1
|
Gezelle JG, Korn SM, McDonald JT, Gong Z, Erickson A, Huang CH, Yang F, Cronin M, Kuo YW, Wimberly BT, Steckelberg AL. The pseudoknot structure of a viral RNA reveals a conserved mechanism for programmed exoribonuclease resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.17.628992. [PMID: 39763890 PMCID: PMC11702639 DOI: 10.1101/2024.12.17.628992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Exoribonuclease-resistant RNAs (xrRNAs) are viral RNA structures that block degradation by cellular 5'-3' exoribonucleases to produce subgenomic viral RNAs during infection. Initially discovered in flaviviruses, xrRNAs have since been identified in wide range of RNA viruses, including those that infect plants. High sequence variability among viral xrRNAs raises questions about the shared molecular features that characterize this functional RNA class. Here, we present the first structure of a plant-virus xrRNA in its active exoribonuclease-resistant conformation. The xrRNA forms a 9 base pair pseudoknot that creates a knot-like topology similar to that of flavivirus xrRNAs, despite lacking sequence similarity. Biophysical assays confirm a compact pseudoknot structure in solution, and functional studies validate its relevance both in vitro and during infection. Our study reveals how viral RNAs achieve a common functional outcome through highly divergent sequences and identifies the knot-like topology as a defining feature of xrRNAs.
Collapse
Affiliation(s)
- Jeanine G. Gezelle
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Sophie M. Korn
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jayden T. McDonald
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Zhen Gong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Anna Erickson
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Chih-Hung Huang
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Feiyue Yang
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Matt Cronin
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, CA, USA
| | | | - Anna-Lena Steckelberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Sukhikh N, Golyaev V, Laboureau N, Clavijo G, Rustenholz C, Marmonier A, Chesnais Q, Ogliastro M, Drucker M, Brault V, Pooggin MM. Deep Sequencing Analysis of Virome Components, Viral Gene Expression and Antiviral RNAi Responses in Myzus persicae Aphids. Int J Mol Sci 2024; 25:13199. [PMID: 39684909 DOI: 10.3390/ijms252313199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The green peach aphid (Myzus persicae) is a generalist pest damaging crops and transmitting viral pathogens. Using Illumina sequencing of small (s)RNAs and poly(A)-enriched long RNAs, we analyzed aphid virome components, viral gene expression and antiviral RNA interference (RNAi) responses. Myzus persicae densovirus (family Parvoviridae), a single-stranded (ss)DNA virus persisting in the aphid population, produced 22 nucleotide sRNAs from both strands of the entire genome, including 5'- and 3'-inverted terminal repeats. These sRNAs likely represent Dicer-dependent small interfering (si)RNAs, whose double-stranded RNA precursors are produced by readthrough transcription beyond poly(A) signals of the converging leftward and rightward transcription units, mapped here with Illumina reads. Additionally, the densovirus produced 26-28 nucleotide sRNAs, comprising those enriched in 5'-terminal uridine and mostly derived from readthrough transcripts and those enriched in adenosine at position 10 from their 5'-end and mostly derived from viral mRNAs. These sRNAs likely represent PIWI-interacting RNAs generated by a ping-pong mechanism. A novel ssRNA virus, reconstructed from sRNAs and classified into the family Flaviviridae, co-persisted with the densovirus and produced 22 nucleotide siRNAs from the entire genome. Aphids fed on plants versus artificial diets exhibited distinct RNAi responses affecting densovirus transcription and flavivirus subgenomic RNA production. In aphids vectoring turnip yellows virus (family Solemoviridae), a complete virus genome was reconstituted from 21, 22 and 24 nucleotide viral siRNAs likely acquired with plant phloem sap. Collectively, deep-sequencing analysis allowed for the identification and de novo reconstruction of M. persicae virome components and uncovered RNAi mechanisms regulating viral gene expression and replication.
Collapse
Affiliation(s)
- Natalia Sukhikh
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France
| | - Victor Golyaev
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France
| | - Nathalie Laboureau
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France
| | | | | | | | | | - Mylène Ogliastro
- DGIMI, INRAE, Université de Montpellier, 34095 Montpellier, France
| | - Martin Drucker
- SVQV, INRAE, Université de Strasbourg, 68000 Colmar, France
| | | | - Mikhail M Pooggin
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France
| |
Collapse
|
3
|
Delli Ponti R, Vandelli A, Tartaglia GG. Subgenomic flaviviral RNAs and human proteins: in silico exploration of anti-host defense mechanisms. Comput Struct Biotechnol J 2024; 23:3527-3536. [PMID: 39435344 PMCID: PMC11492465 DOI: 10.1016/j.csbj.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Flaviviruses pose significant global health threats, infecting over 300 million people annually. Among their evasion strategies, the production of subgenomic flaviviral RNAs (sfRNAs) from the 3' UTR of viral genomes is particularly notable. Utilizing a comprehensive in silico approach with the catRAPID algorithm, we analyzed over 300,000 interactions between sfRNAs and human proteins derived from more than 8000 flavivirus genomes, including Dengue, Zika, Yellow Fever, West Nile, and Japanese Encephalitis viruses. By providing the first extensive atlas of sfRNA interactions, we offer new insights into how flaviviruses can manipulate host cellular machinery to facilitate viral survival and persistence. Our study not only validated known interactions but also revealed novel human proteins that could be involved in sfRNA-mediated host defense evasion, including helicases, splicing factors, and chemokines. These findings significantly expand the known interactome of sfRNAs with human proteins, underscoring their role in modulating host cellular pathways. Intriguingly, we predict interaction with stress granules, a critical component of the cellular response to viral infection, suggesting a mechanism by which flaviviruses inhibit their formation to evade host defenses. Moreover, a set of highly-interacting proteins in common among the sfRNAs showed predictive power to identify sfRNA-forming regions, highlighting how protein signatures could be used to annotate viruses. This atlas not only serves as a resource for exploring therapeutic targets but also aids in the identification of sfRNA biomarkers for improved flavivirus diagnostics.
Collapse
Affiliation(s)
- Riccardo Delli Ponti
- Centre for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, Genova GE 16152, Italy
| | - Andrea Vandelli
- Centre for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, Genova GE 16152, Italy
| | - Gian Gaetano Tartaglia
- Centre for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen, 83, Genova GE 16152, Italy
| |
Collapse
|
4
|
Besson B, Overheul GJ, Wolfinger MT, Junglen S, van Rij RP. Pan-flavivirus analysis reveals sfRNA-independent, 3' UTR-biased siRNA production from an insect-specific flavivirus. J Virol 2024; 98:e0121524. [PMID: 39404457 PMCID: PMC11575252 DOI: 10.1128/jvi.01215-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 11/20/2024] Open
Abstract
RNA interference (RNAi) plays an essential role in mosquito antiviral immunity, but it is not known whether viral small interfering RNA (siRNA) profiles differ between mosquito-borne and mosquito-specific viruses. A pan-Orthoflavivirus analysis in Aedes albopictus cells revealed that viral siRNAs were evenly distributed across the viral genome of most representatives of the Flavivirus genus. In contrast, siRNA production was biased toward the 3' untranslated region (UTR) of the genomes of classical insect-specific flaviviruses (cISF), which was most pronounced for Kamiti River virus (KRV), a virus with a unique, 1.2 kb long 3' UTR. KRV-derived siRNAs were produced in high quantities and almost exclusively mapped to the 3' UTR. We mapped the 5' end of KRV subgenomic flavivirus RNAs (sfRNAs), products of the 5'-3' exoribonuclease XRN1/Pacman stalling on secondary RNA structures in the 3' UTR of the viral genome. We found that KRV produces high copy numbers of a long, 1,017 nt sfRNA1 and a short, 421 nt sfRNA2, corresponding to two predicted XRN1-resistant elements. Expression of both sfRNA1 and sfRNA2 was reduced in Pacman-deficient Aedes albopictus cells; however, this did not correlate with a shift in viral siRNA profiles. We suggest that cISFs, particularly KRV, developed a unique mechanism to produce high amounts of siRNAs as a decoy for the antiviral RNAi response in an sfRNA-independent manner.IMPORTANCEThe Flavivirus genus contains diverse mosquito viruses ranging from insect-specific viruses circulating exclusively in mosquito populations to mosquito-borne viruses that cause disease in humans and animals. Studying the mechanisms of virus replication and antiviral immunity in mosquitoes is important to understand arbovirus transmission and may inform the development of disease control strategies. In insects, RNA interference (RNAi) provides broad antiviral activity and constitutes a major immune response against viruses. Comparing diverse members of the Flavivirus genus, we found that all flaviviruses are targeted by RNAi. However, the insect-specific Kamiti River virus was unique in that small interfering RNAs are highly skewed toward its uniquely long 3' untranslated region. These results suggest that mosquito-specific viruses have evolved unique mechanisms for genome replication and immune evasion.
Collapse
Affiliation(s)
- Benoit Besson
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael T Wolfinger
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- RNA Forecast e.U., Vienna, Austria
| | - Sandra Junglen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Free University, Humboldt University, Berlin Institute of Health, Berlin, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Pallarés H, González López Ledesma M, Oviedo-Rouco S, Castellano L, Costa Navarro G, Fernández-Alvarez A, D’Andreiz M, Aldas-Bulos V, Alvarez D, Bazzini A, Gamarnik A. Zika virus non-coding RNAs antagonize antiviral responses by PKR-mediated translational arrest. Nucleic Acids Res 2024; 52:11128-11147. [PMID: 38917323 PMCID: PMC11472168 DOI: 10.1093/nar/gkae507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that causes severe outbreaks in human populations. ZIKV infection leads to the accumulation of small non-coding viral RNAs (known as sfRNAs) that are crucial for evasion of antiviral responses and for viral pathogenesis. However, the mechanistic understanding of how sfRNAs function remains incomplete. Here, we use recombinant ZIKVs and ribosome profiling of infected human cells to show that sfRNAs block translation of antiviral genes. Mechanistically, we demonstrate that specific RNA structures present in sfRNAs trigger PKR activation, which instead of limiting viral replication, enhances viral particle production. Although ZIKV infection induces mRNA expression of antiviral genes, translation efficiency of type I interferon and interferon stimulated genes were significantly downregulated by PKR activation. Our results reveal a novel viral adaptation mechanism mediated by sfRNAs, where ZIKV increases its fitness by repurposing the antiviral role of PKR into a proviral factor.
Collapse
Affiliation(s)
- Horacio M Pallarés
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Mora González López Ledesma
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Santiago Oviedo-Rouco
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Guadalupe S Costa Navarro
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana J Fernández-Alvarez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Josefina D’Andreiz
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Andrea V Gamarnik
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
6
|
Mainan A, Kundu R, Singh RK, Roy S. Magnesium Regulates RNA Ring Dynamics and Folding in Subgenomic Flaviviral RNA. J Phys Chem B 2024; 128:9680-9691. [PMID: 39344128 DOI: 10.1021/acs.jpcb.4c03981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Mosquito-borne flaviviruses including dengue, Zika, yellow fever, and regional encephalitis produce a large amount of short subgenomic flaviviral RNAs during infection. A segment of these RNAs named as xrRNA1 features a multi-pseudoknot (PK)-associated structure, which resists the host cell enzyme (XRN1) from degrading the viral RNA. We investigate how this long-range RNA PK folds in the presence of counterions, specifically in a mix of monovalent (K+) and divalent (Mg2+) salts at physiological concentrations. In this study, we use extensive explicit solvent molecular dynamics (MD) simulations to characterize the RNA ion environment of the folded RNA conformation, as determined by the crystal structure. This allowed us to identify the precise locations of various coordinated RNA-Mg2+ interactions, including inner-sphere/chelated and outer-sphere coordinated Mg2+. Given that RNA folding involves large-scale conformational changes, making it challenging to explore through classical MD simulations, we investigate the folding mechanism of xrRNA1 using an all-atom structure-based RNA model with a hybrid implicit-explicit treatment of the ion environment via the dynamic counterion condensation model, both with and without physiological Mg2+ concentration. The study reveals potential folding pathways for this xrRNA1, which is consistent with the results obtained from optical tweezer experiments. The equilibrium and free energy simulations both capture a dynamic equilibrium between the ring-open and ring-close states of the RNA, driven by a long-range PK interaction. Free energy calculations reveal that with the addition of Mg2+ ions, the equilibrium shifts more toward the ring-close state. A detailed analysis of the free energy pathways and ion-mediated contact probability map highlights the critical role of Mg2+ in bridging G50 and A33. This Mg2+-mediated connection helps form the long-range PK which in turn controls the transition between the ring-open and ring-close states. The study underscores the critical role of Mg2+ in the RNA folding transition, highlighting specific locations of Mg2+ contributing to the stabilization of long-range PK connections likely to enhance the robustness of Xrn1 resistance of flaviviral xrRNAs.
Collapse
Affiliation(s)
- Avijit Mainan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Rimi Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Rishabh K Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
7
|
Zoladek J, El Kazzi P, Caval V, Vivet-Boudou V, Cannac M, Davies EL, Rossi S, Bribes I, Rouilly L, Simonin Y, Jouvenet N, Decroly E, Paillart JC, Wilson SJ, Nisole S. A specific domain within the 3' untranslated region of Usutu virus confers resistance to the exonuclease ISG20. Nat Commun 2024; 15:8528. [PMID: 39358425 PMCID: PMC11447015 DOI: 10.1038/s41467-024-52870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Usutu virus (USUV) and West Nile virus (WNV) are two closely related emerging mosquito-borne flaviviruses. Their natural hosts are wild birds, but they can also cause severe neurological disorders in humans. Both viruses are efficiently suppressed by type I interferon (IFN), which interferes with viral replication, dissemination, pathogenesis and transmission. Here, we show that the replication of USUV and WNV are inhibited through a common set of IFN-induced genes (ISGs), with the notable exception of ISG20, which USUV is resistant to. Strikingly, USUV was the only virus among all the other tested mosquito-borne flaviviruses that demonstrated resistance to the 3'-5' exonuclease activity of ISG20. Our findings highlight that the intrinsic resistance of the USUV genome, irrespective of the presence of cellular or viral proteins or protective post-transcriptional modifications, relies on a unique sequence present in its 3' untranslated region. Importantly, this genomic region alone can confer ISG20 resistance to a susceptible flavivirus, without compromising its infectivity, suggesting that it could be acquired by other flaviviruses. This study provides new insights into the strategy employed by emerging flaviviruses to overcome host defense mechanisms.
Collapse
Affiliation(s)
- Jim Zoladek
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Priscila El Kazzi
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix Marseille Université, CNRS UMR 7257, Marseille, France
| | - Vincent Caval
- Virus Sensing and Signaling Unit, CNRS UMR 3569, Institut Pasteur, Université Paris Cité, Paris, France
| | - Valérie Vivet-Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Marion Cannac
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Emma L Davies
- MRC-University of Glasgow, Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Soléna Rossi
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Inès Bribes
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France
| | - Lucile Rouilly
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix Marseille Université, CNRS UMR 7257, Marseille, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic and Emerging Infections (PCCEI), INSERM, Etablissement Français du Sang, Université de Montpellier, Montpellier, France
| | - Nolwenn Jouvenet
- Virus Sensing and Signaling Unit, CNRS UMR 3569, Institut Pasteur, Université Paris Cité, Paris, France
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix Marseille Université, CNRS UMR 7257, Marseille, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Sam J Wilson
- MRC-University of Glasgow, Centre for Virus Research, University of Glasgow, Glasgow, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS UMR 9004, Montpellier, France.
| |
Collapse
|
8
|
Watkins JM, Burke JM. RNase L-induced bodies sequester subgenomic flavivirus RNAs to promote viral RNA decay. Cell Rep 2024; 43:114694. [PMID: 39196777 DOI: 10.1016/j.celrep.2024.114694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 08/13/2024] [Indexed: 08/30/2024] Open
Abstract
Subgenomic flavivirus RNAs (sfRNAs) are structured RNAs encoded by flaviviruses that promote viral infection by inhibiting cellular RNA decay machinery. Herein, we analyze sfRNA production and localization using single-molecule RNA fluorescence in situ hybridization (smRNA-FISH) throughout West Nile virus, Zika virus, or dengue virus serotype 2 infection. We observe that sfRNAs are generated during the RNA replication phase of viral infection in the cytosol and accumulate in processing bodies (P-bodies), which contain RNA decay machinery such as XRN1 and Dcp1b. However, upon activation of the host antiviral endoribonuclease, ribonuclease L (RNase L), sfRNAs re-localize to ribonucleoprotein complexes known as RNase L-induced bodies (RLBs). RLB-mediated sequestration of sfRNAs reduces sfRNA association with RNA decay machinery in P-bodies, which coincides with increased viral RNA decay. These findings establish a functional role for RLBs in enhancing the cell-mediated decay of viral RNA by sequestering functional viral RNA decay products.
Collapse
Affiliation(s)
- J Monty Watkins
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA; Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA; Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - James M Burke
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA; Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
| |
Collapse
|
9
|
Meganck RM, Ogurlu R, Liu J, Moller-Tank S, Tse V, Blondel LO, Rosales A, Hall AC, Vincent HA, Moorman NJ, Marzluff WF, Asokan A. Sub-genomic flaviviral RNA elements increase the stability and abundance of recombinant AAV vector transcripts. J Virol 2024; 98:e0009524. [PMID: 39082815 PMCID: PMC11334430 DOI: 10.1128/jvi.00095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Many viruses have evolved structured RNA elements that can influence transcript abundance and translational efficiency, and help evade host immune factors by hijacking cellular machinery during replication. Here, we evaluated the functional impact of sub-genomic flaviviral RNAs (sfRNAs) known to stall exoribonuclease activity, by incorporating these elements into recombinant adeno-associated viral (AAV) genome cassettes. Specifically, sfRNAs from Dengue, Zika, Japanese Encephalitis, Yellow Fever, Murray Valley Encephalitis, and West Nile viruses increased transcript stability and transgene expression compared to a conventional woodchuck hepatitis virus element (WPRE). Further dissection of engineered transcripts revealed that sfRNA elements (i) require incorporation in cis within the 3' untranslated region (UTR) of AAV genomes, (ii) require minimal dumbbell structures to exert the observed effects, and (iii) can stabilize AAV transcripts independent of 5'-3' exoribonuclease 1 (XRN1)-mediated decay. Additionally, preliminary in vivo assessment of AAV vectors bearing sfRNA elements in mice achieved increased transcript abundance and expression in cardiac tissue. Leveraging the functional versatility of engineered viral RNA elements may help improve the potency of AAV vector-based gene therapies. IMPORTANCE Viral RNA elements can hijack host cell machinery to control stability of transcripts and consequently, infection. Studies that help better understand such viral elements can provide insights into antiviral strategies and also potentially leverage these features for therapeutic applications. In this study, by incorporating structured flaviviral RNA elements into recombinant adeno-associated viral (AAV) vector genomes, we show improved AAV transcript stability and transgene expression can be achieved, with implications for gene transfer.
Collapse
Affiliation(s)
- Rita M. Meganck
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - Roza Ogurlu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Jiacheng Liu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Cornell University, Ithaca, New York, USA
| | - Sven Moller-Tank
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Regeneron Pharmaceutical, Inc., Tarrytown, New York, USA
| | - Victor Tse
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Leo O. Blondel
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan Rosales
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Aaron C. Hall
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Heather A. Vincent
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- TorqueBio, Inc., Durham, North Carolina, USA
| | - Nathaniel J. Moorman
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - William F. Marzluff
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
10
|
Goh JZH, De Hayr L, Khromykh AA, Slonchak A. The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics. Vaccines (Basel) 2024; 12:865. [PMID: 39203991 PMCID: PMC11360482 DOI: 10.3390/vaccines12080865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
| | | | | | - Andrii Slonchak
- Australian Infectious Diseases Research Center, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.Z.H.G.); (L.D.H.); (A.A.K.)
| |
Collapse
|
11
|
Doets K, Pijlman GP. Subgenomic flavivirus RNA as key target for live-attenuated vaccine development. J Virol 2024; 98:e0010023. [PMID: 38808973 PMCID: PMC11265276 DOI: 10.1128/jvi.00100-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
Live-attenuated flavivirus vaccines confer long-term protection against disease, but the design of attenuated flaviviruses does not follow a general approach. The non-coding, subgenomic flavivirus RNA (sfRNA) is produced by all flaviviruses and is an essential factor in viral pathogenesis and transmission. We argue that modulating sfRNA expression is a promising, universal strategy to finetune flavivirus attenuation for developing effective flavivirus vaccines of the future.
Collapse
Affiliation(s)
- Kristel Doets
- Wageningen University and Research, Laboratory of Virology, Wageningen, the Netherlands
| | - Gorben P. Pijlman
- Wageningen University and Research, Laboratory of Virology, Wageningen, the Netherlands
| |
Collapse
|
12
|
Nogueira CDO, Lopes da Silva MO, de Lima EV, Christoff RR, Gavino-Leopoldino D, Lemos FS, da Silva NE, Da Poian AT, Assunção-Miranda I, Figueiredo CP, Clarke JR. Immunosuppression-induced Zika virus reactivation causes brain inflammation and behavioral deficits in mice. iScience 2024; 27:110178. [PMID: 38993676 PMCID: PMC11237861 DOI: 10.1016/j.isci.2024.110178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Zika virus (ZIKV) is a neurotropic flavivirus that can persist in several tissues. The late consequences of ZIKV persistence and whether new rounds of active replication can occur, remain unaddressed. Here, we investigated whether neonatally ZIKV-infected mice are susceptible to viral reactivation in adulthood. We found that when ZIKV-infected mice are treated with immunosuppressant drugs, they present increased susceptibility to chemically induced seizures. Levels of subgenomic flavivirus RNAs (sfRNAs) were increased, relative to the amounts of genomic RNAs, in the brains of mice following immunosuppression and were associated with changes in cytokine expression. We investigated the impact of immunosuppression on the testicles and found that ZIKV genomic RNA levels are increased in mice following immunosuppression, which also caused significant testicular damage. These findings suggest that ZIKV can establish new rounds of active replication long after acute stages of disease, so exposed patients should be monitored to ensure complete viral eradication.
Collapse
Affiliation(s)
- Clara de O Nogueira
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, RJ, Brazil
| | | | - Emanuelle V de Lima
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, RJ, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, RJ, Brazil
| | - Raíssa Rilo Christoff
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, RJ, Brazil
| | - Daniel Gavino-Leopoldino
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, RJ, Brazil
| | - Felipe S Lemos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, RJ, Brazil
| | - Nicolas E da Silva
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, RJ, Brazil
| | - Andrea T Da Poian
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, RJ, Brazil
| | - Iranaia Assunção-Miranda
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, RJ, Brazil
| | - Claudia P Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, RJ, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, RJ, Brazil
| | - Julia R Clarke
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, RJ, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941902, RJ, Brazil
| |
Collapse
|
13
|
Bampali M, Kouvela A, Kesesidis N, Kassela K, Dovrolis N, Karakasiliotis I. West Nile Virus Subgenomic RNAs Modulate Gene Expression in a Neuronal Cell Line. Viruses 2024; 16:812. [PMID: 38793693 PMCID: PMC11125720 DOI: 10.3390/v16050812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are small non-coding products of the incomplete degradation of viral genomic RNA. They accumulate during flaviviral infection and have been associated with many functional roles inside the host cell. Studies so far have demonstrated that sfRNA plays a crucial role in determining West Nile virus (WNV) pathogenicity. However, its modulatory role on neuronal homeostasis has not been studied in depth. In this study, we investigated the mechanism of sfRNA biosynthesis and its importance for WNV replication in neuronal cells. We found that sfRNA1 is functionally redundant for both replication and translation of WNV. However, the concurrent absence of sfRNA1 and sfRNA2 species is detrimental for the survival of the virus. Differential expression analysis on RNA-seq data from WT and ΔsfRNA replicon cell lines revealed transcriptional changes induced by sfRNA and identified a number of putative targets. Overall, it was shown that sfRNA contributes to the viral evasion by suppressing the interferon-mediated antiviral response. An additional differential expression analysis among replicon and control Neuro2A cells also clarified the transcriptional changes that support WNV replication in neuronal cells. Increased levels of translation and oxidative phosphorylation, post-translational modification processes, and activated DNA repair pathways were observed in replicon cell lines, while developmental processes such as axonal growth were deficient.
Collapse
Affiliation(s)
| | | | | | | | | | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.B.); (A.K.); (N.K.); (K.K.); (N.D.)
| |
Collapse
|
14
|
Bermudez-Santana CI, Gallego-Gómez JC. Toward a Categorization of Virus-ncRNA Interactions in the World of RNA to Disentangle the Tiny Secrets of Dengue Virus. Viruses 2024; 16:804. [PMID: 38793685 PMCID: PMC11125801 DOI: 10.3390/v16050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, the function of noncoding RNAs (ncRNAs) as regulatory molecules of cell physiology has begun to be better understood. Advances in viral molecular biology have shown that host ncRNAs, cellular factors, and virus-derived ncRNAs and their interplay are strongly disturbed during viral infections. Nevertheless, the folding of RNA virus genomes has also been identified as a critical factor in regulating canonical and non-canonical functions. Due to the influence of host ncRNAs and the structure of RNA viral genomes, complex molecular and cellular processes in infections are modulated. We propose three main categories to organize the current information about RNA-RNA interactions in some well-known human viruses. The first category shows examples of host ncRNAs associated with the immune response triggered in viral infections. Even though miRNAs introduce a standpoint, they are briefly presented to keep researchers moving forward in uncovering other RNAs. The second category outlines interactions between virus-host ncRNAs, while the third describes how the structure of the RNA viral genome serves as a scaffold for processing virus-derived RNAs. Our grouping may provide a comprehensive framework to classify ncRNA-host-cell interactions for emerging viruses and diseases. In this sense, we introduced them to organize DENV-host-cell interactions.
Collapse
Affiliation(s)
- Clara Isabel Bermudez-Santana
- Computational and theoretical RNomics Group, Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Carlos Gallego-Gómez
- Grupo de Medicina de Traslación, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
15
|
Wang LL, Cheng Q, Newton ND, Wolfinger MT, Morgan MS, Slonchak A, Khromykh AA, Cheng TY, Parry RH. Xinyang flavivirus, from Haemaphysalis flava ticks in Henan Province, China, defines a basal, likely tick-only Orthoflavivirus clade. J Gen Virol 2024; 105:001991. [PMID: 38809251 PMCID: PMC11165663 DOI: 10.1099/jgv.0.001991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from Xìnyáng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75 % in adult females and 15.19 % in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.
Collapse
Affiliation(s)
- Lan-Lan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
| | - Qia Cheng
- Children’s Medical Center, Hunan Provincial People’s Hospital, Changsha, PR China
| | - Natalee D. Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Michael T. Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Vienna, Austria
- Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- RNA Forecast e.U., Vienna, Austria
| | - Mahali S. Morgan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD, Australia
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China
| | - Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Watkins JM, Burke JM. RNase L-induced bodies sequester subgenomic flavivirus RNAs and re-establish host RNA decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586660. [PMID: 38585896 PMCID: PMC10996650 DOI: 10.1101/2024.03.25.586660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Subgenomic flavivirus RNAs (sfRNAs) are structured RNA elements encoded in the 3'-UTR of flaviviruses that promote viral infection by inhibiting cellular RNA decay machinery. Herein, we analyze the production of sfRNAs using single-molecule RNA fluorescence in situ hybridization (smRNA-FISH) and super-resolution microscopy during West Nile virus, Zika virus, or Dengue virus serotype 2 infection. We show that sfRNAs are initially localized diffusely in the cytosol or in processing bodies (P-bodies). However, upon activation of the host antiviral endoribonuclease, Ribonuclease L (RNase L), nearly all sfRNAs re-localize to antiviral biological condensates known as RNase L-induced bodies (RLBs). RLB-mediated sequestration of sfRNAs reduces sfRNA association with RNA decay machinery in P-bodies, which coincides with increased viral RNA decay. These findings establish a role of RLBs in promoting viral RNA decay, demonstrating the complex host-pathogen interactions at the level of RNA decay and biological condensation.
Collapse
Affiliation(s)
- J. Monty Watkins
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States of America
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States of America
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - James M. Burke
- Department of Molecular Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States of America
- Department of Immunology and Microbiology, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States of America
| |
Collapse
|
17
|
Jablunovsky A, Jose J. The Dynamic Landscape of Capsid Proteins and Viral RNA Interactions in Flavivirus Genome Packaging and Virus Assembly. Pathogens 2024; 13:120. [PMID: 38392858 PMCID: PMC10893219 DOI: 10.3390/pathogens13020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The Flavivirus genus of the Flaviviridae family of enveloped single-stranded RNA viruses encompasses more than 70 members, many of which cause significant disease in humans and livestock. Packaging and assembly of the flavivirus RNA genome is essential for the formation of virions, which requires intricate coordination of genomic RNA, viral structural, and nonstructural proteins in association with virus-induced, modified endoplasmic reticulum (ER) membrane structures. The capsid (C) protein, a small but versatile RNA-binding protein, and the positive single-stranded RNA genome are at the heart of the elusive flavivirus assembly process. The nucleocapsid core, consisting of the genomic RNA encapsidated by C proteins, buds through the ER membrane, which contains viral glycoproteins prM and E organized as trimeric spikes into the lumen, forming an immature virus. During the maturation process, which involves the low pH-mediated structural rearrangement of prM and E and furin cleavage of prM in the secretory pathway, the spiky immature virus with a partially ordered nucleocapsid core becomes a smooth, mature virus with no discernible nucleocapsid. This review focuses on the mechanisms of genome packaging and assembly by examining the structural and functional aspects of C protein and viral RNA. We review the current lexicon of critical C protein features and evaluate interactions between C and genomic RNA in the context of assembly and throughout the life cycle.
Collapse
Affiliation(s)
- Anastazia Jablunovsky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
18
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
19
|
Tajima S, Kataoka M, Takamatsu Y, Ebihara H, Lim CK. Mutations in the 3' non-coding region of a no-known vector flavivirus Yokose virus increased its replication ability in mosquito C6/36 cells. Virology 2024; 589:109928. [PMID: 37949004 DOI: 10.1016/j.virol.2023.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Yokose virus (YOKV) is a bat-associated no-known vector flavivirus group member. We investigated the replication ability of YOKV in mosquito-derived C6/36 cells. YOKV grew in C6/36 cells, but its kinetics of YOKV was markedly slower than those of other mosquito-borne flaviviruses. Transmission electron microscopy indicated an extremely small number of viral particles in YOKV-infected C6/36 cells. Mosquito-borne Japanese encephalitis virus prM-E-bearing chimeric YOKV failed to propagate efficiently in C6/36 cells. We isolated C6/36-adapted YOKV and identified nucleotide mutations in the adapted YOKV. Mutations detected in the 3' non-coding region of the adapted YOKV were critical for the enhanced proliferation ability of the virus. Moreover, the growth of the original and adapted YOKV in C6/36 cells was remarkably increased by shifting the culture temperature from 28 to 36 °C. Thus, our results demonstrate the potential of YOKV to propagate in mosquito cells and support its classification as a mosquito-borne flavivirus.
Collapse
Affiliation(s)
- Shigeru Tajima
- Department of Virology 1, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan.
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Hideki Ebihara
- Department of Virology 1, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
| | - Chang-Kweng Lim
- Department of Virology 1, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
| |
Collapse
|
20
|
Ghita L, Yao Z, Xie Y, Duran V, Cagirici HB, Samir J, Osman I, Rebellón-Sánchez DE, Agudelo-Rojas OL, Sanz AM, Sahoo MK, Robinson ML, Gelvez-Ramirez RM, Bueno N, Luciani F, Pinsky BA, Montoya JG, Estupiñan-Cardenas MI, Villar-Centeno LA, Rojas-Garrido EM, Rosso F, Quake SR, Zanini F, Einav S. Global and cell type-specific immunological hallmarks of severe dengue progression identified via a systems immunology approach. Nat Immunol 2023; 24:2150-2163. [PMID: 37872316 PMCID: PMC10863980 DOI: 10.1038/s41590-023-01654-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023]
Abstract
Severe dengue (SD) is a major cause of morbidity and mortality. To define dengue virus (DENV) target cells and immunological hallmarks of SD progression in children's blood, we integrated two single-cell approaches capturing cellular and viral elements: virus-inclusive single-cell RNA sequencing (viscRNA-Seq 2) and targeted proteomics with secretome analysis and functional assays. Beyond myeloid cells, in natural infection, B cells harbor replicating DENV capable of infecting permissive cells. Alterations in cell type abundance, gene and protein expression and secretion as well as cell-cell communications point towards increased immune cell migration and inflammation in SD progressors. Concurrently, antigen-presenting cells from SD progressors demonstrate intact uptake yet impaired interferon response and antigen processing and presentation signatures, which are partly modulated by DENV. Increased activation, regulation and exhaustion of effector responses and expansion of HLA-DR-expressing adaptive-like NK cells also characterize SD progressors. These findings reveal DENV target cells in human blood and provide insight into SD pathogenesis beyond antibody-mediated enhancement.
Collapse
Affiliation(s)
- Luca Ghita
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhiyuan Yao
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yike Xie
- School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Veronica Duran
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
| | - Halise Busra Cagirici
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jerome Samir
- School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ilham Osman
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Ana Maria Sanz
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
| | - Malaya Kumar Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Makeda L Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Nathalia Bueno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI/Fundacion INFOVIDA), Bucaramanga, Colombia
| | - Fabio Luciani
- School of Biomedical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Benjamin A Pinsky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jose G Montoya
- Palo Alto Medical Foundation and Dr. Jack S. Remington Laboratory for Speciality Diagnostics, Palo Alto, CA, USA
| | | | - Luis Angel Villar-Centeno
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI/Fundacion INFOVIDA), Bucaramanga, Colombia
| | - Elsa Marina Rojas-Garrido
- Centro de Atención y Diagnóstico de Enfermedades Infecciosas (CDI/Fundacion INFOVIDA), Bucaramanga, Colombia
| | - Fernando Rosso
- Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
- Division of Infectious Diseases, Department of Internal Medicine, Fundación Valle del Lili, Cali, Colombia
| | - Stephen R Quake
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Fabio Zanini
- School of Clinical Medicine, UNSW Sydney, Sydney, New South Wales, Australia.
- Cellular Genomics Futures Institute, UNSW Sydney, Sydney, New South Wales, Australia.
- Evolution and Ecology Research Centre, UNSW Sydney, Sydney, New South Wales, Australia.
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
21
|
Parry RH, Slonchak A, Campbell LJ, Newton ND, Debat HJ, Gifford RJ, Khromykh AA. A novel tamanavirus ( Flaviviridae) of the European common frog ( Rana temporaria) from the UK. J Gen Virol 2023; 104:001927. [PMID: 38059479 PMCID: PMC10770923 DOI: 10.1099/jgv.0.001927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
Flavivirids are small, enveloped, positive-sense RNA viruses from the family Flaviviridae with genomes of ~9-13 kb. Metatranscriptomic analyses of metazoan organisms have revealed a diversity of flavivirus-like or flavivirid viral sequences in fish and marine invertebrate groups. However, no flavivirus-like virus has been identified in amphibians. To remedy this, we investigated the virome of the European common frog (Rana temporaria) in the UK, utilizing high-throughput sequencing at six catch locations. De novo assembly revealed a coding-complete virus contig of a novel flavivirid ~11.2 kb in length. The virus encodes a single ORF of 3456 aa and 5' and 3' untranslated regions (UTRs) of 227 and 666 nt, respectively. We named this virus Rana tamanavirus (RaTV), as BLASTp analysis of the polyprotein showed the closest relationships to Tamana bat virus (TABV) and Cyclopterus lumpus virus from Pteronotus parnellii and Cyclopterus lumpus, respectively. Phylogenetic analysis of the RaTV polyprotein compared to Flavivirus and Flavivirus-like members indicated that RaTV was sufficiently divergent and basal to the vertebrate Tamanavirus clade. In addition to the Mitcham strain, partial but divergent RaTV, sharing 95.64-97.39 % pairwise nucleotide identity, were also obtained from the Poole and Deal samples, indicating that RaTV is widespread in UK frog samples. Bioinformatic analyses of predicted secondary structures in the 3'UTR of RaTV showed the presence of an exoribonuclease-resistant RNA (xrRNA) structure standard in flaviviruses and TABV. To examine this biochemically, we conducted an in vitro Xrn1 digestion assay showing that RaTV probably forms a functional Xrn1-resistant xrRNA.
Collapse
Affiliation(s)
- Rhys H. Parry
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre (AIDRC), Brisbane, QLD, Australia
| | - Lewis J. Campbell
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Institute of Zoology, Zoological Society of London, London, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, UK
| | - Natalee D. Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre (AIDRC), Brisbane, QLD, Australia
| | - Humberto J. Debat
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba X5020ICA, Argentina
- Unidad de Fitopatología y Modelización Agrícola (UFYMA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5020ICA, Argentina
| | | | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre (AIDRC), Brisbane, QLD, Australia
- AIDRC Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Rey-Cadilhac F, Rachenne F, Missé D, Pompon J. Viral Components Trafficking with(in) Extracellular Vesicles. Viruses 2023; 15:2333. [PMID: 38140574 PMCID: PMC10747788 DOI: 10.3390/v15122333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The global public health burden exerted by viruses partially stems from viruses' ability to subdue host cells into creating an environment that promotes their multiplication (i.e., pro-viral). It has been discovered that viruses alter cell physiology by transferring viral material through extracellular vesicles (EVs), which serve as vehicles for intercellular communication. Here, we aim to provide a conceptual framework of all possible EV-virus associations and their resulting functions in infection output. First, we describe the different viral materials potentially associated with EVs by reporting that EVs can harbor entire virions, viral proteins and viral nucleic acids. We also delineate the different mechanisms underlying the internalization of these viral components into EVs. Second, we describe the potential fate of EV-associated viral material cargo by detailing how EV can circulate and target a naive cell once secreted. Finally, we itemize the different pro-viral strategies resulting from EV associations as the Trojan horse strategy, an alternative mode of viral transmission, an expansion of viral cellular tropism, a pre-emptive alteration of host cell physiology and an immunity decoy. With this conceptual overview, we aim to stimulate research on EV-virus interactions.
Collapse
Affiliation(s)
- Félix Rey-Cadilhac
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
- Faculty of Science, Université de Montpellier, 34095 Montpellier, France
| | - Florian Rachenne
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
- Faculty of Science, Université de Montpellier, 34095 Montpellier, France
| | - Dorothée Missé
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
| | - Julien Pompon
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
| |
Collapse
|
23
|
Liu Y, Guan W, Liu H. Subgenomic Flaviviral RNAs of Dengue Viruses. Viruses 2023; 15:2306. [PMID: 38140548 PMCID: PMC10747610 DOI: 10.3390/v15122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are produced during flavivirus infections in both arthropod and vertebrate cells. They are undegraded products originating from the viral 3' untranslated region (3' UTR), a result of the action of the host 5'-3' exoribonuclease, Xrn1, when it encounters specific RNA structures known as Xrn1-resistant RNAs (xrRNAs) within the viral 3' UTR. Dengue viruses generate three to four distinct species of sfRNAs through the presence of two xrRNAs and two dumbbell structures (DBs). The tertiary structures of xrRNAs have been characterized to form a ringlike structure around the 5' end of the viral RNA, effectively inhibiting the activity of Xrn1. The most important role of DENV sfRNAs is to inhibit host antiviral responses by interacting with viral and host proteins, thereby influencing viral pathogenicity, replicative fitness, epidemiological fitness, and transmission. In this review, we aimed to summarize the biogenesis, structures, and functions of DENV sfRNAs, exploring their implications for viral interference.
Collapse
Affiliation(s)
- Yi Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
| | - Wuxiang Guan
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| | - Haibin Liu
- Hubei Jiangxia Laboratory, Wuhan 430200, China
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430207, China
| |
Collapse
|
24
|
Jaeger AS, Marano J, Riemersma KK, Castaneda D, Pritchard EM, Pritchard JC, Bohm EK, Baczenas JJ, O'Connor SL, Weger-Lucarelli J, Friedrich TC, Aliota MT. Gain without pain: adaptation and increased virulence of Zika virus in vertebrate host without fitness cost in mosquito vector. J Virol 2023; 97:e0116223. [PMID: 37800949 PMCID: PMC10653995 DOI: 10.1128/jvi.01162-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Previously, we modeled direct transmission chains of Zika virus (ZIKV) by serially passaging ZIKV in mice and mosquitoes and found that direct mouse transmission chains selected for viruses with increased virulence in mice and the acquisition of non-synonymous amino acid substitutions. Here, we show that these same mouse-passaged viruses also maintain fitness and transmission capacity in mosquitoes. We used infectious clone-derived viruses to demonstrate that the substitution in nonstructural protein 4A contributes to increased virulence in mice.
Collapse
Affiliation(s)
- Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Jeffrey Marano
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Kasen K. Riemersma
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David Castaneda
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Elise M. Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Julia C. Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| | - John J. Baczenas
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shelby L. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minnesota, USA
| |
Collapse
|
25
|
Graham ME, Merrick C, Akiyama BM, Szucs MJ, Leach S, Kieft JS, Beckham JD. Zika virus dumbbell-1 structure is critical for sfRNA presence and cytopathic effect during infection. mBio 2023; 14:e0110823. [PMID: 37417764 PMCID: PMC10470596 DOI: 10.1128/mbio.01108-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
All flaviviruses contain conserved RNA structures in the 3' untranslated region (3' UTR) that are important for flavivirus RNA replication, translation, and pathogenesis. Flaviviruses like Zika virus (ZIKV) contain multiple conserved RNA structures in the viral 3' UTR, including the structure known as dumbbell-1 (DB-1). Previous research has shown that the DB-1 structure is important for flavivirus positive-strand genome replication, but the functional role of the flavivirus DB-1 structure and the mechanism by which it contributes to viral pathogenesis are not known. Using the recently solved flavivirus DB RNA structural data, we designed two DB-1 mutant ZIKV infectious clones, termed ZIKV-TL.PK and ZIKV-p.2.5', which disrupt DB-1 tertiary folding. We found that viral positive-strand genome replication of both ZIKV DB-1 mutant clones is similar to wild-type (WT) ZIKV, but ZIKV DB-1 mutants exhibit significantly decreased cytopathic effect due to reduced caspase-3 activation. We next show that ZIKV DB-1 mutants exhibit decreased levels of sfRNA species compared to ZIKV-WT during infection. However, ZIKV DB-1 mutant 3' UTRs exhibit unchanged sfRNA biogenesis following XRN1 degradation in vitro. We also found that ZIKV DB-1 mutant virus (ZIKV-p.2.5') exhibited enhanced sensitivity to type I interferon treatment, and both ZIKV-DB-1 mutants exhibit reduced morbidity and mortality due to tissue-specific attenuated viral replication in brain tissue of interferon type I/II receptor knockout mice. We propose that the flavivirus DB-1 RNA structure maintains sfRNA levels during infection despite maintained sfRNA biogenesis, and these results indicate that ZIKV DB-dependent maintenance of sfRNA levels support caspase-3-dependent, cytopathic effect, type I interferon resistance, and viral pathogenesis in mammalian cells and in a ZIKV murine model of disease. IMPORTANCE The group of viruses termed flaviviruses cause important disease throughout the world and include dengue virus, Zika virus, Japanese encephalitis virus, and many more. All of these flaviviruses have highly conserved RNA structures in the untranslated regions of the virus genome. One of the shared RNA structures, termed the dumbbell region, is not well studied, but mutations in this region are important for vaccine development. In this study, we made structure-informed targeted mutations in the Zika virus dumbbell region and studied the effect on the virus. We found that Zika virus dumbbell mutants are significantly weakened or attenuated due to a decreased ability to produce non-coding RNA that is needed to support infection, support virus-induced cell death, and support escape from the host immune system. These data show that targeted mutations in the flavivirus dumbbell RNA structure may be an important approach to develop future vaccine candidates.
Collapse
Affiliation(s)
- Monica E. Graham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Camille Merrick
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Benjamin M. Akiyama
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew J. Szucs
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sarah Leach
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jeffery S. Kieft
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. David Beckham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
26
|
Ruivinho C, Gama-Carvalho M. Small non-coding RNAs encoded by RNA viruses: old controversies and new lessons from the COVID-19 pandemic. Front Genet 2023; 14:1216890. [PMID: 37415603 PMCID: PMC10322155 DOI: 10.3389/fgene.2023.1216890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
The recurring outbreaks caused by emerging RNA viruses have fostered an increased interest in the research of the mechanisms that regulate viral life cycles and the pathological outcomes associated with infections. Although interactions at the protein level are well-studied, interactions mediated by RNA molecules are less explored. RNA viruses can encode small non-coding RNAs molecules (sncRNAs), including viral miRNAs (v-miRNAs), that play important roles in modulating host immune responses and viral replication by targeting viral or host transcripts. Starting from the analysis of public databases compiling the known repertoire of viral ncRNA molecules and the evolution of publications and research interests on this topic in the wake of the COVID-19 pandemic, we provide an updated view on the current knowledge on viral sncRNAs, with a focus on v-miRNAs encoded by RNA viruses, and their mechanisms of action. We also discuss the potential of these molecules as diagnostic and prognostic biomarkers for viral infections and the development of antiviral therapies targeting v-miRNAs. This review emphasizes the importance of continued research efforts to characterize sncRNAs encoded by RNA viruses, identifies the most relevant pitfalls in the study of these molecules, and highlights the paradigm changes that have occurred in the last few years regarding their biogenesis, prevalence and functional relevance in the context of host-pathogen interactions.
Collapse
|
27
|
Li R, Gao S, Chen H, Zhang X, Yang X, Zhao J, Wang Z. Virus usurps alternative splicing to clear the decks for infection. Virol J 2023; 20:131. [PMID: 37340420 DOI: 10.1186/s12985-023-02098-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Since invasion, there will be a tug-of-war between host and virus to scramble cellular resources, for either restraining or facilitating infection. Alternative splicing (AS) is a conserved and critical mechanism of processing pre-mRNA into mRNAs to increase protein diversity in eukaryotes. Notably, this kind of post-transcriptional regulatory mechanism has gained appreciation since it is widely involved in virus infection. Here, we highlight the important roles of AS in regulating viral protein expression and how virus in turn hijacks AS to antagonize host immune response. This review will widen the understandings of host-virus interactions, be meaningful to innovatively elucidate viral pathogenesis, and provide novel targets for developing antiviral drugs in the future.
Collapse
Affiliation(s)
- Ruixue Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Shenyan Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Huayuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, People's Republic of China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.
| |
Collapse
|
28
|
Barnard TR, Landry BN, Wang AB, Sagan SM. Zika virus NS3 and NS5 proteins determine strain-dependent differences in dsRNA accumulation in a host cell type-dependent manner. J Gen Virol 2023; 104. [PMID: 37289497 DOI: 10.1099/jgv.0.001855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
For positive-sense RNA viruses, initiation of viral RNA replication represents a major target of antiviral responses to infection. Despite this, the interplay between viral replication and the innate antiviral response at early steps in the Zika virus (ZIKV) life cycle is not well understood. We have previously identified ZIKV isolates with differing levels of dsRNA accumulation, ZIKVPR (high dsRNA per infected cell) and ZIKVCDN (low dsRNA per infected cell), and we hypothesized that we could use reverse genetics to investigate how host and viral factors contribute to the establishment of viral RNA replication. We found that both the ZIKV NS3 and NS5 proteins as well as host factors were necessary to determine the dsRNA accumulation phenotype. Additionally, we show that dsRNA correlates with viral negative-strand RNA measured by strand-specific RT-qPCR, suggesting that dsRNA is an accurate readout of viral RNA replication. Interestingly, although we did not observe NS3- and NS5-dependent differences in cells with defects in interferon (IFN) production, differences in RNA accumulation precede induction of the IFN response, suggesting that RNA sensing pathways or intrinsic restriction factors may differentially restrict ZIKV in an NS3- and NS5-dependent manner. This work expands our understanding of the interplay of early steps of viral RNA replication and the induction of the innate antiviral response to ZIKV infection.
Collapse
Affiliation(s)
- Trisha R Barnard
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Breanna N Landry
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Alex B Wang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Slonchak A, Chaggar H, Aguado J, Wolvetang E, Khromykh AA. Noncoding RNA of Zika Virus Affects Interplay between Wnt-Signaling and Pro-Apoptotic Pathways in the Developing Brain Tissue. Viruses 2023; 15:1062. [PMID: 37243147 PMCID: PMC10222578 DOI: 10.3390/v15051062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Zika virus (ZIKV) has a unique ability among flaviviruses to cross the placental barrier and infect the fetal brain causing severe abnormalities of neurodevelopment known collectively as congenital Zika syndrome. In our recent study, we demonstrated that the viral noncoding RNA (subgenomic flaviviral RNA, sfRNA) of the Zika virus induces apoptosis of neural progenitors and is required for ZIKV pathogenesis in the developing brain. Herein, we expanded on our initial findings and identified biological processes and signaling pathways affected by the production of ZIKV sfRNA in the developing brain tissue. We employed 3D brain organoids generated from induced human pluripotent stem cells (ihPSC) as an ex vivo model of viral infection in the developing brain and utilized wild type (WT) ZIKV (producing sfRNA) and mutant ZIKV (deficient in the production of sfRNA). Global transcriptome profiling by RNA-Seq revealed that the production of sfRNA affects the expression of >1000 genes. We uncovered that in addition to the activation of pro-apoptotic pathways, organoids infected with sfRNA-producing WT, but not sfRNA-deficient mutant ZIKV, which exhibited a strong down-regulation of genes involved in signaling pathways that control neuron differentiation and brain development, indicating the requirement of sfRNA for the suppression of neurodevelopment associated with the ZIKV infection. Using gene set enrichment analysis and gene network reconstruction, we demonstrated that the effect of sfRNA on pathways that control brain development occurs via crosstalk between Wnt-signaling and proapoptotic pathways.
Collapse
Affiliation(s)
- Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane 4072, Australia
| | - Harman Chaggar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane 4072, Australia
| |
Collapse
|
30
|
Jaeger AS, Marano J, Riemersma K, Castañeda D, Pritchard E, Pritchard J, Bohm EK, Baczenas JJ, O’Connor SL, Weger-Lucarelli J, Friedrich TC, Aliota MT. Gain without pain: Adaptation and increased virulence of Zika virus in vertebrate host without fitness cost in mosquito vector. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533515. [PMID: 36993525 PMCID: PMC10055270 DOI: 10.1101/2023.03.20.533515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Zika virus (ZIKV) is now in a post-pandemic period, for which the potential for re-emergence and future spread is unknown. Adding to this uncertainty is the unique capacity of ZIKV to directly transmit between humans via sexual transmission. Recently, we demonstrated that direct transmission of ZIKV between vertebrate hosts leads to rapid adaptation resulting in enhanced virulence in mice and the emergence of three amino acid substitutions (NS2A-A117V, NS2A-A117T, and NS4A-E19G) shared among all vertebrate-passaged lineages. Here, we further characterized these host-adapted viruses and found that vertebrate-passaged viruses also have enhanced transmission potential in mosquitoes. To understand the contribution of genetic changes to the enhanced virulence and transmission phenotype, we engineered these amino acid substitutions, singly and in combination, into a ZIKV infectious clone. We found that NS4A-E19G contributed to the enhanced virulence and mortality phenotype in mice. Further analyses revealed that NS4A-E19G results in increased neurotropism and distinct innate immune signaling patterns in the brain. None of the substitutions contributed to changes in transmission potential in mosquitoes. Together, these findings suggest that direct transmission chains could enable the emergence of more virulent ZIKV strains without compromising mosquito transmission capacity, although the underlying genetics of these adaptations are complex.
Collapse
Affiliation(s)
- Anna S. Jaeger
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Jeffrey Marano
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University
| | - Kasen Riemersma
- Department of Pathobiological Sciences, University of Wisconsin-Madison
| | - David Castañeda
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Elise Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Julia Pritchard
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - Ellie K. Bohm
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| | - John J. Baczenas
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, United States
- Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison
- Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities
| |
Collapse
|
31
|
Yeh SC, Strilets T, Tan WL, Castillo D, Medkour H, Rey-Cadilhac F, Serrato-Pomar IM, Rachenne F, Chowdhury A, Chuo V, Azar SR, Singh MK, Hamel R, Missé D, Kini RM, Kenney LJ, Vasilakis N, Marti-Renom MA, Nir G, Pompon J, Garcia-Blanco MA. The anti-immune dengue subgenomic flaviviral RNA is present in vesicles in mosquito saliva and is associated with increased infectivity. PLoS Pathog 2023; 19:e1011224. [PMID: 36996041 PMCID: PMC10062553 DOI: 10.1371/journal.ppat.1011224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/20/2023] [Indexed: 03/31/2023] Open
Abstract
Mosquito transmission of dengue viruses to humans starts with infection of skin resident cells at the biting site. There is great interest in identifying transmission-enhancing factors in mosquito saliva in order to counteract them. Here we report the discovery of high levels of the anti-immune subgenomic flaviviral RNA (sfRNA) in dengue virus 2-infected mosquito saliva. We established that sfRNA is present in saliva using three different methods: northern blot, RT-qPCR and RNA sequencing. We next show that salivary sfRNA is protected in detergent-sensitive compartments, likely extracellular vesicles. In support of this hypothesis, we visualized viral RNAs in vesicles in mosquito saliva and noted a marked enrichment of signal from 3'UTR sequences, which is consistent with the presence of sfRNA. Furthermore, we show that incubation with mosquito saliva containing higher sfRNA levels results in higher virus infectivity in a human hepatoma cell line and human primary dermal fibroblasts. Transfection of 3'UTR RNA prior to DENV2 infection inhibited type I and III interferon induction and signaling, and enhanced viral replication. Therefore, we posit that sfRNA present in salivary extracellular vesicles is delivered to cells at the biting site to inhibit innate immunity and enhance dengue virus transmission.
Collapse
Affiliation(s)
- Shih-Chia Yeh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Tania Strilets
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Wei-Lian Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - David Castillo
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Hacène Medkour
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | | | | | | | - Avisha Chowdhury
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Vanessa Chuo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Moirangthem Kiran Singh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Rodolphe Hamel
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - R. Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases, University of University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Vector-Borne and Zoonotic Diseases, University of University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Preventive Medicine and Population Health, University of University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Marc A. Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Guy Nir
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Julien Pompon
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Mariano A. Garcia-Blanco
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
32
|
Ochsenreiter R, Wolfinger MT. Strukturierte RNAs in Viren. BIOSPEKTRUM : ZEITSCHRIFT DER GESELLSCHAFT FUR BIOLOGISHE CHEMIE (GBCH) UND DER VEREINIGUNG FUR ALLGEMEINE UND ANGEWANDTE MIKROBIOLOGIE (VAAM) 2023; 29:156-158. [PMID: 37073323 PMCID: PMC10101536 DOI: 10.1007/s12268-023-1907-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Evolutionarily conserved RNAs in untranslated regions are key regulators of the viral life cycle. Exoribonuclease-resistant RNAs (xrRNAs) are particularly interesting examples of structurally conserved elements because they actively dysregulate the messenger RNA (mRNA) degradation machinery of host cells, thereby mediating viral pathogenicity. We review the principles of RNA structure conservation in viruses and discuss potential applications of xrRNAs in synthetic biology and future mRNA vaccines.
Collapse
Affiliation(s)
| | - Michael T. Wolfinger
- Institut für Theoretische Chemie, Universität Wien, Wien, Österreich
- Arbeitsgruppe Bioinformatik und Computational Biology, Fakultät für Informatik, Universität Wien, Währinger Strasse 29, A-1090 Wien, Österreich
- RNA Forecast E. U., Wien, Österreich
| |
Collapse
|
33
|
Slonchak A, Wang X, Aguado J, Sng JDJ, Chaggar H, Freney ME, Yan K, Torres FJ, Amarilla AA, Balea R, Setoh YX, Peng N, Watterson D, Wolvetang E, Suhrbier A, Khromykh AA. Zika virus noncoding RNA cooperates with the viral protein NS5 to inhibit STAT1 phosphorylation and facilitate viral pathogenesis. SCIENCE ADVANCES 2022; 8:eadd8095. [PMID: 36449607 PMCID: PMC9710884 DOI: 10.1126/sciadv.add8095] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 05/25/2023]
Abstract
All flaviviruses, including Zika virus, produce noncoding subgenomic flaviviral RNA (sfRNA), which plays an important role in viral pathogenesis. However, the exact mechanism of how sfRNA enables viral evasion of antiviral response is not well defined. Here, we show that sfRNA is required for transplacental virus dissemination in pregnant mice and subsequent fetal brain infection. We also show that sfRNA promotes apoptosis of neural progenitor cells in human brain organoids, leading to their disintegration. In infected human placental cells, sfRNA inhibits multiple antiviral pathways and promotes apoptosis, with signal transducer and activator of transcription 1 (STAT1) identified as a key shared factor. We further show that the production of sfRNA leads to reduced phosphorylation and nuclear translocation of STAT1 via a mechanism that involves sfRNA binding to and stabilizing viral protein NS5. Our results suggest the cooperation between viral noncoding RNA and a viral protein as a novel strategy for counteracting antiviral responses.
Collapse
Affiliation(s)
- Andrii Slonchak
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Xiaohui Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Julio Aguado
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Julian D. J. Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Harman Chaggar
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Morgan E. Freney
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Francisco J. Torres
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Rickyle Balea
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nias Peng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Center of Excellence, Brisbane, QLD, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Center of Excellence, Brisbane, QLD, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Center of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
34
|
Huang S, Cheng A, Wang M, Yin Z, Huang J, Jia R. Viruses utilize ubiquitination systems to escape TLR/RLR-mediated innate immunity. Front Immunol 2022; 13:1065211. [PMID: 36505476 PMCID: PMC9732732 DOI: 10.3389/fimmu.2022.1065211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
When the viruses invade the body, they will be recognized by the host pattern recognition receptors (PRRs) such as Toll like receptor (TLR) or retinoic acid-induced gene-I like receptor (RLR), thus causing the activation of downstream antiviral signals to resist the virus invasion. The cross action between ubiquitination and proteins in these signal cascades enhances the antiviral signal. On the contrary, more and more viruses have also been found to use the ubiquitination system to inhibit TLR/RLR mediated innate immunity. Therefore, this review summarizes how the ubiquitination system plays a regulatory role in TLR/RLR mediated innate immunity, and how viruses use the ubiquitination system to complete immune escape.
Collapse
Affiliation(s)
- Shanzhi Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,*Correspondence: Renyong Jia,
| |
Collapse
|
35
|
Mao L, He Y, Wu Z, Wang X, Guo J, Zhang S, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Mao S, Wu Y, Zhang S, Huang J, Ou X, Gao Q, Sun D, Cheng A, Chen S. Stem-Loop I of the Tembusu Virus 3'-Untranslated Region Is Responsible for Viral Host-Specific Adaptation and the Pathogenicity of the Virus in Mice. Microbiol Spectr 2022; 10:e0244922. [PMID: 36214697 PMCID: PMC9602528 DOI: 10.1128/spectrum.02449-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/17/2022] [Indexed: 01/04/2023] Open
Abstract
Tembusu virus (TMUV), an avian mosquito-borne flavivirus, was first identified from Culex tritaeniorhynchus in 1955. To validate the effects of the 3'-untranslated region (3'UTR) in viral host-specific adaptation, we generated a set of chimeric viruses using CQW1 (duck strain) and MM 1775 (mosquito strain) as backbones with heterogeneous 3'UTRs. Compared with rMM 1775, rMM-CQ3'UTR (recombinant MM 1775 virus carrying the 3'UTR of CQW1) exhibited enhanced proliferation in vitro, with peak titers increasing by 5-fold in duck embryonic fibroblast (DEF) cells or 12-fold in baby hamster kidney (BHK-21) cells; however, the neurovirulence of rMM-CQ3'UTR was attenuated in 14-day-old Kunming mice via intracranial injection, with slower weight loss, lower mortality, and reduced viral loads. In contrast, rCQ-MM3'UTR showed similar growth kinetics in vitro and neurovirulence in mice compared with those of rCQW1. Then, the Stem-loop I (SLI) structure, which showed the highest variation within the 3'UTR between CQW1 and MM 1775, was further chosen for making chimeric viruses. The peak titers of rMM-CQ3'UTRSLI displayed a 15- or 4-fold increase in vitro, and the neurovirulence in mice was attenuated, compared with that of rMM 1775; rCQ-MM3'UTRSLI displayed comparable multiplication ability in vitro but was significantly attenuated in mice, in contrast with rCQW1. In conclusion, we demonstrated that the TMUV SLI structure of the 3'UTR was responsible for viral host-specific adaptation of the mosquito-derived strain in DEF and BHK-21 cells and regulated viral pathogenicity in 14-day-old mice, providing a new understanding of the functions of TMUV 3'UTR in viral host switching and the pathogenicity changes in mice. IMPORTANCE Mosquito-borne flaviviruses (MBFVs) constitute a large number of mosquito-transmitted viruses. The 3'-untranslated region (3'UTR) of MBFV has been suggested to be relevant to viral host-specific adaptation. However, the evolutionary strategies for host-specific fitness among MBFV are different, and the virulence-related structures within the 3'UTR are largely unknown. Here, using Tembusu virus (TMUV), an avian MBFV as models, we observed that the duck-derived SLI of the 3'UTR significantly enhanced the proliferation ability of mosquito-derived TMUV in baby hamster kidney (BHK-21) and duck embryonic fibroblast (DEF) cells, suggesting that the SLI structure was crucial for viral host-specific adaptation of mosquito-derived TMUVs in mammalian and avian cells. In addition, all SLI mutant viruses exhibited reduced viral pathogenicity in mice, indicating that SLI structure was a key factor for the pathogenicity in mice. This study provides a new insight into the functions of the MBFV 3'UTR in viral host switching and pathogenicity changes in mice.
Collapse
Affiliation(s)
- Li Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoli Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiaqi Guo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Senzhao Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Reporter Flaviviruses as Tools to Demonstrate Homologous and Heterologous Superinfection Exclusion. Viruses 2022; 14:v14071501. [PMID: 35891480 PMCID: PMC9317482 DOI: 10.3390/v14071501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/29/2022] Open
Abstract
Binjari virus (BinJV) is a lineage II or dual-host affiliated insect-specific flavivirus previously demonstrated as replication-deficient in vertebrate cells. Previous studies have shown that BinJV is tolerant to exchanging its structural proteins (prM-E) with pathogenic flaviviruses, making it a safe backbone for flavivirus vaccines. Here, we report generation by circular polymerase extension reaction of BinJV expressing zsGreen or mCherry fluorescent protein. Recovered BinJV reporter viruses grew to high titres (107−8 FFU/mL) in Aedes albopictus C6/36 cells assayed using immunoplaque assays (iPA). We also demonstrate that BinJV reporters could be semi-quantified live in vitro using a fluorescence microplate reader with an observed linear correlation between quantified fluorescence of BinJV reporter virus-infected C6/36 cells and iPA-quantitated virus titres. The utility of the BinJV reporter viruses was then examined in homologous and heterologous superinfection exclusion assays. We demonstrate that primary infection of C6/36 cells with BinJVzsGreen completely inhibits a secondary infection with homologous BinJVmCherry or heterologous ZIKVmCherry using fluorescence microscopy and virus quantitation by iPA. Finally, BinJVzsGreen infections were examined in vivo by microinjection of Aedes aegypti with BinJVzsGreen. At seven days post-infection, a strong fluorescence in the vicinity of salivary glands was detected in frozen sections. This is the first report on the construction of reporter viruses for lineage II insect-specific flaviviruses and establishes a tractable system for exploring flavivirus superinfection exclusion in vitro and in vivo.
Collapse
|
37
|
Cai W, Pan Y, Cheng A, Wang M, Yin Z, Jia R. Regulatory Role of Host MicroRNAs in Flaviviruses Infection. Front Microbiol 2022; 13:869441. [PMID: 35479613 PMCID: PMC9036177 DOI: 10.3389/fmicb.2022.869441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that affect mRNA abundance or translation efficiency by binding to the 3′UTR of the mRNA of the target gene, thereby participating in multiple biological processes, including viral infection. Flavivirus genus consists of small, positive-stranded, single-stranded RNA viruses transmitted by arthropods, especially mosquitoes and ticks. The genus contains several globally significant human/animal pathogens, such as Dengue virus, Japanese encephalitis virus, West Nile virus, Zika virus, Yellow fever virus, Tick-borne encephalitis virus, and Tembusu virus. After flavivirus invades, the expression of host miRNA changes, exerting the immune escape mechanism to create an environment conducive to its survival, and the altered miRNA in turn affects the life cycle of the virus. Accumulated evidence suggests that host miRNAs influence flavivirus replication and host–virus interactions through direct binding of viral genomes or through virus-mediated host transcriptome changes. Furthermore, miRNA can also interweave with other non-coding RNAs, such as long non-coding RNA and circular RNA, to form an interaction network to regulate viral replication. A variety of non-coding RNAs produced by the virus itself exert similar function by interacting with cellular RNA and viral RNA. Understanding the interaction sites between non-coding RNA, especially miRNA, and virus/host genes will help us to find targets for antiviral drugs and viral therapy.
Collapse
Affiliation(s)
- Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Renyong Jia,
| |
Collapse
|
38
|
Slonchak A, Parry R, Pullinger B, Sng JDJ, Wang X, Buck TF, Torres FJ, Harrison JJ, Colmant AMG, Hobson-Peters J, Hall RA, Tuplin A, Khromykh AA. Structural analysis of 3'UTRs in insect flaviviruses reveals novel determinants of sfRNA biogenesis and provides new insights into flavivirus evolution. Nat Commun 2022; 13:1279. [PMID: 35277507 PMCID: PMC8917146 DOI: 10.1038/s41467-022-28977-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Subgenomic flaviviral RNAs (sfRNAs) are virus-derived noncoding RNAs produced by pathogenic mosquito-borne flaviviruses (MBF) to counteract the host antiviral response. To date, the ability of non-pathogenic flaviviruses to produce and utilise sfRNAs remains largely unexplored, and it is unclear what role XRN1 resistance plays in flavivirus evolution and host adaptation. Herein the production of sfRNAs by several insect-specific flaviviruses (ISFs) that replicate exclusively in mosquitoes is shown, and the secondary structures of their complete 3'UTRs are determined. The xrRNAs responsible for the biogenesis of ISF sfRNAs are also identified, and the role of these sfRNAs in virus replication is demonstrated. We demonstrate that 3'UTRs of all classical ISFs, except Anopheles spp-asscoaited viruses, and of the dual-host associated ISF Binjari virus contain duplicated xrRNAs. We also reveal novel structural elements in the 3'UTRs of dual host-associated and Anopheles-associated classical ISFs. Structure-based phylogenetic analysis demonstrates that xrRNAs identified in Anopheles spp-associated ISF are likely ancestral to xrRNAs of ISFs and MBFs. In addition, our data provide evidence that duplicated xrRNAs are selected in the evolution of flaviviruses to provide functional redundancy, which preserves the production of sfRNAs if one of the structures is disabled by mutations or misfolding.
Collapse
Affiliation(s)
- Andrii Slonchak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Brody Pullinger
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Xiaohui Wang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Teresa F Buck
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
| | - Francisco J Torres
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Agathe M G Colmant
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia.
| |
Collapse
|
39
|
Wang S, Chan KWK, Tan MJA, Flory C, Luo D, Lescar J, Forwood JK, Vasudevan SG. A conserved arginine in NS5 binds genomic 3' stem-loop RNA for primer-independent initiation of flavivirus RNA replication. RNA (NEW YORK, N.Y.) 2022; 28:177-193. [PMID: 34759006 PMCID: PMC8906541 DOI: 10.1261/rna.078949.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The commitment to replicate the RNA genome of flaviviruses without a primer involves RNA-protein interactions that have been shown to include the recognition of the stem-loop A (SLA) in the 5' untranslated region (UTR) by the nonstructural protein NS5. We show that DENV2 NS5 arginine 888, located within the carboxy-terminal 18 residues, is completely conserved in all flaviviruses and interacts specifically with the top-loop of 3'SL in the 3'UTR which contains the pentanucleotide 5'-CACAG-3' previously shown to be critical for flavivirus RNA replication. We present virological and biochemical data showing the importance of this Arg 888 in virus viability and de novo initiation of RNA polymerase activity in vitro. Based on our binding studies, we hypothesize that ternary complex formation of NS5 with 3'SL, followed by dimerization, leads to the formation of the de novo initiation complex that could be regulated by the reversible zipping and unzipping of cis-acting RNA elements.
Collapse
Affiliation(s)
- Sai Wang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Kitti Wing Ki Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Min Jie Alvin Tan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Charlotte Flory
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921 Singapore
| | - Julian Lescar
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales 2650, Australia
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857 Singapore
- Department of Microbiology and Immunology, National University of Singapore, 117545 Singapore
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
40
|
Campbell AJ, Anderson JR, Wilusz J. A plant-infecting subviral RNA associated with poleroviruses produces a subgenomic RNA which resists exonuclease XRN1 in vitro. Virology 2022; 566:1-8. [PMID: 34808564 PMCID: PMC9832584 DOI: 10.1016/j.virol.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/13/2023]
Abstract
Subviral agents are nucleic acids which lack the features for classification as a virus. Tombusvirus-like associated RNAs (tlaRNAs) are subviral positive-sense, single-stranded RNAs that replicate autonomously, yet depend on a coinfecting virus for encapsidation and transmission. TlaRNAs produce abundant subgenomic RNA (sgRNA) upon infection. Here, we investigate how the well-studied tlaRNA, ST9, produces sgRNA and its function. We found ST9 is a noncoding RNA, due to its lack of protein coding capacity. We used resistance assays with eukaryotic Exoribonuclease-1 (XRN1) to investigate sgRNA production via incomplete degradation of genomic RNA. The ST9 3' untranslated region stalled XRN1 very near the 5' sgRNA end. Thus, the XRN family of enzymes drives sgRNA accumulation in ST9-infected tissue by incomplete degradation of ST9 RNA. This work suggests tlaRNAs are not just parasites of viruses with compatible capsids, but also mutually beneficial partners that influence host cell RNA biology.
Collapse
Affiliation(s)
- A J Campbell
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
41
|
Effects of the noncoding subgenomic RNA of red clover necrotic mosaic virus in virus infection. J Virol 2021; 96:e0181521. [PMID: 34851690 PMCID: PMC8826918 DOI: 10.1128/jvi.01815-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent years, a new class of viral noncoding subgenomic RNA (ncsgRNA) has been identified. This RNA is generated as a stable degradation product via an exoribonuclease-resistant RNA (xrRNA) structure, which blocks the progression of 5′→3′ exoribonuclease on viral RNAs in infected cells. Here, we assess the effects of the ncsgRNA of red clover necrotic mosaic virus (RCNMV), called SR1f, in infected plants. We demonstrate the following: (i) the absence of SR1f reduces symptoms and decreases viral RNA accumulation in Nicotiana benthamiana and Arabidopsis thaliana plants; (ii) SR1f has an essential function other than suppression of RNA silencing; and (iii) the cytoplasmic exoribonuclease involved in mRNA turnover, XRN4, is not required for SR1f production or virus infection. A comparative transcriptomic analysis in N. benthamiana infected with wild-type RCNMV or an SR1f-deficient mutant RCNMV revealed that wild-type RCNMV infection, which produces SR1f and much higher levels of virus, has a greater and more significant impact on cellular gene expression than the SR1f-deficient mutant. Upregulated pathways include plant hormone signaling, plant-pathogen interaction, MAPK signaling, and several metabolic pathways, while photosynthesis-related genes were downregulated. We compare this to host genes known to participate in infection by other tombusvirids. Viral reads revealed a 10- to 100-fold ratio of positive to negative strand, and the abundance of reads of both strands mapping to the 3′ region of RCNMV RNA1 support the premature transcription termination mechanism of synthesis for the coding sgRNA. These results provide a framework for future studies of the interactions and functions of noncoding RNAs of plant viruses. IMPORTANCE Knowledge of how RNA viruses manipulate host and viral gene expression is crucial to our understanding of infection and disease. Unlike viral protein-host interactions, little is known about the control of gene expression by viral RNA. Here, we begin to address this question by investigating the noncoding subgenomic RNA (ncsgRNA) of red clover necrotic mosaic virus (RCNMV), called SR1f. Similar exoribonuclease-resistant RNAs of flaviviruses are well studied, but the roles of plant viral ncsgRNAs, and how they arise, are poorly understood. Surprisingly, we find the likely exonuclease candidate, XRN4, is not required to generate SR1f, and we assess the effects of SR1f on virus accumulation and symptom development. Finally, we compare the effects of infection by wild-type RCNMV versus an SR1f-deficient mutant on host gene expression in Nicotiana benthamiana, which reveals that ncsgRNAs such as SR1f are key players in virus-host interactions to facilitate productive infection.
Collapse
|
42
|
Harvey C, Klassa S, Finol E, Hall J, Hill AC. Chimeric Flaviviral RNA-siRNA Molecules Resist Degradation by The Exoribonuclease Xrn1 and Trigger Gene Silencing in Mammalian Cells. Chembiochem 2021; 22:3099-3106. [PMID: 34431199 PMCID: PMC8596575 DOI: 10.1002/cbic.202100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/11/2022]
Abstract
RNA is an emerging platform for drug delivery, but the susceptibility of RNA to nuclease degradation remains a major barrier to its implementation in vivo. Here, we engineered flaviviral Xrn1-resistant RNA (xrRNA) motifs to host small interfering RNA (siRNA) duplexes. The xrRNA-siRNA molecules self-assemble in vitro, resist degradation by the conserved eukaryotic 5' to 3' exoribonuclease Xrn1, and trigger gene silencing in 293T cells. The resistance of the molecules to Xrn1 does not translate to stability in blood serum. Nevertheless, our results demonstrate that flavivirus-derived xrRNA motifs can confer Xrn1 resistance on a model therapeutic payload and set the stage for further investigations into using the motifs as building blocks in RNA nanotechnology.
Collapse
Affiliation(s)
- Cressida Harvey
- Department of BiologyETH ZürichWolfgang-Pauli-Strasse 278093ZürichSwitzerland
| | - Sven Klassa
- Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesETH ZürichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Esteban Finol
- Department of BiologyETH ZürichWolfgang-Pauli-Strasse 278093ZürichSwitzerland
| | - Jonathan Hall
- Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesETH ZürichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Alyssa C. Hill
- Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesETH ZürichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| |
Collapse
|
43
|
Zhang S, Sun R, Perdoncini Carvalho C, Han J, Zheng L, Qu F. Replication-Dependent Biogenesis of Turnip Crinkle Virus Long Noncoding RNAs. J Virol 2021; 95:e0016921. [PMID: 34160262 PMCID: PMC8387050 DOI: 10.1128/jvi.00169-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) of virus origin accumulate in cells infected by many positive-strand (+) RNA viruses to bolster viral infectivity. Their biogenesis mostly utilizes exoribonucleases of host cells that degrade viral genomic or subgenomic RNAs in the 5'-to-3' direction until being stalled by well-defined RNA structures. Here, we report a viral lncRNA that is produced by a novel replication-dependent mechanism. This lncRNA corresponds to the last 283 nucleotides of the turnip crinkle virus (TCV) genome and hence is designated tiny TCV subgenomic RNA (ttsgR). ttsgR accumulated to high levels in TCV-infected Nicotiana benthamiana cells when the TCV-encoded RNA-dependent RNA polymerase (RdRp), also known as p88, was overexpressed. Both (+) and (-) strand forms of ttsgR were produced in a manner dependent on the RdRp functionality. Strikingly, templates as short as ttsgR itself were sufficient to program ttsgR amplification, as long as the TCV-encoded replication proteins p28 and p88 were provided in trans. Consistent with its replicational origin, ttsgR accumulation required a 5' terminal carmovirus consensus sequence (CCS), a sequence motif shared by genomic and subgenomic RNAs of many viruses phylogenetically related to TCV. More importantly, introducing a new CCS motif elsewhere in the TCV genome was alone sufficient to cause the emergence of another lncRNA. Finally, abolishing ttsgR by mutating its 5' CCS gave rise to a TCV mutant that failed to compete with wild-type TCV in Arabidopsis. Collectively, our results unveil a replication-dependent mechanism for the biogenesis of viral lncRNAs, thus suggesting that multiple mechanisms, individually or in combination, may be responsible for viral lncRNA production. IMPORTANCE Many positive-strand (+) RNA viruses produce long noncoding RNAs (lncRNAs) during the process of cellular infections and mobilize these lncRNAs to counteract antiviral defenses, as well as coordinate the translation of viral proteins. Most viral lncRNAs arise from 5'-to-3' degradation of longer viral RNAs being stalled at stable secondary structures. Here, we report a viral lncRNA that is produced by the replication machinery of turnip crinkle virus (TCV). This lncRNA, designated ttsgR, shares the terminal characteristics with TCV genomic and subgenomic RNAs and overaccumulates in the presence of moderately overexpressed TCV RNA-dependent RNA polymerase (RdRp). Furthermore, templates that are of similar sizes as ttsgR are readily replicated by TCV replication proteins (p28 and RdRp) provided from nonviral sources. In summary, this study establishes an approach for uncovering low abundance viral lncRNAs, and characterizes a replicating TCV lncRNA. Similar investigations on human-pathogenic (+) RNA viruses could yield novel therapeutic targets.
Collapse
Affiliation(s)
- Shaoyan Zhang
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Rong Sun
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Camila Perdoncini Carvalho
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Junping Han
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Limin Zheng
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, USA
| |
Collapse
|
44
|
Gokhale NS, Smith JR, Van Gelder RD, Savan R. RNA regulatory mechanisms that control antiviral innate immunity. Immunol Rev 2021; 304:77-96. [PMID: 34405416 DOI: 10.1111/imr.13019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
From the initial sensing of viral nucleotides by pattern recognition receptors, through the induction of type I and III interferons (IFN), upregulation of antiviral effector proteins, and resolution of the inflammatory response, each step of innate immune signaling is under tight control. Though innate immunity is often associated with broad regulation at the level of gene transcription, RNA-centric post-transcriptional processes have emerged as critical mechanisms for ensuring a proper antiviral response. Here, we explore the diverse RNA regulatory mechanisms that modulate the innate antiviral immune response, with a focus on RNA sensing by RIG-I-like receptors (RLR), interferon (IFN) and IFN signaling pathways, viral pathogenesis, and host genetic variation that contributes to these processes. We address the post-transcriptional interactions with RNA-binding proteins, non-coding RNAs, transcript elements, and modifications that control mRNA stability, as well as alternative splicing events that modulate the innate immune antiviral response.
Collapse
Affiliation(s)
- Nandan S Gokhale
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Julian R Smith
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Rachel D Van Gelder
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
45
|
New Insights into the Biology of the Emerging Tembusu Virus. Pathogens 2021; 10:pathogens10081010. [PMID: 34451474 PMCID: PMC8398659 DOI: 10.3390/pathogens10081010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Reported for the first time in 1955 in Malaysia, Tembusu virus (TMUV) remained, for a long time, in the shadow of flaviviruses with human health importance such as dengue virus or Japanese encephalitis virus. However, since 2010 and the first large epidemic in duck farms in China, the threat of its emergence on a large scale in Asia or even its spillover into the human population is becoming more and more significant. This review aims to report current knowledge on TMUV from viral particle organization to the development of specific vaccines and therapeutics, with a particular focus on host-virus interactions.
Collapse
|
46
|
RNA Structure Protects the 5'-end of an Uncapped Tombusvirus RNA Genome from Xrn Digestion. J Virol 2021; 95:e0103421. [PMID: 34346764 DOI: 10.1128/jvi.01034-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the many challenges faced by RNA viruses is the maintenance of their genomes during infections of host cells. Members of the family Tombusviridae are plus-strand RNA viruses with unmodified triphosphorylated genomic 5'-termini. The tombusvirus Carnation Italian ringspot virus was used to investigate how it protects its RNA genome from attack by 5'-end-targeting degradation enzymes. In vivo and in vitro assays were employed to determine the role of genomic RNA structure in conferring protection from the 5'-to-3' exoribonuclease Xrn. The results revealed that (i) the CIRV RNA genome is more resistant to Xrn than its sg mRNAs, (ii) the genomic 5'UTR folds into a compact RNA structure that effectively and independently prevents Xrn access, (iii) the RNA structure limiting 5'-access is formed by secondary and tertiary interactions that function cooperatively, (iv) the structure is also able to block access of RNA pyrophosphohydrolase to the genomic 5'-terminus, and (v) the RNA structure does not stall an actively digesting Xrn. Based on its proficiency at impeding Xrn 5'-access, we have termed this 5'-terminal structure an Xrn-evading RNA or xeRNA. These and other findings demonstrate that the 5'UTR of the CIRV RNA genome folds into a complex structural conformation that helps to protect its unmodified 5'-terminus from enzymatic decay during infections. IMPORTANCE The plus-strand RNA genomes of plant viruses in the large family Tombusviridae are not 5'-capped. Here we explored how a species in the type genus Tombusvirus protects its genomic 5'-end from cellular nuclease attack. Our results revealed that the 5'-terminal sequence of the CIRV genome folds into a complex RNA structure that limits access of the 5'-to-3' exoribonuclease Xrn, thereby protecting it from processive degradation. The RNA conformation also impeded access of RNA pyrophosphohydrolase, which converts 5'-triphosphorylated RNA termini into 5'-monophosphorylated forms, the preferred substrate for Xrn. This study represents the first report of a genome-encoded higher-order RNA structure independently conferring resistance to cellular 5'-end-attacking enzymes in an RNA plant virus.
Collapse
|
47
|
Diagne MM, Ndione MHD, Gaye A, Barry MA, Diallo D, Diallo A, Mwakibete LL, Diop M, Ndiaye EH, Ahyong V, Diouf B, Mhamadi M, Diagne CT, Danfakha F, Diop B, Faye O, Loucoubar C, Fall G, Tato CM, Sall AA, Weaver SC, Diallo M, Faye O. Yellow Fever Outbreak in Eastern Senegal, 2020-2021. Viruses 2021; 13:v13081475. [PMID: 34452343 PMCID: PMC8402698 DOI: 10.3390/v13081475] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/07/2023] Open
Abstract
Yellow fever virus remains a major threat in low resource countries in South America and Africa despite the existence of an effective vaccine. In Senegal and particularly in the eastern part of the country, periodic sylvatic circulation has been demonstrated with varying degrees of impact on populations in perpetual renewal. We report an outbreak that occurred from October 2020 to February 2021 in eastern Senegal, notified and managed through the synergistic effort yellow fever national surveillance implemented by the Senegalese Ministry of Health in collaboration with the World Health Organization, the countrywide 4S network set up by the Ministry of Health, the Institut Pasteur de Dakar, and the surveillance of arboviruses and hemorrhagic fever viruses in human and vector populations implemented since mid 2020 in eastern Senegal. Virological analyses highlighted the implication of sylvatic mosquito species in virus transmission. Genomic analysis showed a close relationship between the circulating strain in eastern Senegal, 2020, and another one from the West African lineage previously detected and sequenced two years ago from an unvaccinated Dutch traveler who visited the Gambia and Senegal before developing signs after returning to Europe. Moreover, genome analysis identified a 6-nucleotide deletion in the variable domain of the 3′UTR with potential impact on the biology of the viral strain that merits further investigations. Integrated surveillance of yellow fever virus but also of other arboviruses of public health interest is crucial in an ecosystem such as eastern Senegal.
Collapse
Affiliation(s)
- Moussa Moïse Diagne
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
- Correspondence: ; Tel.: +221-77-405-9928
| | - Marie Henriette Dior Ndione
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| | - Alioune Gaye
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (A.G.); (D.D.); (E.H.N.); (B.D.); (M.D.)
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.A.B.); (A.D.); (M.D.); (C.L.)
| | - Diawo Diallo
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (A.G.); (D.D.); (E.H.N.); (B.D.); (M.D.)
| | - Amadou Diallo
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.A.B.); (A.D.); (M.D.); (C.L.)
| | - Lusajo L. Mwakibete
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; (L.L.M.); (V.A.); (C.M.T.)
| | - Mamadou Diop
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.A.B.); (A.D.); (M.D.); (C.L.)
| | - El Hadji Ndiaye
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (A.G.); (D.D.); (E.H.N.); (B.D.); (M.D.)
| | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; (L.L.M.); (V.A.); (C.M.T.)
| | - Babacar Diouf
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (A.G.); (D.D.); (E.H.N.); (B.D.); (M.D.)
| | - Moufid Mhamadi
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| | - Cheikh Tidiane Diagne
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| | - Fodé Danfakha
- Kedougou Medical Region, Ministry of Health, Kedougou 26005, Senegal;
| | - Boly Diop
- Prevention Department, Ministry of Health, Dakar 220, Senegal;
| | - Oumar Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.A.B.); (A.D.); (M.D.); (C.L.)
| | - Gamou Fall
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| | - Cristina M. Tato
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; (L.L.M.); (V.A.); (C.M.T.)
| | - Amadou Alpha Sall
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Mawlouth Diallo
- Zoology Medical Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (A.G.); (D.D.); (E.H.N.); (B.D.); (M.D.)
| | - Ousmane Faye
- Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (M.H.D.N.); (M.M.); (C.T.D.); (O.F.); (G.F.); (A.A.S.); (O.F.)
| |
Collapse
|
48
|
Vicens Q, Kieft JS. Shared properties and singularities of exoribonuclease-resistant RNAs in viruses. Comput Struct Biotechnol J 2021; 19:4373-4380. [PMID: 34471487 PMCID: PMC8374639 DOI: 10.1016/j.csbj.2021.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
What viral RNA genomes lack in size, they make up for in intricacy. Elaborate RNA structures embedded in viral genomes can hijack essential cellular mechanisms aiding virus propagation. Exoribonuclease-resistant RNAs (xrRNAs) are an emerging class of viral elements, which resist degradation by host cellular exoribonucleases to produce viral RNAs with diverse roles during infection. Detailed three-dimensional structural studies of xrRNAs from flaviviruses and a subset of plant viruses led to a mechanistic model in which xrRNAs block enzymatic digestion using a ring-like structure that encircles the 5' end of the resistant structure. In this mini-review, we describe the state of our understanding of the phylogenetic distribution of xrRNAs, their structures, and their conformational dynamics. Because xrRNAs have now been found in several major superfamilies of RNA viruses, they may represent a more widely used strategy than currently appreciated. Could xrRNAs represent a 'molecular clock' that would help us understand virus evolution and pathogenicity? The more we study xrRNAs in viruses, the closer we get to finding xrRNAs within cellular RNAs.
Collapse
Affiliation(s)
- Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S. Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
49
|
Jansen van Vuren P, Parry R, Khromykh AA, Paweska JT. A 1958 Isolate of Kedougou Virus (KEDV) from Ndumu, South Africa, Expands the Geographic and Temporal Range of KEDV in Africa. Viruses 2021; 13:v13071368. [PMID: 34372574 PMCID: PMC8309962 DOI: 10.3390/v13071368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The mosquito-borne flavivirus, Kedougou virus (KEDV), first isolated in Senegal in 1972, is genetically related to dengue, Zika (ZIKV) and Spondweni viruses (SPOV). Serological surveillance studies in Senegal and isolation of KEDV in the Central African Republic indicate occurrence of KEDV infections in humans, but to date, no disease has been reported. Here, we assembled the coding-complete genome of a 1958 isolate of KEDV from a pool of Aedes circumluteolus mosquitoes collected in Ndumu, KwaZulu-Natal, South Africa. The AR1071 Ndumu KEDV isolate bears 80.51% pairwise nucleotide identity and 93.34% amino acid identity with the prototype DakAar-D1470 strain and was co-isolated with SPOV through intracerebral inoculation of suckling mice and passage on VeroE6 cells. This historical isolate expands the known geographic and temporal range of this relatively unknown flavivirus, aiding future temporal phylogenetic calibration and diagnostic assay refinement.
Collapse
Affiliation(s)
- Petrus Jansen van Vuren
- Australian Centre for Disease Preparedness, CSIRO Health & Biosecurity, Private Bag 24, Geelong, VIC 3220, Australia
- Correspondence: ; Tel.: +613-5227-5700
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; (R.P.); (A.A.K.)
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; (R.P.); (A.A.K.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4029, Australia
| | - Janusz T. Paweska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa;
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
50
|
The Role of the Stem-Loop A RNA Promoter in Flavivirus Replication. Viruses 2021; 13:v13061107. [PMID: 34207869 PMCID: PMC8226660 DOI: 10.3390/v13061107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
An essential challenge in the lifecycle of RNA viruses is identifying and replicating the viral genome amongst all the RNAs present in the host cell cytoplasm. Yet, how the viral polymerase selectively recognizes and copies the viral RNA genome is poorly understood. In flaviviruses, the 5′-end of the viral RNA genome contains a 70 nucleotide-long stem-loop, called stem-loop A (SLA), which functions as a promoter for genome replication. During replication, flaviviral polymerase NS5 specifically recognizes SLA to both initiate viral RNA synthesis and to methylate the 5′ guanine cap of the nascent RNA. While the sequences of this region vary between different flaviviruses, the three-way junction arrangement of secondary structures is conserved in SLA, suggesting that viruses recognize a common structural feature to replicate the viral genome rather than a particular sequence. To better understand the molecular basis of genome recognition by flaviviruses, we recently determined the crystal structures of flavivirus SLAs from dengue virus (DENV) and Zika virus (ZIKV). In this review, I will provide an overview of (1) flaviviral genome replication; (2) structures of viral SLA promoters and NS5 polymerases; and (3) and describe our current model of how NS5 polymerases specifically recognize the SLA at the 5′ terminus of the viral genome to initiate RNA synthesis at the 3′ terminus.
Collapse
|