections of recent isolates of MYXV in different lines of laboratory rabbits, we examined the ongoing evolution of MYXV disease phenotypes. Our results reveal a wide range of phenotypes, including an amyxomatous type, as well as the impact of invasive bacteria, that in part depended on the level of rabbit host resistance. These results provide a unique insight into the complex virus and host factors that combine to shape disease phenotype and viral evolution.
Collapse
|
13
|
History, control, epidemiology, ecology, and economy of the invasion of European rabbits in Chile: a comparison with Australia. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Poxviral ANKR/F-box Proteins: Substrate Adapters for Ubiquitylation and More. Pathogens 2022; 11:pathogens11080875. [PMID: 36014996 PMCID: PMC9414399 DOI: 10.3390/pathogens11080875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
Poxviruses are double-stranded DNA viruses that infect insects and a variety of vertebrate species. The large genomes of poxviruses contain numerous genes that allow these viruses to successfully establish infection, including those that help evade the host immune response and prevent cell death. Ankyrin-repeat (ANKR)/F-box proteins are almost exclusively found in poxviruses, and they function as substrate adapters for Skp1-Cullin-1-F-box protein (SCF) multi-subunit E3 ubiquitin (Ub)-ligases. In this regard, they use their C-terminal F-box domain to bind Skp1, Cullin-1, and Roc1 to recruit cellular E2 enzymes to facilitate the ubiquitylation, and subsequent proteasomal degradation, of proteins bound to their N-terminal ANKRs. However, these proteins do not just function as substrate adapters as they also have Ub-independent activities. In this review, we examine both Ub-dependent and -independent activities of ANKR/F-box proteins and discuss how poxviruses use these proteins to counteract the host innate immune response, uncoat their genome, replicate, block cell death, and influence transcription. Finally, we consider important outstanding questions that need to be answered in order to better understand the function of this versatile protein family.
Collapse
|
15
|
Maladaptation after a virus host switch leads to increased activation of the pro-inflammatory NF-κB pathway. Proc Natl Acad Sci U S A 2022; 119:e2115354119. [PMID: 35549551 PMCID: PMC9171774 DOI: 10.1073/pnas.2115354119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Myxoma virus (MYXV) is benign in the natural brush rabbit host but causes a fatal disease in European rabbits. Here, we demonstrate that MYXV M156 inhibited brush rabbit protein kinase R (bPKR) more efficiently than European rabbit PKR (ePKR). Because ePKR was not completely inhibited by M156, there was a depletion of short–half-life proteins like the nuclear factor kappa B (NF-κB) inhibitor IκBα, concomitant NF-κB activation and NF-κB target protein expression in ePKR-expressing cells. NF-κB pathway activation was blocked by either hypoactive or hyperactive M156 mutants. This demonstrates that maladaptation of viral immune antagonists can result in substantially different immune responses in aberrant hosts. These different host responses may contribute to altered viral dissemination and may influence viral pathogenesis. Myxoma virus (MYXV) causes localized cutaneous fibromas in its natural hosts, tapeti and brush rabbits; however, in the European rabbit, MYXV causes the lethal disease myxomatosis. Currently, the molecular mechanisms underlying this increased virulence after cross-species transmission are poorly understood. In this study, we investigated the interaction between MYXV M156 and the host protein kinase R (PKR) to determine their crosstalk with the proinflammatory nuclear factor kappa B (NF-κB) pathway. Our results demonstrated that MYXV M156 inhibits brush rabbit PKR (bPKR) more strongly than European rabbit PKR (ePKR). This moderate ePKR inhibition could be improved by hyperactive M156 mutants. We hypothesized that the moderate inhibition of ePKR by M156 might incompletely suppress the signal transduction pathways modulated by PKR, such as the NF-κB pathway. Therefore, we analyzed NF-κB pathway activation with a luciferase-based promoter assay. The moderate inhibition of ePKR resulted in significantly higher NF-κB–dependent reporter activity than complete inhibition of bPKR. We also found a stronger induction of the NF-κB target genes TNFα and IL-6 in ePKR-expressing cells than in bPKR-expressing cells in response to M156 in both transfection and infections assays. Furthermore, a hyperactive M156 mutant did not cause ePKR-dependent NF-κB activation. These observations indicate that M156 is maladapted for ePKR inhibition, only incompletely blocking translation in these hosts, resulting in preferential depletion of short–half-life proteins, such as the NF-κB inhibitor IκBα. We speculate that this functional activation of NF-κB induced by the intermediate inhibition of ePKR by M156 may contribute to the increased virulence of MYXV in European rabbits.
Collapse
|
16
|
Águeda-Pinto A, Kraberger S, Everts A, Gutierrez-Jensen A, Glenn HL, Dalton KP, Podadera A, Parra F, Martinez-Haro M, Viñuelas JA, Varsani A, McFadden G, Rahman MM, Esteves PJ. Identification of a Novel Myxoma Virus C7-Like Host Range Factor That Enabled a Species Leap from Rabbits to Hares. mBio 2022; 13:e0346121. [PMID: 35352978 PMCID: PMC9040879 DOI: 10.1128/mbio.03461-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 01/04/2023] Open
Abstract
Myxoma virus (MYXV) is naturally found in rabbit Sylvilagus species and is known to cause lethal myxomatosis in European rabbits (Oryctolagus cuniculus). In 2019, an MYXV strain (MYXV strain Toledo [MYXV-Tol]) causing myxomatosis-like disease in Iberian hares (Lepus granatensis) was identified. MYXV-Tol acquired a recombinant region of ∼2.8 kb harboring several new genes, including a novel host range gene (M159) that we show to be an orthologous member of the vaccinia virus C7 host range family. Here, to test whether M159 alone has enabled MYXV to alter its host range to Iberian hares, several recombinant viruses were generated, including an MYXV-Tol ΔM159 (knockout) strain. While MYXV-Tol underwent fully productive infection in hare HN-R cells, neither the wild-type MYXV-Lau strain (lacking M159) nor vMyxTol-ΔM159 (deleted for M159) was able to infect and replicate, showing that the ability of MYXV-Tol to infect these cells and replicate depends on the presence of M159. Similar to other C7L family members, M159 was shown to be expressed as an early/late gene but was translocated into the nucleus at later time points, indicating that further studies are needed to elucidate its role in the nucleus. Finally, in rabbit cells, the M159 protein did not contribute to increased replication but was able to upregulate the replication levels of MYXV in nonpermissive and semipermissive human cancer cells, suggesting that the M159-targeted pathway is conserved across mammalian species. Altogether, these observations demonstrate that the M159 protein plays a critical role in determining the host specificity of MYXV-Tol in hare and human cells by imparting new host range functions. IMPORTANCE The coevolution of European rabbit populations and MYXV is a textbook example of an arms race between a pathogen and a host. Recently, a recombinant MYXV (MYXV-Tol) crossed the species barrier by jumping from leporid species to another species, causing lethal myxomatosis-like disease. Given the highly pathogenic nature of this new virus in hares and the incidences of other poxvirus cross-species spillovers into other animals, including humans, it is important to understand how and why MYXV-Tol was able to become virulent in a new host species. The results presented clearly demonstrate that M159 is the key factor allowing MYXV-Tol replication in hare cells by imparting new host range functions. These results have the potential to improve current knowledge about the virulence of poxviruses and provide a platform to better understand the new MYXV-Tol, rendering the virus capable of leaping into a new host species.
Collapse
Affiliation(s)
- Ana Águeda-Pinto
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ , USA
| | - Anne Everts
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ami Gutierrez-Jensen
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Honor L. Glenn
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Kevin P. Dalton
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, Oviedo, Spain
| | - Ana Podadera
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, Oviedo, Spain
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Campus El Cristo, Oviedo, Spain
| | - Monica Martinez-Haro
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), CIAG del Chaparrillo, Ciudad Real, Spain
| | - José Alberto Viñuelas
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), CIAG del Chaparrillo, Ciudad Real, Spain
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ , USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Pedro J. Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- CITS—Centro de Investigação em Tecnologias da Saúde, IPSN, CESPU, Gandra, Portugal
| |
Collapse
|
17
|
Amat JAR, Patton V, Chauché C, Goldfarb D, Crispell J, Gu Q, Coburn AM, Gonzalez G, Mair D, Tong L, Martinez-Sobrido L, Marshall JF, Marchesi F, Murcia PR. Long-term adaptation following influenza A virus host shifts results in increased within-host viral fitness due to higher replication rates, broader dissemination within the respiratory epithelium and reduced tissue damage. PLoS Pathog 2021; 17:e1010174. [PMID: 34919598 PMCID: PMC8735595 DOI: 10.1371/journal.ppat.1010174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness. As viruses are obligate intracellular pathogens, their ability to replicate and spread within their hosts is key for survival, even if it leads to severe disease or death of the host. Understanding the consequences of long-term virus adaptation after viral emergence is key for pandemic preparedness. H3N8 equine influenza virus (EIV) originated in birds and has circulated in horses since 1963, thus providing unique opportunities to study virus adaptation. We compared the replication kinetics of two EIVs of the same lineage but with different evolutionary histories: the earliest virus (EIV/63, isolated in 1963), and EIV/2003, which was isolated after 40 years of continuous circulation in horses. Experimental infections of cell lines (MDCK and E.Derm cells) and equine respiratory explants show that EIV evolved towards enhanced replication and cell-to-cell spread; but reduced tissue damage, confirming that viral fitness is adaptive and does not necessarily result in higher virulence.
Collapse
Affiliation(s)
- Julien A. R. Amat
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Veronica Patton
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Caroline Chauché
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Centre for Inflammation Research, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Daniel Goldfarb
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Joanna Crispell
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Alice M. Coburn
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Gaelle Gonzalez
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort, France
| | - Daniel Mair
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Lily Tong
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | - John F. Marshall
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Pablo R. Murcia
- MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol 2021; 19:623-638. [PMID: 33875863 PMCID: PMC8054256 DOI: 10.1038/s41579-021-00550-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Virtually all plants and animals, including humans, are home to symbiotic microorganisms. Symbiotic interactions can be neutral, harmful or have beneficial effects on the host organism. However, growing evidence suggests that microbial symbionts can evolve rapidly, resulting in drastic transitions along the parasite-mutualist continuum. In this Review, we integrate theoretical and empirical findings to discuss the mechanisms underpinning these evolutionary shifts, as well as the ecological drivers and why some host-microorganism interactions may be stuck at the end of the continuum. In addition to having biomedical consequences, understanding the dynamic life of microorganisms reveals how symbioses can shape an organism's biology and the entire community, particularly in a changing world.
Collapse
Affiliation(s)
| | | | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
19
|
Zeng Y, Wiens JJ. Do mutualistic interactions last longer than antagonistic interactions? Proc Biol Sci 2021; 288:20211457. [PMID: 34493078 PMCID: PMC8424312 DOI: 10.1098/rspb.2021.1457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 11/12/2022] Open
Abstract
Species interactions are crucial and ubiquitous across organisms. However, it remains unclear how long these interactions last over macroevolutionary timescales, and whether the nature of these interactions (mutualistic versus antagonistic) helps predict how long they persist. Here, we estimated the ages of diverse species interactions, based on phylogenies from 60 studies spanning the Tree of Life. We then tested if mutualistic interactions persist longer than antagonistic interactions. We found that the oldest mutualisms were significantly older than the oldest antagonisms across all organisms, and within plants, fungi, bacteria and protists. Surprisingly, this pattern was reversed in animals, with the oldest mutualisms significantly younger than the oldest antagonisms. We also found that many mutualisms were maintained for hundreds of millions of years (some greater than 1 billion years), providing strong evidence for the long-term stability of mutualisms and for niche conservatism in species interactions.
Collapse
Affiliation(s)
- Yichao Zeng
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - John J. Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
20
|
Host genotype and genetic diversity shape the evolution of a novel bacterial infection. THE ISME JOURNAL 2021; 15:2146-2157. [PMID: 33603148 PMCID: PMC8245636 DOI: 10.1038/s41396-021-00911-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/10/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Pathogens continue to emerge from increased contact with novel host species. Whilst these hosts can represent distinct environments for pathogens, the impacts of host genetic background on how a pathogen evolves post-emergence are unclear. In a novel interaction, we experimentally evolved a pathogen (Staphylococcus aureus) in populations of wild nematodes (Caenorhabditis elegans) to test whether host genotype and genetic diversity affect pathogen evolution. After ten rounds of selection, we found that pathogen virulence evolved to vary across host genotypes, with differences in host metal ion acquisition detected as a possible driver of increased host exploitation. Diverse host populations selected for the highest levels of pathogen virulence, but infectivity was constrained, unlike in host monocultures. We hypothesise that population heterogeneity might pool together individuals that contribute disproportionately to the spread of infection or to enhanced virulence. The genomes of evolved populations were sequenced, and it was revealed that pathogens selected in distantly-related host genotypes diverged more than those in closely-related host genotypes. S. aureus nevertheless maintained a broad host range. Our study provides unique empirical insight into the evolutionary dynamics that could occur in other novel infections of wildlife and humans.
Collapse
|
21
|
Oncolytic virotherapy in hematopoietic stem cell transplantation. Hum Immunol 2021; 82:640-648. [PMID: 34119352 DOI: 10.1016/j.humimm.2021.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/28/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) is a curative option for various hematologic malignancies. However, fatal complications, such as relapse and graft-versus-host disease (GVHD) hampered favorable HSCT outcomes. Cancer cells remained in the body following the conditioning regimen, or those contaminating the autologous graft can cause relapse. Although the relapse is much lesser in allogeneic HSCT, GVHD is still a life-threatening complication in this type of HSCT. Researchers are seeking various strategies to reduce relapse and GVHD in HSCT with minimum effects on the engraftment and immune-reconstitution. Oncolytic viruses (OVs) are emerging anti-cancer agents with promising results in battling solid tumors. OVs can selectively replicate in the malignant cells in which the antiviral immune responses have defected. Hence, they could be used as a purging agent to eradicate the tumoral contamination of autologous grafts with no damages to hematopoietic stem cells. Moreover, they have been shown to alleviate GVHD complications through modulating alloreactive T cell responses. Primary results promise using OVs as a strategy to reduce both relapse and GVHD in the HSCT without affecting hematologic and immunologic engraftment. Herein, we provide the latest findings in the field of OV therapy in HSCT and discuss their pros and cons.
Collapse
|
22
|
Wargo AR, Kurath G, Scott RJ, Kerr B. Virus shedding kinetics and unconventional virulence tradeoffs. PLoS Pathog 2021; 17:e1009528. [PMID: 33970967 PMCID: PMC8109835 DOI: 10.1371/journal.ppat.1009528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/03/2021] [Indexed: 11/19/2022] Open
Abstract
Tradeoff theory, which postulates that virulence provides both transmission costs and benefits for pathogens, has become widely adopted by the scientific community. Although theoretical literature exploring virulence-tradeoffs is vast, empirical studies validating various assumptions still remain sparse. In particular, truncation of transmission duration as a cost of virulence has been difficult to quantify with robust controlled in vivo studies. We sought to fill this knowledge gap by investigating how transmission rate and duration were associated with virulence for infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss). Using host mortality to quantify virulence and viral shedding to quantify transmission, we found that IHNV did not conform to classical tradeoff theory. More virulent genotypes of the virus were found to have longer transmission durations due to lower recovery rates of infected hosts, but the relationship was not saturating as assumed by tradeoff theory. Furthermore, the impact of host mortality on limiting transmission duration was minimal and greatly outweighed by recovery. Transmission rate differences between high and low virulence genotypes were also small and inconsistent. Ultimately, more virulent genotypes were found to have the overall fitness advantage, and there was no apparent constraint on the evolution of increased virulence for IHNV. However, using a mathematical model parameterized with experimental data, it was found that host culling resurrected the virulence tradeoff and provided low virulence genotypes with the advantage. Human-induced or natural culling, as well as host population fragmentation, may be some of the mechanisms by which virulence diversity is maintained in nature. This work highlights the importance of considering non-classical virulence tradeoffs.
Collapse
Affiliation(s)
- Andrew R. Wargo
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia, United States of America
| | - Gael Kurath
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington, United States of America
| | - Robert J. Scott
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Benjamin Kerr
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
23
|
Cagliani R, Mozzi A, Pontremoli C, Sironi M. Evolution and Origin of Human Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Abstract
Viral diseases, whether of animals or humans, are normally considered as problems to be managed. However, in Australia, two viruses have been used as landscape-scale therapeutics to control European rabbits (Oryctolagus cuniculus), the preeminent invasive vertebrate pest species. Rabbits have caused major environmental and agricultural losses and contributed to extinction of native species. It was not until the introduction of Myxoma virus that effective control of this pest was obtained at a continental scale. Subsequent coevolution of rabbit and virus saw a gradual reduction in the effectiveness of biological control that was partially ameliorated by the introduction of the European rabbit flea to act as an additional vector for the virus. In 1995, a completely different virus, Rabbit hemorrhagic disease virus (RHDV), escaped from testing and spread through the Australian rabbit population and again significantly reduced rabbit numbers and environmental impacts. The evolutionary pressures on this virus appear to be producing quite different outcomes to those that occurred with myxoma virus and the emergence and invasion of a novel genotype of RHDV in 2014 have further augmented control. Molecular studies on myxoma virus have demonstrated multiple proteins that manipulate the host innate and adaptive immune response; however the molecular basis of virus attenuation and reversion to virulence are not yet understood.
Collapse
|
25
|
Abade Dos Santos FA, Carvalho CL, Monteiro M, Carvalho P, Mendonça P, Peleteiro MDC, Duarte MD. Recombinant myxoma virus infection associated with high mortality in rabbit farming (Oryctolagus cuniculus). Transbound Emerg Dis 2020; 68:2616-2621. [PMID: 33119958 DOI: 10.1111/tbed.13899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/01/2022]
Abstract
Myxomatosis is an emergent disease in the Iberian hare, having been considered a rabbit disease for decades. Genome sequencing of the strains obtained from Iberian hares with myxomatosis showed these to be distinct from the classical ones that circulated in rabbits since the virus introduction in Europe, in 1952. The main genomic difference in this natural recombinant hare myxoma virus (ha-MYXV) is the presence of an additional 2.8 kb region disrupting the M009L gene and adding a set of genes homologous to the myxoma virus (MYXV) genes M060R, M061R, M064R, M065R and M066R originated in Poxviruses. After the emergence of this recombinant virus (ha-MYXV) in hares, in the summer of 2019, the ha-MYXV was not detected in rabbit surveys, suggesting an apparent species segregation with the MYXV classic strains persistently circulating in rabbits. Recently, a group of six unvaccinated European rabbits (Oryctolagus cuniculus cuniculus) from a backyard rabbitry in South Portugal developed signs of myxomatosis (anorexia, dyspnoea, oedema of eyelids, head, ears, external genitals and anus, and skin myxomas in the base of the ears). Five of them died within 24-48 hr of symptom onset. Molecular analysis revealed that only the recombinant MYXV was present. This is the first documented report of a recombinant hare myxoma virus in farm rabbits associated with high mortality, which increases the concern for the future of both the Iberian hare and wild rabbits and questions the safety of the rabbit industry. This highlights the urgent need to evaluate the efficacy of available vaccines against this new MYXV.
Collapse
Affiliation(s)
- Fábio A Abade Dos Santos
- INIAV, I.P. National Institute of Agrarian and Veterinarian Research, Oeiras, Portugal.,Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine of Lisbon, CIISA, Lisboa, Portugal.,Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Carina L Carvalho
- INIAV, I.P. National Institute of Agrarian and Veterinarian Research, Oeiras, Portugal
| | - Madalena Monteiro
- INIAV, I.P. National Institute of Agrarian and Veterinarian Research, Oeiras, Portugal
| | - Paulo Carvalho
- INIAV, I.P. National Institute of Agrarian and Veterinarian Research, Oeiras, Portugal
| | - Paula Mendonça
- INIAV, I.P. National Institute of Agrarian and Veterinarian Research, Oeiras, Portugal
| | | | - Margarida D Duarte
- INIAV, I.P. National Institute of Agrarian and Veterinarian Research, Oeiras, Portugal.,Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine of Lisbon, CIISA, Lisboa, Portugal
| |
Collapse
|
26
|
Brannelly LA, McCallum HI, Grogan LF, Briggs CJ, Ribas MP, Hollanders M, Sasso T, Familiar López M, Newell DA, Kilpatrick AM. Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecol Lett 2020; 24:130-148. [PMID: 33067922 DOI: 10.1111/ele.13621] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Emerging infectious diseases have caused many species declines, changes in communities and even extinctions. There are also many species that persist following devastating declines due to disease. The broad mechanisms that enable host persistence following declines include evolution of resistance or tolerance, changes in immunity and behaviour, compensatory recruitment, pathogen attenuation, environmental refugia, density-dependent transmission and changes in community composition. Here we examine the case of chytridiomycosis, the most important wildlife disease of the past century. We review the full breadth of mechanisms allowing host persistence, and synthesise research on host, pathogen, environmental and community factors driving persistence following chytridiomycosis-related declines and overview the current evidence and the information required to support each mechanism. We found that for most species the mechanisms facilitating persistence have not been identified. We illustrate how the mechanisms that drive long-term host population dynamics determine the most effective conservation management strategies. Therefore, understanding mechanisms of host persistence is important because many species continue to be threatened by disease, some of which will require intervention. The conceptual framework we describe is broadly applicable to other novel disease systems.
Collapse
Affiliation(s)
- Laura A Brannelly
- Veterinary BioSciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Vic, 3030, Australia
| | - Hamish I McCallum
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia
| | - Laura F Grogan
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia.,Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Cheryl J Briggs
- Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Maria P Ribas
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia.,Wildlife Conservation Medicine Research Group, Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Matthijs Hollanders
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Thais Sasso
- Environmental Futures Research Institute and School of Environment and Science, Griffith University, Nathan, Qld., 4111, Australia
| | - Mariel Familiar López
- School of Environment and Sciences, Griffith University, Gold Coast, Qld., 4215, Australia
| | - David A Newell
- Forest Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Auston M Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
27
|
López-Lorenzo G, López-Novo C, Prieto A, Díaz JM, Gullón J, Arnal JL, Benito A, Díaz P, Panadero R, Díez-Baños P, Dalton KP, Parra F, Fernández G. Molecular detection of myxoma virus in the environment of vaccinated rabbitries. Transbound Emerg Dis 2020; 68:1424-1431. [PMID: 32813890 DOI: 10.1111/tbed.13809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022]
Abstract
Myxoma virus (MYXV) is the aetiological agent of myxomatosis, a systemic, mostly lethal disease that affects European rabbits. Vaccination against it, although widespread, has not been completely effective and disease outbreaks still take place on farms which carry out vaccination programmes. Since some of these cases have been attributed to airborne transmission or the spread of the virus via inanimate vectors, the aims of this study were to determine MYXV contamination levels and distribution in the environment of vaccinated farms and to ascertain whether the detected virus corresponded to field strains. For that, environmental samples from several areas, tools and employees from four (three infected and one uninfected) rabbitries were taken and analysed by qPCR. MYXV was detected in the environment of all the infected farms, whereas all the samples from the non-infected farm were negative. Furthermore, all the positive samples contained viral DNA compatible with field strains of the virus. These results lead us to believe that the administration of currently available commercial vaccines does not prevent infected animals from shedding the field virus. Moreover, viral DNA was also found in items that are not in direct contact with the animals, which could play a role in the transmission of the infection throughout the farm and to other farms. Therefore, this study proves that current vaccination schemes on their own are not sufficient to prevent this disease and should be accompanied by adequate biosecurity measures.
Collapse
Affiliation(s)
- Gonzalo López-Lorenzo
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Cynthia López-Novo
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Alberto Prieto
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - José Manuel Díaz
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | | | | | | | - Pablo Díaz
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rosario Panadero
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Díez-Baños
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| | - Kevin P Dalton
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Francisco Parra
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Gonzalo Fernández
- Department of Animal Pathology (INVESAGA Group), Faculty of Veterinary Sciences, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
28
|
García-Bocanegra I, Camacho-Sillero L, Caballero-Gómez J, Agüero M, Gómez-Guillamón F, Manuel Ruiz-Casas J, Manuel Díaz-Cao J, García E, José Ruano M, de la Haza R. Monitoring of emerging myxoma virus epidemics in Iberian hares (Lepus granatensis) in Spain, 2018-2020. Transbound Emerg Dis 2020; 68:1275-1282. [PMID: 32786107 DOI: 10.1111/tbed.13781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
Myxomatosis is an infectious disease caused by the myxoma virus (MYXV), which has very high mortality rates in European wild rabbits (Oryctolagus cuniculus). While sporadic cases of myxomatosis have also been reported in some hare species, these lagomorphs are considered to have a low susceptibility to MYXV infection. In the present study, we describe the spatiotemporal evolution and main epidemiological findings of novel hare MYXV (ha-MYXV or MYXV-Tol) epidemics in Iberian hares (Lepus granatensis) in Spain. In the period 2018-2020, a total of 487 hares from 372 affected areas were confirmed to be MYXV-infected by PCR. ha-MYXV outbreaks were detected in most of the Spanish regions where the Iberian hare is present. The spatial distribution was not homogeneous, with most outbreaks concentrated in the southern and central parts of Spain. Consecutive outbreaks reported in the last two years suggest endemic circulation in Spain of this emerging virus. A retrospective study carried out just after the first epidemic period (2018-2019) revealed that the virus could have been circulating since June 2018. The number of outbreaks started to rise in July, peaked during the first half of August and October and then decreased sharply until January 2019. The apparent mean mortality rate was 55.4% (median: 70%). The results indicated high susceptibility of the Iberian hare to ha-MYXV infection, but apparent resistance in the sympatric hare species present in Spain and less infectivity in European rabbits. The novel ha-MYXV has had significant consequences on the health status of Iberian hare populations in Spain, which is of animal health and conservation concern. The present study contributes to a better understanding of ha-MYXV emergence and will provide valuable information for the development of control strategies. Further research is warranted to assess the impact of this emerging virus on wild lagomorph populations and to elucidate its ecological implications for Iberian Mediterranean ecosystems.
Collapse
Affiliation(s)
| | - Leonor Camacho-Sillero
- Programa Vigilancia Epidemiológica Fauna Silvestre (PVE), Consejería Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, Málaga, Spain
| | - Javier Caballero-Gómez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain.,Unidad de Enfermedades Infecciosas, Grupo de Virología Clínica y Zoonosis, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Reina Sofía, Universidad de Córdoba (UCO), Córdoba, Spain
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria (LCV), Ministerio de Agricultura, Pesca y Alimentación, , Madrid, Spain
| | - Félix Gómez-Guillamón
- Programa Vigilancia Epidemiológica Fauna Silvestre (PVE), Consejería Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Junta de Andalucía, Málaga, Spain
| | - Juan Manuel Ruiz-Casas
- Consejería de Agricultura, Agua y Desarrollo Rural, Junta de Comunidades de Castilla-La Mancha, Toledo, Spain
| | - José Manuel Díaz-Cao
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Elena García
- Área de Epidemiología, Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| | - María José Ruano
- Laboratorio Central de Veterinaria (LCV), Ministerio de Agricultura, Pesca y Alimentación, , Madrid, Spain
| | - Rafael de la Haza
- Área de Epidemiología, Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Ministerio de Agricultura, Pesca y Alimentación, Madrid, Spain
| |
Collapse
|
29
|
Affiliation(s)
- Carlos Rouco
- Department of Botany, Ecology and
Plant Physiology, Faculty of Science, University
of Cordoba, Cordoba 14071, Spain
| | - Joana Abrantes
- Research Centre in Biodiversity and
Genetic Resources (CIBIO), Research Network in
Biodiversity and Evolutionary Biology (InBIO),
University of Porto, Vairao 4485-661,
Portugal
- Department of Biology, Faculty of
Sciences, University of Porto, Porto,
Portugal
| | | |
Collapse
|
30
|
Myxoma Virus-Encoded Host Range Protein M029: A Multifunctional Antagonist Targeting Multiple Host Antiviral and Innate Immune Pathways. Vaccines (Basel) 2020; 8:vaccines8020244. [PMID: 32456120 PMCID: PMC7349962 DOI: 10.3390/vaccines8020244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Myxoma virus (MYXV) is the prototypic member of the Leporipoxvirus genus of the Poxviridae family of viruses. In nature, MYXV is highly restricted to leporids and causes a lethal disease called myxomatosis only in European rabbits (Oryctologous cuniculus). However, MYXV has been shown to also productively infect various types of nonrabbit transformed and cancer cells in vitro and in vivo, whereas their normal somatic cell counterparts undergo abortive infections. This selective tropism of MYXV for cancer cells outside the rabbit host has facilitated its development as an oncolytic virus for the treatment of different types of cancers. Like other poxviruses, MYXV possesses a large dsDNA genome which encodes an array of dozens of immunomodulatory proteins that are important for host and cellular tropism and modulation of host antiviral innate immune responses, some of which are rabbit-specific and others can function in nonrabbit cells as well. This review summarizes the functions of one such MYXV host range protein, M029, an ortholog of the larger superfamily of poxvirus encoded E3-like dsRNA binding proteins. M029 has been identified as a multifunctional protein involved in MYXV cellular and host tropism, antiviral responses, and pathogenicity in rabbits.
Collapse
|
31
|
Farrell S, Noble PM, Pinchbeck GL, Brant B, Caravaggi A, Singleton DA, Radford AD. Seasonality and risk factors for myxomatosis in pet rabbits in Great Britain. Prev Vet Med 2020; 176:104924. [PMID: 32114004 DOI: 10.1016/j.prevetmed.2020.104924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
Myxomatosis is a highly contagious, frequently fatal viral disease affecting both wild and domesticated European rabbits across many areas of the world. Here we used electronic health records (EHRs) collected from pet rabbits attending a sentinel voluntary network of 191 veterinary practices across Great Britain (GB) between March 2014 and June 2019 to identify new features of this disease's epidemiology. From a total of 89,408 rabbit consultations, text mining verified by domain experts identified 207 (0.23 %) cases where myxomatosis was the only differential diagnosis recorded by the attending practitioner. Cases occurred in all months but February and were distributed across the country. Consistent with studies in wild rabbits, the majority of cases occurred between August and November. However, there was also evidence for considerable variation between years. A nested case control study identified important risk factors for myxomatosis within this pet animal population including season, sex, age, vaccination status and distance to likely wild rabbit habitats. Female entire rabbits were twice as likely to be a case (odds ratio (OR) 1.98, 95 % confidence interval (CI) 1.26-3.13, p = 0.003), suggesting a novel role for behaviour in driving transmission from wild to domesticated rabbits. Vaccination had the largest protective effect with vaccinated rabbits being 8.3 times less likely to be a case than unvaccinated rabbits (OR = 0.12, 95 % CI 0.06-0.21, p = <0.001).
Collapse
Affiliation(s)
- Sean Farrell
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Pj-M Noble
- Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Chester High Road, Neston,CH64 7TE, UK
| | - Gina L Pinchbeck
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston,CH64 7TE, UK
| | - Beth Brant
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston,CH64 7TE, UK
| | - Anthony Caravaggi
- School of Applied Sciences, University of South Wales, 9 Graig Fach, Pontypridd, UK CF37 4BB, UK
| | - David A Singleton
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston,CH64 7TE, UK
| | - Alan D Radford
- Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Chester High Road, Neston,CH64 7TE, UK.
| |
Collapse
|
32
|
Precipitous Declines in Northern Gulf of Mexico Invasive Lionfish Populations Following the Emergence of an Ulcerative Skin Disease. Sci Rep 2020; 10:1934. [PMID: 32020056 PMCID: PMC7000744 DOI: 10.1038/s41598-020-58886-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/22/2020] [Indexed: 11/08/2022] Open
Abstract
Invasive Indo-Pacific lionfish Pterois volitans/miles have become well-established in many western Atlantic marine habitats and regions. However, high densities and low genetic diversity could make their populations susceptible to disease. We examined changes in northern Gulf of Mexico (nGOM) lionfish populations following the emergence of an ulcerative skin disease in August 2017, when estimated disease prevalence was as high as 40%. Ulcerated female lionfish had 9% lower relative condition compared to non-ulcerated females. Changes in lionfish size composition indicated a potential recruitment failure in early summer 2018, when the proportion of new recruits declined by >80%. Remotely operated vehicle surveys during 2016–2018 indicated lionfish population density declined in 2018 by 75% on natural reefs. The strongest declines (77–79%) in lionfish density were on high-density (>25 lionfish per 100 m2) artificial reefs, which declined to similar levels as low-density (<15 lionfish per 100 m2) artificial reefs that had prior lionfish removals. Fisheries-dependent sampling indicated lionfish commercial spearfishing landings, commercial catch per unit effort (CPUE), and lionfish tournament CPUE also declined approximately 50% in 2018. Collectively, these results provide correlative evidence for density-dependent epizootic population control, have implications for managing lionfish and impacted native species, and improve our understanding of biological invasions.
Collapse
|
33
|
Rahman MM, McFadden G. Oncolytic Virotherapy with Myxoma Virus. J Clin Med 2020; 9:jcm9010171. [PMID: 31936317 PMCID: PMC7020043 DOI: 10.3390/jcm9010171] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses are one of the most promising novel therapeutics for malignant cancers. They selectively infect and kill cancer cells while sparing the normal counterparts, expose cancer- specific antigens and activate the host immune system against both viral and tumor determinants. Oncolytic viruses can be used as monotherapy or combined with existing cancer therapies to become more potent. Among the many types of oncolytic viruses that have been developed thus far, members of poxviruses are the most promising candidates against diverse cancer types. This review summarizes recent advances that are made with oncolytic myxoma virus (MYXV), a member of the Leporipoxvirus genus. Unlike other oncolytic viruses, MYXV infects only rabbits in nature and causes no harm to humans or any other non-leporid animals. However, MYXV can selectively infect and kill cancer cells originating from human, mouse and other host species. This selective cancer tropism and safety profile have led to the testing of MYXV in various types of preclinical cancer models. The next stage will be successful GMP manufacturing and clinical trials that will bring MYXV from bench to bedside for the treatment of currently intractable malignancies.
Collapse
|
34
|
Marzi A, Chadinah S, Haddock E, Feldmann F, Arndt N, Martellaro C, Scott DP, Hanley PW, Nyenswah TG, Sow S, Massaquoi M, Feldmann H. Recently Identified Mutations in the Ebola Virus-Makona Genome Do Not Alter Pathogenicity in Animal Models. Cell Rep 2019; 23:1806-1816. [PMID: 29742435 DOI: 10.1016/j.celrep.2018.04.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/01/2017] [Accepted: 04/04/2018] [Indexed: 10/16/2022] Open
Abstract
Ebola virus (EBOV), isolate Makona, the causative agent of the West African EBOV epidemic, has been the subject of numerous investigations to determine the genetic diversity and its potential implication for virus biology, pathogenicity, and transmissibility. Despite various mutations that have emerged over time through multiple human-to-human transmission chains, their biological relevance remains questionable. Recently, mutations in the glycoprotein GP and polymerase L, which emerged and stabilized early during the outbreak, have been associated with improved viral fitness in cell culture. Here, we infected mice and rhesus macaques with EBOV-Makona isolates carrying or lacking those mutations. Surprisingly, all isolates behaved very similarly independent of the genotype, causing severe or lethal disease in mice and macaques, respectively. Likewise, we could not detect any evidence for differences in virus shedding. Thus, no specific biological phenotype could be associated with these EBOV-Makona mutations in two animal models.
Collapse
Affiliation(s)
- Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA.
| | - Spencer Chadinah
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Nicolette Arndt
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Cynthia Martellaro
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA
| | | | - Samba Sow
- Centre des Operations d'Urgence, Centre pour le Développement des Vaccins (CVD-Mali), Centre National d'Appui à la lutte contre la Maladie, Ministère de la Sante et de l'Hygiène Publique, Bamako, Mali
| | | | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rocky Mountain Laboratories, Hamilton, MT, USA.
| |
Collapse
|
35
|
Ridley RB, Young BM, Lee J, Walsh E, Ahmed CM, Lewin AS, Ildefonso CJ. AAV Mediated Delivery of Myxoma Virus M013 Gene Protects the Retina against Autoimmune Uveitis. J Clin Med 2019; 8:jcm8122082. [PMID: 31795515 PMCID: PMC6947576 DOI: 10.3390/jcm8122082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Uveoretinitis is an ocular autoimmune disease caused by the activation of autoreactive T- cells targeting retinal antigens. The myxoma M013 gene is known to block NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells) and inflammasome activation, and its gene delivery has been demonstrated to protect the retina against lipopolysaccharide (LPS)-induced uveitis. In this report we tested the efficacy of M013 in an experimental autoimmune uveoretinitis (EAU) mouse model. B10RIII mice were injected intravitreally with AAV (adeno associated virus) vectors delivering either secreted GFP (sGFP) or sGFP-TatM013. Mice were immunized with interphotorecptor retinoid binding protein residues 161–180 (IRBP161–180) peptide in complete Freund’s adjuvant a month later. Mice were evaluated by fundoscopy and spectral domain optical coherence tomography (SD-OCT) at 14 days post immunization. Eyes were evaluated by histology and retina gene expression changes were measured by reverse transcribed quantitative PCR (RT-qPCR). No significant difference in ERG or retina layer thickness was observed between sGFP and sGFP-TatM013 treated non-uveitic mice, indicating safety of the vector. In EAU mice, expression of sGFP-TatM013 strongly lowered the clinical score and number of infiltrative cells within the vitreous humor when compared to sGFP treated eyes. Retina structure was protected, and pro-inflammatory genes expression was significantly decreased. These results indicate that gene delivery of myxoma M013 could be of clinical benefit against autoimmune diseases.
Collapse
Affiliation(s)
- Raela B. Ridley
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
| | - Brianna M. Young
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
| | - Jieun Lee
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.L.); (C.M.A.); (A.S.L.)
| | - Erin Walsh
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
| | - Chulbul M. Ahmed
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.L.); (C.M.A.); (A.S.L.)
| | - Alfred S. Lewin
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.L.); (C.M.A.); (A.S.L.)
| | - Cristhian J. Ildefonso
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
- Correspondence: ; Tel.: +1-352-273-8786
| |
Collapse
|
36
|
Sumbria D, Berber E, Rouse BT. Factors Affecting the Tissue Damaging Consequences of Viral Infections. Front Microbiol 2019; 10:2314. [PMID: 31636623 PMCID: PMC6787772 DOI: 10.3389/fmicb.2019.02314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Humans and animals are infected by multiple endogenous and exogenous viruses but few agents cause overt tissue damage. We review the circumstances which favor overt disease expression. These can include intrinsic virulence of the agent, new agents acquired from heterologous species, the circumstances of infection such as dose and route, current infection with other agents which includes the composition of the microbiome at mucosal and other sites, past history of exposure to other infections as well as the immune status of the host. We also briefly discuss promising therapeutic strategies that can expand immune response patterns that minimize tissue damaging responses to viral infections.
Collapse
Affiliation(s)
| | | | - Barry T. Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
37
|
Marchandeau S, Queney G, Alves JM, Carneiro M, Ferrand N. [Myxomatosis: rabbits have separately developed the same mechanisms of genetic resistance in France, Australia and the United Kingdom]. Med Sci (Paris) 2019; 35:611-613. [PMID: 31532367 DOI: 10.1051/medsci/2019118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Stéphane Marchandeau
- Office national de la chasse et de la faune sauvage, Unité PFS, Parc de la Rivière, 8, boulevard Albert Einstein, 44323 Nantes, France
| | - Guillaume Queney
- Antagene, Laboratoire de génétique animale, 6, allée du Levant, 69890 La Tour de Salvagny, France
| | - Joel M Alves
- Department of genetics, University of Cambridge, Cambridge, CB2 3EH, Royaume-Uni. - CIBIO, Centro de investigação em biodiversidade e recursos genéticos, InBIO laboratório associado, Universidade do Porto, 4485-661 Vairão, Portugal. - Palaeogenomics and bio-archaeology research network, Research laboratory for archaeology and history of art, University of Oxford, Dyson Perrins building, South parks road, Oxford OX1 3QY, Royaume-Uni
| | - Miguel Carneiro
- CIBIO, Centro de investigação em biodiversidade e recursos genéticos, InBIO laboratório associado, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nuno Ferrand
- CIBIO, Centro de investigação em biodiversidade e recursos genéticos, InBIO laboratório associado, Universidade do Porto, 4485-661 Vairão, Portugal. - Departamento de biologia, Faculdade de ciências da Universidade do Porto, 4169-007 Porto, Portugal. - Department of zoology, Faculty of sciences, University of Johannesburg, Auckland Park 2006, Afrique du Sud
| |
Collapse
|
38
|
Dalton KP, Martín JM, Nicieza I, Podadera A, de Llano D, Casais R, Gimenez S, Badiola I, Agüero M, Duran M, Buitrago D, Romero LJ, García E, Parra F. Myxoma virus jumps species to the Iberian hare. Transbound Emerg Dis 2019; 66:2218-2226. [PMID: 31322320 DOI: 10.1111/tbed.13296] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 01/18/2023]
Abstract
The study of myxoma virus (MYXV) infections in the European rabbit (Oryctolagus cuniculus) has produced one of the most accepted host-pathogen evolutionary models. To date, myxomatosis has been limited to the European rabbit with sporadic reports in hares. However, reports of widespread mortalities in the Iberian hare (Lepus granatensis) with myxomatosis-like clinical signs indicate a potential species jump has occurred. The presence of MYXV DNA was confirmed by PCR in 244 samples received from regional veterinary services, animal health laboratories, hunters or rangers over a 5-month period. PCR analysis of 4 MYXV positive hare samples revealed a 2.8 kb insertion located within the M009 gene with respect to MYXV. The presence of this insertion was subsequently confirmed in 20 samples from 18 Spanish provinces. Sanger sequencing and subsequent analysis show that the insert contained 4 ORFs which are phylogenetically related to MYXV genes M060, M061, M064 and M065. The complete MYXV genome from hare tissue was sequenced using Ion torrent next-generation technology and a summary of the data presented here. With the exception of the inserted region, the virus genome had no large scale modifications and 110 mutations with respect to the MYXV reference strain Lausanne were observed. The next phase in the evolution of MYXV has taken place as a host species jump from the European rabbit to the Iberian hare an occurrence which could have important effects on this naïve population.
Collapse
Affiliation(s)
- Kevin P Dalton
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Oviedo, Spain
| | - José M Martín
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Oviedo, Spain
| | - Inés Nicieza
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Oviedo, Spain
| | - Ana Podadera
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Oviedo, Spain
| | - Daniel de Llano
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Oviedo, Spain
| | - Rosa Casais
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Centro de Biotecnología Animal, Gijón, Spain
| | - Salvador Gimenez
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Oviedo, Spain
| | - Ignacio Badiola
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), Barcelona, Spain
| | | | - Manuel Duran
- Laboratorio Central Veterinario-Sanidad Animal Ctra, Madrid, Spain
| | - Dolores Buitrago
- Laboratorio Central Veterinario-Sanidad Animal Ctra, Madrid, Spain
| | - Luis J Romero
- Área de Epidemiología, Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Madrid, Spain
| | - Elena García
- Área de Epidemiología, Subdirección General de Sanidad e Higiene Animal y Trazabilidad, Madrid, Spain
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias, Departamento de Bioquímica y Biología Molecular, Edificio Santiago Gascón, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
39
|
Contrasting evolution of virulence and replication rate in an emerging bacterial pathogen. Proc Natl Acad Sci U S A 2019; 116:16927-16932. [PMID: 31371501 PMCID: PMC6708350 DOI: 10.1073/pnas.1901556116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With increasing antibiotic resistance, there is a pressing need to understand how host resistance naturally influences bacterial virulence and replication rates. We test this in an infection experiment using 55 isolates of a bacterium, which were collected over the course of the epidemic following its natural emergence in a North American songbird. We demonstrate virulence has increased linearly from outbreak to the present day, encompassing >150,000 bacterial generations. Despite this, bacterial replication rate only increased during the initial spread of host resistance but not thereafter. Thus, contrary to common assumptions, virulence and replication rates can evolve independently, particularly after the initial spread of host resistance. Host resistance through immune clearance is predicted to favor pathogens that are able to transmit faster and are hence more virulent. Increasing pathogen virulence is, in turn, typically assumed to be mediated by increasing replication rates. However, experiments designed to test how pathogen virulence and replication rates evolve in response to increasing host resistance, as well as the relationship between the two, are rare and lacking for naturally evolving host–pathogen interactions. We inoculated 55 isolates of Mycoplasma gallisepticum, collected over 20 y from outbreak, into house finches (Haemorhous mexicanus) from disease-unexposed populations, which have not evolved protective immunity to M. gallisepticum. We show using 3 different metrics of virulence (body mass loss, symptom severity, and putative mortality rate) that virulence has increased linearly over >150,000 bacterial generations since outbreak (1994 to 2015). By contrast, while replication rates increased from outbreak to the initial spread of resistance (1994 to 2004), no further increases have occurred subsequently (2007 to 2015). Finally, as a consequence, we found that any potential mediating effect of replication rate on virulence evolution was restricted to the period when host resistance was initially increasing in the population. Taken together, our results show that pathogen virulence and replication rates can evolve independently, particularly after the initial spread of host resistance. We hypothesize that the evolution of pathogen virulence can be driven primarily by processes such as immune manipulation after resistance spreads in host populations.
Collapse
|
40
|
Kwit E, Osiński Z, Rzeżutka A. Detection of viral DNA of myxoma virus using a validated PCR method with an internal amplification control. J Virol Methods 2019; 272:113709. [PMID: 31351983 DOI: 10.1016/j.jviromet.2019.113709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
Recognition of myxomatosis is usually based on clinical symptoms, but amyxomatous cases of the disease require the use of laboratory methods. Nowadays PCR assays are routinely employed for detection of MYXV DNA, but none of them have had their diagnostic usefulness conclusively confirmed through validation. The aim of the study was the development and validation of a PCR with an internal amplification control (IAC) for intravital and postmortem detection of viral DNA of myxoma virus. To avoid false negative results a chimeric internal amplification control (IAC) was prepared and incorporated into the PCR and amplified by the same primer set as the target DNA (M071L). The optimal concentration of particular ingredients in the PCR mixture (including IAC concentration and volume of DNA sample) was determined. To minimize the risk of amplicon carry-over contamination, uracil N-glycosylase was added to the reaction. Before proper validation the robustness of the IAC-PCR was verified. Validation of the method encompassed the following parameters: the analytical and diagnostic specificity (ASp, DSp) and sensitivity (ASe, DSe) of the assay, repeatability, and intra-laboratory reproducibility. The assay LOD was established at 2 TCIU of the virus particles/0.2 ml tissue homogenate with a 100% capacity to detect different MYXV strains (ASp). The method was characterized by good DSp of 0.955 (0.839-0.999 CI) and DSe of 0.976 (0.914-1.00 CI). In addition, it was repeatable and reproducible and confirmed its suitability for the detection of MYXV in clinical material. The IAC-PCR developed meets OIE validation requirements for virological methods and can be used in diagnostic or epidemiological studies of rabbit myxomatosis.
Collapse
Affiliation(s)
- Ewa Kwit
- Department of Food and Environmental Virology, National Reference Laboratory for Rabbit Myxomatosis, National Veterinary Research Institute, Puławy, Poland.
| | - Zbigniew Osiński
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, Puławy, Poland.
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Reference Laboratory for Rabbit Myxomatosis, National Veterinary Research Institute, Puławy, Poland.
| |
Collapse
|
41
|
Salem HM, Morsy EA, Hassanen EI, Shehata AA. Outbreaks of myxomatosis in Egyptian domestic rabbit farms. WORLD RABBIT SCIENCE 2019. [DOI: 10.4995/wrs.2019.10585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<p class="Default">Myxomatosis is an endemic infectious, severe and often fatal disease of rabbit caused by myxoma virus. In the present study, myxomatosis outbreaks were reported in 7 domestic rabbit farms in Egypt. Rabbits showed oedema of the eyelids, facial oedema and blepharoconjunctivitis. The morbidity and lethality rates were 18-100% and 20-80%, respectively. The myxomatosis diagnosis was based on histopathology, virus isolation on rabbit kidney cell line (RK-13), polymerase chain reaction (PCR) and sequence analysis. Histopathological examination revealed the presence of epidermal hyperplasia, dermal necrosis and intracytoplasmic eosinophilic inclusion bodies. The virus was isolated on RK-13 cells and induced cytopathic effect. Using PCR, a band of 471 base pair corresponding to the M071L gene was amplified from extracted DNA. Sequence alignment of four out of the 7 isolates revealed that these isolates were 98-99% identical to European and Australian rabbit myxoma reference viruses. In conclusion, rabbit myxomatosis outbreaks and virus isolation procedures are reported herein for the first time in Egypt. Preventive policies against disease circulation should be adopted by the national authorities.</p>
Collapse
|
42
|
Águeda-Pinto A, Lemos de Matos A, Abrantes M, Kraberger S, Risalde MA, Gortázar C, McFadden G, Varsani A, Esteves PJ. Genetic Characterization of a Recombinant Myxoma Virus in the Iberian Hare ( Lepus granatensis). Viruses 2019; 11:v11060530. [PMID: 31181645 PMCID: PMC6631704 DOI: 10.3390/v11060530] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 01/15/2023] Open
Abstract
Myxomatosis is a lethal disease in wild European and domestic rabbits (Oryctolagus cuniculus), which is caused by a Myxoma virus (MYXV) infection-a leporipoxvirus that is found naturally in some Sylvilagus rabbit species in South America and California. The introduction of MYXV into feral European rabbit populations of Australia and Europe, in the early 1950s, demonstrated the best-documented field example of host-virus coevolution, following a cross-species transmission. Recently, a new cross-species jump of MYXV has been suggested in both Great Britain and Spain, where European brown hares (Lepus europaeus) and Iberian hares (Lepus granatensis) were found dead with lesions consistent with those observed in myxomatosis. To investigate the possibility of a new cross-species transmission event by MYXV, tissue samples collected from a wild Iberian hare found dead in Spain (Toledo region) were analyzed and deep sequenced. Our results reported a new MYXV isolate (MYXV Toledo) in the tissues of this species. The genome of this new virus was found to encode three disruptive genes (M009L, M036L, and M152R) and a novel ~2.8 kb recombinant region, which resulted from an insertion of four novel poxviral genes towards the 3' end of the negative strand of its genome. From the open reading frames inserted into the MYXV Toledo virus, a new orthologue of a poxvirus host range gene family member was identified, which was related to the MYXV gene M064R. Overall, we confirmed the identity of a new MYXV isolate in Iberian hares, which, we hypothesized, was able to more effectively counteract the host defenses in hares and start an infectious process in this new host.
Collapse
Affiliation(s)
- Ana Águeda-Pinto
- CIBIO/InBio-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Ana Lemos de Matos
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Mário Abrantes
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life sciences, Arizona State University, Tempe, AZ 85287, USA.
| | - Maria A Risalde
- Dpto. de Anatomía y Anatomía Patológica Comparadas, Universidad de Córdoba, Agrifood Excellence International Campus (ceiA3), 14071 Córdoba, Spain.
| | - Christian Gortázar
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo, 28005 Ciudad Real, Spain.
| | - Grant McFadden
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life sciences, Arizona State University, Tempe, AZ 85287, USA.
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town 7701, South Africa.
| | - Pedro J Esteves
- CIBIO/InBio-Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
- CITS-Centro de Investigação em Tecnologias da Saúde, IPSN, CESPU, 4585-116 Gandra, Portugal.
| |
Collapse
|
43
|
Kwit E, Rzeżutka A. Molecular methods in detection and epidemiologic studies of rabbit and hare viruses: a review. J Vet Diagn Invest 2019; 31:497-508. [PMID: 31131728 DOI: 10.1177/1040638719852374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Various PCR-based assays for rabbit viruses have gradually replaced traditional virologic assays, such as virus isolation, because they offer high-throughput analysis, better test sensitivity and specificity, and allow vaccine and wild-type virus strains to be fully typed and differentiated. In addition, PCR is irreplaceable in the detection of uncultivable or fastidious rabbit pathogens or those occurring in low quantity in a tested sample. We provide herein an overview of the current state of the art in the molecular detection of lagomorph viral pathogens along with details of their targeted gene or nucleic acid sequence and recommendations for their application. Apart from the nucleic acids-based methods used for identification and comprehensive typing of rabbit viruses, novel methods such as microarray, next-generation sequencing, and mass spectrometry (MALDI-TOF MS) could also be employed given that they offer greater throughput in sample screening for viral pathogens. Molecular methods should be provided with an appropriate set of controls, including an internal amplification control, to confirm the validity of the results obtained.
Collapse
Affiliation(s)
- Ewa Kwit
- Department of Food and Environmental Virology, National Veterinary Research Institute, Puławy, Poland
| | - Artur Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, Puławy, Poland
| |
Collapse
|
44
|
Kellish P, Shabashvili D, Rahman MM, Nawab A, Guijarro MV, Zhang M, Cao C, Moussatche N, Boyle T, Antonia S, Reinhard M, Hartzell C, Jantz M, Mehta HJ, McFadden G, Kaye FJ, Zajac-Kaye M. Oncolytic virotherapy for small-cell lung cancer induces immune infiltration and prolongs survival. J Clin Invest 2019; 129:2279-2292. [PMID: 31033480 DOI: 10.1172/jci121323] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
Oncolytic virotherapy has been proposed as an ablative and immunostimulatory treatment strategy for solid tumors that are resistant to immunotherapy alone; however, there is a need to optimize host immune activation using preclinical immunocompetent models in previously untested common adult tumors. We studied a modified oncolytic myxoma virus (MYXV) that shows high efficiency for tumor-specific cytotoxicity in small-cell lung cancer (SCLC), a neuroendocrine carcinoma with high mortality and modest response rates to immune checkpoint inhibitors. Using an immunocompetent SCLC mouse model, we demonstrated the safety of intrapulmonary MYXV delivery with efficient tumor-specific viral replication and cytotoxicity associated with induction of immune cell infiltration. We observed increased SCLC survival following intrapulmonary MYXV that was enhanced by combined low-dose cisplatin. We also tested intratumoral MYXV delivery and observed immune cell infiltration associated with tumor necrosis and growth inhibition in syngeneic murine allograft tumors. Freshly collected primary human SCLC tumor cells were permissive to MYXV and intratumoral delivery into patient-derived xenografts resulted in extensive tumor necrosis. We confirmed MYXV cytotoxicity in classic and variant SCLC subtypes as well as cisplatin-resistant cells. Data from 26 SCLC human patients showed negligible immune cell infiltration, supporting testing MYXV as an ablative and immune-enhancing therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Zhang
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Chunxia Cao
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Mary Reinhard
- Department of Veterinary Pathology, University of Florida, Gainesville, Florida, USA
| | | | - Michael Jantz
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Hiren J Mehta
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Frederic J Kaye
- Department of Medicine, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
45
|
Punctuated Evolution of Myxoma Virus: Rapid and Disjunct Evolution of a Recent Viral Lineage in Australia. J Virol 2019; 93:JVI.01994-18. [PMID: 30728252 DOI: 10.1128/jvi.01994-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022] Open
Abstract
Myxoma virus (MYXV) has been evolving in a novel host species-European rabbits-in Australia since 1950. Previous studies of viruses sampled from 1950 to 1999 revealed a remarkably clock-like evolutionary process across all Australian lineages of MYXV. Through an analysis of 49 newly generated MYXV genome sequences isolated in Australia between 2008 and 2017, we show that MYXV evolution in Australia can be characterized by three lineages, one of which exhibited a greatly elevated rate of evolutionary change and a dramatic breakdown of temporal structure. Phylogenetic analysis revealed that this apparently punctuated evolutionary event occurred between 1996 and 2012. The branch leading to the rapidly evolving lineage contained a relatively high number of nonsynonymous substitutions, and viruses in this lineage reversed a mutation found in the progenitor standard laboratory strain (SLS) and all previous sequences that disrupts the reading frame of the M005L/R gene. Analysis of genes encoding proteins involved in DNA synthesis or RNA transcription did not reveal any mutations likely to cause rapid evolution. Although there was some evidence for recombination across the MYXV phylogeny, this was not associated with the increase in the evolutionary rate. The period from 1996 to 2012 saw significant declines in wild rabbit numbers, due to the introduction of rabbit hemorrhagic disease and prolonged drought in southeastern Australia, followed by the partial recovery of populations. It is therefore possible that a rapidly changing environment for virus transmission changed the selection pressures faced by MYXV, altering the course and pace of virus evolution.IMPORTANCE The coevolution of myxoma virus (MYXV) and European rabbits in Australia is one of the most important natural experiments in evolutionary biology, providing insights into virus adaptation to new hosts and the evolution of virulence. Previous studies of MYXV evolution have also shown that the virus evolves both relatively rapidly and in a strongly clock-like manner. Using newly acquired MYXV genome sequences from Australia, we show that the virus has experienced a dramatic change in evolutionary behavior over the last 20 years, with a breakdown in clock-like structure, the appearance of a rapidly evolving virus lineage, and the accumulation of multiple nonsynonymous and indel mutations. We suggest that this punctuated evolutionary event may reflect a change in selection pressures as rabbit numbers declined following the introduction of rabbit hemorrhagic disease virus and drought in the geographic regions inhabited by rabbits.
Collapse
|
46
|
Wells K, Hamede RK, Jones ME, Hohenlohe PA, Storfer A, McCallum HI. Individual and temporal variation in pathogen load predicts long-term impacts of an emerging infectious disease. Ecology 2019; 100:e02613. [PMID: 30636287 PMCID: PMC6415924 DOI: 10.1002/ecy.2613] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/20/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
Emerging infectious diseases increasingly threaten wildlife populations. Most studies focus on managing short-term epidemic properties, such as controlling early outbreaks. Predicting long-term endemic characteristics with limited retrospective data is more challenging. We used individual-based modeling informed by individual variation in pathogen load and transmissibility to predict long-term impacts of a lethal, transmissible cancer on Tasmanian devil (Sarcophilus harrisii) populations. For this, we employed approximate Bayesian computation to identify model scenarios that best matched known epidemiological and demographic system properties derived from 10 yr of data after disease emergence, enabling us to forecast future system dynamics. We show that the dramatic devil population declines observed thus far are likely attributable to transient dynamics (initial dynamics after disease emergence). Only 21% of matching scenarios led to devil extinction within 100 yr following devil facial tumor disease (DFTD) introduction, whereas DFTD faded out in 57% of simulations. In the remaining 22% of simulations, disease and host coexisted for at least 100 yr, usually with long-period oscillations. Our findings show that pathogen extirpation or host-pathogen coexistence are much more likely than the DFTD-induced devil extinction, with crucial management ramifications. Accounting for individual-level disease progression and the long-term outcome of devil-DFTD interactions at the population-level, our findings suggest that immediate management interventions are unlikely to be necessary to ensure the persistence of Tasmanian devil populations. This is because strong population declines of devils after disease emergence do not necessarily translate into long-term population declines at equilibria. Our modeling approach is widely applicable to other host-pathogen systems to predict disease impact beyond transient dynamics.
Collapse
Affiliation(s)
- Konstans Wells
- Department of Biosciences, Swansea University, Singleton Campus, Wallace Building, Swansea, SA2 8PP, United Kingdom
- Environmental Futures Research Institute, Griffith University, Brisbane, Queensland, 4111, Australia
| | - Rodrigo K Hamede
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Menna E Jones
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Paul A Hohenlohe
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, 83844, USA
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, Washington, 99164-4236, USA
| | - Hamish I McCallum
- Environmental Futures Research Institute, Griffith University, Brisbane, Queensland, 4111, Australia
| |
Collapse
|
47
|
Alves JM, Carneiro M, Cheng JY, Lemos de Matos A, Rahman MM, Loog L, Campos PF, Wales N, Eriksson A, Manica A, Strive T, Graham SC, Afonso S, Bell DJ, Belmont L, Day JP, Fuller SJ, Marchandeau S, Palmer WJ, Queney G, Surridge AK, Vieira FG, McFadden G, Nielsen R, Gilbert MTP, Esteves PJ, Ferrand N, Jiggins FM. Parallel adaptation of rabbit populations to myxoma virus. Science 2019; 363:1319-1326. [PMID: 30765607 DOI: 10.1126/science.aau7285] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/10/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Abstract
In the 1950s the myxoma virus was released into European rabbit populations in Australia and Europe, decimating populations and resulting in the rapid evolution of resistance. We investigated the genetic basis of resistance by comparing the exomes of rabbits collected before and after the pandemic. We found a strong pattern of parallel evolution, with selection on standing genetic variation favoring the same alleles in Australia, France, and the United Kingdom. Many of these changes occurred in immunity-related genes, supporting a polygenic basis of resistance. We experimentally validated the role of several genes in viral replication and showed that selection acting on an interferon protein has increased the protein's antiviral effect.
Collapse
Affiliation(s)
- Joel M Alves
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK. .,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal.,Palaeogenomics and Bio-Archaeology Research Network Research Laboratory for Archaeology and History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal. .,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Jade Y Cheng
- Departments of Integrative Biology and Statistics, University of California, Berkeley, Berkeley, CA 94720, USA.,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - Ana Lemos de Matos
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ 85287-5401, USA
| | - Masmudur M Rahman
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ 85287-5401, USA
| | - Liisa Loog
- Palaeogenomics and Bio-Archaeology Research Network Research Laboratory for Archaeology and History of Art, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1 3QY, UK.,Manchester Institute of Biotechnology, School of Earth and Environmental Sciences, University of Manchester, Manchester M1 7DN, UK
| | - Paula F Campos
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark.,CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Nathan Wales
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark.,Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720, USA.,Department of Archaeology, University of York, King's Manor, York YO1 7EP, UK
| | - Anders Eriksson
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Andrea Manica
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Tanja Strive
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia.,Centre for Invasive Species Solutions, University of Canberra, Bruce, ACT 2601, Australia
| | - Stephen C Graham
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Diana J Bell
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Laura Belmont
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ 85287-5401, USA
| | - Jonathan P Day
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Susan J Fuller
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia
| | | | - William J Palmer
- The Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Guillaume Queney
- ANTAGENE, Wildlife Genetics Laboratory, La Tour de Salvagny (Lyon), France
| | - Alison K Surridge
- Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Filipe G Vieira
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - Grant McFadden
- The Biodesign Institute, Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ 85287-5401, USA
| | - Rasmus Nielsen
- Departments of Integrative Biology and Statistics, University of California, Berkeley, Berkeley, CA 94720, USA.,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 1350, Denmark.,Norwegian University of Science and Technology, University Museum, 7491 Trondheim, Norway
| | - Pedro J Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal.,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (CESPU), Gandra, Portugal
| | - Nuno Ferrand
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal.,Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland Park 2006, South Africa
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| |
Collapse
|
48
|
Gutierrez B, Escalera-Zamudio M, Pybus OG. Parallel molecular evolution and adaptation in viruses. Curr Opin Virol 2019; 34:90-96. [PMID: 30703578 PMCID: PMC7102768 DOI: 10.1016/j.coviro.2018.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/11/2018] [Indexed: 01/05/2023]
Abstract
Parallel molecular evolution is the independent evolution of the same genotype or phenotype from distinct ancestors. The simple genomes and rapid evolution of many viruses mean they are useful model systems for studying parallel evolution by natural selection. Parallel adaptation occurs in the context of several viral behaviours, including cross-species transmission, drug resistance, and host immune escape, and its existence suggests that at least some aspects of virus evolution and emergence are repeatable and predictable. We introduce examples of virus parallel evolution and summarise key concepts. We outline the difficulties in detecting parallel adaptation using virus genomes, with a particular focus on phylogenetic and structural approaches, and we discuss future approaches that may improve our understanding of the phenomenon.
Collapse
Affiliation(s)
| | | | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
49
|
Iannella A, Peacock D, Cassey P, Schwensow N. Genetic perspectives on the historical introduction of the European rabbit (Oryctolagus cuniculus) to Australia. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1849-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
50
|
Oxidative stress in wild European rabbits naturally infected with myxoma virus and rabbit haemorrhagic disease virus. EUR J WILDLIFE RES 2018. [DOI: 10.1007/s10344-018-1203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|