1
|
Duan H, Shi Q, Yue X, Zhang Z, Liu L, Wang Y, Cao Y, Ou Z, Liang L, Hu J, Shi H. Identification of core therapeutic targets for Monkeypox virus and repurposing potential of drugs: A WEB prediction approach. PLoS One 2024; 19:e0303501. [PMID: 39642129 PMCID: PMC11623562 DOI: 10.1371/journal.pone.0303501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/03/2024] [Indexed: 12/08/2024] Open
Abstract
A new round of monkeypox virus has emerged in the United Kingdom since July 2022 and rapidly swept the world. Currently, despite numerous research groups are studying this virus and seeking effective treatments, the information on the open reading frame, inhibitors, and potential targets of monkeypox has not been updated in time, and the comprehension of monkeypox target ligand interactions remains a key challenge. Here, we first summarized and improved the open reading frame information of monkeypox, constructed the monkeypox inhibitor library and potential targets library by database research as well as literature search, combined with advanced protein modeling technologies (Sequence-based and AI algorithms-based homology modeling). In addition, we build monkeypox virus Docking Server, a web server to predict the binding mode between targets and substrate. The open reading frame information, monkeypox inhibitor library, and monkeypox potential targets library are used as the initial files for server docking, providing free interactive tools for predicting ligand interactions of monkeypox targets, potential drug screening, and potential targets search. In addition, the update of the three databases can also effectively promote the study of monkeypox drug inhibition mechanism and provide theoretical guidance for the development of drugs for monkeypox.
Collapse
Affiliation(s)
- Huaichuan Duan
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Quanshan Shi
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Xinru Yue
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zelan Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ling Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yueteng Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yujie Cao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Zuoxin Ou
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Hubing Shi
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
2
|
Imani S, Aminnezhad S, Alikarami M, Abedi Z, Mosleh IS, Maghsoudloo M, Taheri Z. Exploration of drug repurposing for Mpox outbreaks targeting gene signatures and host-pathogen interactions. Sci Rep 2024; 14:29436. [PMID: 39604570 PMCID: PMC11603026 DOI: 10.1038/s41598-024-79897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Monkeypox (Mpox) is a growing public health concern, with complex interactions within host systems contributing to its impact. This study employs multi-omics approaches to uncover therapeutic targets and potential drug repurposing opportunities to better understand Mpox's molecular pathogenesis. We developed an in silico host-pathogen interaction (HPI) network and applied weighted gene co-expression network analysis (WGCNA) to explore interactions between Mpox and host proteins. Subtype-specific host-pathogen protein-protein interaction networks were constructed, and key modules from the HPI and WGCNA were integrated to identify significant host proteins. To predict upstream signaling pathways and transcription factors, we used eXpression2Kinases and ChIP-X Enrichment Analysis. The multi-Steiner trees method was applied to compare our findings with those from FDA-approved antiviral drugs. Analysis of 55 differentially expressed genes in Mpox infection revealed 11 kinases and 15 transcription factors as key regulators. We identified 16 potential drug targets, categorized into 8 proviral genes (ESR2, ERK1, ERK2, P38, JNK1, CDK4, GSK3B, STAT3) designated for inhibition, and 8 antiviral genes (IKKA, HDAC1, HIPK2, TF65, CSK21, HIPK2, ESR2, GSK3B) designated for activation. Proviral genes are involved in the AKT, Wnt, and STAT3 pathways, while antiviral genes impact the AP-1, NF-κB, apoptosis, and IFN pathways. Promising FDA-approved candidates were identified, including kinase inhibitors, steroid hormone receptor agonists, STAT3 inhibitors, and notably Niclosamide. This study enhances our understanding of Mpox by identifying key therapeutic targets and potential repurposable drugs, providing a valuable framework for developing new treatments.
Collapse
Affiliation(s)
- Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China.
| | - Sargol Aminnezhad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Moslem Alikarami
- Research and Development Center, Dina Pharmed Exir Salamat Co, Tehran, Iran
| | - Zahra Abedi
- School of Biotechnology College of Science, University of Tehran, Tehran, Iran
| | - Iman Samei Mosleh
- Plant Functional Genomics Lab, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Vienna, Austria
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zahra Taheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Rabaan AA, Alwashmi ASS, Mashraqi MM, Alshehri AA, Alawfi A, Alshengeti A, Najim MA, AlShehail BM, AlShahrani AJ, Garout M. Cheminformatics and machine learning approaches for repurposing anti-viral compounds against monkeypox virus thymidylate kinase. Mol Divers 2024; 28:2735-2748. [PMID: 37531040 DOI: 10.1007/s11030-023-10705-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
One of the emerging epidemic concerns is Monkeypox disease which is spreading globally. This disease is caused by the monkeypox virus (MPXV), with an increasing global incidence with an outbreak in 2022. One of the novel targets for monkeypox disease is thymidylate kinase, which is involved in pyrimidine metabolism. In this study, docking-based virtual screening and molecular dynamics techniques were employed in addition to the machine learning (ML) model to investigate the potential anti-viral natural small compounds to inhibit thymidylate kinase of MPXV. Several potential hits were identified through high-throughput virtual screening, and further top three candidates were selected, which ranked using the ML model. These three compounds were then examined under molecular dynamics simulation and MM/GBSA-binding free energy analysis. Among these, Chlorhexidine HCl showed high potential for binding to the thymidylate kinase with stable and consistent conformation with RMSD < 0.3 nm. The MM/GBSA analysis also showed the minimum binding free energy (ΔGTOTAL) of -62.41 kcal/mol for this compound. Overall, this study used structure-based drug design complemented by machine learning-guided ligand-based drug design to screen potential hit compounds from the anti-viral natural compound database.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia.
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, 51452, Buraydah, Saudi Arabia
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, 41491, Medina, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, 41491, Medina, Saudi Arabia
- Department of Infection prevention and control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, 41491, Medina, Saudi Arabia
| | - Mustafa A Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, 41411, Medina, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Abdullah J AlShahrani
- Department of Public Health, Health affairs, Ministry of Health, 62523, Asir, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, 21955, Mecca, Saudi Arabia.
| |
Collapse
|
4
|
Yousaf MA, Basheera S, Sivanandan S. Inhibition of Monkeypox Virus DNA Polymerase Using Moringa oleifera Phytochemicals: Computational Studies of Drug-Likeness, Molecular Docking, Molecular Dynamics Simulation and Density Functional Theory. Indian J Microbiol 2024; 64:1057-1074. [PMID: 39282169 PMCID: PMC11399536 DOI: 10.1007/s12088-024-01244-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/28/2024] [Indexed: 09/18/2024] Open
Abstract
The emergence of zoonotic monkeypox (MPX) disease, caused by the double-stranded DNA monkeypox virus (MPXV), has become a global threat. Due to unavailability of a specific small molecule drug for MPX, this study investigated Moringa oleifera phytochemicals to find potent and safe inhibitors of DNA Polymerase (DNA Pol), a poxvirus drug target due to its role in the viral life cycle. For that, 146 phytochemicals were screened through drug-likeness and molecular docking analyses. Among these, 136 compounds exhibited drug-like properties, with Gossypetin showing the highest binding affinity (- 7.8 kcal/mol), followed by Riboflavin (- 7.6 kcal/mol) and Ellagic acid (- 7.6 kcal/mol). In comparison, the control drugs Cidofovir and Brincidofovir displayed lower binding affinities, with binding energies of - 6.0 kcal/mol and - 5.1 kcal/mol, respectively. Hydrogen bonds, electrostatic and hydrophobic interactions were the main non-bond interactions between inhibitors and protein active site. The identified compounds were further evaluated using molecular dynamics simulation, density functional theory analysis and ADMET analysis. Molecular dynamics simulations conducted over 200 ns revealed that DNA Pol-Gossypetin complex was not stable, however, Riboflavin and Ellagic acid complexes showed excellent stability indicating them as better DNA Pol inhibitors. The density functional theory analysis exhibited the chemical reactivity of these inhibitor compounds. The ADMET analysis suggested that the top phytochemicals were safe and showed no toxicity. In conclusion, this study has identified Riboflavin and Ellagic acid as potential DNA Pol inhibitors to control MPXV. Further experimental assays and clinical trials are needed to confirm their activity against the disease. Graphical Abstract
Collapse
Affiliation(s)
- Muhammad Abrar Yousaf
- Section of Biology and Genetics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Shefin Basheera
- Department of Biotechnology and Bioinformatics, Saraswathy Thangavelu Extension Centre, A Research Centre of University of Kerala, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, India
| | - Sreekumar Sivanandan
- Department of Biotechnology and Bioinformatics, Saraswathy Thangavelu Extension Centre, A Research Centre of University of Kerala, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Thiruvananthapuram, India
| |
Collapse
|
5
|
Rout M, Dey S, Mishra S, Panda S, Singh MK, Sinha R, Dehury B, Pati S. Machine learning and classical MD simulation to identify inhibitors against the P37 envelope protein of monkeypox virus. J Biomol Struct Dyn 2024; 42:3935-3948. [PMID: 37221882 DOI: 10.1080/07391102.2023.2216290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/16/2023] [Indexed: 05/25/2023]
Abstract
Monkeypox virus (MPXV) outbreak is a serious public health concern that requires international attention. P37 of MPXV plays a pivotal role in DNA replication and acts as one of the promising targets for antiviral drug design. In this study, we intent to screen potential analogs of existing FDA approved drugs of MPXV against P37 using state-of-the-art machine learning and computational biophysical techniques. AlphaFold2 guided all-atoms molecular dynamics simulations optimized P37 structure is used for molecular docking and binding free energy calculations. Similar to members of Phospholipase-D family , the predicted P37 structure also adopts a β-α-β-α-β sandwich fold, harbouring strongly conserved HxKxxxxD motif. The binding pocket comprises of Tyr48, Lys86, His115, Lys117, Ser130, Asn132, Trp280, Asn240, His325, Lys327 and Tyr346 forming strong hydrogen bonds and dense hydrophobic contacts with the screened analogs and is surrounded by positively charged patches. Loops connecting the two domains and C-terminal region exhibit high degree of flexibility. In some structural ensembles, the partial disorderness in the C-terminal region is presumed to be due to its low confidence score, acquired during structure prediction. Transition from loop to β-strands (244-254 aa) in P37-Cidofovir and its analog complexes advocates the need for further investigations. MD simulations support the accuracy of the molecular docking results, indicating the potential of analogs as potent binders of P37. Taken together, our results provide preferable understanding of molecular recognition and dynamics of ligand-bound states of P37, offering opportunities for development of new antivirals against MPXV. However, the need of in vitro and in vivo assays for confirmation of these results still persists.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Suchanda Dey
- Biomics and Biodiversity Lab, Siksha 'O' Anusandhan (deemed to be) University, Bhubaneswar, Odisha, India
| | - Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Sunita Panda
- Mycology Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana, India
| | - Rohan Sinha
- Computer Science, National Institute of Technology Patna, Patna, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Alagarsamy V, Shyam Sundar P, Raja Solomon V, Narendhar B, Sulthana MT, Rohitha K, Dhanwar S, Dharshini Aishwarya A, Murugesan S. Pharmacophore modelling-based drug repurposing approaches for monkeypox therapeutics. J Biomol Struct Dyn 2023; 41:10678-10689. [PMID: 36905675 DOI: 10.1080/07391102.2023.2188428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 03/13/2023]
Abstract
Monkeypox is a zoonotic viral disease that mainly affects tropical rainforest regions of central and west Africa, with sporadic exportations to other places. Since there is no cure, treating monkeypox with an antiviral drug developed for smallpox is currently acceptable. Our study mainly focused on finding new therapeutics to target monkeypox from existing compounds or medications. It is a successful method for discovering or developing medicinal compounds with novel pharmacological or therapeutic applications. In this study, homology modelling developed the Monkeypox VarTMPK (IMNR) structure. Ligand-based pharmacophore was generated using the best docking pose of standard ticovirimat. Further, molecular docking analysis showed compounds, tetrahydroxycurcumin, procyanidin, rutin, vicenin-2, kaempferol 3-(6''-malonylglucoside) were the top five binding energy compounds against VarTMPK (1MNR). Furthermore, we carried out MD simulations for 100 ns for the six compounds, including reference based on the binding energies and interactions. MD studies revealed that as ticovirimat interacted with residues Lys17, Ser18, and Arg45, all the above five compounds interacted with the same amino acids at the active site during docking and simulation studies. Among all the compounds, ZINC4649679 (Tetrahydroxycurcumin) was shown to have the highest binding energy -9.7 kcal/mol and also observed stable protein-ligand complex during MD studies. ADMET profile estimation showed that the docked phytochemicals were safe. However, further biological assessment through a wet lab is essential to measure the efficacy and safety of the compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- V Alagarsamy
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - P Shyam Sundar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - V Raja Solomon
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - B Narendhar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - M T Sulthana
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - Kotha Rohitha
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - Sangeeta Dhanwar
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - A Dharshini Aishwarya
- Medicinal Chemistry Research Laboratory, MNR College of Pharmacy, Sangareddy, Hyderabad, India
| | - S Murugesan
- Department of Pharmacy, BITS, Pilani, Pilani, Rajasthan, India
| |
Collapse
|
7
|
Bruno G, Buccoliero GB. Antivirals against Monkeypox (Mpox) in Humans: An Updated Narrative Review. Life (Basel) 2023; 13:1969. [PMID: 37895350 PMCID: PMC10608433 DOI: 10.3390/life13101969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
As of 29 August 2023, a total of 89,596 confirmed cases of Mpox (monkeypox) have been documented across 114 countries worldwide, with 157 reported fatalities. The Mpox outbreak that transpired in 2022 predominantly affected young men who have sex with men (MSM). While most cases exhibited a mild clinical course, individuals with compromised immune systems, particularly those living with HIV infection and possessing a CD4 count below 200 cells/mm3, experienced a more severe clinical trajectory marked by heightened morbidity and mortality. The approach to managing Mpox is primarily symptomatic and supportive. However, in instances characterized by severe or complicated manifestations, the utilization of antiviral medications becomes necessary. Despite tecovirimat's lack of official approval by the FDA for treating Mpox in humans, a wealth of positive clinical experiences exists, pending the outcomes of ongoing clinical trials. Brincidofovir and cidofovir have also been administered in select cases due to the unavailability of tecovirimat. Within the scope of this narrative review, our objective was to delve into the clinical attributes of Mpox and explore observational studies that shed light on the utilization of these antiviral agents.
Collapse
Affiliation(s)
- Giuseppe Bruno
- Infectious Diseases Unit, San Giuseppe Moscati Hospital, Azienda Sanitaria Locale Taranto, 74121 Taranto, Italy;
| | | |
Collapse
|
8
|
Lee W, Kim YJ, Lee SJ, Ahn DG, Kim SJ. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for the Re-Emerging Human Monkeypox Virus. J Microbiol Biotechnol 2023; 33:981-991. [PMID: 37519276 PMCID: PMC10468680 DOI: 10.4014/jmb.2306.06033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Monkeypox (Mpox) virus, a member of the Poxviridae family, causes a severe illness similar to smallpox, which is characterized by symptoms such as high fever, rash, and pustules. Human-to-human transmission cases have been reported but remained low since the first recorded case of human infection occurred in the Congo in 1970. Recently, Mpox has re-emerged, leading to an alarming surge in infections worldwide since 2022, originating in the United Kingdom. Consequently, the World Health Organization (WHO) officially declared the '2022-23 Mpox outbreak'. Currently, no specific therapy or vaccine is available for Mpox. Therefore, patients infected with Mpox are treated using conventional therapies developed for smallpox. However, the vaccines developed for smallpox have demonstrated only partial efficacy against Mpox, allowing viral transmission among humans. In this review, we discuss the current epidemiology of the ongoing Mpox outbreak and provide an update on the progress made in diagnosis, treatment, and development of vaccines for Mpox.
Collapse
Affiliation(s)
- Wooseong Lee
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yu-Jin Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Su Jin Lee
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dae-Gyun Ahn
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Seong-Jun Kim
- Department of Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
9
|
Shamim MA, Satapathy P, Padhi BK, Veeramachaneni SD, Akhtar N, Pradhan A, Agrawal A, Dwivedi P, Mohanty A, Pradhan KB, Kabir R, Rabaan AA, Alotaibi J, Al Ismail ZA, Alsoliabi ZA, Al Fraij A, Sah R, Rodriguez-Morales AJ. Pharmacological treatment and vaccines in monkeypox virus: a narrative review and bibliometric analysis. Front Pharmacol 2023; 14:1149909. [PMID: 37214444 PMCID: PMC10196034 DOI: 10.3389/fphar.2023.1149909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Mpox (earlier known as monkeypox) virus infection is a recognized public health emergency. There has been little research on the treatment options. This article reviews the specific drugs used to treat mpox virus infection and the vaccines used here. Instead of focusing on the mechanistic basis, this review narrates the practical, real-life experiences of individual patients of mpox virus disease being administered these medicines. We conducted a bibliometric analysis on the treatment of the mpox virus using data from several databases like PubMed, Scopus, and Embase. The research on this topic has grown tremendously recently but it is highly concentrated in a few countries. Cidofovir is the most studied drug. This is because it is indicated and also used off-label for several conditions. The drugs used for mpox virus infection include tecovirimat, cidofovir, brincidofovir, vaccinia immune globulin, and trifluridine. Tecovirimat is used most frequently. It is a promising option in progressive mpox disease in terms of both efficacy and safety. Brincidofovir has been associated with treatment discontinuation due to elevated hepatic enzymes. Cidofovir is also not the preferred drug, often used because of the unavailability of tecovirimat. Trifluridine is used topically as an add-on agent along with tecovirimat for ocular manifestations of mpox virus disease. No study reports individual patient data for vaccinia immune globulin. Though no vaccine is currently approved for mpox virus infection, ACAM 2000 and JYNNEOS are the vaccines being mainly considered. ACAM 2000 is capable of replicating and may cause severe adverse reactions. It is used when JYNNEOS is contraindicated. Several drugs and vaccines are under development and have been discussed alongside pragmatic aspects of mpox virus treatment and prevention. Further studies can provide more insight into the safety and efficacy of Tecovirimat in actively progressing mpox virus disease.
Collapse
Affiliation(s)
| | - Prakisini Satapathy
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bijaya Kumar Padhi
- Department of Community Medicine, School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Naushaba Akhtar
- Indian Council of Medical Research—Regional Medical Research Centre, Bhubaneswar, India
| | - Anindita Pradhan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhimanyu Agrawal
- Department of Pharmacology, All India Institute of Medical Sciences, Bathinda, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India
- Centre of Excellence for Tribal Health, All India Institute of Medical Sciences, Jodhpur, India
| | - Aroop Mohanty
- All India Institute of Medical Sciences, Gorakhpur, India
| | | | - Russell Kabir
- School of Allied Health, Anglia Ruskin University, Essex, United Kingdom
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious Diseases Unit, King Faisal Specialist Hospital and Research Center, Department of Medicine, Riyadh, Saudi Arabia
| | - Zainab A. Al Ismail
- Long Term Care Department, Dhahran Long Term Hospital, Dhahran, Saudi Arabia
| | | | - Ali Al Fraij
- Medical Laboratories and Blood Bank Department, Jubail Health Network, Jubail, Saudi Arabia
| | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
- Harvard Medical School, Boston, MA, United States
- Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
10
|
Hudu SA, Alshrari AS, Al Qtaitat A, Imran M. VP37 Protein Inhibitors for Mpox Treatment: Highlights on Recent Advances, Patent Literature, and Future Directions. Biomedicines 2023; 11:biomedicines11041106. [PMID: 37189724 DOI: 10.3390/biomedicines11041106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/17/2023] Open
Abstract
Monkeypox disease (Mpox) has threatened humankind worldwide since mid-2022. The Mpox virus (MpoxV) is an example of Orthopoxviruses (OPVs), which share similar genomic structures. A few treatments and vaccines are available for Mpox. OPV-specific VP37 protein (VP37P) is a target for developing drugs against Mpox and other OPV-induced infections such as smallpox. This review spotlights the existing and prospective VP37P inhibitors (VP37PIs) for Mpox. The non-patent literature was collected from PubMed, and the patent literature was gathered from free patent databases. Very little work has been carried out on developing VP37PIs. One VP37PI (tecovirimat) has already been approved in Europe to treat Mpox, while another drug, NIOCH-14, is under clinical trial. Developing tecovirimat/NIOCH-14-based combination therapies with clinically used drugs demonstrating activity against Mpox or other OPV infections (mitoxantrone, ofloxacin, enrofloxacin, novobiocin, cidofovir, brincidofovir, idoxuridine, trifluridine, vidarabine, fialuridine, adefovir, imatinib, and rifampicin), immunity boosters (vitamin C, zinc, thymoquinone, quercetin, ginseng, etc.), and vaccines may appear a promising strategy to fight against Mpox and other OPV infections. Drug repurposing is also a good approach for identifying clinically useful VP37PIs. The dearth in the discovery process of VP37PIs makes it an interesting area for further research. The development of the tecovirimat/NIOCH-14-based hybrid molecules with certain chemotherapeutic agents looks fruitful and can be explored to obtain new VP37PI. It would be interesting and challenging to develop an ideal VP37PI concerning its specificity, safety, and efficacy.
Collapse
Affiliation(s)
- Shuaibu A Hudu
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ahmed S Alshrari
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Aiman Al Qtaitat
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, Karak 61710, Jordan
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
11
|
Wang J, Shahed-Ai-Mahmud M, Chen A, Li K, Tan H, Joyce R. An Overview of Antivirals against Monkeypox Virus and Other Orthopoxviruses. J Med Chem 2023; 66:4468-4490. [PMID: 36961984 DOI: 10.1021/acs.jmedchem.3c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The current monkeypox outbreaks during the COVID-19 pandemic have reignited interest in orthopoxvirus antivirals. Monkeypox belongs to the Orthopoxvirus genus of the Poxviridae family, which also includes the variola virus, vaccinia virus, and cowpox virus. Two orally bioavailable drugs, tecovirimat and brincidofovir, have been approved for treating smallpox infections. Given their human safety profiles and in vivo antiviral efficacy in animal models, both drugs have also been recommended to treat monkeypox infection. To facilitate the development of additional orthopoxvirus antivirals, we summarize the antiviral activity, mechanism of action, and mechanism of resistance of orthopoxvirus antivirals. This perspective covers both direct-acting and host-targeting antivirals with an emphasis on drug candidates showing in vivo antiviral efficacy in animal models. We hope to speed the orthopoxvirus antiviral drug discovery by providing medicinal chemists with insights into prioritizing proper drug targets and hits for further development.
Collapse
Affiliation(s)
- Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Md Shahed-Ai-Mahmud
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Angelo Chen
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kan Li
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Haozhou Tan
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
12
|
Virtual screening and computational simulation analysis of antimicrobial photodynamic therapy using propolis-benzofuran A to control of Monkeypox. Photodiagnosis Photodyn Ther 2023; 41:103208. [PMID: 36417972 PMCID: PMC9675939 DOI: 10.1016/j.pdpdt.2022.103208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Monkeypox is a viral zoonotic disease and there are no available treatments that specifically target the monkeypox virus. Antimicrobial photodynamic therapy (aPDT) is a non-invasive approach that has been introduced as a targeted adjuvant treatment against various microbial infections. In this study, we used a computational strategy to investigate the potential of aPDT using propolis-benzofuran A against the Monkeypox virus. METHODS In this in silico study, the evaluation of drug-likeness, molecular properties, and bioactivity of propolis-benzofuran A was carried out using SwissADME. Pro-Tox II and OSIRIS servers were used to identify the organ toxicities and toxicological endpoints of propolis-benzofuran A. Molecular docking approach was employed to screen the potential binding modes of propolis-benzofuran A ligand with the Monkeypox virus A48R protein (PDB ID: 2V54). RESULTS The results of the computational investigation revealed that propolis-benzofuran A obeyed all the criteria of Lipinski's rule of five and exhibited drug-likeness. The photosensitizing agent tested was categorized as toxicity class-5 and was found to be non-hepatotoxic, non-carcinogenic, non-mutagenic, and non-cytotoxic. The docking studies employing a predicted three-dimensional model of Monkeypox virus A48R protein with propolis-benzofuran A ligand exhibited good binding affinity (-7.84 kcal/mol). DISCUSSION The computational simulation revealed that propolis-benzofuran A had a strong binding affinity with the Monkeypox virus A48R protein. Hence, aPDT based on this natural photosensitizer can be proposed as an adjuvant treatment against the Monkeypox virus.
Collapse
|
13
|
Lokhande KB, Shrivastava A, Singh A. In silico
discovery of potent inhibitors against monkeypox's major structural proteins. J Biomol Struct Dyn 2023; 41:14259-14274. [PMID: 36841550 DOI: 10.1080/07391102.2023.2183342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 02/27/2023]
Abstract
Monkeypox virus (MPXV) outbreak in non-endemic countries is a worldwide public health emergency. An enveloped double-stranded DNA virus belongs to the genus Orth poxvirus. A viral zoonotic infection known as monkeypox has been a serious risk to public health, especially in Africa. However, it has recently spread to other continents, so it might soon become a worldwide problem. There is an increased risk of transmission of the virus because there is a lack of effective treatment that cures the disease. To stop the multi-country outbreak from spreading, it is important to discover effective medications urgently. The objective of the current study is to swiftly find new treatments for the monkeypox virus using advanced computational approaches. By investigating five potential MPXV targets (DNA ligase, Palmytilated Extracellular Enveloped Virus (EEV) membrane protein, Scaffold protein D13, Thymidylate Kinase, and Viral core cysteine proteinase), this research was carried out using cutting-edge computational techniques against human monkeypox virus infection. Here we present the accurate 3D structures and their binding cavities of the selected targets with higher confidence using AlphaFold 2 and SiteMap analysis. Molecular docking and MD simulation analysis revealed the top five potential lead compounds with higher binding affinity and stability toward selected targets. Binding free energy calculations and other essential dynamics analysis supports the finding. The selected lead compounds utilizing virtual screening and drug repurposing approach reported in this study are beneficial for medical scientists and experimental biologists in drug development for the treatment of human MPXV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
14
|
Current Insights into Diagnosis, Prevention Strategies, Treatment, Therapeutic Targets, and Challenges of Monkeypox (Mpox) Infections in Human Populations. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010249. [PMID: 36676198 PMCID: PMC9863601 DOI: 10.3390/life13010249] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
In the wake of the emergence and worldwide respread of a viral infection called Monkeypox (Mpox), there is a serious threat to the health and safety of the global population. This viral infection was endemic to the western and central parts of Africa, but has recently spread out of this endemic area to various countries, including the United Kingdom (UK), Portugal, Spain, the United States of America (USA), Canada, Sweden, Belgium, Italy, Australia, Germany, France, the Netherlands, Israel, and Mexico. This is a timely review focusing on recent findings and developments in the epidemiology, clinical features, therapeutic targets, diagnosis, prevention mechanisms, research challenges and possible treatment for Mpox. To date (29 November 2022), there have been around 81,225 reported cases of Mpox. In most cases, this illness is mild; however, there is a fatality rate ranging from 1 to 10%, which might be increased due to associated complications and/or secondary infections. There is a real challenge in the diagnosis of Mpox, since its symptoms are very similar to those of other infections, including smallpox and chickenpox. Generally, to prevent/limit the risk and transmission of Mpox, the detection and isolation of infected individuals, as well as hand hygiene and cleanliness, are essential and effective approaches to control/combat this viral infection. Nevertheless, updated information about Mpox from different angles is lacking. Thus, this review provides updated and comprehensive information about the Mpox illness, which should highlight the global burden, pathogenicity, symptoms, diagnosis, prevention measures and possible treatment of this emerging disease.
Collapse
|
15
|
Abstract
Human monkeypox is a viral zoonosis endemic to West and Central Africa that has recently generated increased interest and concern on a global scale as an emerging infectious disease threat in the midst of the slowly relenting COVID-2019 disease pandemic. The hallmark of infection is the development of a flu-like prodrome followed by the appearance of a smallpox-like exanthem. Precipitous person-to-person transmission of the virus among residents of 100 countries where it is nonendemic has motivated the immediate and widespread implementation of public health countermeasures. In this review, we discuss the origins and virology of monkeypox virus, its link with smallpox eradication, its record of causing outbreaks of human disease in regions where it is endemic in wildlife, its association with outbreaks in areas where it is nonendemic, the clinical manifestations of disease, laboratory diagnostic methods, case management, public health interventions, and future directions.
Collapse
Affiliation(s)
- Sameer Elsayed
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Western University, London, Ontario, Canada
| | - Lise Bondy
- Department of Medicine, Western University, London, Ontario, Canada
| | - William P. Hanage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Lam HYI, Guan JS, Mu Y. In Silico Repurposed Drugs against Monkeypox Virus. Molecules 2022; 27:molecules27165277. [PMID: 36014515 PMCID: PMC9415168 DOI: 10.3390/molecules27165277] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
Monkeypox is an emerging epidemic of concern. The disease is caused by the monkeypox virus and an increasing global incidence with a 2022 outbreak that has spread to Europe amid the COVID-19 pandemic. The new outbreak is associated with novel, previously undiscovered mutations and variants. Currently, the US Food and Drug Administration (FDA) approved poxvirus treatment involves the use of tecovirimat. However, there is otherwise limited pharmacopoeia and research interest in monkeypox. In this study, virtual screening and molecular dynamics were employed to explore the potential repurposing of multiple drugs previously approved by the FDA or other jurisdictions for other applications. Several drugs are predicted to tightly bind to viral proteins, which are crucial in viral replication, including molecules which show high potential for binding the monkeypox D13L capsid protein, whose inhibition has previously been demonstrated to suppress viral replication.
Collapse
Affiliation(s)
- Hilbert Yuen In Lam
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
- A*STAR Skin Research Labs, Agency of Science, Technology and Research, Singapore, 11 Mandalay Rd, #17-01, Singapore 308232, Singapore
| | - Jia Sheng Guan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
- Correspondence:
| |
Collapse
|
17
|
Garcia DR, Souza FR, Guimarães AP, Valis M, Pavelek Z, Kuca K, Ramalho TC, França TCC. In Silico Studies of Potential Selective Inhibitors of Thymidylate Kinase from Variola virus. Pharmaceuticals (Basel) 2021; 14:ph14101027. [PMID: 34681251 PMCID: PMC8537287 DOI: 10.3390/ph14101027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Continuing the work developed by our research group, in the present manuscript, we performed a theoretical study of 10 new structures derived from the antivirals cidofovir and ribavirin, as inhibitor prototypes for the enzyme thymidylate kinase from Variola virus (VarTMPK). The proposed structures were subjected to docking calculations, molecular dynamics simulations, and free energy calculations, using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, inside the active sites of VarTMPK and human TMPK (HssTMPK). The docking and molecular dynamic studies pointed to structures 2, 3, 4, 6, and 9 as more selective towards VarTMPK. In addition, the free energy data calculated through the MM-PBSA method, corroborated these results. This suggests that these compounds are potential selective inhibitors of VarTMPK and, thus, can be considered as template molecules to be synthesized and experimentally evaluated against smallpox.
Collapse
Affiliation(s)
- Danielle R. Garcia
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tiburcio 80, Urca, Rio de Janeiro 22290-270, Brazil;
| | - Felipe R. Souza
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22541-041, Brazil;
| | - Ana P. Guimarães
- Department of Chemistry, Federal University of Viçosa, Avenida P. H. Rolfs, s/n, Centro, Viçosa 36570-000, MG, Brazil;
| | - Martin Valis
- Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (M.V.); (Z.P.)
| | - Zbyšek Pavelek
- Department of Neurology of the Medical Faculty of Charles University and University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic; (M.V.); (Z.P.)
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
- Correspondence: (K.K.); (T.C.C.F.)
| | - Teodorico C. Ramalho
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
- Laboratory of Computational Chemistry, Department of Chemistry, UFLA, Lavras 37200-000, MG, Brazil
| | - Tanos C. C. França
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Praça General Tiburcio 80, Urca, Rio de Janeiro 22290-270, Brazil;
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic;
- Correspondence: (K.K.); (T.C.C.F.)
| |
Collapse
|
18
|
Shiryaev VA, Skomorohov MY, Leonova MV, Bormotov NI, Serova OA, Shishkina LN, Agafonov AP, Maksyutov RA, Klimochkin YN. Adamantane derivatives as potential inhibitors of p37 major envelope protein and poxvirus reproduction. Design, synthesis and antiviral activity. Eur J Med Chem 2021; 221:113485. [PMID: 33965861 PMCID: PMC9533879 DOI: 10.1016/j.ejmech.2021.113485] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/07/2022]
Abstract
Currently, smallpox, caused by the variola virus belonging to the poxvirus family, has been completely eradicated according to the WHO. However, other representatives of poxviruses, such as vaccinia virus, cowpox virus, ectromelia virus, monkeypox virus, mousepox virus and others, remain in the natural environment and can infect both animals and humans. The pathogens of animal diseases, belonging to the category with a high epidemic risk, have already caused several outbreaks among humans, and can, in an unfavorable combination of circumstances, cause not only an epidemic, but also a pandemic. Despite the fact that there are protocols for the treatment of poxvirus infections, the targeted design of new drugs will increase their availability and expand the arsenal of antiviral chemotherapeutic agents. One of the potential targets of poxviruses is the p37 protein, which is a tecovirimat target. This protein is relatively small, has no homologs among proteins of humans and other mammals and is necessary for the replication of viral particles, which makes it attractive target for virtual screening. Using the I-TASSER modelling and molecular dynamics refinement the p37 orthopox virus protein model was obtained and its was confirmed by ramachandran plot analysis and superimposition of the model with the template protein with similar function. A virtual library of adamantane containing compounds was generated and a number of potential inhibitors were chosen from virtual library using molecular docking. Several compounds bearing adamantane moiety were synthesized and their biological activity was tested in vitro on vaccinia, cowpox and mousepox viruses. The new compounds inhibiting vaccinia virus replication with IC50 concentrations between 0.133 and 0.515 μM were found as a result of the research. The applied approach can be useful in the search of new inhibitors of orthopox reproduction. The proposed approach may be suitable for the design of new poxvirus inhibitors containing cage structural moiety.
Collapse
Affiliation(s)
- Vadim A Shiryaev
- Department of Organic Chemistry, Samara State Technical University, 244 Molodogvardeyskaya St., Samara, Samara Region, 443100, Russia.
| | - Michael Yu Skomorohov
- Department of Organic Chemistry, Samara State Technical University, 244 Molodogvardeyskaya St., Samara, Samara Region, 443100, Russia
| | - Marina V Leonova
- Department of Organic Chemistry, Samara State Technical University, 244 Molodogvardeyskaya St., Samara, Samara Region, 443100, Russia
| | - Nikolai I Bormotov
- State Research Centre of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, 630559, Russia
| | - Olga A Serova
- State Research Centre of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, 630559, Russia
| | - Larisa N Shishkina
- State Research Centre of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, 630559, Russia
| | - Alexander P Agafonov
- State Research Centre of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, 630559, Russia
| | - Rinat A Maksyutov
- State Research Centre of Virology and Biotechnology VECTOR, Koltsovo, Novosibirsk Region, 630559, Russia
| | - Yuri N Klimochkin
- Department of Organic Chemistry, Samara State Technical University, 244 Molodogvardeyskaya St., Samara, Samara Region, 443100, Russia
| |
Collapse
|
19
|
Moharana AK, Dash RN, Subudhi BB. Thiosemicarbazides: Updates on Antivirals Strategy. Mini Rev Med Chem 2020; 20:2135-2152. [PMID: 32811412 DOI: 10.2174/1389557520666200818212408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 11/22/2022]
Abstract
The challenges of viral infection have increased in recent decades due to the emergence of resistance, cross-resistance and drying up of antiviral drug discovery. Many neglected tropical viruses including the chikungunya virus, dengue virus & Japanese encephalitis virus have gradually become global pathogens. This has further increased the burden of viral infection which necessitates the continuous development of antiviral therapy. The antiviral chemistry began with the development of thiosemicarbazide derived thiosemicarbazones as antiviral. Although very few thiosemicarbazides have progressed into clinical application, it still inspires antiviral development. During last 3 decades (1990- 2020), several efforts have been made to develop suitable antiviral by using thiosemicarbazide scaffold. Its hybridization with other pharmacophores has been used as a strategy to enhance safety and efficacy. Cyclization and substitution of thiosemicarbazides have also been used to develop potent antiviral. With the ability to form coordinate bonds, thiosemicarbazides have been used either as metal complex or chelator against viruses. This work is an attempt to systematically review the research on the use of thiosemicarbazides as an antiviral scaffold. It also reviews the structure-activity relationship and translational suitability of thiosemicarbazide derived compounds.
Collapse
Affiliation(s)
- Alok Kumar Moharana
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751029, Odisha, India
| | - Rudra Narayan Dash
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751029, Odisha, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar-751029, Odisha, India
| |
Collapse
|
20
|
Chen MD, Fucci IJ, Sinha K, Rule GS. dGMP Binding to Thymidylate Kinase from Plasmodium falciparum Shows Half-Site Binding and Induces Protein Dynamics at the Dimer Interface. Biochemistry 2020; 59:694-703. [PMID: 31934749 DOI: 10.1021/acs.biochem.9b00898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium falciparum thymidylate kinase (PfTMK) is an essential enzyme for the growth of the organism because of its critical role in the de novo synthesis of deoxythymidine 5'-diphosphate (TDP), a precursor for TTP that is required for DNA replication and repair. The kinetics, thermodynamic parameters, and substrate binding properties of PfTMK for TMP, dGMP, ADP, and ATP were measured and characterized by steady-state kinetics and a combination of isothermal titration calorimetry, tryptophan fluorescence titration, and NMR. Mutational studies were performed to investigate residues that contribute to the unique ability of PfTMK to also utilize dGMP as a substrate. Isothermal titration calorimetry experiments revealed that dGMP binding exhibits a unique half-site binding mechanism. The occlusion of the empty site in the dGMP complex is supported by molecular mechanics calculations. Relaxation dispersion experiments show that the dGMP and enzyme complex is more dynamic at the dimer interface than the TMP complex on the μs-ms time scale. The unique properties of dGMP binding need to be considered in the design of guanosine-based PfTMK-specific inhibitors.
Collapse
Affiliation(s)
- Mengshen David Chen
- Department of Biological Sciences , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Ian J Fucci
- Department of Biological Sciences , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Kaustubh Sinha
- Department of Biological Sciences , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Gordon S Rule
- Department of Biological Sciences , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
21
|
Rodrigues Garcia D, Rodrigues de Souza F, Paula Guimarães A, Castro Ramalho T, Palermo de Aguiar A, Celmar Costa França T. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox: part II. J Biomol Struct Dyn 2019; 37:4569-4579. [PMID: 30488769 PMCID: PMC9491145 DOI: 10.1080/07391102.2018.1554510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/21/2023]
Abstract
Acknowledging the importance of studies toward the development of measures against terrorism and bioterrorism, this study aims to contribute to the design of new prototypes of potential drugs against smallpox. Based on a former study, nine synthetic feasible prototypes of selective inhibitors for thymidylate kinase from Variola virus (VarTMPK) were designed and submitted to molecular docking, molecular dynamics simulations and binding energy calculations. The compounds are simplifications of two more complex scaffolds, with a guanine connected to an amide or alcohol through a spacer containing ether and/or amide groups, formerly suggested as promising for the design of selective inhibitors of VarTMPK. Our study showed that, despite the structural simplifications, the compounds presented effective energy values in interactions with VarTMPK and HssTMPK and that the guanine could be replaced by a simpler imidazole ring linked to a -NH2 group, without compromising the affinity for VarTMPK. It was also observed that a positive charge in the imidazole ring is important for the selectivity toward VarTMPK and that an amide group in the spacer does not contribute to selectivity. Finally, prototype 3 was pointed as the most promising to be synthesized and experimentally evaluated. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Danielle Rodrigues Garcia
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | - Felipe Rodrigues de Souza
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
| | | | - Teodorico Castro Ramalho
- Laboratory of Computational Chemistry, Department of Chemistry, UFLA, Lavras, MG, Brazil
- Faculty of Informatics and Management, Center for Basic and Applied Research, University of Hradec Králové, Hradec Králove, Czech Republic
| | | | - Tanos Celmar Costa França
- Laboratory of Molecular Modeling Applied to Chemical and Biological Defense, Military Institute of Engineering, Rio de Janeiro, RJ, Brazil
- Faculty of Informatics and Management, Center for Basic and Applied Research, University of Hradec Králové, Hradec Králove, Czech Republic
| |
Collapse
|
22
|
Lauer UM, Schell M, Beil J, Berchtold S, Koppenhöfer U, Glatzle J, Königsrainer A, Möhle R, Nann D, Fend F, Pfannenberg C, Bitzer M, Malek NP. Phase I Study of Oncolytic Vaccinia Virus GL-ONC1 in Patients with Peritoneal Carcinomatosis. Clin Cancer Res 2018; 24:4388-4398. [PMID: 29773661 DOI: 10.1158/1078-0432.ccr-18-0244] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/05/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Peritoneal carcinomatosis is common in advanced tumor stages or disease recurrence arising from gastrointestinal cancers, gynecologic malignancies, or primary peritoneal carcinoma. Because current therapies are mostly ineffective, new therapeutic approaches are needed. Here, we report on a phase I study designed to assess safety, MTD, and antitumor activity of intraperitoneal administration of oncolytic vaccinia virus GL-ONC1 in advanced stage peritoneal carcinomatosis patients.Patients and Methods: GL-ONC1 was administered intraperitoneally every 4 weeks for up to four cycles at three different dose levels (107-109 pfu) following a standard 3+3 dose escalation design. GL-ONC1 was infused via an indwelling catheter that enabled repetitive analyses of peritoneal fluid biopsies. The primary study objective was safety of GL-ONC1 according to Common Terminology Criteria for Adverse Events, version 4.0 (CTCAEv4.0).Results: Patients with advanced-stage peritoneal carcinomatosis (n = 7) or advanced peritoneal mesothelioma (n = 2) received 24 doses of GL-ONC1. Adverse events were limited to grades 1-3, including transient flu-like symptoms and increased abdominal pain, resulting from treatment-induced peritonitis. No DLT was reported, and the MTD was not reached. Furthermore, no signs of viral shedding were observed. Importantly, in 8 of 9 study patients, effective intraperitoneal infections, in-patient replication of GL-ONC1, and subsequent oncolysis were demonstrated in cycle 1. All patients developed neutralizing activities against GL-ONC1.Conclusions: GL-ONC1 was well tolerated when administered into the peritoneal cavity of patients with advanced stage peritoneal carcinomatosis. Efficient tumor cell infection, in-patient virus replication, and oncolysis were limited to treatment cycle 1 (ClinicalTrials.gov number, NCT01443260). Clin Cancer Res; 24(18); 4388-98. ©2018 AACR.
Collapse
Affiliation(s)
- Ulrich M Lauer
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany. .,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Martina Schell
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany
| | - Julia Beil
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Susanne Berchtold
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Ursula Koppenhöfer
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany
| | - Jörg Glatzle
- Department of General, Visceral and Transplant Surgery, University Hospital, Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital, Tübingen, Germany
| | - Robert Möhle
- Department of Internal Medicine II, Medical University Hospital, Tübingen, Germany
| | - Dominik Nann
- Institute of Pathology, University Hospital, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology, University Hospital, Tübingen, Germany
| | - Christina Pfannenberg
- Department of Diagnostic and Interventional Radiology, University Hospital, Tübingen, Germany
| | - Michael Bitzer
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany
| | - Nisar P Malek
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany
| |
Collapse
|
23
|
Klimochkin YN, Shiryaev VA, Leonova MV. Antiviral properties of cage compounds. New prospects. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1035-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Jacobsen KH, Aguirre AA, Bailey CL, Baranova AV, Crooks AT, Croitoru A, Delamater PL, Gupta J, Kehn-Hall K, Narayanan A, Pierobon M, Rowan KE, Schwebach JR, Seshaiyer P, Sklarew DM, Stefanidis A, Agouris P. Lessons from the Ebola Outbreak: Action Items for Emerging Infectious Disease Preparedness and Response. ECOHEALTH 2016; 13:200-212. [PMID: 26915507 PMCID: PMC7087787 DOI: 10.1007/s10393-016-1100-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/30/2015] [Accepted: 01/06/2016] [Indexed: 05/29/2023]
Abstract
As the Ebola outbreak in West Africa wanes, it is time for the international scientific community to reflect on how to improve the detection of and coordinated response to future epidemics. Our interdisciplinary team identified key lessons learned from the Ebola outbreak that can be clustered into three areas: environmental conditions related to early warning systems, host characteristics related to public health, and agent issues that can be addressed through the laboratory sciences. In particular, we need to increase zoonotic surveillance activities, implement more effective ecological health interventions, expand prediction modeling, support medical and public health systems in order to improve local and international responses to epidemics, improve risk communication, better understand the role of social media in outbreak awareness and response, produce better diagnostic tools, create better therapeutic medications, and design better vaccines. This list highlights research priorities and policy actions the global community can take now to be better prepared for future emerging infectious disease outbreaks that threaten global public health and security.
Collapse
Affiliation(s)
- Kathryn H Jacobsen
- Department of Global and Community Health, College of Health and Human Services, George Mason University, 4400 University Drive 5B7, Fairfax, VA, 22030, USA.
| | - A Alonso Aguirre
- Department of Environmental Science and Policy, College of Science, George Mason University, Fairfax, VA, USA
| | - Charles L Bailey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Ancha V Baranova
- Department of Environmental Science and Policy, College of Science, George Mason University, Fairfax, VA, USA
- Center for the Study of Chronic Metabolic Diseases, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Andrew T Crooks
- Department of Computational and Data Sciences, College of Science, George Mason University, Fairfax, VA, USA
| | - Arie Croitoru
- Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, VA, USA
| | - Paul L Delamater
- Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, VA, USA
| | - Jhumka Gupta
- Department of Global and Community Health, College of Health and Human Services, George Mason University, 4400 University Drive 5B7, Fairfax, VA, 22030, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Katherine E Rowan
- Department of Communication, College of Humanities and Social Sciences, George Mason University, Fairfax, VA, USA
| | - J Reid Schwebach
- Department of Biology, College of Science, George Mason University, Fairfax, VA, USA
| | - Padmanabhan Seshaiyer
- Department of Mathematical Sciences, College of Science, George Mason University, Fairfax, VA, USA
| | - Dann M Sklarew
- Department of Environmental Science and Policy, College of Science, George Mason University, Fairfax, VA, USA
| | - Anthony Stefanidis
- Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, VA, USA
| | - Peggy Agouris
- Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, VA, USA
| |
Collapse
|
25
|
Liu L, Cooper T, Howley PM, Hayball JD. From crescent to mature virion: vaccinia virus assembly and maturation. Viruses 2014; 6:3787-808. [PMID: 25296112 PMCID: PMC4213562 DOI: 10.3390/v6103787] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 01/22/2023] Open
Abstract
Vaccinia virus (VACV) has achieved unprecedented success as a live viral vaccine for smallpox which mitigated eradication of the disease. Vaccinia virus has a complex virion morphology and recent advances have been made to answer some of the key outstanding questions, in particular, the origin and biogenesis of the virion membrane, the transformation from immature virion (IV) to mature virus (MV), and the role of several novel genes, which were previously uncharacterized, but have now been shown to be essential for VACV virion formation. This new knowledge will undoubtedly contribute to the rational design of safe, immunogenic vaccine candidates, or effective antivirals in the future. This review endeavors to provide an update on our current knowledge of the VACV maturation processes with a specific focus on the initiation of VACV replication through to the formation of mature virions.
Collapse
Affiliation(s)
- Liang Liu
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| | - Tamara Cooper
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| | - Paul M Howley
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| | - John D Hayball
- Experimental Therapeutics Laboratory, Hanson Institute and Sansom Institute, Adelaide, 5000, SA, Australia.
| |
Collapse
|
26
|
Rozelle DK, Filone CM, Dower K, Connor JH. Vaccinia reporter viruses for quantifying viral function at all stages of gene expression. J Vis Exp 2014:51522. [PMID: 24894622 PMCID: PMC4188345 DOI: 10.3791/51522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Poxviruses are a family of double stranded DNA viruses that include active human pathogens such as monkeypox, molluscum contagiousum, and Contagalo virus. The family also includes the smallpox virus, Variola. Due to the complexity of poxvirus replication, many questions still remain regarding their gene expression strategy. In this article we describe the conceptualization and usage of recombinant vaccinia viruses that enable real-time measurement of single and multiple stages of viral gene expression in a high-throughput format. This is enabled through the use of spectrally distinct fluorescent proteins as reporters for each of three stages of viral replication. These viruses provide a high signal-to-noise ratio while retaining stage specific expression patterns, enabling plate-based assays and microscopic observations of virus propagation and replication. These tools have uses for antiviral discovery, studies of the virus-host interaction, and evolutionary biology.
Collapse
Affiliation(s)
- Daniel K Rozelle
- Department of Microbiology, Boston University School of Medicine
| | | | - Ken Dower
- Department of Microbiology, Boston University School of Medicine
| | - John H Connor
- Department of Microbiology, Boston University School of Medicine;
| |
Collapse
|
27
|
Affiliation(s)
- Inger K. Damon
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - Clarissa R. Damaso
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
28
|
Smee DF. Orthopoxvirus inhibitors that are active in animal models: an update from 2008 to 2012. Future Virol 2013; 8:891-901. [PMID: 24563659 PMCID: PMC3929309 DOI: 10.2217/fvl.13.76] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antiviral agents are being sought as countermeasures for the potential deliberate release of smallpox (variola) and monkeypox viruses, for the treatment of naturally acquired monkeypox virus infections, and as therapy for complications due to smallpox (live-attenuated vaccinia virus) vaccination or accidental infection after exposure to vaccinated persons. Reviews of the scientific literature spanning 1950-2008 have documented the progress made in developing small-animal models of poxvirus infection and identifying novel antiviral agents. Compounds of considerable interest include cidofovir, CMX001 and ST-246® (tecovirimat; SIGA Technologies, NY, USA). New inhibitors have been identified since 2008, most of which do not exhibit the kind of potency and selectivity required for drug development. Two promising agents include 4'-thioidoxuridine (a nucleoside analog) and mDEF201 (an adenovirus-vectored interferon). Compounds that have been effectively used in combination studies include vaccinia immune globulin, cidofovir, ST-246 and CMX001. In the future there may be an increase in experimental work using active compounds in combination.
Collapse
Affiliation(s)
- Donald F Smee
- Institute for Antiviral Research, Department of Animal, Dairy & Veterinary Sciences, Utah State University, Logan, UT, 84322-5600, USA, Tel.: +1 435 797 2897, ,
| |
Collapse
|
29
|
Filone CM, Connor JH. Approaches for antiviral probe development: new libraries, new mechanisms. Future Virol 2013. [DOI: 10.2217/fvl.13.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Claire Marie Filone
- Boston University School of Medicine, Department of Microbiology, 72 East Concord St, Boston, MA 02118, USA
| | - John H Connor
- Boston University School of Medicine, Department of Microbiology, 72 East Concord St, Boston, MA 02118, USA
| |
Collapse
|
30
|
De Clercq E. A cutting-edge view on the current state of antiviral drug development. Med Res Rev 2013; 33:1249-77. [PMID: 23495004 DOI: 10.1002/med.21281] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prominent in the current stage of antiviral drug development are: (i) for human immunodeficiency virus (HIV), the use of fixed-dose combinations (FDCs), the most recent example being Stribild(TM); (ii) for hepatitis C virus (HCV), the pleiade of direct-acting antivirals (DAAs) that should be formulated in the most appropriate combinations so as to obtain a cure of the infection; (iii)-(v) new strategies (i.e., AIC316, AIC246, and FV-100) for the treatment of herpesvirus infections: herpes simplex virus (HSV), cytomegalovirus (CMV), and varicella-zoster virus (VZV), respectively; (vi) the role of a new tenofovir prodrug, tenofovir alafenamide (TAF) (GS-7340) for the treatment of HIV infections; (vii) the potential use of poxvirus inhibitors (CMX001 and ST-246); (viii) the usefulness of new influenza virus inhibitors (peramivir and laninamivir octanoate); (ix) the position of the hepatitis B virus (HBV) inhibitors [lamivudine, adefovir dipivoxil, entecavir, telbivudine, and tenofovir disoproxil fumarate (TDF)]; and (x) the potential of new compounds such as FGI-103, FGI-104, FGI-106, dUY11, and LJ-001 for the treatment of filoviruses (i.e., Ebola). Whereas for HIV and HCV therapy is aimed at multiple-drug combinations, for all other viruses, HSV, CMV, VZV, pox, influenza, HBV, and filoviruses, current strategies are based on the use of single compounds.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
31
|
Antivirals: Past, present and future. Biochem Pharmacol 2013; 85:727-44. [DOI: 10.1016/j.bcp.2012.12.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 11/23/2022]
|