1
|
Micheleto JPC, Melo KA, Veloso FCS, Kassar SB, Oliveira MJC. Risk factors for mortality in patients with chikungunya: A systematic review and meta-analysis. Trop Med Int Health 2025. [PMID: 39894663 DOI: 10.1111/tmi.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
INTRODUCTION Chikungunya fever is a debilitating arthritic disease that can lead to atypical severe complications and sometimes be fatal. The risk factors for fatal outcomes of chikungunya fever have not been thoroughly studied. This systematic review and meta-analysis aimed to identify mortality risk factors in patients with chikungunya. These findings will aid clinicians in targeting high-risk groups with severe chikungunya for timely interventions, ultimately improving patient outcomes. OBJECTIVE The objective of this study is to identify mortality risk factors in patients with chikungunya. METHODS We conducted a systematic review and meta-analysis by searching the MEDLINE, Embase, Cochrane, BVS, BDTD and OpenGrey databases to identify eligible observational studies on patients with chikungunya. These studies analysed mortality risk factors, providing adjusted risk measures along with their corresponding confidence intervals (CIs). We estimated the pooled weighted mean difference and 95% CIs using a random-effects model, and the methodological quality was assessed using the Newcastle-Ottawa Scale. RESULTS Our search yielded a total of 334 records. After removing duplicates, we screened 275 records, reviewed 31 full articles and included seven studies in the systematic review and four in the meta-analysis, with a total of 220,215 patients and 908 fatal cases. Diabetes Mellitus (OR = 2.86, 95% CI 1.75-4.69), hypertension (OR = 3.10, 95% CI 2.02-4.77), age ≥ 60 years (OR = 19.49, 95% CI 1.98-191.88), chronic kidney disease (OR = 5.81, 95% CI 1.30-25.99), male sex (OR = 2.07, 95% CI 1.71-2.51) and vomiting (OR = 2.18, 95% CI 1.75-2.73) are significantly and positively associated with mortality in chikungunya. CONCLUSION Elderly men with chronic diseases have a higher risk of death from chikungunya; therefore, they deserve more careful evaluation.
Collapse
Affiliation(s)
| | - Karin Araujo Melo
- Graduate Program in Medical Sciences, Medical School, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | | - Samir Buainain Kassar
- Graduate Program in Medical Sciences, Medical School, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | |
Collapse
|
2
|
Gonçalves WA, de Sousa CDF, Teixeira MM, Souza DG. A brief overview of chikungunya-related pain. Eur J Pharmacol 2025:177322. [PMID: 39892450 DOI: 10.1016/j.ejphar.2025.177322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Pain is an important symptom associated with the arboviral disease caused by the Chikungunya virus (CHIKV). For a significant number of patients, this symptom can persist for months or even years, negatively affecting their quality of life. Unfortunately, pharmacological options for this condition are limited and only partially effective, as the underlying mechanisms associated with CHIKV-induced pain are still poorly understood. The re-emergence of CHIKV has led to new outbreaks, and the expected high prevalence of pain in these global events requires new scientific advances to find more effective solutions. Here we review the main aspects of pain caused by CHIKV infection, such as the anatomy of the affected sites, the prevalence and management of this symptom, the diversity of possible cellular and molecular mechanisms, and finally highlight a promising meningeal pathway to elucidate the mechanisms involved in the unsolved problem of CHIKV-associated pain.
Collapse
Affiliation(s)
- William Antonio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brasil.
| | - Carla Daiane Ferreira de Sousa
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, University of Münster, Münster, Germany.
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brasil.
| | - Daniele G Souza
- Laboratório Interação Microrganismo Hospedeiro, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brasil.
| |
Collapse
|
3
|
Mahendradas P, Patil A, Kawali A, Rathinam SR. Systemic and Ophthalmic Manifestations of Chikungunya Fever. Ocul Immunol Inflamm 2024; 32:1796-1803. [PMID: 37773977 DOI: 10.1080/09273948.2023.2260464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023]
Abstract
PURPOSE Chikungunya is a re-emerging viral infection across the globe. The purpose of this article is to review the systemic and ophthalmic manifestations associated with chikungunya fever. METHOD A review of literature was conducted using online databases. RESULTS In this report, we have reviewed the presently available literature on uveitis caused by chikungunya and highlighted the current knowledge of its clinical manifestations, imaging features, laboratory diagnostics, and the available therapeutic modalities from the systemic and ophthalmic standpoint. CONCLUSIONS Ocular involvement in chikungunya infection may occur at the time of systemic manifestations or it may occur as a delayed presentation many weeks after the fever. Treatment relies on a supportive therapy for systemic illness. Treatment of ocular manifestation depends on the type of manifestations and usually includes a combination of topical and oral steroids.
Collapse
Affiliation(s)
| | - Aditya Patil
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, India
| | - Ankush Kawali
- Department of Uveitis and Ocular Immunology, Narayana Nethralaya, Bangalore, India
| | | |
Collapse
|
4
|
Dutra JIS, de Souza MC, Lins CAA, de Medeiros ACQ. Impact of chronic illness caused by chikungunya fever on quality of life and functionality. EINSTEIN-SAO PAULO 2024; 22:eAO0562. [PMID: 39356940 PMCID: PMC11461011 DOI: 10.31744/einstein_journal/2024ao0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/26/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Chikungunya fever compromises the functionality and quality of life in the affected individuals, even one year after the acute phase of the disease. Chronically affected people experience direct impairment in performing daily activities, along with a risk of developing other morbidities. BACKGROUND ◼ Even after a year, chikungunya fever-affected people experience damage to their physical and mental health. BACKGROUND ◼ Positive screening for depression risk was 13.5 times more likely in chronically affected. BACKGROUND ◼ Patients with chronic chikungunya fever had a 76 times higher risk of walking impairments. OBJECTIVE To evaluate the impact of chronic illness caused by chikungunya fever on the quality of life and functionality of affected individuals. METHODS A cross-sectional and comparative study was conducted in which two groups were investigated: a Chikungunya Group comprising 25 patients with chronic fever screened after 1 year of illness via a telephonic survey, and a Healthy Group comprising 25 healthy individuals matched for sex and age by face-to-face interview. The Stanford HAQ 20-Item Disability Scale (HAQ) and the Short Form Health Survey (SF-12) questionnaires were administered to both groups. Generalized Linear Models, Pearson χ2 tests, and odds ratios were used to evaluate the test results. RESULTS Significant differences in functional capacity and quality of life were observed between the Chikungunya and Healthy Groups. The chance of some impairment in functionality was also much higher in the Chikungunya Group in four of the HAQ categories, especially in the "walking" category (adjusted OR= 109.40). Further, the Chikungunya Group had a higher chance of presenting a below-average score in the mental component summary of the SF-12 (adjusted OR= 16.20) and of being positive in depression risk screening (adjusted OR= 34.57). CONCLUSION Even one year after the acute phase, chikungunya fever can compromise the functionality and quality of life in affected individuals, with direct impairment in performing daily activities. Studies and therapeutic plans for chikungunya fever should consider the long-term impacts of this disease.
Collapse
Affiliation(s)
- Jéssica Isabelle Santos Dutra
- Universidade Federal do Rio Grande do NorteFaculdade de Ciências da Saúde do TrairiSanta CruzRNBrazilFaculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, RN, Brazil.
| | - Marcelo Cardoso de Souza
- Universidade Federal do Rio Grande do NorteDepartment of PhysiotherapyNatalRNBrazilDepartment of Physiotherapy, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| | - Caio Alano Almeida Lins
- Universidade Federal do Rio Grande do NorteFaculdade de Ciências da Saúde do TrairiSanta CruzRNBrazilFaculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, RN, Brazil.
| | - Anna Cecília Queiroz de Medeiros
- Universidade Federal do Rio Grande do NorteFaculdade de Ciências da Saúde do TrairiSanta CruzRNBrazilFaculdade de Ciências da Saúde do Trairi, Universidade Federal do Rio Grande do Norte, Santa Cruz, RN, Brazil.
| |
Collapse
|
5
|
Jaquet M, Bengue M, Lambert K, Carnac G, Missé D, Bisbal C. Human muscle cells sensitivity to chikungunya virus infection relies on their glycolysis activity and differentiation stage. Biochimie 2024; 218:85-95. [PMID: 37716499 DOI: 10.1016/j.biochi.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Changes to our environment have led to the emergence of human pathogens such as chikungunya virus. Chikungunya virus infection is today a major public health concern. It is a debilitating chronic disease impeding patients' mobility, affecting millions of people. Disease development relies on skeletal muscle infection. The importance of skeletal muscle in chikungunya virus infection led to the hypothesis that it could serve as a viral reservoir and could participate to virus persistence. Here we questioned the interconnection between skeletal muscle cells metabolism, their differentiation stage and the infectivity of the chikungunya virus. We infected human skeletal muscle stem cells at different stages of differentiation with chikungunya virus to study the impact of their metabolism on virus production and inversely the impact of virus on cell metabolism. We observed that chikungunya virus infectivity is cell differentiation and metabolism-dependent. Chikungunya virus interferes with the cellular metabolism in quiescent undifferentiated and proliferative muscle cells. Moreover, activation of chikungunya infected quiescent muscle stem cells, induces their proliferation, increases glycolysis and amplifies virus production. Therefore, our results showed that Chikungunya virus infectivity and the antiviral response of skeletal muscle cells relies on their energetic metabolism and their differentiation stage. Then, muscle stem cells could serve as viral reservoir producing virus after their activation.
Collapse
Affiliation(s)
- M Jaquet
- PhyMedExp, Univ. Montpellier, INSERM U1046, CNRS UMR 9214, 34295, Montpellier Cedex 5, France; MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394, Montpellier, France
| | - M Bengue
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394, Montpellier, France
| | - K Lambert
- PhyMedExp, Univ. Montpellier, INSERM U1046, CNRS UMR 9214, 34295, Montpellier Cedex 5, France
| | - G Carnac
- PhyMedExp, Univ. Montpellier, INSERM U1046, CNRS UMR 9214, 34295, Montpellier Cedex 5, France
| | - D Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34394, Montpellier, France.
| | - C Bisbal
- PhyMedExp, Univ. Montpellier, INSERM U1046, CNRS UMR 9214, 34295, Montpellier Cedex 5, France.
| |
Collapse
|
6
|
Ahmed S, Sultana S, Kundu S, Alam SS, Hossan T, Islam MA. Global Prevalence of Zika and Chikungunya Coinfection: A Systematic Review and Meta-Analysis. Diseases 2024; 12:31. [PMID: 38391778 PMCID: PMC10888207 DOI: 10.3390/diseases12020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Zika virus (ZIKV) and chikungunya virus (CHIKV) are arthropod-borne viruses with significant pathogenicity, posing a substantial health and economic burden on a global scale. Moreover, ZIKV-CHIKV coinfection imposes additional therapeutic challenges as there is no specific treatment for ZIKV or CHIKV infection. While a growing number of studies have documented the ZIKV-CHIKV coinfection, there is currently a lack of conclusive reports on this coinfection. Therefore, we performed a systematic review and meta-analysis to determine the true statistics of ZIKV-CHIKV coinfection in the global human population. Relevant studies were searched for in PubMed, Scopus, and Google Scholar without limitation in terms of language or publication date. A total of 33 studies containing 41,460 participants were included in this meta-analysis. The study protocol was registered with PROSPERO under the registration number CRD42020176409. The pooled prevalence and confidence intervals of ZIKV-CHIKV coinfection were computed using a random-effects model. The study estimated a combined global prevalence rate of 1.0% [95% CI: 0.7-1.2] for the occurrence of ZIKV-CHIKV coinfection. The region of North America (Mexico, Haiti, and Nicaragua) and the country of Haiti demonstrated maximum prevalence rates of 2.8% [95% CI: 1.5-4.1] and 3.5% [95% CI: 0.2-6.8], respectively. Moreover, the prevalence of coinfection was found to be higher in the paediatric group (2.1% [95% CI: 0.0-4.2]) in comparison with the adult group (0.7% [95% CI: 0.2-1.1]). These findings suggest that the occurrence of ZIKV-CHIKV coinfection varies geographically and by age group. The results of this meta-analysis will guide future investigations seeking to understand the underlying reasons for these variations and the causes of coinfection and to develop targeted prevention and control strategies.
Collapse
Affiliation(s)
- Saleh Ahmed
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shabiha Sultana
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shoumik Kundu
- Department of Chemistry and Biochemistry, Texas Tech University, 2500 Broadway St., Lubbock, TX 79409, USA
| | - Sayeda Sadia Alam
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Tareq Hossan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Md Asiful Islam
- WHO Collaborating Centre for Global Women's Health, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Felix JDS, Almeida MC, Lopes MFDS, de Athayde FRF, Troiano JA, Scaramele NF, Furlan ADO, Lopes FL. Co-expression analysis suggests lncRNA-mRNA interactions enhance antiviral immune response during acute Chikungunya fever in whole blood of pediatric patients. PLoS One 2023; 18:e0294035. [PMID: 37922302 PMCID: PMC10624317 DOI: 10.1371/journal.pone.0294035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2023] Open
Abstract
Chikungunya virus is an arbovirus that causes the neglected tropical disease chikungunya fever, common in tropical areas worldwide. There is evidence that arboviruses alter host transcriptome and modulate immune response; this modulation may involve transcriptional and post-transcriptional control mechanisms mediated by long non-coding RNAs (lncRNAs). Herein, we employed bioinformatic analysis to evaluate co-expression of lncRNAs and their putative target mRNAs in whole blood during natural Chikungunya infection in adolescent boys. Sequencing data from GSE99992 was uploaded to the Galaxy web server, where data was aligned with HISAT2, gene counts were estimated with HTSeq-count, and differential expression was run with DESeq2. After gene classification with Biomart, Pearson's correlation was applied to identify potential interactions between lncRNAs and mRNAs, which were later classified into cis and trans according to genomic location (FEELnc) and binding potential (LncTar), respectively. We identified 1,975 mRNAs and 793 lncRNAs that were differentially expressed between the acute and convalescent stages of infection in the blood. Of the co-expressed lncRNAs and mRNAs, 357 potentially interact in trans and 9 in cis; their target mRNAs enriched pathways related to immune response and viral infections. Out of 52 enriched KEGG pathways, the RIG-I like receptor signaling is enriched by the highest number of target mRNAs. This pathway starts with the recognition of viral pathogens, leading to innate immune response mediated by the production of IFN-I and inflammatory cytokines. Our findings indicate that alterations in lncRNA expression in adolescent boys, induced by acute Chikungunya infection, potentially modulate mRNAs that contribute to antiviral immune responses.
Collapse
Affiliation(s)
- Juliana de Souza Felix
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), São Paulo, Brazil
| | - Mariana Cordeiro Almeida
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), São Paulo, Brazil
| | - Maria Fernanda da Silva Lopes
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), São Paulo, Brazil
| | - Flávia Regina Florencio de Athayde
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), São Paulo, Brazil
| | - Jéssica Antonini Troiano
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), São Paulo, Brazil
| | - Natália Francisco Scaramele
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), São Paulo, Brazil
| | - Amanda de Oliveira Furlan
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), São Paulo, Brazil
| | - Flavia Lombardi Lopes
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), São Paulo, Brazil
| |
Collapse
|
8
|
Sales WB, Leite DG, Truta Ramalho CS, Macêdo SGGF, de Souza GF, Cavalcanti Maciel ÁC. Contributions of musculoskeletal rehabilitation in patients after chikungunya fever: a systematic review. BMC Musculoskelet Disord 2023; 24:347. [PMID: 37143009 PMCID: PMC10157903 DOI: 10.1186/s12891-023-06450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
INTRODUCTION Chikungunya fever is an infection transmitted by the Chikungunya virus (CHIKV), which is an arbovirus that is transmitted by the mosquitoes Aedes aegypti and Aedes albopictus. The most common sequelae caused by CHIKV are chronic musculoskeletal pain, nerve damage, joint deformation and functional impairment. OBJECTIVE To systematically identify the literature on the contributions of physiotherapy in the treatment of patients with CHIKV sequelae. MATERIALS AND METHODS Systematic review of the literature, guided by the recommendations of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). The databases used were PUBMED, LILACS, Scielo and PEDro. Experimental studies and/or full case studies published without language restriction or publication data were included, in which they stood out as contributions of musculoskeletal functional rehabilitation in the treatment of patients with the condition in question. Analytical observational studies, editorial letters, review protocols, reflective studies, literature reviews and articles that do not have an abstract and/or full text available online were excluded. RESULTS The search in the databases was carried out between July and August 2022. A total of 4,782 articles were found on the platforms used and 10 articles from the gray literature search. After the duplicate analysis, 2,027 studies were excluded, leaving 2,755 articles that had their titles and abstracts read, of which 600 articles were selected for full reading. After this step, a final sample of 13 articles was eligible for this review. FINAL CONSIDERATIONS The most consolidated approaches used in the literature demonstrate that kinesiotherapy, associated or not with electrothermophototherapy, the pilates method and auriculotherapy are useful resources in the treatment of these individuals, significantly inspired by pain relief, improved quality of life and of functionality.
Collapse
Affiliation(s)
- Weslley Barbosa Sales
- Graduate Program in Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Avenida Romualdo Galvão 2235, Lagoa Nova, Natal, RN, Brazil.
| | | | - Caroline Sousa Truta Ramalho
- Graduate Program in Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Avenida Romualdo Galvão 2235, Lagoa Nova, Natal, RN, Brazil
| | | | - Gérson Fonseca de Souza
- Graduate Program in Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Avenida Romualdo Galvão 2235, Lagoa Nova, Natal, RN, Brazil
| | - Álvaro Campos Cavalcanti Maciel
- Graduate Program in Physical Therapy, Federal University of Rio Grande do Norte (UFRN), Avenida Romualdo Galvão 2235, Lagoa Nova, Natal, RN, Brazil
| |
Collapse
|
9
|
Puhl AC, Fernandes RS, Godoy AS, Gil LHVG, Oliva G, Ekins S. The protein disulfide isomerase inhibitor 3-methyltoxoflavin inhibits Chikungunya virus. Bioorg Med Chem 2023; 83:117239. [PMID: 36940609 PMCID: PMC10150329 DOI: 10.1016/j.bmc.2023.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Chikungunya virus (CHIKV) is the etiological agent of chikungunya fever, a (re)emerging arbovirus infection, that causes severe and often persistent arthritis, as well as representing a serious health concern worldwide for which no antivirals are currently available. Despite efforts over the last decade to identify and optimize new inhibitors or to reposition existing drugs, no compound has progressed to clinical trials for CHIKV and current prophylaxis is based on vector control, which has shown limited success in containing the virus. Our efforts to rectify this situation were initiated by screening 36 compounds using a replicon system and ultimately identified the natural product derivative 3-methyltoxoflavin with activity against CHIKV using a cell-based assay (EC50 200 nM, SI = 17 in Huh-7 cells). We have additionally screened 3-methyltoxoflavin against a panel of 17 viruses and showed that it only additionally demonstrated inhibition of the yellow fever virus (EC50 370 nM, SI = 3.2 in Huh-7 cells). We have also showed that 3-methyltoxoflavin has excellent in vitro human and mouse microsomal metabolic stability, good solubility and high Caco-2 permeability and it is not likely to be a P-glycoprotein substrate. In summary, we demonstrate that 3-methyltoxoflavin has activity against CHIKV, good in vitro absorption, distribution, metabolism and excretion (ADME) properties as well as good calculated physicochemical properties and may represent a valuable starting point for future optimization to develop inhibitors for this and other related viruses.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Rafaela S. Fernandes
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, SP, 13563-120, Brazil
| | - Andre S. Godoy
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, SP, 13563-120, Brazil
| | - Laura H. V. G. Gil
- Department of Virology, Oswaldo Cruz Foundation, Aggeu Magalhães Institute, Av. Prof. Moraes Rego, s/n - Cidade Universitaria, Recife, PE, 50670-420, Brazil
| | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo, Av. Joao Dagnone, 1100 - Jardim Santa Angelina, Sao Carlos, SP, 13563-120, Brazil
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| |
Collapse
|
10
|
Suzuki Y. Interferon-induced restriction of Chikungunya virus infection. Antiviral Res 2023; 210:105487. [PMID: 36657882 DOI: 10.1016/j.antiviral.2022.105487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Chikungunya virus (CHIKV) is an enveloped RNA virus that causes Chikungunya fever (CHIKF), which is transmitted to humans through the bite of infected Aedes mosquitos. Although CHIKVF had been regarded as an endemic disease in limited regions of Africa and Asia, the recent global reemergence of CHIKV heightened awareness of this infectious disease, and CHIKV infection is currently considered an increasing threat to public health. However, no specific drug or licensed vaccine is available for CHIKV infection. As seen in other RNA virus infections, CHIKV triggers the interferon (IFN) response that plays a central role in host defense against pathogens. Experimental evidence has demonstrated that control of CHIVK replication by the IFN response is achieved by antiviral effector molecules called interferon-stimulated genes (ISGs), whose expressions are upregulated by IFN stimulation. This review details the molecular basis of the IFN-mediated suppression of CHIKV, particularly the ISGs restricting CHIKV replication.
Collapse
Affiliation(s)
- Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan.
| |
Collapse
|
11
|
Watanabe Y, Suzuki Y, Emi A, Murakawa T, Hishiki T, Kato F, Sakaguchi S, Wu H, Yano T, Lim CK, Takasaki T, Nakano T. Identification of the corticotropin-releasing factor receptor 1 antagonists as inhibitors of Chikungunya virus replication using a Gaussia luciferase–expressing subgenomic replicon. Biochem Biophys Res Commun 2022; 637:181-188. [DOI: 10.1016/j.bbrc.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
12
|
Verma J, Hasan A, Sunil S, Subbarao N. In silico identification and in vitro antiviral validation of potential inhibitors against Chikungunya virus. J Comput Aided Mol Des 2022; 36:521-536. [PMID: 35789450 DOI: 10.1007/s10822-022-00463-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
The Chikungunya virus (CHIKV) has become endemic in the Africa, Asia and Indian subcontinent, with its continuous re-emergence causing a significant public health crisis. The unavailability of specific antivirals and vaccines against the virus has highlighted an urgent need for novel therapeutics. In the present study, we have identified small molecule inhibitors targeting the envelope proteins of the CHIKV to interfere with the fusion process, eventually inhibiting the cell entry of the virus particles. We employed high throughput computational screening of large datasets against two different binding sites in the E1-E2 dimer to identify potential candidate inhibitors. Among them, four high affinity inhibitors were selected to confirm their anti-CHIKV activity in the in vitro assay. Quercetin derivatives, Taxifolin and Rutin, binds to the E1-E2 dimer at different sites and display inhibition of CHIKV infection with EC50 values 3.6 μM and 87.67 μM, respectively. Another potential inhibitor with ID ChemDiv 8015-3006 binds at both the target sites and shows anti-CHIKV activity at EC50 = 41 μM. The results show dose-dependent inhibitory effects of Taxifolin, Rutin and ChemDiv 8015-3006 against the CHIKV with minimal cytotoxicity. In addition, molecular dynamics studies revealed the structural stability of these inhibitors at their respective binding sites in the E1-E2 protein. In conclusion, our study reports Taxifolin, Rutin and ChemDiv 8015-3006 as potential inhibitors of the CHIKV entry. Also, this study suggests a few potential candidate inhibitors which could serve as a template to design envelope protein specific CHIKV entry inhibitors.
Collapse
Affiliation(s)
- Jyoti Verma
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abdul Hasan
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
13
|
Increased Indoleamine 2,3-Dioxygenase 1 (IDO-1) Activity and Inflammatory Responses during Chikungunya Virus Infection. Pathogens 2022; 11:pathogens11040444. [PMID: 35456119 PMCID: PMC9028473 DOI: 10.3390/pathogens11040444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) infection causes intense cytokine/chemokine inflammatory responses and debilitating joint pain. Indoleamine2,3–dioxygenase 1 (IDO-1) is an enzyme that initiates the tryptophan degradation that is important in initial host innate immune defense against infectious pathogens. Besides that, IDO-1 activation acts as a regulatory mechanism to prevent overactive host immune responses. In this study, we evaluated IDO-1 activity and cytokine/chemokine patterns in CHIKV patients. Higher IDO-1 (Kyn/Trp ratio) activation was observed during the early acute phase of CHIKV infection and declined in the chronic phase. Importantly, increased concentrations of Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), Interferon γ (IFN-γ), C-C motif chemokine ligand 2/Monocyte Chemoattractant Protein-1 (CCL2/MCP-1) and C-X-C motif chemokine ligand 10/Interferon Protein-10 (CXCL10/IP-10) were found in the acute phase of infection, while C-C motif chemokine ligand 4/Macrophage Inflammatory Protein 1 β (CCL4/MIP-1β) was found at increased concentrations in the chronic phase. Likewise, CHIKV patients with arthritis had significantly higher concentrations of CCL4/MIP-1β compared to patients without arthritis. Taken together, these data demonstrated increased IDO-1 activity, possibly exerting both antiviral effects and regulating exacerbated inflammatory responses. CCL4/MIP-1β may have an important role in the persistent inflammation and arthritic symptoms following chikungunya infection.
Collapse
|
14
|
Tanaka A, Suzuki Y. Genome-Wide Approaches to Unravel the Host Factors Involved in Chikungunya Virus Replication. Front Microbiol 2022; 13:866271. [PMID: 35401487 PMCID: PMC8988064 DOI: 10.3389/fmicb.2022.866271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/26/2022] [Indexed: 01/05/2023] Open
Abstract
Chikungunya virus (CHIKV), the causative agent of Chikungunya fever (CHIKVF) that is often characterized by fever, headache, rash, and arthralgia, is transmitted to humans by Aedes mosquito bites. Although the mortality rate associated with CHIKV infection is not very high, CHIKVF has been confirmed in more than 40 countries, not only in tropical but also in temperate areas. Therefore, CHIKV is a growing major threat to the public health of the world. However, a specific drug is not available for CHIKV infection. As demonstrated by many studies, the processes completing the replication of CHIKV are assisted by many host factors, whereas it has become clear that the host cell possesses some factors limiting the virus replication. This evidence will provide us with an important clue for the development of pharmacological treatment against CHIKVF. In this review, we briefly summarize cellular molecules participating in the CHIKV infection, particularly focusing on introducing recent genome-wide screen studies that enabled illuminating the virus-host interactions.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
- *Correspondence: Atsushi Tanaka,
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
- Youichi Suzuki,
| |
Collapse
|
15
|
Rueda JC, Arcos-Burgos M, Santos AM, Martin-Arsanios D, Villota-Erazo C, Reyes V, Bernal-Macías S, Peláez-Ballestas I, Cardiel MH, Londono J. Human Genetic Host Factors and Its Role in the Pathogenesis of Chikungunya Virus Infection. Front Med (Lausanne) 2022; 9:654395. [PMID: 35252226 PMCID: PMC8888679 DOI: 10.3389/fmed.2022.654395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is an alphavirus from the Togaviridae family that causes acute arthropathy in humans. It is an arthropod-borne virus transmitted initially by the Aedes (Ae) aegypti and after 2006's epidemic in La Reunion by Ae albopictus due to an adaptive mutation of alanine for valine in the position 226 of the E1 glycoprotein genome (A226V). The first isolated cases of CHIKV were reported in Tanzania, however since its arrival to the Western Hemisphere in 2013, the infection became a pandemic. After a mosquito bite from an infected viremic patient the virus replicates eliciting viremia, fever, rash, myalgia, arthralgia, and arthritis. After the acute phase, CHIKV infection can progress to a chronic stage where rheumatic symptoms can last for several months to years. Although there is a great number of studies on the pathogenesis of CHIKV infection not only in humans but also in animal models, there still gaps in the proper understanding of the disease. To this date, it is unknown why a percentage of patients do not develop clinical symptoms despite having been exposed to the virus and developing an adaptive immune response. Also, controversy stills exist on the pathogenesis of chronic joint symptoms. It is known that host immune response to an infectious disease is reflected on patient's symptoms. At the same time, it is now well-established that host genetic variation is an important component of the varied onset, severity, and outcome of infectious disease. It is essential to understand the interaction between the aetiological agent and the host to know the chronic sequelae of the disease. The present review summarizes the current findings on human host genetics and its relationship with immune response in CHIKV infection.
Collapse
Affiliation(s)
- Juan C. Rueda
- Faculty of Medicine and Engineering, Universidad de La Sabana, Chía, Colombia
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Faculty of Medicine, Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia
| | - Ana M. Santos
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Daniel Martin-Arsanios
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
| | - Catalina Villota-Erazo
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | - Viviana Reyes
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | - Santiago Bernal-Macías
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
| | | | | | - John Londono
- Grupo de Espondiloartropatías, Rheumatology Department, Universidad de La Sabana, Chía, Colombia
- Rheumatology Department, Hospital Militar Central, Bogotá, Colombia
- *Correspondence: John Londono
| |
Collapse
|
16
|
Chikungunya Virus’ High Genomic Plasticity Enables Rapid Adaptation to Restrictive A549 Cells. Viruses 2022; 14:v14020282. [PMID: 35215875 PMCID: PMC8879786 DOI: 10.3390/v14020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/10/2022] Open
Abstract
Chikungunya virus (CHIKV) is an emerging arthropod-borne virus that has spread globally during the last two decades. The virus is mainly transmitted by Aedes aegypti and Aedes albopictus mosquitos and is thus capable of replicating in both human and mosquito cells. CHIKV has a broad tropism in vivo, capable of replicating in various tissues and cell types but largely excluding blood cells. This was reflected in vitro by a broad array of adherent cell lines supporting CHIKV infection. One marked exception to this general rule is the resistance of the lung cancer-derived A549 cell line to CHIKV infection. We verified that A549 cells were restrictive to infection by multiple alphaviruses while being completely permissive to flavivirus infection. The adaptive growth of a primary CHIKV strain through multiple passages allowed the emergence of a CHIKV strain that productively infected A549 cells while causing overt cytopathic effects and without a fitness cost for replication in otherwise CHIKV-susceptible cells. Whole genome sequencing of polyclonal and monoclonal preparations of the adapted virus showed that a limited number of mutations consistently emerged in both structural (2 mutations in E2) and non-structural proteins (1 mutation in nsP1 and 1 mutation in nsP2). The introduction of the adaptive mutations, individually or in combinations, into a wild-type molecular clone of CHIKV allowed us to determine the relative contributions of the mutations to the new phenotype. We found that the mutations in the E2 envelope protein and non-structural proteins contributed significantly to the acquired phenotype. The nsP mutations were introduced in a split-genome trans-replicase assay to monitor their effect on viral genome replication efficiency. Interestingly, neither mutation supported increased viral genomic replication in either Vero or A549 cells.
Collapse
|
17
|
Telmisartan restricts Chikungunya virus infection in vitro and in vivo through the AT1/PPAR-γ/MAPKs pathways. Antimicrob Agents Chemother 2021; 66:e0148921. [PMID: 34748384 DOI: 10.1128/aac.01489-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chikungunya virus (CHIKV) has re-emerged as a global public health threat. The inflammatory pathways of RAS and PPAR-γ are usually involved in viral infections. Thus, Telmisartan (TM) with known capacity to block AT1 receptor and activate PPAR-γ, was investigated against CHIKV. The anti-CHIKV effect of TM was investigated in vitro (Vero, RAW 264.7 cells and hPBMCs) and in vivo (C57BL/6 mice). TM was found to abrogate CHIKV infection efficiently (IC50 of 15.34-20.89μM in the Vero and RAW 264.7 cells respectively). Viral RNA and proteins were reduced remarkably. Additionally, TM interfered in the early and late stages of CHIKV life cycle with efficacy in both pre and post-treatment assay. Moreover, the agonist of AT1 receptor and antagonist of PPAR-γ increased CHIKV infection suggesting TM's anti-viral potential by modulating host factors. Besides, reduced activation of all major MAPKs, NF-κB (p65) and cytokines by TM through the inflammatory axis supported the fact that the anti-CHIKV efficacy of TM is partly mediated through the AT1/PPAR-γ/MAPKs pathways. Interestingly, at the human equivalent dose, TM abrogated CHIKV infection and inflammation significantly leading to reduced clinical score and complete survival of C57BL/6 mice. Additionally, TM reduced infection in hPBMC derived monocyte-macrophage populations in vitro. Hence, TM was found to reduce CHIKV infection by targeting both viral and host factors. Considering its safety and in vivo efficacy, it can be a suitable candidate in future for repurposing against CHIKV.
Collapse
|
18
|
Chikungunya and arthritis: An overview. Travel Med Infect Dis 2021; 44:102168. [PMID: 34563686 DOI: 10.1016/j.tmaid.2021.102168] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Chikungunya is caused by CHIKV (chikungunya virus), an emerging and re-emerging arthropod-vectored viral infection that causes a febrile disease with primarily long term sequelae of arthralgia and myalgia and is fatal in a small fraction of infected patients. Sporadic outbreaks have been reported from different parts of the world chiefly Africa, Asia, the Indian and Pacific ocean regions, Europe and lately even in the Americas. Currently, treatment is primarily symptomatic as no vaccine, antibody-mediated immunotherapy or antivirals are available. Chikungunya belongs to a family of arthritogenic alphaviruses which have many pathophysiological similarities. Chikungunya arthritis has similarities and differences with rheumatoid arthritis. Although research into arthritis caused by these alphaviruses have been ongoing for decades and significant progress has been made, the mechanisms underlying viral infection and arthritis are not well understood. In this review, we give a background to chikungunya and the causative virus, outline the history of alphavirus arthritis research and then give an overview of findings on arthritis caused by CHIKV. We also discuss treatment options and the research done so far on various therapeutic intervention strategies.
Collapse
|
19
|
Kril V, Aïqui-Reboul-Paviet O, Briant L, Amara A. New Insights into Chikungunya Virus Infection and Pathogenesis. Annu Rev Virol 2021; 8:327-347. [PMID: 34255544 DOI: 10.1146/annurev-virology-091919-102021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus responsible for major outbreaks of disease since 2004 in the Indian Ocean islands, South east Asia, and the Americas. CHIKV causes debilitating musculoskeletal disorders in humans that are characterized by fever, rash, polyarthralgia, and myalgia. The disease is often self-limiting and nonlethal; however, some patients experience atypical or severe clinical manifestations, as well as a chronic rheumatic syndrome. Unfortunately, no efficient antivirals against CHIKV infection are available so far, highlighting the importance of deepening our knowledge of CHIKV host cell interactions and viral replication strategies. In this review, we discuss recent breakthroughs in the molecular mechanisms that regulate CHIKV infection and lay down the foundations to understand viral pathogenesis. We describe the role of the recently identified host factors co-opted by the virus for infection and pathogenesis, and emphasize the importance of CHIKV nonstructural proteins in both replication complex assembly and host immune response evasion. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vasiliya Kril
- Biology of Emerging Virus Team, INSERM U944, CNRS UMR 7212, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, 75010 Paris, France;
| | - Olivier Aïqui-Reboul-Paviet
- RNA Viruses and Metabolism Team, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, 34293 Montpellier, France;
| | - Laurence Briant
- RNA Viruses and Metabolism Team, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, 34293 Montpellier, France;
| | - Ali Amara
- Biology of Emerging Virus Team, INSERM U944, CNRS UMR 7212, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, 75010 Paris, France;
| |
Collapse
|
20
|
Musculoskeletal Manifestations Observed in Patients Diagnosed With Chikungunya Virus in 2 Municipalities of the Brazilian Amazon Region. J Clin Rheumatol 2021; 26:S195-S198. [PMID: 32251055 DOI: 10.1097/rhu.0000000000001366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chikungunya virus fever is an emerging disease that is rapidly spreading and becoming a global public health issue because of its clinical manifestations that cause physical limitations and high rates of chronification. No studies have characterized musculoskeletal manifestations in Brazilian patients with chikungunya. OBJECTIVE To describe the musculoskeletal manifestations of patients with chikungunya infection in municipalities of the Brazilian Amazon region. METHODS This study was an observational, descriptive, and analytical study conducted from March to May 2018. The gender, age, time of infection, clinical manifestations reported during the acute phase, and results of a physical examination of the musculoskeletal system were collected. RESULTS The medical records of 63 patients with a laboratory confirmation of chikungunya virus fever were analyzed. Eighty-three percent of these patients were women, with a mean age of 50.6 ± 14.5 years and 3.3 ± 3.1 months of infection. The main clinical manifestations reported during the acute phase were arthralgia (100%), fever (91%), and exanthema (65%). The physical examination revealed that the main joints affected by arthralgia resulted in a polyarticular (57%, 5-10 joints) and symmetrical pattern (62%) that mainly affected the ankles (53%) and knees (51%). Regarding arthritis, the most frequently affected area was the wrist (42%), with an oligoarticular pattern (42%, 2-4 joints). CONCLUSIONS In general, the clinical manifestations described in the Brazilian Amazon population are similar to those reported in publications from other countries; however, the main arthritis pattern identified is oligoarticular, with a predominance of the wrist. Moreover, the chronicity rate is 48%.
Collapse
|
21
|
Ivanova L, Rausalu K, Žusinaite E, Tammiku-Taul J, Merits A, Karelson M. 1,3-Thiazolbenzamide Derivatives as Chikungunya Virus nsP2 Protease Inhibitors. ACS OMEGA 2021; 6:5786-5794. [PMID: 33681617 PMCID: PMC7931429 DOI: 10.1021/acsomega.0c06191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/03/2021] [Indexed: 05/17/2023]
Abstract
Chikungunya fever results from an infection with Chikungunya virus (CHIKV, genus Alphavirus) that is prevalent in tropical regions and is spreading fast to temperate climates with documented outbreaks in Europe and the Americas. Currently, there are no available vaccines or antiviral drugs for prevention or treatment of Chikungunya fever. The nonstructural proteins (nsPs) of CHIKV responsible for virus replication are promising targets for the development of new antivirals. This study was attempted to find out new potential inhibitors of CHIKV nsP2 protease using the ligand-based drug design. Two compounds 10 and 10c, identified by molecular docking, showed antiviral activity against CHIKV with IC50 of 13.1 and 8.3 μM, respectively. Both compounds demonstrated the ability to inhibit the activity of nsP2 in a cell-free assay, and the impact of compound 10 on virus replication was confirmed by western blot. The molecular dynamics study of the interactions of compounds 10 and 10c with CHIKV nsP2 showed that a possible mechanism of action of these compounds is the blocking of the active site and the catalytic dyad of nsP2.
Collapse
Affiliation(s)
- Larisa Ivanova
- Institute
of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Kai Rausalu
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Eva Žusinaite
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Jaana Tammiku-Taul
- Institute
of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| | - Andres Merits
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Mati Karelson
- Institute
of Chemistry, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
| |
Collapse
|
22
|
Zhang S, Garzan A, Haese N, Bostwick R, Martinez-Gzegozewska Y, Rasmussen L, Streblow DN, Haise MT, Pathak AK, Augelli-Szafran CE, Wu M. Pyrimidone inhibitors targeting Chikungunya Virus nsP3 macrodomain by fragment-based drug design. PLoS One 2021; 16:e0245013. [PMID: 33482665 PMCID: PMC7822648 DOI: 10.1371/journal.pone.0245013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022] Open
Abstract
The macrodomain of nsP3 (nsP3MD) is highly conserved among the alphaviruses and ADP-ribosylhydrolase activity of Chikungunya Virus (CHIKV) nsP3MD is critical for CHIKV viral replication and virulence. No small molecule drugs targeting CHIKV nsP3 have been identified to date. Here we report small fragments that bind to nsP3MD which were discovered by virtually screening a fragment library and X-ray crystallography. These identified fragments share a similar scaffold, 2-pyrimidone-4-carboxylic acid, and are specifically bound to the ADP-ribose binding site of nsP3MD. Among the fragments, 2-oxo-5,6-benzopyrimidine-4-carboxylic acid showed anti-CHIKV activity with an IC50 of 23 μM. Our fragment-based drug discovery approach provides valuable information to further develop a specific and potent nsP3 inhibitor of CHIKV viral replication based on the 2-pyrimidone-4-carboxylic acid scaffold. In silico studies suggest this pyrimidone scaffold could also bind to the macrodomains of other alphaviruses and coronaviruses and thus, have potential pan-antiviral activity.
Collapse
Affiliation(s)
- Sixue Zhang
- Drug Discovery Division, Chemistry Department, Southern Research, Birmingham, Alabama, United States of America
| | - Atefeh Garzan
- Drug Discovery Division, Chemistry Department, Southern Research, Birmingham, Alabama, United States of America
| | - Nicole Haese
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Robert Bostwick
- Drug Discovery Division, High-Throughput Screening Center, Southern Research, Birmingham, Alabama, United States of America
| | - Yohanka Martinez-Gzegozewska
- Drug Discovery Division, High-Throughput Screening Center, Southern Research, Birmingham, Alabama, United States of America
| | - Lynn Rasmussen
- Drug Discovery Division, High-Throughput Screening Center, Southern Research, Birmingham, Alabama, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Mark T. Haise
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ashish K. Pathak
- Drug Discovery Division, Chemistry Department, Southern Research, Birmingham, Alabama, United States of America
| | - Corinne E. Augelli-Szafran
- Drug Discovery Division, Chemistry Department, Southern Research, Birmingham, Alabama, United States of America
| | - Mousheng Wu
- Drug Discovery Division, Chemistry Department, Southern Research, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
23
|
Stegmann-Planchard S, Gallian P, Tressières B, Leparc-Goffart I, Lannuzel A, Signaté A, Laouénan C, Cabié A, Hoen B. Chikungunya, a Risk Factor for Guillain-Barré Syndrome. Clin Infect Dis 2021; 70:1233-1235. [PMID: 31290540 DOI: 10.1093/cid/ciz625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/08/2019] [Indexed: 11/14/2022] Open
Abstract
In a matched case-control study where 24 cases developed Guillain-Barré syndrome (GBS) during the 2014 chikungunya outbreak in the French West Indies and 72 controls were blood donors during the same period, chikungunya infection was a risk factor for GBS (odds ratio, 8.3; 95% confidence interval, 2.3-29.7; P = .001).
Collapse
Affiliation(s)
- Sophie Stegmann-Planchard
- Unité de Maladies Infectieuses, Centre Hospitalier Louis-Constant Fleming, Saint Martin.,Centre d'Investigation Clinique Antilles Guyane, INSERM CIC 1424, Pointe-à-Pitre, Guadeloupe
| | - Pierre Gallian
- Etablissement Français du Sang, Saint Denis-La Plaine Stade de France.,Unité des Virus Emergents, Aix-Marseille University, IRD 190, Inserm 1207-IHU Méditerranée Infection, Marseille
| | - Benoit Tressières
- Centre d'Investigation Clinique Antilles Guyane, INSERM CIC 1424, Pointe-à-Pitre, Guadeloupe
| | | | - Annie Lannuzel
- Service de Neurologie, Centre Hospitalier Universitaire de Pointe-à-Pitre, Guadeloupe
| | - Aissatou Signaté
- Service de Neurologie, Centre Hospitalier Universitaire de Martinique, Fort de France
| | - Cédric Laouénan
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité.,Investigation Clinique Inserm CIC-EC 1425 and Département d'Epidémiologie, Biostatistiques et Recherche Clinique, Hôpital Bichat-Claude Bernard, AP-HP, Paris
| | - André Cabié
- Centre d'Investigation Clinique Antilles Guyane, INSERM CIC 1424 and Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire de la Martinique and Université des Antilles, EA 4537, Fort-de-France
| | - Bruno Hoen
- Centre d'Investigation Clinique Antilles Guyane, INSERM CIC 1424 and Service de Maladies Infectieuses et Tropicales, Dermatologie, Médecine Interne, Centre Hospitalier Universitaire de la Guadeloupe and Université des Antilles, EA 4537, Pointe-à-Pitre, France
| |
Collapse
|
24
|
De Caluwé L, Ariën KK, Bartholomeeusen K. Host Factors and Pathways Involved in the Entry of Mosquito-Borne Alphaviruses. Trends Microbiol 2020; 29:634-647. [PMID: 33208275 DOI: 10.1016/j.tim.2020.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022]
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne virus that has re-emerged recently and has spread to previously unaffected regions, resulting in millions of infections worldwide. The genus Alphavirus, in the family Togaviridae, contains several members with a similar potential for epidemic emergence. In order for CHIKV to replicate in targeted cell types it is essential for the virus to enter these cells. In this review, we summarize our current understanding of the versatile and promiscuous steps in CHIKV binding and entry into human and mosquito host cells. We describe the different entry pathways, receptors, and attachment factors so far described for CHIKV and other mosquito-borne alphaviruses and discuss them in the context of tissue tropism and potential therapeutic targeting.
Collapse
Affiliation(s)
- Lien De Caluwé
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Kevin K Ariën
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Koen Bartholomeeusen
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| |
Collapse
|
25
|
Abstract
Chikungunya virus (CHIKV) is a significant human pathogen that causes debilitating and long-lasting arthritis. Currently, there is no approved vaccine or specific therapeutic. We show that two highly potent anti-CHIKV antibodies—CHK-124 and CHK-263—can inhibit multiple steps of the CHIKV infection cycle and determined their cryogenic electron microscopy structures in complex with CHIKV particles to a 4- to 5-Å resolution. We describe the structural details of the epitopes of CHK-124 and CHK-263 and how they relate to their functional mechanisms of neutralization. Our results provide important information that will advance antibody therapeutics and vaccine development against this emerging pathogen. Chikungunya virus (CHIKV) is an emerging viral pathogen that causes both acute and chronic debilitating arthritis. Here, we describe the functional and structural basis as to how two anti-CHIKV monoclonal antibodies, CHK-124 and CHK-263, potently inhibit CHIKV infection in vitro and in vivo. Our in vitro studies show that CHK-124 and CHK-263 block CHIKV at multiple stages of viral infection. CHK-124 aggregates virus particles and blocks attachment. Also, due to antibody-induced virus aggregation, fusion with endosomes and egress are inhibited. CHK-263 neutralizes CHIKV infection mainly by blocking virus attachment and fusion. To determine the structural basis of neutralization, we generated cryogenic electron microscopy reconstructions of Fab:CHIKV complexes at 4- to 5-Å resolution. CHK-124 binds to the E2 domain B and overlaps with the Mxra8 receptor-binding site. CHK-263 blocks fusion by binding an epitope that spans across E1 and E2 and locks the heterodimer together, likely preventing structural rearrangements required for fusion. These results provide structural insight as to how neutralizing antibody engagement of CHIKV inhibits different stages of the viral life cycle, which could inform vaccine and therapeutic design.
Collapse
|
26
|
Sakaguchi S, Suzuki Y, Emi A, Wu H, Nakano T. Identification of cellular inhibitors against Chikungunya virus replication by a cDNA expression cloning combined with MinION sequencing. Biochem Biophys Res Commun 2020; 530:617-623. [PMID: 32762941 DOI: 10.1016/j.bbrc.2020.07.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 11/18/2022]
Abstract
cDNA expression cloning has been shown to be a powerful approach in the search for cellular factors that control virus replication. In this study, cDNA library screening using a pool of cDNA derived from interferon-treated human cells was combined with the MinION sequencer to identify cellular genes inhibiting Chikungunya virus (CHIKV) replication. Challenge infection of CHIKV to Vero cells transduced with the cDNA library produced virus-resistant cells. Then, the MinION sequence of cDNAs extracted from the surviving cells revealed that the open reading frames of TOM7, S100A16, N-terminally truncated form of ECI1 (ECI1ΔN59), and RPL29 were inserted in many of the cells. Importantly, the transient expression of TOM7, S100A16, and ECI1ΔN59 was found to inhibit the replication of CHIKV in Huh7 cells, indicating that these cellular factors were potentially anti-CHIKV molecules. Thus, our study demonstrated that cDNA expression cloning combined with the MinION sequencer allowed a rapid and comprehensive detection of cellular inhibitors against CHIKV.
Collapse
Affiliation(s)
- Shoichi Sakaguchi
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan.
| | - Akino Emi
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Hong Wu
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, 569-8686, Japan
| |
Collapse
|
27
|
Anna Genaro MS, Marchi MSD, Perin MY, Cossô IS, Dezengrini Slhessarenko R. Ferritin, Erythrocyte Sedimentation Rate, and C-Reactive Protein Level in Patients with Chikungunya-Induced Chronic Polyarthritis. Am J Trop Med Hyg 2020; 103:2077-2082. [PMID: 32748769 DOI: 10.4269/ajtmh.20-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Chikungunya virus (CHIKV) is a global emergent arthritogenic alphavirus transmitted by anthropophilic Stegomyia mosquitoes. Chikungunya fever may evolve to chronic arthralgia in 57-80% of infected patients. This study was developed to identify possibly fast, simple low-cost biomarkers to monitor chronic CHIKV-induced articular disease. Between 2017 and 2018, we analyzed clinical data of patients meeting the criteria established by standard protocols to define chronic chikungunya articular disease. Patients were classified according to the disease activity scores, inflammatory biomarkers (erythrocyte sedimentation rate [ESR], ferritin, and C-reactive protein [CRP] serum), positive rheumatoid factor, comorbidities, smoking, and previous use of corticosteroids determined before beginning therapy. Of 106 patients, 98 (92.5%) were women with mean age of 52 ± 13 years, 6.8 ± 4.4 months of illness duration at the first medical appointment, and 6.7 ± 4.5 affected joints. Mean ESR (26 ± 19), CRP (2.6 ± 3.6), and stratified ferritin (144 ± 115) levels were normal according to reference values. There was no significance in comparing the levels of inflammatory biomarkers and the additional variables analyzed in the presence of moderate chronic joint disease in the study population. However, we identified a negative correlation between disease activity measures and duration of disease at the first medical evaluation after initial infection (P < 0.001), corroborating data observed in the literature.
Collapse
Affiliation(s)
- Maira Sant Anna Genaro
- Clínica Médica e Reumatologia, Universidade de Cuiabá (UNIC), Cuiabá, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | | | - Matheus Yung Perin
- Clínica Médica e Reumatologia, Universidade de Cuiabá (UNIC), Cuiabá, Brazil
| | | | - Renata Dezengrini Slhessarenko
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| |
Collapse
|
28
|
Godaert L, Nicolon C, Najioullah F, Kanagaratnam L, Césaire R, Dramé M. Is Chikungunya Virus Infection an Independent Risk Factor for 2-Year Mortality in Older Afro-Caribbean Subjects? Infect Drug Resist 2020; 13:2223-2228. [PMID: 32764997 PMCID: PMC7360428 DOI: 10.2147/idr.s253893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose The aim of this study was to investigate whether Chikungunya virus infection (CVI) was an independent risk factor for 2-year mortality in Afro-Caribbean subjects aged 65 years or older. Patients and methods A retrospective cohort study was performed from January 2014 to December 2016 in the University Hospital of Martinique. Subjects aged ≥65 years admitted to the hospital were included. Baseline characteristics and concurrent manifestations at admission were collected. Subjects were followed up by phone for 2 years. Results A total of 687 old Afro-Caribbean subjects (80.4±8.0 years) were included: 467 positive for CVI (Chik+) and 220 negative for CVI (Chik-). During the follow-up, 180 (26.2%) died. The proportion of deaths was higher among Chik- (40.9%) than among Chik+ subjects (21.6%) (p<0.0001). By multivariable analysis, when adjusted for age polyarthralgia, neurological troubles, cardiovascular disorders, absence of neutrophilia, thrombocytopenia, hypernatremia, and hospital stay, Chik+ subjects had significantly higher survival rates (HR: 0.58; 95% CI: 0.40-0.85) than Chik- ones. Conclusion Within the two years following hospital admission of subjects aged ≥65 years or older, Chik+ subjects had significantly higher survival rates than Chik- ones.
Collapse
Affiliation(s)
- Lidvine Godaert
- Department of Geriatrics, General Hospital of Valenciennes, Valenciennes, France
| | - Camille Nicolon
- Department of Geriatrics, Hospital of Marennes, Marennes, France
| | - Fatiha Najioullah
- Department of Virology, University Hospitals of Martinique, Fort-de-France, Martinique
| | - Lukshe Kanagaratnam
- Department of Research and Public Health, University Hospitals of Reims, Reims, France
| | - Raymond Césaire
- Department of Virology, University Hospitals of Martinique, Fort-de-France, Martinique.,Faculty of Medicine, University of French West Indies, Fort-de-France, Martinique
| | - Moustapha Dramé
- Faculty of Medicine, University of French West Indies, Fort-de-France, Martinique.,Department of Research and Innovation, University Hospitals of Martinique, Fort-de-France, Martinique
| |
Collapse
|
29
|
Silva Junior GBD, Pinto JR, Mota RMS, Pires Neto RDJ, Daher EDF. Risk factors for death among patients with Chikungunya virus infection during the outbreak in northeast Brazil, 2016-2017. Trans R Soc Trop Med Hyg 2020; 113:221-226. [PMID: 30551206 DOI: 10.1093/trstmh/try127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/10/2018] [Accepted: 11/16/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) infection is a current public health problem. The aim of this study was to investigate risk factors for death among patients with CHIKV infection during a large epidemic in northeast Brazil. METHODS This is a cross-sectional study with all registered cases of CHIKV in Ceara, Brazil, during 2016-2017. Data from notification reports were collected, and we have compared non-survivors and survivors. RESULTS A total of 182 731 cases were reported, with a mean age of 38±19 years, and the majority was female (62%). There were 383 deaths. Non-survivors were elderly, with a predominance of males, and with a lower educational level. Conditions that were significantly more frequent in the non-survivor group were systemic arterial hypertension, diabetes mellitus and chronic kidney disease (p<0.0001). Independent risk factors for death were advanced age (OR 7.35, p<0.0001), male gender (OR 2.05, p<0.0001), leukopenia (OR 3.18, p<0.0001) and vomiting (OR 2.19, p<0.0001), and comorbidities like hypertension (OR 3.74, p<0.0001), diabetes (OR 3.29, p<0.0001) and chronic kidney disease (OR 3.14, p<0.0001). CONCLUSION Advanced age and low educational level were associated with higher risk of mortality in CHIKV. Leukopenia and vomiting were signs of severity, as well as the presence of comorbidities, especially hypertension, diabetes and kidney disease.
Collapse
Affiliation(s)
- Geraldo Bezerra da Silva Junior
- Post-Graduation Program in Collective Health, Health Sciences Center, University of Fortaleza-UNIFOR. Fortaleza, Ceará, Brazil
| | - José Reginaldo Pinto
- Post-Graduation Program in Collective Health, Health Sciences Center, University of Fortaleza-UNIFOR. Fortaleza, Ceará, Brazil
| | - Rosa Maria Salani Mota
- Department of Statistics and Applied Mathematics, Sciences Center, Federal University of Ceará-UFC. Fortaleza, Ceará, Brazil
| | - Roberto da Justa Pires Neto
- Post-Graduation Program in Public Health, Department of Community Health, Federal University of Ceará-UFC. Fortaleza, Ceará, Brazil
| | - Elizabeth De Francesco Daher
- Post-Graduation Program in Medical Sciences, Department of Internal Medicine, Federal University of Ceará-UFC. Fortaleza, Ceará, Brazil
| |
Collapse
|
30
|
Torii S, Orba Y, Sasaki M, Tabata K, Wada Y, Carr M, Hobson-Peters J, Hall RA, Takada A, Fukuhara T, Matsuura Y, Hall WW, Sawa H. Host ESCRT factors are recruited during chikungunya virus infection and are required for the intracellular viral replication cycle. J Biol Chem 2020; 295:7941-7957. [PMID: 32341071 PMCID: PMC7278350 DOI: 10.1074/jbc.ra119.012303] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/23/2020] [Indexed: 11/06/2022] Open
Abstract
Chikungunya fever is a re-emerging zoonotic disease caused by chikungunya virus (CHIKV), a member of the Alphavirus genus in the Togaviridae family. Only a few studies have reported on the host factors required for intracellular CHIKV trafficking. Here, we conducted an imaging-based siRNA screen to identify human host factors for intracellular trafficking that are involved in CHIKV infection, examined their interactions with CHIKV proteins, and investigated the contributions of these proteins to CHIKV infection. The results of the siRNA screen revealed that host endosomal sorting complexes required for transport (ESCRT) proteins are recruited during CHIKV infection. Co-immunoprecipitation analyses revealed that both structural and nonstructural CHIKV proteins interact with hepatocyte growth factor-regulated tyrosine kinase substrate (HGS), a component of the ESCRT-0 complex. We also observed that HGS co-localizes with the E2 protein of CHIKV and with dsRNA, a marker of the replicated CHIKV genome. Results from gene knockdown analyses indicated that, along with other ESCRT factors, HGS facilitates both genome replication and post-translational steps during CHIKV infection. Moreover, we show that ESCRT factors are also required for infections with other alphaviruses. We conclude that during CHIKV infection, several ESCRT factors are recruited via HGS and are involved in viral genome replication and post-translational processing of viral proteins.
Collapse
Affiliation(s)
- Shiho Torii
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Koshiro Tabata
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yuji Wada
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Michael Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Ayato Takada
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - William W Hall
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Centre for Research in Infectious Diseases, School of Medicine, University College Dublin, Dublin, Ireland
- Global Virus Network, Baltimore, Maryland, USA
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, Maryland, USA
| |
Collapse
|
31
|
Moesslacher J, Battisti V, Delang L, Neyts J, Abdelnabi R, Pürstinger G, Urban E, Langer T. Identification of 2-(4-(Phenylsulfonyl)piperazine-1-yl)pyrimidine Analogues as Novel Inhibitors of Chikungunya Virus. ACS Med Chem Lett 2020; 11:906-912. [PMID: 32435404 PMCID: PMC7236252 DOI: 10.1021/acsmedchemlett.9b00662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/05/2020] [Indexed: 12/18/2022] Open
Abstract
![]()
The chikungunya virus
(CHIKV) is a mosquito-transmitted alphavirus,
and it is the causative agent of chikungunya fever (CHIKF). Although
it has re-emerged as an epidemic threat, so far there are neither
vaccines nor pharmacotherapy available to prevent or treat an infection.
Herein, we describe the synthesis and structure–activity relationship
studies of a class of novel small molecule inhibitors against CHIKV
and the discovery of a new potent inhibitor (compound 6a). The starting point of the optimization process was N-ethyl-6-methyl-2-(4-(4-fluorophenylsulfonyl)piperazine-1-yl)pyrimidine-4-amine
(1) with an EC50 of 8.68 μM, a CC50 of 122 μM, and therefore a resulting selectivity index
(SI) of 14.2. The optimized compound 6a, however, displays
a much lower micromolar antiviral activity (EC50 value
of 3.95 μM), considerably better cytotoxic liability (CC50 value of 260 μM) and consequently an improved SI of
greater than 61. Therefore, we report the identification of a promising
novel compound class that has the potential for further development
of antiviral drugs against the CHIKV.
Collapse
Affiliation(s)
- Julia Moesslacher
- University of Innsbruck, Department of Pharmacy, Innrain 80/82, 6020 Innsbruck, Austria
| | - Verena Battisti
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, A-1090 Vienna, Austria
| | - Leen Delang
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, B-3000 Leuven, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, B-3000 Leuven, Belgium
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, B-3000 Leuven, Belgium
| | - Gerhard Pürstinger
- University of Innsbruck, Department of Pharmacy, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ernst Urban
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, A-1090 Vienna, Austria
| | - Thierry Langer
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
32
|
Schrauf S, Tschismarov R, Tauber E, Ramsauer K. Current Efforts in the Development of Vaccines for the Prevention of Zika and Chikungunya Virus Infections. Front Immunol 2020; 11:592. [PMID: 32373111 PMCID: PMC7179680 DOI: 10.3389/fimmu.2020.00592] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/13/2020] [Indexed: 01/07/2023] Open
Abstract
Arboviruses represent major challenges to public health, particularly in tropical, and subtropical regions, and a substantial risk to other parts of the world as respective vectors extend their habitats. In recent years, two viruses transmitted by Aedes mosquitoes, Chikungunya and Zika virus, have gathered increased interest. After decades of regionally constrained outbreaks, both viruses have recently caused explosive outbreaks on an unprecedented scale, causing immense suffering and massive economic burdens in affected regions. Chikungunya virus causes an acute febrile illness that often transitions into a chronic manifestation characterized by debilitating arthralgia and/or arthritis in a substantial subset of infected individuals. Zika infection frequently presents as a mild influenza-like illness, often subclinical, but can cause severe complications such as congenital malformations in pregnancy and neurological disorders, including Guillain-Barré syndrome. With no specific treatments or vaccines available, vector control remains the most effective measure to manage spread of these diseases. Given that both viruses cause antibody responses that confer long-term, possibly lifelong protection and that such responses are cross-protective against the various circulating genetic lineages, the development of Zika and Chikungunya vaccines represents a promising route for disease control. In this review we provide a brief overview on Zika and Chikungunya viruses, the etiology and epidemiology of the illnesses they cause and the host immune response against them, before summarizing past and current efforts to develop vaccines to alleviate the burden caused by these emerging diseases. The development of the urgently needed vaccines is hampered by several factors including the unpredictable epidemiology, feasibility of rapid clinical trial implementation during outbreaks and regulatory pathways. We will give an overview of the current developments.
Collapse
|
33
|
Kumar R, Shrivastava T, Samal S, Ahmed S, Parray HA. Antibody-based therapeutic interventions: possible strategy to counter chikungunya viral infection. Appl Microbiol Biotechnol 2020; 104:3209-3228. [PMID: 32076776 PMCID: PMC7223553 DOI: 10.1007/s00253-020-10437-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Chikungunya virus (CHIKV), a mosquito-transmitted disease that belongs to the genus Alphaviruses, has been emerged as an epidemic threat over the last two decades, and the recent co-emergence of this virus along with other circulating arboviruses and comorbidities has influenced atypical mortality rate up to 10%. Genetic variation in the virus has resulted in its adaptability towards the new vector Aedes albopictus other than Aedes aegypti, which has widen the horizon of distribution towards non-tropical and non-endemic areas. As of now, no licensed vaccines or therapies are available against CHIKV; the treatment regimens for CHIKV are mostly symptomatic, based on the clinical manifestations. Development of small molecule drugs and neutralizing antibodies are potential alternatives of worth investigating until an efficient or safe vaccine is approved. Neutralizing antibodies play an important role in antiviral immunity, and their presence is a hallmark of viral infection. In this review, we describe prospects for effective vaccines and highlight importance of neutralizing antibody-based therapeutic and prophylactic applications to combat CHIKV infections. We further discuss about the progress made towards CHIKV therapeutic interventions as well as challenges and limitation associated with the vaccine development. Furthermore this review describes the lesson learned from chikungunya natural infection, which could help in better understanding for future development of antibody-based therapeutic measures.
Collapse
Affiliation(s)
- Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India.
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
34
|
Reisinger EC, Tschismarov R, Beubler E, Wiedermann U, Firbas C, Loebermann M, Pfeiffer A, Muellner M, Tauber E, Ramsauer K. Immunogenicity, safety, and tolerability of the measles-vectored chikungunya virus vaccine MV-CHIK: a double-blind, randomised, placebo-controlled and active-controlled phase 2 trial. Lancet 2019; 392:2718-2727. [PMID: 30409443 DOI: 10.1016/s0140-6736(18)32488-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Chikungunya fever is an emerging viral disease and substantial threat to public health. We aimed to assess the safety, tolerability, and immunogenicity of a live-attenuated, measles-vectored chikungunya vaccine (MV-CHIK). METHODS In this double-blind, randomised, placebo-controlled and active-controlled phase 2 trial, we enrolled healthy volunteers aged 18-55 years at four study sites in Austria and Germany. Participants were randomly assigned to receive intramuscular injections with MV-CHIK (5 × 104 or 5 × 105 50% tissue culture infectious dose), control vaccine, or measles prime and MV-CHIK, in two different administration regimens. Randomisation was done by use of three-digit randomisation codes in envelopes provided by a data management service. The participants and investigators were masked to treatment assignment, which was maintained by use of sterile saline as a placebo injection. The primary endpoint was immunogenicity, defined as the presence of neutralising antibodies against chikungunya virus, at day 56, which is 28 days after one or two immunisations. The primary endpoint was assessed in all participants who completed the study without major protocol deviations (per-protocol population) and in all randomised participants who received at least one study treatment (modified intention-to-treat population). The safety analysis included all participants who received at least one study treatment. This trial is registered with ClinicalTrials.gov (NCT02861586) and EudraCT (2015-004037-26) and is completed. FINDINGS Between Aug 17, 2016, and May 31, 2017, we randomly assigned 263 participants to receive control vaccine (n=34), MV-CHIK (n=195), or measles prime and MV-CHIK (n=34). 247 participants were included in the per-protocol population. Neutralising antibodies against chikungunya virus were detected in all MV-CHIK treatment groups after one or two immunisations, with geometric mean titres ranging from 12·87 (95% CI 8·75-18·93) to 174·80 (119·10-256·50) and seroconversion rates ranging from 50·0% to 95·9% depending on the dose and administration schedule. Adverse events were similar between groups, with solicited adverse events reported in 168 (73%) of 229 participants assigned to MV-CHIK and 24 (71%) of 34 assigned to control vaccine (p=0·84) and unsolicited adverse events in 116 (51%) participants assigned to MV-CHIK and 17 (50%) assigned to control vaccine (p=1·00). No serious adverse events related to the vaccine were reported. INTERPRETATION MV-CHIK showed excellent safety and tolerability and good immunogenicity, independent of pre-existing immunity against the vector. MV-CHIK is a promising candidate vaccine for the prevention of chikungunya fever, an emerging disease of global concern. FUNDING Themis.
Collapse
Affiliation(s)
| | | | - Eckhard Beubler
- Otto Loewi Research Center, Medical University Graz, Graz, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University Vienna, Vienna, Austria
| | - Christa Firbas
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
35
|
Rheumatic manifestations of chikungunya: emerging concepts and interventions. Nat Rev Rheumatol 2019; 15:597-611. [DOI: 10.1038/s41584-019-0276-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
36
|
Pérez-Pérez MJ, Delang L, Ng LFP, Priego EM. Chikungunya virus drug discovery: still a long way to go? Expert Opin Drug Discov 2019; 14:855-866. [DOI: 10.1080/17460441.2019.1629413] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Leen Delang
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
37
|
Franco EJ, Rodriquez JL, Pomeroy JJ, Hanrahan KC, Brown AN. The effectiveness of antiviral agents with broad-spectrum activity against chikungunya virus varies between host cell lines. Antivir Chem Chemother 2019; 26:2040206618807580. [PMID: 30354193 PMCID: PMC6202740 DOI: 10.1177/2040206618807580] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus that has recently emerged in the Western Hemisphere. Approved antiviral therapies or vaccines for the treatment or prevention of CHIKV infections are not available. This study aims to evaluate the antiviral activity of commercially available broad-spectrum antivirals against CHIKV. Due to host cell-specific variability in uptake and intracellular processing of drug, we evaluated the antiviral effects of each agent in three cell lines. Antiviral activities of ribavirin (RBV), interferon-alfa (IFN-α) and favipiravir (FAV) were assessed in CHIKV-infected Vero, HUH-7, and A549 cells. CHIKV-infected cells were treated with increasing concentrations of each agent for three days and viral burden was quantified by plaque assay on Vero cells. Cytotoxic effects of RBV, FAV and IFN-α were also evaluated. Antiviral activity differed depending on the cell line used for evaluation. RBV had the greatest antiviral effect in HUH-7 cells (EC50 = 2.575 µg/mL); IFN-α was most effective in A549 cells (EC50 = 4.235 IU/mL); and FAV in HUH-7 cells (EC50 = 20.00 μg/mL). The results of our study show FAV and IFN-α are the most promising candidates, as their use led to substantial reductions in viral burden at clinically achievable concentrations in two human-derived cell lines. FAV is an especially attractive candidate for further investigation due to its oral bioavailability. These findings also highlight the importance of cell line selection for preclinical drug trials.
Collapse
Affiliation(s)
- Evelyn J Franco
- Department of Medicine, Institute for Therapeutic Innovation, University of Florida College of Medicine, Orlando, FL, USA.,Department of Pharmaceutics, University of Florida College of Pharmacy, Orlando, FL, USA
| | - Jaime L Rodriquez
- Department of Medicine, Institute for Therapeutic Innovation, University of Florida College of Medicine, Orlando, FL, USA
| | - Justin J Pomeroy
- Department of Medicine, Institute for Therapeutic Innovation, University of Florida College of Medicine, Orlando, FL, USA
| | - Kaley C Hanrahan
- Department of Medicine, Institute for Therapeutic Innovation, University of Florida College of Medicine, Orlando, FL, USA
| | - Ashley N Brown
- Department of Medicine, Institute for Therapeutic Innovation, University of Florida College of Medicine, Orlando, FL, USA
| |
Collapse
|
38
|
Yin H, Yin P, Zhao H, Zhang N, Jian X, Song S, Gao S, Zhang L. Intraviral interactome of Chikungunya virus reveals the homo-oligomerization and palmitoylation of structural protein TF. Biochem Biophys Res Commun 2019; 513:919-924. [PMID: 31005258 PMCID: PMC7092876 DOI: 10.1016/j.bbrc.2019.04.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 12/17/2022]
Abstract
Chikungunya virus (CHIKV) is a re-emerging mosquito-transmitted RNA virus causing joint and muscle pain. Although the protein-protein interactions (PPIs) between nonstructural proteins of CHIKV have been extensively established, the complete CHIKV intraviral interactome remains to be elucidated. In this study, we examined all possible CHIKV intraviral PPIs by immunoprecipitation and constructed the intraviral interactome of CHIKV. We reported 19 novel PPIs including the homo-oligomerization of TF. Disulfide bonds promoted the oligomerization of CHIKV TF protein. 2-BP, a palmitoylation inhibitor reduced the palmitoylation of TF and increased TF oligomerization. A quadruple mutant of Cys33, Cys35, Cys41, and Cys43 in TF blocked its palmitoylation and reduced oligomerization. Furthermore, we determined the association of TF with nsP1 and nsP3 in a palmitoylation-dependent manner. Construction of intraviral interactome of CHIKV provides the basis for further studying the function of CHIKV proteins. An intraviral interactome of CHIKV proteins is constructed. CHIKV TF is homo-oligomerized. CHIKV TF is palmitoylated. TF interacts with nsP1 and nsP3 in a palmitoylation-dependent manner.
Collapse
Affiliation(s)
- Han Yin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, PR China
| | - Peiqi Yin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, PR China
| | - Hongjian Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, PR China
| | - Na Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, PR China
| | - Xia Jian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100176, PR China
| | - Siqi Song
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, PR China
| | - Shan Gao
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, PR China
| | - Leiliang Zhang
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250062, PR China.
| |
Collapse
|
39
|
Jin J, Simmons G. Antiviral Functions of Monoclonal Antibodies against Chikungunya Virus. Viruses 2019; 11:v11040305. [PMID: 30925717 PMCID: PMC6520934 DOI: 10.3390/v11040305] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022] Open
Abstract
Chikungunya virus (CHIKV) is the most common alphavirus infecting humans worldwide. Antibodies play pivotal roles in the immune response to infection. Increasingly, therapeutic antibodies are becoming important for protection from pathogen infection for which neither vaccine nor treatment is available, such as CHIKV infection. The new generation of ultra-potent and/or broadly cross-reactive monoclonal antibodies (mAbs) provides new opportunities for intervention. In the past decade, several potent human and mouse anti-CHIKV mAbs were isolated and demonstrated to be protective in vivo. Mechanistic studies of these mAbs suggest that mAbs exert multiple modes of action cooperatively. Better understanding of these antiviral mechanisms for mAbs will help to optimize mAb therapies.
Collapse
Affiliation(s)
- Jing Jin
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
40
|
Fatty Acid Synthase Promotes the Palmitoylation of Chikungunya Virus nsP1. J Virol 2019; 93:JVI.01747-18. [PMID: 30404808 DOI: 10.1128/jvi.01747-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022] Open
Abstract
Chikungunya virus (CHIKV) is transmitted to people by mosquitoes, and CHIKV infection causes fever and joint pain. Fatty acid synthase (FASN) has been identified as a proviral factor for CHIKV. How FASN participates in CHIKV replication remains to be elucidated. In this study, we demonstrated that palmitic acid (PA) can restore the suppression of CHIKV replication by FASN inhibitors. The palmitoylation and plasma membrane localization of CHIKV nsP1 were reduced by FASN inhibitors. Triple mutation of Cys417, Cys418, and Cys419 in nsP1 blocked its palmitoylation and severely disrupted CHIKV replication. Furthermore, two zinc finger DHHC domain-containing palmitoyltransferases (ZDHHCs), ZDHHC2 and ZDHHC19, promoted nsP1 palmitoylation and CHIKV replication. Our results not only identified the key enzymes for the palmitoylation of nsP1 but also provided mechanistic insights into the roles of FASN in CHIKV replication.IMPORTANCE S-palmitoylation is an important form of lipid posttranslational modification, which affects the function of proteins by regulating their transport, stability, and localization. Previous studies have shown that FASN is critical for CHIKV replication; however, the mechanism for this function of FASN remains unknown. The key zinc finger DHHC domain-containing palmitoyltransferases involved in the palmitoylation of nsP1 are not clear. We demonstrated that FASN promoted CHIKV replication through nsP1 palmitoylation. ZDHHC2 and ZDHHC19 were identified as the major enzymes for nsP1 palmitoylation. Since nsP1 proteins are conserved in alphaviruses, our results highlight the mechanisms by which alphavirus nsP1 is palmitoylated.
Collapse
|
41
|
Ahmad L, Mostowy S, Sancho-Shimizu V. Autophagy-Virus Interplay: From Cell Biology to Human Disease. Front Cell Dev Biol 2018; 6:155. [PMID: 30510929 PMCID: PMC6252315 DOI: 10.3389/fcell.2018.00155] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/31/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a highly conserved intracellular degradation process that targets protein aggregates and damaged organelles. Autophagy is also implicated in numerous viral infections, including human immunodeficiency virus-1 (HIV-1), influenza A (IAV) and herpes simplex virus-1 (HSV-1). Depending on the virus, autophagy can restrict or promote viral replication, and play key roles in modulating inflammation and cell survival. In this review, we consider examples of autophagy-virus interplay, highlighting the protective role of autophagy in human infections. We summarize recent discoveries and emerging themes illuminating autophagy’s role in immunity and inflammation upon viral infection. Finally, we discuss future prospects and therapeutic implications, and potential caveats associated with using autophagy to control viral infections in humans.
Collapse
Affiliation(s)
- Liyana Ahmad
- Department of Virology, Division of Medicine, Imperial College London, London, United Kingdom
| | - Serge Mostowy
- MRC Centre of Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom.,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Vanessa Sancho-Shimizu
- Department of Virology, Division of Medicine, Imperial College London, London, United Kingdom.,Department of Paediatrics, Division of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
42
|
Michlmayr D, Pak TR, Rahman AH, Amir EAD, Kim EY, Kim-Schulze S, Suprun M, Stewart MG, Thomas GP, Balmaseda A, Wang L, Zhu J, Suaréz-Fariñas M, Wolinsky SM, Kasarskis A, Harris E. Comprehensive innate immune profiling of chikungunya virus infection in pediatric cases. Mol Syst Biol 2018; 14:e7862. [PMID: 30150281 PMCID: PMC6110311 DOI: 10.15252/msb.20177862] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 05/31/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes global epidemics of debilitating disease worldwide. To gain functional insight into the host cellular genes required for virus infection, we performed whole-blood RNA-seq, 37-plex mass cytometry of peripheral blood mononuclear cells (PBMCs), and serum cytokine measurements of acute- and convalescent-phase samples obtained from 42 children naturally infected with CHIKV Semi-supervised classification and clustering of single-cell events into 57 sub-communities of canonical leukocyte phenotypes revealed a monocyte-driven response to acute infection, with the greatest expansions in "intermediate" CD14++CD16+ monocytes and an activated subpopulation of CD14+ monocytes. Increases in acute-phase CHIKV envelope protein E2 expression were highest for monocytes and dendritic cells. Serum cytokine measurements confirmed significant acute-phase upregulation of monocyte chemoattractants. Distinct transcriptomic signatures were associated with infection timepoint, as well as convalescent-phase anti-CHIKV antibody titer, acute-phase viremia, and symptom severity. We present a multiscale network that summarizes all observed modulations across cellular and transcriptomic levels and their interactions with clinical outcomes, providing a uniquely global view of the biomolecular landscape of human CHIKV infection.
Collapse
Affiliation(s)
- Daniela Michlmayr
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Theodore R Pak
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb H Rahman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - El-Ad David Amir
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Seunghee Kim-Schulze
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Suprun
- Department of Population Health and Science Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael G Stewart
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Guajira P Thomas
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Angel Balmaseda
- Laboratorio Nacional de Virología, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Li Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mayte Suaréz-Fariñas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health and Science Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven M Wolinsky
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
43
|
Cerny T, Schwarz M, Schwarz U, Lemant J, Gérardin P, Keller E. The Range of Neurological Complications in Chikungunya Fever. Neurocrit Care 2018; 27:447-457. [PMID: 28741102 DOI: 10.1007/s12028-017-0413-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Chikungunya fever is a globally spreading mosquito-borne disease that shows an unexpected neurovirulence. Even though the neurological complications have been a major cause of intensive care unit admission and death, to date, there is no systematic analysis of their spectrum available. OBJECTIVE To review evidence of neurological manifestations in Chikungunya fever and map their epidemiology, clinical spectrum, pathomechanisms, diagnostics, therapies and outcomes. METHODS Case report and systematic review of the literature followed established guidelines. All cases found were assessed using a 5-step clinical diagnostic algorithm assigning categories A-C, category A representing the highest level of quality. Only A and B cases were considered for further analysis. After general analysis, cases were clustered according to geospatial criteria for subgroup analysis. RESULTS Thirty-six of 1196 studies were included, yielding 130 cases. Nine were ranked as category A (diagnosis of Neuro-Chikungunya probable), 55 as B (plausible), and 51 as C (disputable). In 15 cases, alternative diagnoses were more likely. Patient age distribution was bimodal with a mean of 49 years and a second peak in infants. Fifty percent of the cases occurred in patients <45 years with no reported comorbidity. Frequent diagnoses were encephalitis, optic neuropathy, neuroretinitis, and Guillain-Barré syndrome. Neurologic conditions showing characteristics of a direct viral pathomechanism showed a peak in infants and a second one in elder patients, and complications and neurologic sequelae were more frequent in these groups. Autoimmune-mediated conditions appeared mainly in patients over 20 years and tended to show longer latencies and better outcomes. Geospatial subgrouping of case reports from either India or Réunion revealed diverging phenotypic trends (Réunion: 88% direct viral vs. India: 81% autoimmune). CONCLUSIONS Direct viral forms of Neuro-Chikungunya seem to occur particularly in infants and elderly patients, while autoimmune forms have to be also considered in middle-aged, previously healthy patients, especially after an asymptomatic interval. This knowledge will help to identify future Neuro-Chikungunya cases and to improve outcome especially in autoimmune-mediated conditions. The genetics of Chikungunya virus might play a key role in determining the course of neuropathogenesis. With further research, this could prove diagnostically significant.
Collapse
Affiliation(s)
- T Cerny
- Neurointensive Care Unit, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - M Schwarz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - U Schwarz
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - J Lemant
- Intensive Care Unit, CHU de la Réunion, Saint Pierre, Réunion, France
| | - P Gérardin
- INSERM CIC 1410, CHU de la Réunion, Saint Pierre, Réunion, France.,CNRS 9192, INSERM U1187, IRD 249, CHU Réunion, Unité Mixte 134 Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CYROI, Université de La Réunion, Sainte-Clotilde, Réunion, France
| | - E Keller
- Neurointensive Care Unit, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
| |
Collapse
|
44
|
Abstract
The chikungunya virus (CHIKV) is transmitted by female Aedes aegypti and Aedes albopictus mosquitoes, mostly present in (sub)tropical regions. No antivirals are available to treat CHIKV infections. If antiviral drugs are proven efficient to treat CHIKV-infected patients, it will be pivotal to determine whether drug-resistant viruses can be transmitted from one human to another by their mosquito vectors. We orally infected Aedes aegypti mosquitoes with a blood meal containing wild-type or drug-resistant CHIKV variants (i.e., MADTPres CHIKV, with mutation in the nsP1 gene, and T-705res CHIKV, with mutation in the RNA-dependent RNA polymerase [RdRp] gene). Viral loads were quantified in bodies (infection), heads (dissemination), and saliva (transmission) of individual mosquitoes. The infection rate of the resistant viruses was similar to that of the wild-type virus. However, the dissemination of T-705res CHIKV was markedly decreased compared to wild-type and MADTPres CHIKV. Furthermore, T-705res CHIKV was only transmitted in the saliva at day 20 postinfection (p.i.), whereas transmission of wild-type CHIKV was observed at day 3 p.i. The attenuated phenotype of the T-705res virus was confirmed in mosquito cell culture, whereas the replication fitness in Vero cells was similar to that of the wild type. In bodies and heads of mosquitoes infected with the resistant variants, the resistant phenotype and genotype were retained. Also in the saliva, the resistant genotype of MADTPres CHIKV was maintained. Our results illustrate that the fitness of drug-resistant variants should be evaluated in both hosts to be able to select antiviral drugs with a limited risk for the spread of drug resistance by mosquitoes.IMPORTANCE Because of its global reemergence and unusual morbidities associated with infection, the chikungunya virus (CHIKV) has become a substantial public health problem. However, no antivirals are currently available to treat CHIKV infections. If antiviral drugs will prove to be efficient to treat CHIKV-infected patients, it will be essential to understand if drug-resistant viruses can be transmitted from one human to another by the mosquito. We therefore orally infected Aedes mosquitoes with drug-resistant CHIKV variants and determined the replication and transmission levels. One of the antiviral drug-resistant CHIKV variants could efficiently replicate and disseminate in both laboratory and field-collected mosquitoes. In addition, this variant retained its drug-resistant genotype in the saliva. In contrast, the other drug-resistant variant was markedly attenuated in mosquitoes. Our results illustrate that extra caution for drug resistance should be considered when developing an antiarbovirus antiviral in order to minimize the risk of spreading drug resistance by mosquitoes.
Collapse
|
45
|
Manic Episode After a Chikungunya Virus Infection in a Bipolar Patient Previously Stabilized With Valproic Acid. J Clin Psychopharmacol 2018; 38:395-397. [PMID: 29746334 DOI: 10.1097/jcp.0000000000000887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Jin J, Sherman MB, Chafets D, Dinglasan N, Lu K, Lee TH, Carlson LA, Muench MO, Simmons G. An attenuated replication-competent chikungunya virus with a fluorescently tagged envelope. PLoS Negl Trop Dis 2018; 12:e0006693. [PMID: 30063703 PMCID: PMC6086482 DOI: 10.1371/journal.pntd.0006693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/10/2018] [Accepted: 07/16/2018] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is the most common alphavirus infecting humans worldwide, causing acute and chronically debilitating arthralgia at a great economic expense. METHODOLOGY/PRINCIPAL FINDINGS To facilitate our study of CHIKV, we generated a mCherry tagged replication-competent chimeric virus, CHIKV 37997-mCherry. Single particle cryoEM demonstrated icosahedral organization of the chimeric virus and the display of mCherry proteins on virus surface. CHIKV 37997-mCherry is attenuated in both IFNαR knockout and wild-type mice. Strong anti-CHIKV and anti-mCherry antibody responses were induced in CHIKV 37997-mCherry infected mice. CONCLUSIONS/SIGNIFICANCE Our work suggests that chimeric alphaviruses displaying foreign antigen can serve as vaccines against both aphaviruses and other pathogens and diseases.
Collapse
Affiliation(s)
- Jing Jin
- Blood Systems Research Institute, San Francisco, CA, United States of America
- University of California, San Francisco, San Francisco, CA, United States of America
| | - Michael B. Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Daniel Chafets
- Blood Systems Research Institute, San Francisco, CA, United States of America
| | - Nuntana Dinglasan
- Blood Systems Research Institute, San Francisco, CA, United States of America
| | - Kai Lu
- Blood Systems Research Institute, San Francisco, CA, United States of America
| | - Tzong-Hae Lee
- Blood Systems Research Institute, San Francisco, CA, United States of America
| | - Lars-Anders Carlson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Marcus O. Muench
- Blood Systems Research Institute, San Francisco, CA, United States of America
- University of California, San Francisco, San Francisco, CA, United States of America
| | - Graham Simmons
- Blood Systems Research Institute, San Francisco, CA, United States of America
- University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
47
|
Couzigou B, Criquet-Hayot A, Javelle E, Tignac S, Mota E, Rigaud F, Alain A, Troisgros O, Pierre-Francois S, Abel S, Banydeen R, Cabié A. Occurrence of Chronic Stage Chikungunya in the General Population of Martinique during the First 2014 Epidemic: A Prospective Epidemiological Study. Am J Trop Med Hyg 2018; 99:182-190. [PMID: 29848408 DOI: 10.4269/ajtmh.17-0543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic stage chikungunya (CHIK), defined by persisting symptoms more than 3 months after initial diagnosis of acute infection, is frequent. However, its burden and impact have rarely been described prospectively in a general population during an ongoing epidemic in the Caribbean. From January 2014 to January 2015, a severe CHIK outbreak occurred in Martinique. Our objective was to describe epidemiological characteristics and outcomes of chronic stage CHIK in its local population. Participants, clinically diagnosed with probable CHIK infection, were included prospectively by general practitioners during the epidemic's peak from April to October 2014. All identified cases benefited from a follow-up phone call 3 months or more after initial diagnosis during which they were interrogated about persisting clinical signs, past and ongoing treatment, and quality of life. Five hundred and nine subjects participated in the study. Mean age at initial diagnosis was 43.2 ± 23.6 years with a female-male ratio of 1.98. Two hundred participants (39.3%) had probable chronic stage CHIK: 98.5% still experienced pain at least 3 months after acute infection, with 84.3% of reported joint pains; 21.2% were woken up by the pain; 47.2% felt depressed/anxious; and 31.3% experienced memory/concentration disorders. Resumption of daily activity and work was complicated for 55.8% and 36.2% of cases. Persistent impact on morbidity, health outcomes, psychological, and economic aspects further underline the crucial role of community-based medicine and the necessity of an evidence-based multidisciplinary approach toward chronic stage CHIK identification, management, and follow-up in this particular world region.
Collapse
Affiliation(s)
- Brieg Couzigou
- Department of General Medicine, University Hospital of Martinique, Fort de France, France
| | - Anne Criquet-Hayot
- Department of General Medicine, University Hospital of Martinique, Fort de France, France
| | - Emilie Javelle
- Department of Tropical and Infectious Diseases, Laveran Military Teaching Hospital, Marseille, France
| | - Sandrine Tignac
- Department of General Medicine, University Hospital of Martinique, Fort de France, France
| | - Edith Mota
- Department of General Medicine, University Hospital of Martinique, Fort de France, France
| | - François Rigaud
- Department of General Medicine, University Hospital of Martinique, Fort de France, France
| | - Alizé Alain
- Department of Critical Care and Emergency, University Hospital of Pointe-à-Pitre, Pointe-à-Pitre, France
| | - Odile Troisgros
- Rehabilitation Unit, University Hospital of Martinique, Le Lamentin, France
| | - Sandrine Pierre-Francois
- Department of Tropical and Infectious Diseases, University Hospital of Martinique, Fort-de-France, France
| | - Sylvie Abel
- Department of Tropical and Infectious Diseases, University Hospital of Martinique, Fort-de-France, France
| | - Rishika Banydeen
- Clinical Research Department, University Hospital of Martinique, Fort-de-France, France
| | - André Cabié
- Department of Tropical and Infectious Diseases, University Hospital of Martinique, Fort-de-France, France.,University of the French West Indies, EA4537; INSERM CIC1424, Fort-de-France, France
| |
Collapse
|
48
|
Zhang R, Kim AS, Fox JM, Nair S, Basore K, Klimstra WB, Rimkunas R, Fong RH, Lin H, Poddar S, Crowe JE, Doranz BJ, Fremont DH, Diamond MS. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 2018; 557:570-574. [PMID: 29769725 PMCID: PMC5970976 DOI: 10.1038/s41586-018-0121-3] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/03/2018] [Indexed: 11/09/2022]
Abstract
Arthritogenic alphaviruses comprise a group of enveloped RNA viruses that are transmitted to humans by mosquitoes and cause debilitating acute and chronic musculoskeletal disease 1 . The host factors required for alphavirus entry remain poorly characterized 2 . Here we use a genome-wide CRISPR-Cas9-based screen to identify the cell adhesion molecule Mxra8 as an entry mediator for multiple emerging arthritogenic alphaviruses, including chikungunya, Ross River, Mayaro and O'nyong nyong viruses. Gene editing of mouse Mxra8 or human MXRA8 resulted in reduced levels of viral infection of cells and, reciprocally, ectopic expression of these genes resulted in increased infection. Mxra8 bound directly to chikungunya virus particles and enhanced virus attachment and internalization into cells. Consistent with these findings, Mxra8-Fc fusion protein or anti-Mxra8 monoclonal antibodies blocked chikungunya virus infection in multiple cell types, including primary human synovial fibroblasts, osteoblasts, chondrocytes and skeletal muscle cells. Mutagenesis experiments suggest that Mxra8 binds to a surface-exposed region across the A and B domains of chikungunya virus E2 protein, which are a speculated site of attachment. Finally, administration of the Mxra8-Fc protein or anti-Mxra8 blocking antibodies to mice reduced chikungunya and O'nyong nyong virus infection as well as associated foot swelling. Pharmacological targeting of Mxra8 could form a strategy for mitigating infection and disease by multiple arthritogenic alphaviruses.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Arthur S Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Julie M Fox
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sharmila Nair
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Katherine Basore
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Hueylie Lin
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Subhajit Poddar
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Department of Pediatrics and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
49
|
Feibelman KM, Fuller BP, Li L, LaBarbera DV, Geiss BJ. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme. Antiviral Res 2018; 154:124-131. [PMID: 29680670 DOI: 10.1016/j.antiviral.2018.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/16/2018] [Accepted: 03/31/2018] [Indexed: 01/09/2023]
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus. Alphaviruses are positive strand RNA viruses that require a 5' cap structure to direct translation of the viral polyprotein and prevent degradation of the viral RNA genome by host cell nucleases. Formation of the 5' RNA cap is orchestrated by the viral protein nsP1, which binds GTP and provides the N-7 methyltransferase and guanylyltransferase activities that are necessary for cap formation. Viruses with aberrant nsP1 activity are unable to replicate effectively suggesting that nsP1 is a promising target for antiviral drug discovery. Given the absence of commercially available antiviral therapies for CHIKV, it is imperative to identify compounds that could be developed as potential therapeutics. This study details a high-throughput screen of 3051 compounds from libraries containing FDA-approved drugs, natural products, and known bioactives against CHIKV nsP1 using a fluorescence polarization-based GTP competition assay. Several small molecule hits from this screen were able to compete with GTP for the CHIKV nsP1 GTP binding site at low molar concentrations. Compounds were also evaluated with an orthogonal assay that measured the ability of nsP1 to perform the guanylation step of the capping reaction in the presence of inhibitor. In addition, live virus assays with CHIKV and closely related alphavirus, Sindbis virus, were used in conjunction with cell toxicity assays to determine the antiviral activity of compounds in cell culture. The naturally derived compound lobaric acid was found to inhibit CHIKV nsP1 GTP binding and guanylation as well as attenuate viral growth in vitro at both 24 hpi and 48 hpi in hamster BHK21 and human Huh 7 cell lines. These data indicate that development of lobaric acid and further exploration of CHIKV nsP1 as a drug target may aid in the progress of anti-alphaviral drug development strategies.
Collapse
Affiliation(s)
- Kristen M Feibelman
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Benjamin P Fuller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Linfeng Li
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel V LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian J Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
50
|
Gómez-SanJuan A, Gamo AM, Delang L, Pérez-Sánchez A, Amrun SN, Abdelnabi R, Jacobs S, Priego EM, Camarasa MJ, Jochmans D, Leyssen P, Ng LFP, Querat G, Neyts J, Pérez-Pérez MJ. Inhibition of the Replication of Different Strains of Chikungunya Virus by 3-Aryl-[1,2,3]triazolo[4,5- d]pyrimidin-7(6 H)-ones. ACS Infect Dis 2018; 4:605-619. [PMID: 29406692 DOI: 10.1021/acsinfecdis.7b00219] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The re-emergence of chikungunya virus (CHIKV) is a serious global health threat. CHIKV is an alphavirus that is transmitted to humans by Aedes mosquitoes; therefore, their wide distribution significantly contributes to the globalization of the disease. Unfortunately, no effective antiviral drugs are available. We have identified a series of 3-aryl-[1,2,3]triazolo[4,5- d]pyrimidin-7(6 H)-ones as selective inhibitors of CHIKV replication. New series of compounds have now been synthesized with the aim to improve their physicochemical properties and to potentiate the inhibitory activity against different CHIKV strains. Among these newly synthesized compounds modified at position 3 of the aryl ring, tetrahydropyranyl and N- t-butylpiperidine carboxamide derivatives have shown to elicit potent antiviral activity against different clinically relevant CHIKV isolates with 50% effective concentration (EC50) values ranging from 0.30 to 4.5 μM in Vero cells, as well as anti-CHIKV activity in human skin fibroblasts (EC50 = 0.1 μM), a clinically relevant cell system for CHIKV infection.
Collapse
Affiliation(s)
- Asier Gómez-SanJuan
- Instituto de Química Médica, IQM, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Ana-María Gamo
- Instituto de Química Médica, IQM, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Leen Delang
- KU Leuven−University
of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | | | - Siti Naqiah Amrun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 04-06 Immunos, Singapore 138648, Singapore
| | - Rana Abdelnabi
- KU Leuven−University
of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Sofie Jacobs
- KU Leuven−University
of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Eva-María Priego
- Instituto de Química Médica, IQM, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - María-José Camarasa
- Instituto de Química Médica, IQM, CSIC, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Dirk Jochmans
- KU Leuven−University
of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Pieter Leyssen
- KU Leuven−University
of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, 04-06 Immunos, Singapore 138648, Singapore
| | - Gilles Querat
- UMR “Émergence des Pathologies Virales” (EPV: Aix-Marseille Univ−IRD 190−Inserm 1207−EHESP−IHU Méditerranée Infection), 27 Bd Jean Moulin, 13005 Marseille, France
| | - Johan Neyts
- KU Leuven−University
of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | | |
Collapse
|