1
|
Natsrita P, Charoenkwan P, Shoombuatong W, Mahalapbutr P, Faksri K, Chareonsudjai S, Rungrotmongkol T, Pipattanaboon C. Machine-learning-assisted high-throughput identification of potent and stable neutralizing antibodies against all four dengue virus serotypes. Sci Rep 2024; 14:17165. [PMID: 39060292 PMCID: PMC11282219 DOI: 10.1038/s41598-024-67487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Several computational methods have been developed to identify neutralizing antibodies (NAbs) covering four dengue virus serotypes (DENV-1 to DENV-4); however, limitations of the dataset and the resulting performance remain. Here, we developed a new computational framework to predict potent and stable NAbs against DENV-1 to DENV-4 using only antibody (CDR-H3) and epitope sequences as input. Specifically, our proposed computational framework employed sequence-based ML and molecular dynamic simulation (MD) methods to achieve more accurate identification. First, we built a novel dataset (n = 1108) by compiling the interactions of CDR-H3 and epitope sequences with the half maximum inhibitory concentration (IC50) values, which represent neutralizing activities. Second, we achieved an accurately predictive ML model that showed high AUC values of 0.879 and 0.885 by tenfold cross-validation and independent tests, respectively. Finally, our computational framework could be applied to filter approximately 2.5 million unseen antibodies into two final candidates that showed strong and stable binding to all four serotypes. In addition, the most potent and stable candidate (1B3B9_V21) was evaluated for its development potential as a therapeutic agent by molecular docking and MD simulations. This study provides an antibody computational approach to facilitate the high-throughput identification of NAbs and accelerate the development of therapeutic antibodies.
Collapse
Affiliation(s)
- Piyatida Natsrita
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellent in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chonlatip Pipattanaboon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Palanichamy Kala M, St. John AL, Rathore APS. Dengue: Update on Clinically Relevant Therapeutic Strategies and Vaccines. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2023; 15:27-52. [PMID: 37124673 PMCID: PMC10111087 DOI: 10.1007/s40506-023-00263-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 05/02/2023]
Abstract
Dengue viruses (DENV) continue to circulate worldwide, resulting in a significant burden on human health. There are four antigenically distinct serotypes of DENV, an infection of which could result in a potentially life-threatening disease. Current treatment options are limited and rely on supportive care. Although one dengue vaccine is approved for dengue-immune individuals and has modest efficacy, there is still a need for therapeutics and vaccines that can reduce dengue morbidities and lower the infection burden. There have been recent advances in the development of promising drugs for the treatment of dengue. These include direct antivirals that can reduce virus replication as well as host-targeted drugs for reducing inflammation and/or vascular pathologies. There are also new vaccine candidates that are being evaluated for their safety and efficacy in preventing dengue disease. This review highlights nuances in the current standard-of-care treatment of dengue. We also discuss emerging treatment options, therapeutic drugs, and vaccines that are currently being pursued at various stages of preclinical and clinical development.
Collapse
Affiliation(s)
- Monica Palanichamy Kala
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 8 College Rd., Level 9, Singapore, 169857 Singapore
| | - Ashley L. St. John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 8 College Rd., Level 9, Singapore, 169857 Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
- Department of Pathology, Duke University Medical Center, 207 Research Rd, Durham, NC 27705 USA
| | - Abhay P. S. Rathore
- Department of Pathology, Duke University Medical Center, 207 Research Rd, Durham, NC 27705 USA
| |
Collapse
|
3
|
Li Y, Chen Z, Wu L, Dai L, Qi J, Chai Y, Li S, Wang Q, Tong Z, Ma S, Duan X, Ren S, Song R, Liang M, Liu W, Yan J, Gao GF. A neutralizing-protective supersite of human monoclonal antibodies for yellow fever virus. Innovation (N Y) 2022; 3:100323. [PMID: 36199277 PMCID: PMC9529537 DOI: 10.1016/j.xinn.2022.100323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
The yellow fever virus (YFV) is a life-threatening human pathogen. Owing to the lack of available therapeutics, non-vaccinated individuals are at risk. Here, we isolated eight human monoclonal antibodies that neutralize YFV infection. Five recognized overlapping epitopes and exhibited potent neutralizing activity. Two (YD6 and YD73) were ultra-potent and conferred complete protection against the lethal challenge of YFV as both prophylactics and therapeutics in a mouse model. Crystal structures revealed that YD6 engaged the YFV envelope protein in both pre- and post-fusion states, suggesting viral inhibition by a “double-lock” mechanism. The recognition determinants for YD6 and YD73 are clustered at the premembrane (prM)-binding site. Notably, antibodies targeting this site were present in minute traces in YFV-infected individuals but contributed significantly to neutralization, suggesting a vulnerable supersite of YFV. We provide two promising candidates for immunotherapy against YFV, and the supersite represents an ideal target for epitope-based vaccine design. Two monoclonal antibodies (mAbs, YD6 and YD73) have prophylaxis and therapy efficacy against the lethal challenge of YFV The crystal structures of mAbs bound to YFV envelope protein in pre-fusion and post-fusion conformations Two mAbs (YD6 and YD73) inhibit YFV infection at multiple steps The premembrane-binding region is a supersite recognized by YFV neutralizing mAbs
Collapse
Affiliation(s)
- Yan Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihai Chen
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lili Wu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shihua Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhou Tong
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sufang Ma
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomin Duan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuning Ren
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Rui Song
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Mifang Liang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
- Corresponding author
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
- Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author
| |
Collapse
|
4
|
Yang B, Meng R, Feng C, Huang J, Li Q, Wang X, Zhang D. An Antibody Neutralization Determinant on Domain III and the First α-Helical Domain in the Stem-Anchor Region of Tembusu Virus Envelope Protein. THE JOURNAL OF IMMUNOLOGY 2022; 209:684-695. [DOI: 10.4049/jimmunol.2200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Previous studies identified three neutralizing epitopes on domains I, II, and III of the Tembusu virus (TMUV) envelope (E). More evidence is needed to understand the molecular basis of Ab-mediated neutralization and protection against TMUV. In this study, we observed a neutralizing mAb, 6C8, that neutralized TMUV infection primarily by inhibiting cell attachment. In immunofluorescence assays, 6C8 recognized the premembrane and E proteins coexpressed in HEK-293T cells, but failed to react with premembrane or E expressed individually. Epitope mapping identified nine E protein residues positioned on BC/EF loops and F/G strands in domain III and the first α-helical domain in the stem region. Further investigation with mutant viruses showed that 6C8 pressure resulted in mutations at residues 330 of BC loop and 409 of the first α-helical domain, although 6C8 only exhibited a moderate neutralizing activity in BHK-21 cells and a weak protective activity in BALB/c mice and Shaoxing duck models. Mutations A330S and T409M conferred high- and low-level 6C8 resistance, respectively, whereas the combination of A330S and T409M mutations conferred moderate-level 6C8 resistance. As a result, a quasispecies comprising three groups of antigenic variants appeared in BHK-21 cell–derived viral stocks after repeated passages of TMUV strain Y in the presence of 6C8 treatment. Taken together, these findings have raised a concern about Ab-induced antigenic variations in vivo, and they have revealed information concerning the conformational structure of the 6C8 epitope and its role in constraint on antigenic variations. The present work contributes to a better understanding of the complexity of the TMUV immunogen.
Collapse
Affiliation(s)
- Baolin Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runze Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chonglun Feng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Huang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiong Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Cruz-Arreola O, Orduña-Diaz A, Domínguez F, Reyes-Leyva J, Vallejo-Ruiz V, Domínguez-Ramírez L, Santos-López G. In silico testing of flavonoids as potential inhibitors of protease and helicase domains of dengue and Zika viruses. PeerJ 2022; 10:e13650. [PMID: 35945938 PMCID: PMC9357371 DOI: 10.7717/peerj.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
Background Dengue and Zika are two major vector-borne diseases. Dengue causes up to 25,000 deaths and nearly a 100 million cases worldwide per year, while the incidence of Zika has increased in recent years. Although Zika has been associated to fetal microcephaly and Guillain-Barré syndrome both it and dengue have common clinical symptoms such as severe headache, retroocular pain, muscle and join pain, nausea, vomiting, and rash. Currently, vaccines have been designed and antivirals have been identified for these diseases but there still need for more options for treatment. Our group previously obtained some fractions from medicinal plants that blocked dengue virus (DENV) infection in vitro. In the present work, we explored the possible targets by molecular docking a group of molecules contained in the plant fractions against DENV and Zika virus (ZIKV) NS3-helicase (NS3-hel) and NS3-protease (NS3-pro) structures. Finally, the best ligands were evaluated by molecular dynamic simulations. Methods To establish if these molecules could act as wide spectrum inhibitors, we used structures from four DENV serotypes and from ZIKV. ADFR 1.2 rc1 software was used for docking analysis; subsequently molecular dynamics analysis was carried out using AMBER20. Results Docking suggested that 3,5-dicaffeoylquinic acid (DCA01), quercetin 3-rutinoside (QNR05) and quercetin 3,7-diglucoside (QND10) can tightly bind to both NS3-hel and NS3-pro. However, after a molecular dynamics analysis, tight binding was not maintained for NS3-hel. In contrast, NS3-pro from two dengue serotypes, DENV3 and DENV4, retained both QNR05 and QND10 which converged near the catalytic site. After the molecular dynamics analysis, both ligands presented a stable trajectory over time, in contrast to DCA01. These findings allowed us to work on the design of a molecule called MOD10, using the QND10 skeleton to improve the interaction in the active site of the NS3-pro domain, which was verified through molecular dynamics simulation, turning out to be better than QNR05 and QND10, both in interaction and in the trajectory. Discussion Our results suggests that NS3-hel RNA empty binding site is not a good target for drug design as the binding site located through docking is too big. However, our results indicate that QNR05 and QND10 could block NS3-pro activity in DENV and ZIKV. In the interaction with these molecules, the sub-pocket-2 remained unoccupied in NS3-pro, leaving opportunity for improvement and drug design using the quercetin scaffold. The analysis of the NS3-pro in complex with MOD10 show a molecule that exerts contact with sub-pockets S1, S1', S2 and S3, increasing its affinity and apparent stability on NS3-pro.
Collapse
Affiliation(s)
- Omar Cruz-Arreola
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Atlixco, PUEBLA, México,Instrumentación Analítica y Biosensores, Centro de Investigación en Biotecnología Aplicada (CIBA), Instituto Politécnico Nacional, Tepetitla de Lardizábal, Tlaxcala, México
| | - Abdu Orduña-Diaz
- Instrumentación Analítica y Biosensores, Centro de Investigación en Biotecnología Aplicada (CIBA), Instituto Politécnico Nacional, Tepetitla de Lardizábal, Tlaxcala, México
| | - Fabiola Domínguez
- Laboratorio de Biotecnología de Productos Naturales, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Atlixco, Puebla, Mexico
| | - Julio Reyes-Leyva
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Atlixco, PUEBLA, México
| | - Verónica Vallejo-Ruiz
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Atlixco, PUEBLA, México
| | - Lenin Domínguez-Ramírez
- Department of Chemical and Biological Sciences, School of Sciences, Universidad de las Américas Puebla, San Andrés Cholula, Puebla, Mexico
| | - Gerardo Santos-López
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Atlixco, PUEBLA, México
| |
Collapse
|
6
|
Sharma A, Zhang X, Dejnirattisai W, Dai X, Gong D, Wongwiwat W, Duquerroy S, Rouvinski A, Vaney MC, Guardado-Calvo P, Haouz A, England P, Sun R, Zhou ZH, Mongkolsapaya J, Screaton GR, Rey FA. The epitope arrangement on flavivirus particles contributes to Mab C10's extraordinary neutralization breadth across Zika and dengue viruses. Cell 2021; 184:6052-6066.e18. [PMID: 34852239 PMCID: PMC8724787 DOI: 10.1016/j.cell.2021.11.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 10/26/2022]
Abstract
The human monoclonal antibody C10 exhibits extraordinary cross-reactivity, potently neutralizing Zika virus (ZIKV) and the four serotypes of dengue virus (DENV1-DENV4). Here we describe a comparative structure-function analysis of C10 bound to the envelope (E) protein dimers of the five viruses it neutralizes. We demonstrate that the C10 Fab has high affinity for ZIKV and DENV1 but not for DENV2, DENV3, and DENV4. We further show that the C10 interaction with the latter viruses requires an E protein conformational landscape that limits binding to only one of the three independent epitopes per virion. This limited affinity is nevertheless counterbalanced by the particle's icosahedral organization, which allows two different dimers to be reached by both Fab arms of a C10 immunoglobulin. The epitopes' geometric distribution thus confers C10 its exceptional neutralization breadth. Our results highlight the importance not only of paratope/epitope complementarity but also the topological distribution for epitope-focused vaccine design.
Collapse
Affiliation(s)
- Arvind Sharma
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Xiaokang Zhang
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France; Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518055, China
| | - Wanwisa Dejnirattisai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xinghong Dai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wiyada Wongwiwat
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stéphane Duquerroy
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France; Université Paris-Saclay, Faculté des Sciences, F-91405 Orsay, France
| | - Alexander Rouvinski
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Marie-Christine Vaney
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Pablo Guardado-Calvo
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Université de Paris, CNRS UMR 3528, Center for Technological Resources and Research, 75015 Paris, France
| | - Patrick England
- Institut Pasteur, Université de Paris, CNRS UMR 3528, Center for Technological Resources and Research, 75015 Paris, France
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Felix A Rey
- Institut Pasteur, Université de Paris, CNRS UMR3569, Unité de Virologie Structurale, 75015 Paris, France.
| |
Collapse
|
7
|
Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, Desai C, Handley SA, Dowd KA, Amaro-Carambot E, Cardosa MJ, Sariol CA, Kallas EG, Sékaly RP, Vasilakis N, Fremont DH, Whitehead SS, Pierson TC, Diamond MS. Implications of a highly divergent dengue virus strain for cross-neutralization, protection, and vaccine immunity. Cell Host Microbe 2021; 29:1634-1648.e5. [PMID: 34610295 PMCID: PMC8595868 DOI: 10.1016/j.chom.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 01/29/2023]
Abstract
Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
Collapse
Affiliation(s)
- Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Brittany K Smith
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - John M Errico
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - David N Gordon
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Emma S Winkler
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Chandni Desai
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Scott A Handley
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Kimberly A Dowd
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Emerito Amaro-Carambot
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - M Jane Cardosa
- Institute of Health and Community Medicine, Universiti Sarawak Malaysia (UNIMAS), Kota Samarahan, Sarawak 94300, Malaysia; Integrated Research Associates, San Rafael, CA 94903, USA
| | - Carlos A Sariol
- Unit of Comparative Medicine, Caribbean Primate Research Center, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936-5067, USA
| | - Esper G Kallas
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Rafick-Pierre Sékaly
- Department of Microbiology and Immunology, Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; The Andrew M. Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | - Stephen S Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; The Andrew M. Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110-1010, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO 63110-1010, USA.
| |
Collapse
|
8
|
VanBlargan LA, Milutinovic PS, Goo L, DeMaso CR, Durbin AP, Whitehead SS, Pierson TC, Dowd KA. Dengue Virus Serotype 1 Conformational Dynamics Confers Virus Strain-Dependent Patterns of Neutralization by Polyclonal Sera. J Virol 2021; 95:e0095621. [PMID: 34549976 PMCID: PMC8577358 DOI: 10.1128/jvi.00956-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Dengue virus cocirculates globally as four serotypes (DENV1 to -4) that vary up to 40% at the amino acid level. Viral strains within a serotype further cluster into multiple genotypes. Eliciting a protective tetravalent neutralizing antibody response is a major goal of vaccine design, and efforts to characterize epitopes targeted by polyclonal mixtures of antibodies are ongoing. Previously, we identified two E protein residues (126 and 157) that defined the serotype-specific antibody response to DENV1 genotype 4 strain West Pac-74. DENV1 and DENV2 human vaccine sera neutralized DENV1 viruses incorporating these substitutions equivalently. In this study, we explored the contribution of these residues to the neutralization of DENV1 strains representing distinct genotypes. While neutralization of the genotype 1 strain TVP2130 was similarly impacted by mutation at E residues 126 and 157, mutation of these residues in the genotype 2 strain 16007 did not markedly change neutralization sensitivity, indicating the existence of additional DENV1 type-specific antibody targets. The accessibility of antibody epitopes can be strongly influenced by the conformational dynamics of virions and modified allosterically by amino acid variation. We found that changes at E domain II residue 204, shown previously to impact access to a poorly accessible E domain III epitope, impacted sensitivity of DENV1 16007 to neutralization by vaccine immune sera. Our data identify a role for minor sequence variation in changes to the antigenic structure that impacts antibody recognition by polyclonal immune sera. Understanding how the many structures sampled by flaviviruses influence antibody recognition will inform the design and evaluation of DENV immunogens. IMPORTANCE Dengue virus (DENV) is an important human pathogen that cocirculates globally as four serotypes. Because sequential infection by different DENV serotypes is associated with more severe disease, eliciting a protective neutralizing antibody response against all four serotypes is a major goal of vaccine efforts. Here, we report that neutralization of DENV serotype 1 by polyclonal antibody is impacted by minor sequence variation among virus strains. Our data suggest that mechanisms that control neutralization sensitivity extend beyond variation within antibody epitopes but also include the influence of single amino acids on the ensemble of structural states sampled by structurally dynamic virions. A more detailed understanding of the antibody targets of DENV-specific polyclonal sera and factors that govern their access to antibody has important implications for flavivirus antigen design and evaluation.
Collapse
Affiliation(s)
- Laura A. VanBlargan
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Biological Sciences Graduate Program, University of Maryland, College Park, Maryland, USA
| | - Pavle S. Milutinovic
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Leslie Goo
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christina R. DeMaso
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Anna P. Durbin
- Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stephen S. Whitehead
- Arbovirus Vaccine Research Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kimberly A. Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Protective Zika vaccines engineered to eliminate enhancement of dengue infection via immunodominance switch. Nat Immunol 2021; 22:958-968. [PMID: 34267374 DOI: 10.1038/s41590-021-00966-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/26/2021] [Indexed: 11/08/2022]
Abstract
Antibody-dependent enhancement (ADE) is an important safety concern for vaccine development against dengue virus (DENV) and its antigenically related Zika virus (ZIKV) because vaccine may prime deleterious antibodies to enhance natural infections. Cross-reactive antibodies targeting the conserved fusion loop epitope (FLE) are known as the main sources of ADE. We design ZIKV immunogens engineered to change the FLE conformation but preserve neutralizing epitopes. Single vaccination conferred sterilizing immunity against ZIKV without ADE of DENV-serotype 1-4 infections and abrogated maternal-neonatal transmission in mice. Unlike the wild-type-based vaccine inducing predominately cross-reactive ADE-prone antibodies, B cell profiling revealed that the engineered vaccines switched immunodominance to dispersed patterns without DENV enhancement. The crystal structure of the engineered immunogen showed the dimeric conformation of the envelope protein with FLE disruption. We provide vaccine candidates that will prevent both ZIKV infection and infection-/vaccination-induced DENV ADE.
Collapse
|
10
|
Kulkarni R, Shrivastava S, Patil HP, Tiraki D, Mishra AC, Arankalle VA. Correlation of serostatus and viraemia levels among Indian dengue patients at the time of first diagnosis. Trans R Soc Trop Med Hyg 2021; 114:513-520. [PMID: 32484863 DOI: 10.1093/trstmh/traa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/03/2020] [Accepted: 04/07/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dengue is a public health problem worldwide. Therapeutic monoclonal antibodies (MAbs) against dengue virus (DENV) are likely to be available soon. In view of the feasibility issues pertaining to pretreatment viraemia quantitation for therapy decisions, we conducted this study for investigation of a correlation between patient serostatus (NS1/immunoglobulin M [IgM]/IgG) and viraemia levels among Indian dengue patients at the time of first diagnosis. METHODS The study included 297 serum samples from dengue patients in Pune, India. The samples were tested for NS1, IgM and IgG (capture enzyme-linked immunosorbent assay [ELISA] for identifying secondary dengue) using Panbio ELISAs. Quantitation of viraemia was conducted using an NS1 ELISA-based 50% tissue culture infectious dose (TCID50) test in Vero cells. RESULTS Viraemia was detectable only among NS1-positive patients (n = 229, range 0.5-8.3 logTCID50/ml) with a mean titre of 1.9 logTCID50/ml. Among the NS1-positive patients, DENV titres were higher in IgM-negative than IgM-positive patients (p < 0.0001) and in primary (IgG < 18 Panbio units) versus secondary (IgG > 22 Panbio units) dengue patients (p = 0.002). Virus titres were higher during the first 3 days of illness and decreased later (p = 0.005). CONCLUSIONS The study provides a range of infectious DENV titres in relation to serologic status among dengue patients in India. The data suggest the possibility of using serological markers (NS1/IgM) as a basis for treatment decisions.
Collapse
Affiliation(s)
- Ruta Kulkarni
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, India
| | - Shubham Shrivastava
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, India
| | - Harshad P Patil
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, India
| | - Divya Tiraki
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, India
| | - Akhilesh Chandra Mishra
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, India
| | - Vidya A Arankalle
- Department of Communicable Diseases, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Katraj-Dhankawadi, Pune 411043, India
| |
Collapse
|
11
|
Kotaki T, Kurosu T, Grinyo-Escuer A, Davidson E, Churrotin S, Okabayashi T, Puiprom O, Mulyatno KC, Sucipto TH, Doranz BJ, Ono KI, Soegijanto S, Kameoka M. An affinity-matured human monoclonal antibody targeting fusion loop epitope of dengue virus with in vivo therapeutic potency. Sci Rep 2021; 11:12987. [PMID: 34155267 PMCID: PMC8217507 DOI: 10.1038/s41598-021-92403-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/08/2021] [Indexed: 11/26/2022] Open
Abstract
Dengue virus (DENV), from the genus flavivirus of the family flaviviridae, causes serious health problems globally. Human monoclonal antibodies (HuMAb) can be used to elucidate the mechanisms of neutralization and antibody-dependent enhancement (ADE) of DENV infections, leading to the development of a vaccine or therapeutic antibodies. Here, we generated eight HuMAb clones from an Indonesian patient infected with DENV. These HuMAbs exhibited the typical characteristics of weak neutralizing antibodies including high cross-reactivity with other flaviviruses and targeting of the fusion loop epitope (FLE). However, one of the HuMAbs, 3G9, exhibited strong neutralization (NT50 < 0.1 μg/ml) and possessed a high somatic hyper-mutation rate of the variable region, indicating affinity-maturation. Administration of this antibody significantly prolonged the survival of interferon-α/β/γ receptor knockout C57BL/6 mice after a lethal DENV challenge. Additionally, Fc-modified 3G9 that had lost their in vitro ADE activity showed enhanced therapeutic potency in vivo and competed strongly with an ADE-prone antibody in vitro. Taken together, the affinity-matured FLE-targeting antibody 3G9 exhibits promising features for therapeutic application including a low NT50 value, potential for treatment of various kinds of mosquito-borne flavivirus infection, and suppression of ADE. This study demonstrates the therapeutic potency of affinity-matured FLE-targeting antibodies.
Collapse
Affiliation(s)
- Tomohiro Kotaki
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan.
- Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | | | | | - Siti Churrotin
- Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Tamaki Okabayashi
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Orapim Puiprom
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kris Cahyo Mulyatno
- Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Teguh Hari Sucipto
- Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | | | - Ken-Ichiro Ono
- Medical & Biological Laboratories Co., Ltd., Tokyo, Japan
| | - Soegeng Soegijanto
- Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Masanori Kameoka
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| |
Collapse
|
12
|
Rouers A, Chng MHY, Lee B, Rajapakse MP, Kaur K, Toh YX, Sathiakumar D, Loy T, Thein TL, Lim VW, Singhal A, Yeo TW, Leo YS, Vora KA, Casimiro D, Lim B, Tucker-Kellogg L, Rivino L, Newell EW, Fink K. Immune cell phenotypes associated with disease severity and long-term neutralizing antibody titers after natural dengue virus infection. CELL REPORTS MEDICINE 2021; 2:100278. [PMID: 34095880 PMCID: PMC8149372 DOI: 10.1016/j.xcrm.2021.100278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/08/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
Prior immunological exposure to dengue virus can be both protective and disease-enhancing during subsequent infections with different dengue virus serotypes. We provide here a systematic, longitudinal analysis of B cell, T cell, and antibody responses in the same patients. Antibody responses as well as T and B cell activation differentiate primary from secondary responses. Hospitalization is associated with lower frequencies of activated, terminally differentiated T cells and higher percentages of effector memory CD4 T cells. Patients with more severe disease tend to have higher percentages of plasmablasts. This does not translate into long-term antibody titers, since neutralizing titers after 6 months correlate with percentages of specific memory B cells, but not with acute plasmablast activation. Overall, our unbiased analysis reveals associations between cellular profiles and disease severity, opening opportunities to study immunopathology in dengue disease and the potential predictive value of these parameters.
Collapse
Affiliation(s)
- Angeline Rouers
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- A∗STAR ID Labs, Agency for Science, Technology and Research, Singapore 138468, Singapore
| | - Melissa Hui Yen Chng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Menaka P. Rajapakse
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Kaval Kaur
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Ying Xiu Toh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Durgalakshmi Sathiakumar
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Thomas Loy
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- A∗STAR ID Labs, Agency for Science, Technology and Research, Singapore 138468, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tun-Linn Thein
- National Centre for Infectious Diseases, Singapore 308442, Singapore
| | - Vanessa W.X. Lim
- National Centre for Infectious Diseases, Singapore 308442, Singapore
| | - Amit Singhal
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- A∗STAR ID Labs, Agency for Science, Technology and Research, Singapore 138468, Singapore
- Lee Kong Chian School of Medicine, Singapore 308232, Singapore
| | - Tsin Wen Yeo
- Lee Kong Chian School of Medicine, Singapore 308232, Singapore
- Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Yee-Sin Leo
- National Centre for Infectious Diseases, Singapore 308442, Singapore
- Lee Kong Chian School of Medicine, Singapore 308232, Singapore
- Tan Tock Seng Hospital, Singapore 308433, Singapore
- Yong Loo Lin School of Medicine, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, Singapore 117549, Singapore
| | - Kalpit A. Vora
- Department of Infectious Diseases and Vaccines Research, Merck, Kenilworth, NJ, USA
| | - Danilo Casimiro
- Department of Infectious Diseases and Vaccines Research, Merck, Kenilworth, NJ, USA
| | - Bing Lim
- Merck Sharp & Dohme Translational Medicine Research Centre, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Lisa Tucker-Kellogg
- Cancer and Stem Cell Biology, and Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Laura Rivino
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Evan W. Newell
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Corresponding author
| |
Collapse
|
13
|
Tsuji I, Dominguez D, Egan MA, Dean HJ. Development of a novel assay to assess the avidity of dengue virus-specific antibodies elicited in response to a tetravalent dengue vaccine. J Infect Dis 2021; 225:1533-1544. [PMID: 33534885 PMCID: PMC9071338 DOI: 10.1093/infdis/jiab064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/29/2021] [Indexed: 11/28/2022] Open
Abstract
Antibody affinity maturation is a critical step in development of functional antiviral immunity; however, accurate measurement of affinity maturation of polyclonal serum antibody responses to particulate antigens such as virions is challenging. We describe a novel avidity assay employing biolayer interferometry and dengue virus-like particles. After validation using anti-dengue monoclonal antibodies, the assay was used to assess avidity of antibody responses to a tetravalent dengue vaccine candidate (TAK-003) in children, adolescents, and adults during two phase 2 clinical trials conducted in dengue-endemic regions. Vaccination increased avidity index and avidity remained high through 1 year postvaccination. Neutralizing antibody titers and avidity index did not correlate overall; however, a correlation was observed between neutralizing antibody titer and avidity index in those subjects with the highest degree of antibody affinity maturation. Therefore, vaccination with TAK-003 stimulates polyclonal affinity maturation and functional antibody responses, including neutralizing antibodies.
Collapse
|
14
|
Tortorici MA, Beltramello M, Lempp FA, Pinto D, Dang HV, Rosen LE, McCallum M, Bowen J, Minola A, Jaconi S, Zatta F, De Marco A, Guarino B, Bianchi S, Lauron EJ, Tucker H, Zhou J, Peter A, Havenar-Daughton C, Wojcechowskyj JA, Case JB, Chen RE, Kaiser H, Montiel-Ruiz M, Meury M, Czudnochowski N, Spreafico R, Dillen J, Ng C, Sprugasci N, Culap K, Benigni F, Abdelnabi R, Foo SYC, Schmid MA, Cameroni E, Riva A, Gabrieli A, Galli M, Pizzuto MS, Neyts J, Diamond MS, Virgin HW, Snell G, Corti D, Fink K, Veesler D. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science 2020; 370:950-957. [PMID: 32972994 PMCID: PMC7857395 DOI: 10.1126/science.abe3354] [Citation(s) in RCA: 433] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022]
Abstract
Efficient therapeutic options are needed to control the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has caused more than 922,000 fatalities as of 13 September 2020. We report the isolation and characterization of two ultrapotent SARS-CoV-2 human neutralizing antibodies (S2E12 and S2M11) that protect hamsters against SARS-CoV-2 challenge. Cryo-electron microscopy structures show that S2E12 and S2M11 competitively block angiotensin-converting enzyme 2 (ACE2) attachment and that S2M11 also locks the spike in a closed conformation by recognition of a quaternary epitope spanning two adjacent receptor-binding domains. Antibody cocktails that include S2M11, S2E12, or the previously identified S309 antibody broadly neutralize a panel of circulating SARS-CoV-2 isolates and activate effector functions. Our results pave the way to implement antibody cocktails for prophylaxis or therapy, circumventing or limiting the emergence of viral escape mutants.
Collapse
MESH Headings
- Amino Acid Motifs/immunology
- Angiotensin-Converting Enzyme 2
- Animals
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/isolation & purification
- Betacoronavirus/immunology
- CHO Cells
- COVID-19
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Cricetinae
- Cricetulus
- Cryoelectron Microscopy
- HEK293 Cells
- Humans
- Immunodominant Epitopes/chemistry
- Immunodominant Epitopes/immunology
- Microscopy, Electron
- Pandemics/prevention & control
- Peptidyl-Dipeptidase A/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/therapy
- Protein Domains/immunology
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/antagonists & inhibitors
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
Collapse
Affiliation(s)
- M Alejandra Tortorici
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institut Pasteur and CNRS UMR 3569, Unité de Virologie Structurale, Paris, France
| | - Martina Beltramello
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | - Dora Pinto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Ha V Dang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - John Bowen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrea Minola
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabrizia Zatta
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Anna De Marco
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Barbara Guarino
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Siro Bianchi
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - Jiayi Zhou
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Alessia Peter
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | | | | | - James Brett Case
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rita E Chen
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | - Josh Dillen
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Cindy Ng
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Nicole Sprugasci
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Katja Culap
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Fabio Benigni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Rana Abdelnabi
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | - Shi-Yan Caroline Foo
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | - Michael A Schmid
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Agostino Riva
- III Division of Infectious Diseases, Luigi Sacco University Hospital, University of Milan, Italy
| | - Arianna Gabrieli
- III Division of Infectious Diseases, Luigi Sacco University Hospital, University of Milan, Italy
| | - Massimo Galli
- III Division of Infectious Diseases, Luigi Sacco University Hospital, University of Milan, Italy
| | - Matteo S Pizzuto
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Johan Neyts
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Belgium
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Herbert W Virgin
- Vir Biotechnology, San Francisco, CA 94158, USA
- Washington University School of Medicine, St. Louis, MO, USA
- UTSouthwestern Medical Center, Dallas, TX, USA
| | | | - Davide Corti
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Katja Fink
- Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
15
|
Lv J, Liu X, Cui S, Yang L, Qu S, Meng R, Yang B, Feng C, Wang X, Zhang D. The Neutralizing Antibody Response Elicited by Tembusu Virus Is Affected Dramatically by a Single Mutation in the Stem Region of the Envelope Protein. Front Microbiol 2020; 11:585194. [PMID: 33193231 PMCID: PMC7642334 DOI: 10.3389/fmicb.2020.585194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
Tembusu virus (TMUV) is a mosquito-borne flavivirus that most commonly affects adult breeder and layer ducks. However, a TMUV-caused neurological disease has also been found in ducklings below 7 weeks of age, highlighting the need to develop a safe vaccine for young ducklings. In this study, a plaque-purified PS TMUV strain was attenuated by serial passage in BHK-21 cells. Using 1-day-old Pekin ducklings as a model, the virus was confirmed to be attenuated sufficiently after 180 passages, whereas the neutralizing antibody response elicited by the 180th passage virus (PS180) was substantially impaired compared with PS. The findings suggest that sufficient attenuation results in loss of immunogenicity in the development of the live-attenuated TMUV vaccine. Comparative sequence analysis revealed that PS180 acquired one mutation (V41M) in prM and four mutations (T70A, Y176H, K313R, and F408L) in the envelope (E) protein. To identify the amino acid substitution(s) associated with loss of immunogenicity of PS180, we rescued parental viruses, rPS and rPS180, and produced mutant viruses, rPS180-M41V, rPS180-A70T, rPS180-H176Y, rPS180-R313K, rPS180-L408F, and rPS180-M5, which contained residue 41V in prM, residues 70T, 176Y, 313K, and 408F in E, and combination of the five residues, respectively, of PS in the backbone of the rPS180 genome. The neutralizing antibody response elicited by rPS180-L408F and rPS180-M5 was significantly higher than those by other mutant viruses and comparable to that by rPS. Furthermore, we produced mutant virus rPS-F408L, which contained residue 408L of PS180 in the backbone of the rPS genome. The F408L mutation conferred significantly decreased neutralizing antibody response to rPS-F408L, which was comparable to that elicited by rPS180. Based on homologous modeling, residue 408 was predicted to be located within the first helical domain of the stem region of the E protein (EH1). Together, these data demonstrate that a single mutation within the EH1 domain exerts a dramatical impact on the TMUV neutralizing antibody response. The present work may enhance our understanding of molecular basis of the TMUV neutralizing antibody response, and provides an important step for the development of a safe and efficient live-attenuated TMUV vaccine.
Collapse
Affiliation(s)
- Junfeng Lv
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoxiao Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shulin Cui
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lixin Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shenghua Qu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runze Meng
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Baolin Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chonglun Feng
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyan Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Production and immunogenicity of Fubc subunit protein redesigned from DENV envelope protein. Appl Microbiol Biotechnol 2020; 104:4333-4344. [PMID: 32232529 PMCID: PMC7223326 DOI: 10.1007/s00253-020-10541-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/25/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Dengue virus (DENV) is a vector-borne human pathogen that usually causes dengue fever; however, sometime it leads to deadly complications such as dengue with warning signs (DWS+) and severe dengue (SD). Several studies have shown that fusion (Fu) and bc loop of DENV envelope domain II are highly conserved and consist some of the most dominant antigenic epitopes. Therefore, in this study, Fu and bc loops were joined together to develop a short recombinant protein as an alternative of whole DENV envelope protein, and its immunogenic potential as fusion peptide was estimated. For de novo designing of the antigen, Fu and bc peptides were linked with an optimised linker so that the three dimensional conformation was maintained as it is in DENV envelope protein. The redesigned Fubc protein was expressed in E. coli and purified. Subsequently, structural integrity of the purified protein was verified by CD spectroscopy. To characterise immune responses against recombinant Fubc protein, BALB/c mice were subcutaneously injected with emulsified antigen preparation. It was observed by ELISA that Fubc fusion protein elicited higher serum IgG antibody response either in the presence or in absence of Freund’s adjuvant in comparison to the immune response of Fu and bc peptides separately. Furthermore, the binding of Fubc protein with mice antisera was validated by SPR analysis. These results suggest that Fu and bc epitope-based recombinant fusion protein could be a potential candidate towards the development of the effective subunit vaccine against DENV.
Collapse
|
17
|
Hurtado-Monzón AM, Cordero-Rivera CD, Farfan-Morales CN, Osuna-Ramos JF, De Jesús-González LA, Reyes-Ruiz JM, Del Ángel RM. The role of anti-flavivirus humoral immune response in protection and pathogenesis. Rev Med Virol 2020; 30:e2100. [PMID: 32101633 DOI: 10.1002/rmv.2100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Flavivirus infections are a public health threat in the world that requires the development of safe and effective vaccines. Therefore, the understanding of the anti-flavivirus humoral immune response is fundamental to future studies on flavivirus pathogenesis and the design of anti-flavivirus therapeutics. This review aims to provide an overview of the current understanding of the function and involvement of flavivirus proteins in the humoral immune response as well as the ability of the anti-envelope (anti-E) antibodies to interfere (neutralizing antibodies) or not (non-neutralizing antibodies) with viral infection, and how they can, in some circumstances enhance dengue virus infection on Fc gamma receptor (FcγR) bearing cells through a mechanism known as antibody-dependent enhancement (ADE). Thus, the dual role of the antibodies against E protein poses a formidable challenge for vaccine development. Also, we discuss the roles of antibody binding stoichiometry (the concentration, affinity, or epitope recognition) in the neutralization of flaviviruses and the "breathing" of flavivirus virions in the humoral immune response. Finally, the relevance of some specific antibodies in the design and improvement of effective vaccines is addressed.
Collapse
Affiliation(s)
- Arianna Mahely Hurtado-Monzón
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Carlos Daniel Cordero-Rivera
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Carlos Noe Farfan-Morales
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Juan Fidel Osuna-Ramos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Luis Adrián De Jesús-González
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - José Manuel Reyes-Ruiz
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| | - Rosa María Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Ciudad de Mexico, Mexico
| |
Collapse
|
18
|
Malafa S, Medits I, Aberle JH, Aberle SW, Haslwanter D, Tsouchnikas G, Wölfel S, Huber KL, Percivalle E, Cherpillod P, Thaler M, Roßbacher L, Kundi M, Heinz FX, Stiasny K. Impact of flavivirus vaccine-induced immunity on primary Zika virus antibody response in humans. PLoS Negl Trop Dis 2020; 14:e0008034. [PMID: 32017766 PMCID: PMC7021315 DOI: 10.1371/journal.pntd.0008034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/14/2020] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
Background Zika virus has recently spread to South- and Central America, causing congenital birth defects and neurological complications. Many people at risk are flavivirus pre-immune due to prior infections with other flaviviruses (e.g. dengue virus) or flavivirus vaccinations. Since pre-existing cross-reactive immunity can potentially modulate antibody responses to Zika virus infection and may affect the outcome of disease, we analyzed fine-specificity as well as virus-neutralizing and infection-enhancing activities of antibodies induced by a primary Zika virus infection in flavivirus-naïve as well as yellow fever- and/or tick-borne encephalitis-vaccinated individuals. Methodology Antibodies in sera from convalescent Zika patients with and without vaccine-induced immunity were assessed by ELISA with respect to Zika virus-specificity and flavivirus cross-reactivity. Functional analyses included virus neutralization and infection-enhancement. The contribution of IgM and cross-reactive antibodies to these properties was determined by depletion experiments. Principal findings Pre-existing flavivirus immunity had a strong influence on the antibody response in primary Zika virus infections, resulting in higher titers of broadly flavivirus cross-reactive antibodies and slightly lower levels of Zika virus-specific IgM. Antibody-dependent enhancement (ADE) of Zika virus was mediated by sub-neutralizing concentrations of specific IgG but not by cross-reactive antibodies. This effect was potently counteracted by the presence of neutralizing IgM. Broadly cross-reactive antibodies were able to both neutralize and enhance infection of dengue virus but not Zika virus, indicating a different exposure of conserved sequence elements in the two viruses. Conclusions Our data point to an important role of flavivirus-specific IgM during the transient early stages of infection, by contributing substantially to neutralization and by counteracting ADE. In addition, our results highlight structural differences between strains of Zika and dengue viruses that are used for analyzing infection-enhancement by cross-reactive antibodies. These findings underscore the possible impact of specific antibody patterns on flavivirus disease and vaccination efficacy. The explosive spread of Zika virus, a flavivirus, to South- and Central America underscores the potential threat of newly emerging arthropod-borne viruses. Zika virus infection can cause congenital birth defects and neurological complications. Many people at risk are flavivirus pre-immune because of prior infections with other flaviviruses (e.g. dengue virus, which co-circulates in Zika outbreak regions) or vaccinations (e.g. against yellow fever or tick-borne encephalitis) and have non-protective cross-reactive antibodies at the time of infection. Since pre-existing immunity can modulate the specificity and functional activity of antibody responses, and cross-reactive antibodies have been implicated in disease enhancement, we compared the specificities of serum samples from flavivirus-naïve and vaccinated individuals after primary Zika virus infections. Prior immunity led to a strong booster of cross-reactive antibodies that did not neutralize Zika virus. Importantly, we could also show that newly formed IgM antibodies contributed significantly to virus neutralization and prevented infection enhancement by other antibodies. Our data thus show how pre-existing cross-reactive immunities can alter the specificities and functional activities of antibody responses in flavivirus infections, which may affect flavivirus-induced disease and the efficacy of vaccinations.
Collapse
Affiliation(s)
- Stefan Malafa
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Iris Medits
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Judith H. Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Silke Wölfel
- Bundeswehr Institute of Microbiology, Munich, Germany; Center of Infection Research (DZIF) Partner, Munich, Germany
| | - Kristina L. Huber
- Division of Infectious Diseases and Tropical Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pascal Cherpillod
- Laboratory of Virology, Laboratory Medicine Division, Geneva University Hospitals, Geneva, Switzerland
| | - Melissa Thaler
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Lena Roßbacher
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Franz X. Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
- * E-mail: (FXH); (KS)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
- * E-mail: (FXH); (KS)
| |
Collapse
|
19
|
Dibo M, Battocchio EC, dos Santos Souza LM, da Silva MDV, Banin-Hirata BK, Sapla MM, Marinello P, Rocha SP, Faccin-Galhardi LC. Antibody Therapy for the Control of Viral Diseases: An Update. Curr Pharm Biotechnol 2019; 20:1108-1121. [DOI: 10.2174/1389201020666190809112704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/22/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022]
Abstract
The epidemiological impact of viral diseases, combined with the emergence and reemergence of some viruses, and the difficulties in identifying effective therapies, have encouraged several studies to develop new therapeutic strategies for viral infections. In this context, the use of immunotherapy for the treatment of viral diseases is increasing. One of the strategies of immunotherapy is the use of antibodies, particularly the monoclonal antibodies (mAbs) and multi-specific antibodies, which bind directly to the viral antigen and bring about activation of the immune system. With current advancements in science and technology, several such antibodies are being tested, and some are already approved and are undergoing clinical trials. The present work aims to review the status of mAb development for the treatment of viral diseases.
Collapse
Affiliation(s)
- Miriam Dibo
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Eduardo C. Battocchio
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Lucas M. dos Santos Souza
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | | | - Bruna K. Banin-Hirata
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Milena M.M. Sapla
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Poliana Marinello
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Sérgio P.D. Rocha
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| | - Lígia C. Faccin-Galhardi
- Department of Microbiology, Biological Sciences Center, State University of Londrina, Parana, Brazil
| |
Collapse
|
20
|
Dos Santos Franco L, Gushi LT, Luiz WB, Amorim JH. Seeking Flavivirus Cross-Protective Immunity. Front Immunol 2019; 10:2260. [PMID: 31616432 PMCID: PMC6763598 DOI: 10.3389/fimmu.2019.02260] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/06/2019] [Indexed: 01/04/2023] Open
Abstract
The Flavivirus genus is composed by viral serocomplexes with relevant global epidemiological impact. Many areas of the world present both, vector fauna and geographical conditions compatible with co-circulation, importing, emergence, and epidemics of flaviviruses of different serocomplexes. In this study, we aimed to identify both, immunological determinants and patterns of immune response possibly involved in flavivirus serocomplex cross-protection. We searched B and T cells epitopes which were thoroughly shown to be involved in flavivirus immunological control. Such epitopes were analyzed regarding their conservation, population coverage, and location along flavivirus polyprotein. We found that epitopes capable of eliciting flavivirus cross-protective immunity to a wide range of human populations are concentrated in proteins E, NS3, and NS5. Such identification of both, immunological determinants and patterns of immune response involved in flavivirus cross-protective immunity should be considered in future vaccine development. Moreover, cross-reactive epitopes presented in this work may be involved in dynamics of diseases caused by flaviviruses worldwide.
Collapse
Affiliation(s)
- Lorrany Dos Santos Franco
- Laboratório de Agentes Infecciosos e Vetores, Programa de Pós-graduação em Patologia Investigativa, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Bahia, Brazil
| | - Letícia Tsieme Gushi
- Laboratório de Agentes Infecciosos e Vetores, Programa de Pós-graduação em Patologia Investigativa, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Bahia, Brazil
| | - Wilson Barros Luiz
- Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Bahia, Brazil
| | - Jaime Henrique Amorim
- Laboratório de Agentes Infecciosos e Vetores, Programa de Pós-graduação em Patologia Investigativa, Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Bahia, Brazil.,Programa de Pós-graduação em Biologia e Biotecnologia de Microrganismos, Universidade Estadual de Santa Cruz, Bahia, Brazil
| |
Collapse
|
21
|
Masri MFB, Rathore APS, St. John AL. Therapeutics for Dengue. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2019. [DOI: 10.1007/s40506-019-00193-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Hu D, Zhu Z, Li S, Deng Y, Wu Y, Zhang N, Puri V, Wang C, Zou P, Lei C, Tian X, Wang Y, Zhao Q, Li W, Prabakaran P, Feng Y, Cardosa J, Qin C, Zhou X, Dimitrov DS, Ying T. A broadly neutralizing germline-like human monoclonal antibody against dengue virus envelope domain III. PLoS Pathog 2019; 15:e1007836. [PMID: 31242272 PMCID: PMC6615639 DOI: 10.1371/journal.ppat.1007836] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 07/09/2019] [Accepted: 05/13/2019] [Indexed: 11/19/2022] Open
Abstract
Dengue is the most widespread vector-borne viral disease caused by dengue virus (DENV) for which there are no safe, effective drugs approved for clinical use. Here, by using sequential antigen panning of a yeast antibody library derived from healthy donors against the DENV envelop protein domain III (DIII) combined with depletion by an entry defective DIII mutant, we identified a cross-reactive human monoclonal antibody (mAb), m366.6, which bound with high affinity to DENV DIII from all four DENV serotypes. Immunogenetic analysis indicated that m366.6 is a germline-like mAb with very few somatic mutations from the closest VH and Vλ germline genes. Importantly, we demonstrated that it potently neutralized DENV both in vitro and in the mouse models of DENV infection without detectable antibody-dependent enhancement (ADE) effect. The epitope of m366.6 was mapped to the highly conserved regions on DIII, which may guide the design of effective dengue vaccine immunogens. Furthermore, as the first germline-like mAb derived from a naïve antibody library that could neutralize all four DENV serotypes, the m366.6 can be a tool for exploring mechanisms of DENV infection, and is a promising therapeutic candidate.
Collapse
Affiliation(s)
- Dan Hu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongyu Zhu
- National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Shun Li
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Fudan University, Shanghai, China
| | - Yongqiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nana Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Vinita Puri
- National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Chunyu Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Fudan University, Shanghai, China
| | - Cheng Lei
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolong Tian
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yulu Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Zhao
- National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Wei Li
- National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Ponraj Prabakaran
- National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Yang Feng
- National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Jane Cardosa
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Malaysia
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaohui Zhou
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Fudan University, Shanghai, China
- * E-mail: (XZ); (DSD); (TY)
| | - Dimiter S. Dimitrov
- National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- * E-mail: (XZ); (DSD); (TY)
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (XZ); (DSD); (TY)
| |
Collapse
|
23
|
Li L, Meng W, Horton M, DiStefano DR, Thoryk EA, Pfaff JM, Wang Q, Salazar GT, Barnes T, Doranz BJ, Bett AJ, Casimiro DR, Vora KA, An Z, Zhang N. Potent neutralizing antibodies elicited by dengue vaccine in rhesus macaque target diverse epitopes. PLoS Pathog 2019; 15:e1007716. [PMID: 31170257 PMCID: PMC6553876 DOI: 10.1371/journal.ppat.1007716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/19/2019] [Indexed: 01/11/2023] Open
Abstract
There is still no safe and effective vaccine against dengue virus infection. Epidemics of dengue virus infection are increasingly a threat to human health around the world. Antibodies generated in response to dengue infection have been shown to impact disease development and effectiveness of dengue vaccine. In this study, we investigated monoclonal antibody responses to an experimental dengue vaccine in rhesus macaques. Variable regions of both heavy chain (VH) and light chain (VL) were cloned from single antibody-secreting B cells. A total of 780 monoclonal antibodies (mAbs) composed of paired VH and VL were characterized. Results show that the vaccination induces mAbs with diverse germline sequences and a wide range of binding affinities. Six potent neutralizing mAbs were identified among 130 dengue envelope protein binders. Critical amino acids for each neutralizing antibody binding to the dengue envelope protein were identified by alanine scanning of mutant libraries. Diverse epitopes were identified, including epitopes on the lateral ridge of DIII, the I-III hinge, the bc loop adjacent to the fusion loop of DII, and the β-strands and loops of DI. Significantly, one of the neutralizing mAbs has a previously unknown epitope in DII at the interface of the envelope and membrane protein and is capable of neutralizing all four dengue serotypes. Taken together, the results of this study not only provide preclinical validation for the tested experimental vaccine, but also shed light on a potential application of the rhesus macaque model for better dengue vaccine evaluation and design of vaccines and immunization strategies. Dengue virus (DENV) is a leading cause of human illness in the tropics and subtropics, with about 40% of the world’s population living in areas at risk for infection. There are four DENV serotypes. Patients who have previously been infected by one dengue serotype may develop more severe symptoms such as bleeding and endothelial leakage upon secondary infection with another dengue serotype. This study reports the extensive cloning and analysis of 780 monoclonal antibodies (mAbs) from single B cells of rhesus macaques after immunization with an experimental dengue vaccine. We identified a panel of potent neutralizing mAbs with diverse epitopes on the DENV envelope protein. Antibodies in this panel were found to bind to the lateral ridge of DIII, the I-III hinge, the bc loop adjacent to the fusion loop of DII, and the β-strands and the loops of DI. We also isolated one mAb (d448) that can neutralize all four dengue serotypes and binds to a novel epitope at the interface of the DENV envelope and membrane proteins. Further investigation of these neutralizing monoclonal antibodies is warranted for better vaccine efficacy evaluation and vaccine design.
Collapse
Affiliation(s)
- Leike Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Weixu Meng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Melanie Horton
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Daniel R. DiStefano
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Elizabeth A. Thoryk
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Jennifer M. Pfaff
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Qihui Wang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Georgina T. Salazar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Trevor Barnes
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Benjamin J. Doranz
- Integral Molecular, Philadelphia, Pennsylvania, United States of America
| | - Andrew J. Bett
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Danilo R. Casimiro
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
| | - Kalpit A. Vora
- Department of Infectious Diseases and Vaccines Research, Merck Research Laboratories, Merck and Co. Inc., Kenilworth, New Jersey, United States of America
- * E-mail: (KV); (ZA); (NZ)
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (KV); (ZA); (NZ)
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- * E-mail: (KV); (ZA); (NZ)
| |
Collapse
|
24
|
Yang C, Gong R, de Val N. Development of Neutralizing Antibodies against Zika Virus Based on Its Envelope Protein Structure. Virol Sin 2019; 34:168-174. [PMID: 31020573 PMCID: PMC6513807 DOI: 10.1007/s12250-019-00093-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/28/2019] [Indexed: 12/26/2022] Open
Abstract
As we know more about Zika virus (ZIKV), as well as its linkage to birth defects (microcephaly) and autoimmune neurological syndromes, we realize the importance of developing an efficient vaccine against it. Zika virus disease has affected many countries and is becoming a major public health concern. To deal with the infection of ZIKV, plenty of experiments have been done on selection of neutralizing antibodies that can target the envelope (E) protein on the surface of the virion. However, the existence of antibody-dependent enhancement (ADE) effect might limit the use of them as therapeutic candidates. In this review, we classify the neutralizing antibodies against ZIKV based on the epitopes and summarize the resolved structural information on antibody/antigen complex from X-ray crystallography and cryo-electron microscopy (cryo-EM), which might be useful for further development of potent neutralizing antibodies and vaccines toward clinical use.
Collapse
Affiliation(s)
- Chunpeng Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, MD, 21701, USA.
| |
Collapse
|
25
|
Ahmed AMS, Abou-Elkhair RAI, El-Torky AM, Hassan AEA. 3-Trifluoromethylpyrazolones derived nucleosides: Synthesis and antiviral evaluation. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:590-603. [PMID: 30929566 DOI: 10.1080/15257770.2019.1591445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
Dengue (DENV) viral infection is a global public health problem that infrequently develops life threatening diseases such as dengue hemorrhagic fever (DFS) and dengue shock syndrome (DSS). Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human corona virus with 38% fatality rate of infected patients. A series of 4-arylhydrazono-5-trifluoromethyl-pyrazolones, their ribofuranosyl, and 5'-deoxyribofuranosyl nucleosides were synthesized, geometry optimized using Density functional theory (DFT), and evaluated for their antiviral activity. 2-Nitrophenylhydrazonopyra-zolone derivative 5 showed significant activity against MERS-CoV (EC50 = 4.6 μM). The nucleoside analog 8 showed moderate activity against DENV-2 (EC50 = 10 μM), while the activity was abolished with the corresponding 5'-deoxyribonucleoside analogs. The identified hits in this study set this category of compounds for further future optimizations.
Collapse
Affiliation(s)
- Ayman M S Ahmed
- a Applied Nucleic Acids Research Center , Zagazig University , Zagazig , Egypt
- b Chemistry Department Faculty of Science , Zagazig University , Zagazig , Egypt
| | - Reham A I Abou-Elkhair
- a Applied Nucleic Acids Research Center , Zagazig University , Zagazig , Egypt
- b Chemistry Department Faculty of Science , Zagazig University , Zagazig , Egypt
| | - Alaa M El-Torky
- a Applied Nucleic Acids Research Center , Zagazig University , Zagazig , Egypt
| | - Abdalla E A Hassan
- a Applied Nucleic Acids Research Center , Zagazig University , Zagazig , Egypt
- b Chemistry Department Faculty of Science , Zagazig University , Zagazig , Egypt
| |
Collapse
|
26
|
Morrone SR, Lok SM. Structural perspectives of antibody-dependent enhancement of infection of dengue virus. Curr Opin Virol 2019; 36:1-8. [PMID: 30844538 DOI: 10.1016/j.coviro.2019.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 12/30/2022]
Abstract
Dengue virus (DENV) consists of four serotypes. Sequential serotype infections can cause increased disease severity, likely due to antibody-dependent enhancement (ADE) of infection. Here, we review two recent papers showing major advancements in the understanding of the ADE mechanism for both mature and immature DENV. The surface of both mature and immature DENV contains E and another protein - M in mature and prM in immature virus. On mature DENV, the orientation of anti-E antibody with respect to the virus surface determines the antibody enhancement properties. On the immature virus, binding of anti-prM antibody aids the dissociation of pr from the fusion loop of E protein allowing virus-endosomal membrane interaction, thus overcoming the hurdle in the early step of fusion.
Collapse
Affiliation(s)
- Seamus R Morrone
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, KTP Building, 8 College Road, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, KTP Building, 8 College Road, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore.
| |
Collapse
|
27
|
Abstract
Arthropod-borne flaviviruses are important human pathogens that cause a diverse range of clinical conditions, including severe hemorrhagic syndromes, neurological complications and congenital malformations. Consequently, there is an urgent need to develop safe and effective vaccines, a process requiring better understanding of the immunological mechanisms involved during infection. Decades of research suggest a paradoxical role of the immune response against flaviviruses: although the immune response is crucial for the control, clearance and prevention of infection, poor clinical outcomes are commonly associated with virus-specific immunity and immunopathogenesis. This relationship is further complicated by the high homology among viruses and the implication of cross-reactive immune responses in protection and pathogenesis. This Review examines the dual role of the adaptive immune response against flaviviruses, particularly emphasizing the most recent findings regarding cross-reactive T cell and antibody responses, and the effects that these concepts have on vaccine-development endeavors.
Collapse
|
28
|
Amornwachirabodee K, Tantimekin N, Pan-In P, Palaga T, Pienpinijtham P, Pipattanaboon C, Sukmanee T, Ritprajak P, Charoenpat P, Pitaksajjakul P, Ramasoota P, Wanichwecharungruang S. Oxidized Carbon Black: Preparation, Characterization and Application in Antibody Delivery across Cell Membrane. Sci Rep 2018; 8:2489. [PMID: 29410523 PMCID: PMC5802750 DOI: 10.1038/s41598-018-20650-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/19/2018] [Indexed: 11/09/2022] Open
Abstract
Modulating biomolecular networks in cells with peptides and proteins has become a promising therapeutic strategy and effective biological tools. A simple and effective reagent that can bring functional proteins into cells can increase efficacy and allow more investigations. Here we show that the relatively non-toxic and non-immunogenic oxidized carbon black particles (OCBs) prepared from commercially available carbon black can deliver a 300 kDa protein directly into cells, without an involvement of a cellular endocytosis. Experiments with cell-sized liposomes indicate that OCBs directly interact with phospholipids and induce membrane leakages. Delivery of human monoclonal antibodies (HuMAbs, 150 kDa) with specific affinity towards dengue viruses (DENV) into DENV-infected Vero cells by OCBs results in HuMAbs distribution all over cells' interior and effective viral neutralization. An ability of OCBs to deliver big functional/therapeutic proteins into cells should open doors for more protein drug investigations and new levels of antibody therapies and biological studies.
Collapse
Affiliation(s)
- Kittima Amornwachirabodee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nattapol Tantimekin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Porntip Pan-In
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Nanotec-Chulalongkorn University Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prompong Pienpinijtham
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chonlatip Pipattanaboon
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Thanyada Sukmanee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patcharee Ritprajak
- Department of Microbiology, and RU in Oral Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Promchat Charoenpat
- Department of Microbiology, and RU in Oral Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pannamthip Pitaksajjakul
- Center of Excellence for Antibody Research, and Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pongrama Ramasoota
- Center of Excellence for Antibody Research, and Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
29
|
Rey FA, Stiasny K, Vaney MC, Dellarole M, Heinz FX. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep 2018; 19:206-224. [PMID: 29282215 PMCID: PMC5797954 DOI: 10.15252/embr.201745302] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 01/07/2023] Open
Abstract
Zika and dengue viruses belong to the Flavivirus genus, a close group of antigenically related viruses that cause significant arthropod-transmitted diseases throughout the globe. Although infection by a given flavivirus is thought to confer lifelong protection, some of the patient's antibodies cross-react with other flaviviruses without cross-neutralizing. The original antigenic sin phenomenon may amplify such antibodies upon subsequent heterologous flavivirus infection, potentially aggravating disease by antibody-dependent enhancement (ADE). The most striking example is provided by the four different dengue viruses, where infection by one serotype appears to predispose to more severe disease upon infection by a second one. A similar effect was postulated for sequential infections with Zika and dengue viruses. In this review, we analyze the molecular determinants of the dual antibody response to flavivirus infection or vaccination in humans. We highlight the role of conserved partially cryptic epitopes giving rise to cross-reacting and poorly neutralizing, ADE-prone antibodies. We end by proposing a strategy for developing an epitope-focused vaccine approach to avoid eliciting undesirable antibodies while focusing the immune system on producing protective antibodies only.
Collapse
Affiliation(s)
- Félix A Rey
- Structural Virology Unit, Virology Department, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Marie-Christine Vaney
- Structural Virology Unit, Virology Department, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Mariano Dellarole
- Structural Virology Unit, Virology Department, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Wu Y, Li S, Du L, Wang C, Zou P, Hong B, Yuan M, Ren X, Tai W, Kong Y, Zhou C, Lu L, Zhou X, Jiang S, Ying T. Neutralization of Zika virus by germline-like human monoclonal antibodies targeting cryptic epitopes on envelope domain III. Emerg Microbes Infect 2017; 6:e89. [PMID: 29018252 PMCID: PMC5658772 DOI: 10.1038/emi.2017.79] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 12/11/2022]
Abstract
The Zika virus (ZIKV), a flavivirus transmitted by Aedes mosquitoes, has emerged as a global public health concern. Pre-existing cross-reactive antibodies against other flaviviruses could modulate immune responses to ZIKV infection by antibody-dependent enhancement, highlighting the importance of understanding the immunogenicity of the ZIKV envelope protein. In this study, we identified a panel of human monoclonal antibodies (mAbs) that target domain III (DIII) of the ZIKV envelope protein from a very large phage-display naive antibody library. These germline-like antibodies, sharing 98%-100% hoLogy with their corresponding germline IGHV genes, bound ZIKV DIII specifically with high affinities. One mAb, m301, broadly neutralized the currently circulating ZIKV strains and showed a synergistic effect with another mAb, m302, in neutralizing ZIKV in vitro and in a mouse model of ZIKV infection. Interestingly, epitope mapping and competitive binding studies suggest that m301 and m302 bind adjacent regions of the DIII C-C' loop, which represents a recently identified cryptic epitope that is intermittently exposed in an uncharacterized virus conformation. This study extended our understanding of antigenic epitopes of ZIKV antibodies and has direct implications for the design of ZIKV vaccines.
Collapse
Affiliation(s)
- Yanling Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shun Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lanying Du
- Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Chunyu Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Binbin Hong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mengjiao Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaonan Ren
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Wanbo Tai
- Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Yu Kong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chen Zhou
- Biomissile Corporation, Shanghai 201203, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaohui Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Lindsley F Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
31
|
Haslwanter D, Blaas D, Heinz FX, Stiasny K. A novel mechanism of antibody-mediated enhancement of flavivirus infection. PLoS Pathog 2017; 13:e1006643. [PMID: 28915259 PMCID: PMC5617232 DOI: 10.1371/journal.ppat.1006643] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/27/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent enhancement of viral infection is a well-described phenomenon that is based on the cellular uptake of infectious virus-antibody complexes following their interaction with Fcγ receptors expressed on myeloid cells. Here we describe a novel mechanism of antibody-mediated enhancement of infection by a flavivirus (tick-borne encephalitis virus) in transformed and primary human cells, which is independent of the presence of Fcγ receptors. Using chemical cross-linking and immunoassays, we demonstrate that the monoclonal antibody (mab) A5, recognizing an epitope at the interface of the dimeric envelope protein E, causes dimer dissociation and leads to the exposure of the fusion loop (FL). Under normal conditions of infection, this process is triggered only after virus uptake by the acidic pH in endosomes, resulting in the initiation of membrane fusion through the interaction of the FL with the endosomal membrane. Analysis of virus binding and cellular infection, together with inhibition by the FL-specific mab 4G2, indicated that the FL, exposed after mab A5- induced dimer-dissociation, mediated attachment of the virus to the plasma membrane also at neutral pH, thereby increasing viral infectivity. Since antibody-induced enhancement of binding was not only observed with cells but also with liposomes, it is likely that increased infection was due to FL-lipid interactions and not to interactions with cellular plasma membrane proteins. The novel mechanism of antibody-induced infection enhancement adds a new facet to the complexity of antibody interactions with flaviviruses and may have implications for yet unresolved effects of polyclonal antibody responses on biological properties of these viruses.
Collapse
Affiliation(s)
| | - Dieter Blaas
- Max F. Perutz Laboratories, Department for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Franz X. Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Lim XX, Chandramohan A, Lim XYE, Crowe JE, Lok SM, Anand GS. Epitope and Paratope Mapping Reveals Temperature-Dependent Alterations in the Dengue-Antibody Interface. Structure 2017; 25:1391-1402.e3. [PMID: 28823471 DOI: 10.1016/j.str.2017.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
Abstract
Uncovering mechanisms of antibody-mediated neutralization for viral infections requires epitope and paratope mapping in the context of whole viral particle interactions with the antibody in solution. In this study, we use amide hydrogen/deuterium exchange mass spectrometry to describe the interface of a dengue virus-neutralizing antibody, 2D22, with its target epitope. 2D22 binds specifically to DENV2, a serotype showing strain-specific structural expansion at human host physiological temperatures of 37°C. Our results identify the heavy chain of 2D22 to be the primary determinant for binding DENV2. Temperature-mediated expansion alters the mode of interaction of 2D22 binding. Importantly, 2D22 interferes with the viral expansion process and offers a basis for its neutralization mechanism. The relative magnitude of deuterium exchange protection upon antibody binding across the various epitope loci allows a deconstruction of the antibody-viral interface in host-specific environments and offers a robust approach for targeted antibody engineering.
Collapse
Affiliation(s)
- Xin-Xiang Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Arun Chandramohan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Xin-Ying Elisa Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore; Centre for BioImaging Sciences, CryoEM Unit, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232-0417, USA
| | - Shee-Mei Lok
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore; Centre for BioImaging Sciences, CryoEM Unit, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
33
|
Antibody therapies for the prevention and treatment of viral infections. NPJ Vaccines 2017; 2:19. [PMID: 29263875 PMCID: PMC5627241 DOI: 10.1038/s41541-017-0019-3] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/18/2022] Open
Abstract
Antibodies are an important component in host immune responses to viral pathogens. Because of their unique maturation process, antibodies can evolve to be highly specific to viral antigens. Physicians and researchers have been relying on such high specificity in their quest to understand host–viral interaction and viral pathogenesis mechanisms and to find potential cures for viral infection and disease. With more than 60 recombinant monoclonal antibodies developed for human use in the last 20 years, monoclonal antibodies are now considered a viable therapeutic modality for infectious disease targets, including newly emerging viral pathogens such as Ebola representing heightened public health concerns, as well as pathogens that have long been known, such as human cytomegalovirus. Here, we summarize some recent advances in identification and characterization of monoclonal antibodies suitable as drug candidates for clinical evaluation, and review some promising candidates in the development pipeline.
Collapse
|
34
|
Yu L, Wang R, Gao F, Li M, Liu J, Wang J, Hong W, Zhao L, Wen Y, Yin C, Wang H, Zhang Q, Li Y, Zhou P, Zhang R, Liu Y, Tang X, Guan Y, Qin CF, Chen L, Shi X, Jin X, Cheng G, Zhang F, Zhang L. Delineating antibody recognition against Zika virus during natural infection. JCI Insight 2017; 2:93042. [PMID: 28614803 DOI: 10.1172/jci.insight.93042] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/10/2017] [Indexed: 01/12/2023] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-transmitted flavivirus that shares a considerable degree of homology with dengue virus (DENV). Here, we examined longitudinal antibody response against ZIKV during natural infection in 2 convalescent individuals. By decomposing the antibody recognition into DI/DII and DIII of the E glycoprotein, we showed their development in humans followed a spatiotemporal hierarchy. Plasma binding to DI/DII appeared to peak and wane during early infection with extensive cross-reactivity with DI/DII of DENV. Binding to DIII, however, peaked early but persisted months into the infection without detectable cross-reactivity with DIII of DENV. A clear trend of increase in DIII-specific neutralizing activity was observed over the course of infection. mAbs isolated during early infection are largely DI/DII specific, weakly neutralizing, and highly cross-reactive with DENV, while those from later infection are more diverse in recognition, potently neutralizing, and ZIKV specific. The most potent neutralizing mAb targeting the DIII provided 100% protection in mice from lethal ZIKV infection and could therefore serve as a promising candidate for antibody-based therapy and prevention. The dynamic features unveiled here will assist us to better understand the pathogenesis of ZIKV infection and inform rational design of vaccines.
Collapse
Affiliation(s)
- Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruoke Wang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Fei Gao
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Min Li
- Viral Disease and Vaccine Translational Research Unit, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jianying Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jian Wang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenxin Hong
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lingzhai Zhao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yingfen Wen
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chibiao Yin
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hua Wang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Qi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yangyang Li
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Panpan Zhou
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Rudian Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Yang Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoping Tang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongjun Guan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xia Jin
- Viral Disease and Vaccine Translational Research Unit, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Gong Cheng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
35
|
Abstract
Zika virus (ZIKV), a flavivirus transmitted by mosquitoes, was an almost neglected pathogen until its introduction in the Americas in 2015 and its subsequent explosive spread throughout the continent, where it has infected millions of people. The virus has caused social and sanitary alarm, mainly due to its association with severe neurological disorders (Guillain-Barré syndrome and microcephaly in fetuses and newborns). Nowadays, no specific antiviral therapy against ZIKV is available. However, during the past months, a great effort has been made to search for antiviral candidates using different approaches and methodologies, ranging from testing specific compounds with known antiviral activity to the screening of libraries with hundreds of bioactive molecules. The identified antiviral candidates include drugs targeting viral components as well as cellular ones. Here, an updated review of what has been done in this line is presented.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
36
|
Abstract
Zika virus (ZIKV), a flavivirus transmitted by mosquitoes, was an almost neglected pathogen until its introduction in the Americas in 2015 and its subsequent explosive spread throughout the continent, where it has infected millions of people. The virus has caused social and sanitary alarm, mainly due to its association with severe neurological disorders (Guillain-Barré syndrome and microcephaly in fetuses and newborns). Nowadays, no specific antiviral therapy against ZIKV is available. However, during the past months, a great effort has been made to search for antiviral candidates using different approaches and methodologies, ranging from testing specific compounds with known antiviral activity to the screening of libraries with hundreds of bioactive molecules. The identified antiviral candidates include drugs targeting viral components as well as cellular ones. Here, an updated review of what has been done in this line is presented.
Collapse
|
37
|
Garcia-Blanco MA, Vasudevan SG, Bradrick SS, Nicchitta C. Flavivirus RNA transactions from viral entry to genome replication. Antiviral Res 2016; 134:244-249. [PMID: 27666184 DOI: 10.1016/j.antiviral.2016.09.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
Abstract
Upon release of the ∼11 kb single-stranded positive polarity dengue virus genomic RNA (gRNA) into the cytoplasm of an infected cell, it serves as the template for translation of the viral polyprotein, which is cleaved into three structural and seven non-structural proteins. The structural organization of the viral replication complex and RNA is not known but it is increasingly becoming evident that the viral gRNA and replication intermediates adopt unique structural features and localize to discrete regions in the infected cell. Both structure and location play multiple roles ranging from evasion of innate immune response to recruitment of viral and host proteins for translation and replication of the message. This review visits the various transactions that the viral gRNA undergoes between entry and RNA synthesis with the view that some of these events may be targeted by antiviral compounds. This article forms part of a symposium on flavivirus drug discovery in Antiviral Research.
Collapse
Affiliation(s)
- Mariano A Garcia-Blanco
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Subhash G Vasudevan
- Programme of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore.
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
38
|
Dai L, Wang Q, Qi J, Shi Y, Yan J, Gao GF. Molecular basis of antibody-mediated neutralization and protection against flavivirus. IUBMB Life 2016; 68:783-91. [DOI: 10.1002/iub.1556] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Lianpan Dai
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences; Beijing China
| | - Qihui Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
| | - Yi Shi
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences; Beijing China
- Savaid Medical School, University of Chinese Academy of Sciences; Beijing China
| | - Jinghua Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Savaid Medical School, University of Chinese Academy of Sciences; Beijing China
| | - George F. Gao
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences; Beijing China
- Shenzhen Key Laboratory of Pathogen and Immunity; Shenzhen Third People's Hospital; Shenzhen China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
- Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences; Beijing China
- Savaid Medical School, University of Chinese Academy of Sciences; Beijing China. National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC); Beijing China
| |
Collapse
|
39
|
Han YS, Penthala NR, Oliveira M, Mesplède T, Xu H, Quan Y, Crooks PA, Wainberg MA. Identification of resveratrol analogs as potent anti-dengue agents using a cell-based assay. J Med Virol 2016; 89:397-407. [PMID: 27509184 DOI: 10.1002/jmv.24660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 01/19/2023]
Abstract
Dengue virus (DENV) causes a variety of difficult-to-treat diseases that threaten almost half of the world's population. Currently, no effective vaccine or antiviral therapy is available. We have examined a series of synthetic resveratrol analogs to identify potential anti-DENV agents. Here, we demonstrate that two resveratrol analogs, PNR-4-44 and PNR-5-02, possess potent anti-DENV activity with EC50 values in the low nanomolar range. These two resveratrol analogs were shown to mainly target viral RNA translation and viral replication, but PNR-5-02 is also likely to target cellular factors inside host cells. Although the precise molecular mechanism(s) mediating anti-DENV activities have not been elucidated, further structure-guided design might lead to the development of newer improved resveratrol derivatives that might have therapeutic value. J. Med. Virol. 89:397-407, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying-Shan Han
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Narsimha Reddy Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Maureen Oliveira
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hongtao Xu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Yudong Quan
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Lo YC, Perng GC. Novel concept on antiviral strategies to dengue. Curr Opin Virol 2016; 18:97-108. [DOI: 10.1016/j.coviro.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 11/25/2022]
|
41
|
Zyoud SH. Dengue research: a bibliometric analysis of worldwide and Arab publications during 1872-2015. Virol J 2016; 13:78. [PMID: 27154247 PMCID: PMC4859974 DOI: 10.1186/s12985-016-0534-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dengue is an important emerging and re-emerging arboviral infection globally as a rapidly growing and widespread public health problem, with transmission occurring in more than 128 countries in Asia, Americas, southeast Africa, western Pacific, and eastern Mediterranean regions. Therefore, the aim of this study was to characterize and quantify the scientific output of dengue research in Arab countries relative to that worldwide by using a bibliometric analysis. METHODS The standardized search approach based on the use of the the keyword "dengue" in the title, abstract, and keyword field was used to get research output related to dengue at a global level. All data related to dengue were collected from the past to December 31, 2015. RESULTS A total of 19,581 dengue-related documents identified in the Scopus database. The results show that the study of dengue exhibits an overall upward trend from 1872 to 2015 with peak publications in 2014. The leading countries in dengue research were the USA (4,709; 24.05 %), India (1,942; 9.92 %), Brazil (1,530; 7.81 %), Thailand (1,260; 6.43 %), the UK (1,129; 5.77 %), and France (1,087; 5.55 %). Only 226 (1.16 % of the overall global research effort in the dengue field) articles were published from the Arab region. The total number of citations for all publications was 352,710, with an average of 18.0 citations per publication. Furthermore, the h-index for all extracted data related to dengue research was 186. Kingdom of Saudi Arabia (KSA) was the most productive country in Arab region with 102 documents representing 45.1 %. Furthermore, the h-index for all extracted data related to dengue research was 27. The USA was Arab's most main cooperative partner (46, 20.4 %), followed by India (36, 15.9 %). CONCLUSIONS The amount of literature related to dengue research has considerably increased over the last decade. This bibliometric analysis has demonstrated the leading role that the USA, India, Brazil, Thailand, the UK, and France play in dengue research. The Arab world produced fewer publications related to dengue with lower quality than other world countries.
Collapse
Affiliation(s)
- Sa'ed H Zyoud
- Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine.
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839, Palestine.
| |
Collapse
|
42
|
Wong SSY, Poon RWS, Wong SCY. Zika virus infection-the next wave after dengue? J Formos Med Assoc 2016; 115:226-42. [PMID: 26965962 DOI: 10.1016/j.jfma.2016.02.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 01/10/2023] Open
Abstract
Zika virus was initially discovered in east Africa about 70 years ago and remained a neglected arboviral disease in Africa and Southeast Asia. The virus first came into the limelight in 2007 when it caused an outbreak in Micronesia. In the ensuing decade, it spread widely in other Pacific islands, after which its incursion into Brazil in 2015 led to a widespread epidemic in Latin America. In most infected patients the disease is relatively benign. Serious complications include Guillain-Barré syndrome and congenital infection which may lead to microcephaly and maculopathy. Aedes mosquitoes are the main vectors, in particular, Ae. aegypti. Ae. albopictus is another potential vector. Since the competent mosquito vectors are highly prevalent in most tropical and subtropical countries, introduction of the virus to these areas could readily result in endemic transmission of the disease. The priorities of control include reinforcing education of travellers to and residents of endemic areas, preventing further local transmission by vectors, and an integrated vector management programme. The container habitats of Ae. aegypti and Ae. albopictus means engagement of the community and citizens is of utmost importance to the success of vector control.
Collapse
Affiliation(s)
- Samson Sai-Yin Wong
- Department of Microbiology, Research Centre for Infection and Immunology, Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | | | | |
Collapse
|
43
|
Silveira ELV. The importance of B cells in the development of preventive and therapeutical approaches against Dengue, Zika and Chikungunya viral infections. BRAZ J PHARM SCI 2016. [DOI: 10.1590/s1984-82502016000100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|