1
|
Devantier K, Kjær VMS, Griffin S, Kragelund BB, Rosenkilde MM. Advancing the field of viroporins-Structure, function and pharmacology: IUPHAR Review 39. Br J Pharmacol 2024; 181:4450-4490. [PMID: 39224966 DOI: 10.1111/bph.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viroporins possess important potential as antiviral targets due to their critical roles during virus life cycles, spanning from virus entry to egress. Although the antiviral amantadine targets the M2 viroporin of influenza A virus, successful progression of other viroporin inhibitors into clinical use remains challenging. These challenges relate in varying proportions to a lack of reliable full-length 3D-structures, difficulties in functionally characterising individual viroporins, and absence of verifiable direct binding between inhibitor and viroporin. This review offers perspectives to help overcome these challenges. We provide a comprehensive overview of the viroporin family, including their structural and functional features, highlighting the moldability of their energy landscapes and actions. To advance the field, we suggest a list of best practices to aspire towards unambiguous viroporin identification and characterisation, along with considerations of potential pitfalls. Finally, we present current and future scenarios of, and prospects for, viroporin targeting drugs.
Collapse
Affiliation(s)
- Kira Devantier
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria M S Kjær
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Griffin
- Leeds Institute of Medical Research, St James' University Hospital, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Volovik MV, Batishchev OV. Viral fingerprints of the ion channel evolution: compromise of complexity and function. J Biomol Struct Dyn 2024:1-20. [PMID: 39365745 DOI: 10.1080/07391102.2024.2411523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/29/2024] [Indexed: 10/06/2024]
Abstract
Evolution from precellular supramolecular assemblies to cellular world originated from the ability to make a barrier between the interior of the cell and the outer environment. This step resulted from the possibility to form a membrane, which preserves the cell like a wall of the castle. However, every castle needs gates for trading, i.e. in the case of cell, for controlled exchange of substances. These 'gates' should have the mechanism of opening and closing, guards, entry rules, and so on. Different structures are known to be able to make membrane permeable to various substances, from ions to macromolecules. They are amphipathic peptides, their assemblies, sophisticated membrane channels with numerous transmembrane domains, etc. Upon evolving, cellular world preserved and selected many variants, which, finally, have provided both prokaryotes and eukaryotes with highly selective and regulated ion channels. However, various simpler variants of ion channels are found in viruses. Despite the origin of viruses is still under debates, they have evolved parallelly with the cellular forms of life. Being initial form of the enveloped organisms, reduction of protocells or their escaped parts, viruses might be fingerprints of the evolutionary steps of cellular structures like ion channels. Therefore, viroporins may provide us a necessary information about selection between high functionality and less complex structure in supporting all the requirements for controlled membrane permeability. In this review we tried to elucidate these compromises and show the possible way of the evolution of ion channels, from peptides to complex multi-subunit structures, basing on viral examples.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Metibemu DS, Adeyinka OS, Falode J, Crown O, Ogungbe IV. Inhibitors of the Structural and Nonstructural Proteins of Alphaviruses. ACS Infect Dis 2024; 10:2507-2524. [PMID: 38992989 DOI: 10.1021/acsinfecdis.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The Alphavirus genus includes viruses that cause encephalitis due to neuroinvasion and viruses that cause arthritis due to acute and chronic inflammation. There is no approved therapeutic for alphavirus infections, but significant efforts are ongoing, more so in recent years, to develop vaccines and therapeutics for alphavirus infections. This review article highlights some of the major advances made so far to identify small molecules that can selectively target the structural and the nonstructural proteins in alphaviruses with the expectation that persistent investigation of an increasingly expanding chemical space through a variety of structure-based design and high-throughput screening strategies will yield candidate drugs for clinical studies. While most of the works discussed are still in the early discovery to lead optimization stages, promising avenues remain for drug development against this family of viruses.
Collapse
Affiliation(s)
- Damilohun Samuel Metibemu
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Olawale Samuel Adeyinka
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - John Falode
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Olamide Crown
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Ifedayo Victor Ogungbe
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| |
Collapse
|
4
|
Deng C, Wang X, Wang T, Liu W, Yuan X, Huang Y, Cao S. Virtual screening and molecular growth guide the design of inhibitors for the influenza virus drug-resistant mutant M2-V27A/S31N. J Biomol Struct Dyn 2024; 42:5253-5267. [PMID: 37424098 DOI: 10.1080/07391102.2023.2233026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
The influenza A virus matrix protein 2 (AM2) protein is a proton-gated, proton-selective ion channel essential for influenza replication that has been identified as an antiviral target. The drug-resistance of the M2-V27A/S31N strain, which has been growing more prevalent in recent years and has the potential to spread globally, prevents current amantadine inhibitors from having the desired impact. In this study, we compiled the most common influenza A virus strains from 2001-2020 from the U.S. National Center for Biotechnology Information database and hypothesized that M2-V27A/S31N would become a common strain. The lead compound ZINC299830590 was screened for M2-V27A/S31N in the ZINC15 database using a pharmacophore model and molecular descriptors. This lead compound was then optimized by molecular growth, which allowed us to identify important amino acid residues and create interactions with them to produce compound 4. Molecular dynamics simulation showed that the complex of compound 4 and M2-V27A/S31N had certain degrees of stability and flexibility. The binding free energy of compound 4 was calculated using the MM/PB(GB)SA method and totaled -106.525 kcal/mol. Finally, physicochemical and pharmacokinetic profiles were predicted using the Absorption, Distribution, Metabolism, Excretion, and Toxicity model, which indicated the good bioavailability of compound 4. These results provide the basis for further in vivo and in vitro studies to demonstrate that compound 4 is a promising drug candidate against M2-V27A/S31N.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Changyong Deng
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Xiaobo Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Tangle Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Wei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Xiaolan Yuan
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Yan Huang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
5
|
Kumar G, Sakharam KA. Tackling Influenza A virus by M2 ion channel blockers: Latest progress and limitations. Eur J Med Chem 2024; 267:116172. [PMID: 38330869 DOI: 10.1016/j.ejmech.2024.116172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Influenza outbreaks cause pandemics in millions of people. The treatment of influenza remains a challenge due to significant genetic polymorphism in the influenza virus. Also, developing vaccines to protect against seasonal and pandemic influenza infections is constantly impeded. Thus, antibiotics are the only first line of defense against antigenically distinct strains or new subtypes of influenza viruses. Among several anti-influenza targets, the M2 protein of the influenza virus performs several activities. M2 protein is an ion channel that permits proton conductance through the virion envelope and the deacidification of the Golgi apparatus. Both these functions are critical for viral replication. Thus, targeting the M2 protein of the influenza virus is an essential target. Rimantadine and amantadine are two well-known drugs that act on the M2 protein. However, these drugs acquired resistance to influenza and thus are not recommended to treat influenza infections. This review discusses an overview of anti-influenza therapy, M2 ion channel functions, and its working principle. It also discusses the M2 structure and its role, and the change in the structure leads to mutant variants of influenza A virus. We also shed light on the recently identified compounds acting against wild-type and mutated M2 proteins of influenza virus A. These scaffolds could be an alternative to M2 inhibitors and be developed as antibiotics for treating influenza infections.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kakade Aditi Sakharam
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
6
|
Ruan J, Lu K, He J, Chen Y, Li B, Wan X, Chen X, Li S, Liu S, Song G. Optimization and biological evaluation of l-DOPA derivatives as potent influenza PA N endonuclease inhibitors with multi-site binding characteristics. Bioorg Chem 2024; 144:107139. [PMID: 38262086 DOI: 10.1016/j.bioorg.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Emerging and potential influenza pandemics still are an enormous worldwide public health challenge. The PAN endonuclease has been proved to be a promising target for anti-influenza drug design. Here, we report the discovery and optimization of potent Y-shaped PAN inhibitors featuring multi-site binding characteristics with l-DOPA as a starting point. We systematically modified the hit 1 bearing two-binding characteristics based on structure-based rational design combined with multisite binding and conformational constraint strategies, generating four families of l-DOPA derivatives for SARs analysis. Among these substances, N, 3-di-substituted 1, 2, 3, 4-tetrahydroisoquinoline derivative T-31 displayed superior properties as a lead PAN endonuclease inhibitor and antiviral agent. The lead T-31 inhibited PAN endonuclease activity with an IC50 value of 0.15 μM and showed broad and submicromolar anti-influenza potency in cell-based assays. More importantly, T-31 could simultaneously target both influenza HA and the RdRp complex, thus interfering with virus entry into host cells and viral replication. This study offers a set of novel PAN endonuclease inhibitors with multi-site binding characteristics starting from the l-DOPA skeleton.
Collapse
Affiliation(s)
- Jiaai Ruan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Kunyu Lu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianfu He
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yihao Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Baixi Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xin Wan
- Huizhou Health Sciences Polytechnic, Huizhou 516025, China
| | - Xiao Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Sumei Li
- Department of Human Anatomy, College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, 510515, China.
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Gaisina I, Li P, Du R, Cui Q, Dong M, Zhang C, Manicassamy B, Caffrey M, Moore T, Cooper L, Rong L. An orally active entry inhibitor of influenza A viruses protects mice and synergizes with oseltamivir and baloxavir marboxil. SCIENCE ADVANCES 2024; 10:eadk9004. [PMID: 38394202 PMCID: PMC10889430 DOI: 10.1126/sciadv.adk9004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Seasonal or pandemic illness caused by influenza A viruses (IAVs) is a major public health concern due to the high morbidity and notable mortality. Although there are several approved drugs targeting different mechanisms, the emergence of drug resistance calls for new drug candidates that can be used alone or in combinations. Small-molecule IAV entry inhibitor, ING-1466, binds to hemagglutinin (HA) and blocks HA-mediated viral infection. Here, we show that this inhibitor demonstrates preventive and therapeutic effects in a mouse model of IAV with substantial improvement in the survival rate. When administered orally it elicits a therapeutic effect in mice, even after the well-established infection. Moreover, the combination of ING-1466 with oseltamivir phosphate or baloxavir marboxil enhances the therapeutic effect in a synergistic manner. Overall, ING-1466 has excellent oral bioavailability and in vitro absorption, distribution, metabolism, excretion, and toxicity profile, suggesting that it can be developed for monotherapy or combination therapy for the treatment of IAV infections.
Collapse
Affiliation(s)
- Irina Gaisina
- Department of Pharmaceutical Sciences, College of Pharmacy and UICentre, University of Illinois at Chicago, Chicago, IL 60612, USA
- Chicago BioSolutions Inc., Chicago, IL 60612, USA
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Ruikun Du
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Qinghua Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Meiyue Dong
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Chengcheng Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Terry Moore
- Department of Pharmaceutical Sciences, College of Pharmacy and UICentre, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 26 60612, USA
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lijun Rong
- Chicago BioSolutions Inc., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Matthys A, Saelens X. Promises and challenges of single-domain antibodies to control influenza. Antiviral Res 2024; 222:105807. [PMID: 38219914 DOI: 10.1016/j.antiviral.2024.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
The World Health Organization advices the use of a quadrivalent vaccine as prophylaxis against influenza, to prevent severe influenza-associated disease and -mortality, and to keep up with influenza antigenic diversity. Different small molecule antivirals to treat influenza have become available. However, emergence of drug resistant influenza viruses has been observed upon use of these antivirals. An appealing alternative approach to prevent or treat influenza is the use of antibody-based antivirals, such as conventional monoclonal antibodies and single-domain antibodies (sdAbs). The surface of the influenza A and B virion is decorated with hemagglutinin molecules, which act as receptor-binding and membrane fusion proteins and represent the main target of neutralizing antibodies. SdAbs that target influenza A and B hemagglutinin have been described. In addition, sdAbs directed against the influenza A virus neuraminidase have been reported, whereas no sdAbs targeting influenza B neuraminidase have been described to date. SdAbs directed against influenza A matrix protein 2 or its ectodomain have been reported, while no sdAbs have been described targeting the influenza B matrix protein 2. Known for their high specificity, ease of production and formatting, sdAb-based antivirals could be a major leap forward in influenza control.
Collapse
Affiliation(s)
- Arne Matthys
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
9
|
Liu C, Zhang Y, Li P, Jia H, Ju H, Zhang J, Ferreira da Silva-Júnior E, Samanta S, Kar P, Huang B, Liu X, Zhan P. Development of chalcone-like derivatives and their biological and mechanistic investigations as novel influenza nuclear export inhibitors. Eur J Med Chem 2023; 261:115845. [PMID: 37804770 DOI: 10.1016/j.ejmech.2023.115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Concerning the emergence of resistance to current anti-influenza drugs, our previous phenotypic-based screening study identified the compound A9 as a promising lead compound. This chalcone analog, containing a 2,6-dimethoxyphenyl moiety, exhibited significant inhibitory activity against oseltamivir-resistant strains (H1N1 pdm09), with an EC50 value of 1.34 μM. However, it also displayed notable cytotoxicity, with a CC50 value of 41.46 μM. Therefore, compound A9 was selected as a prototype structure for further structural optimization in this study. Initially, it was confirmed that the substituting the α,β-unsaturated ketone with pent-1,4-diene-3-one as a linker group significantly reduced the cytotoxicity of the final compounds. Subsequently, the penta-1,4-dien-3-one group was utilized as a privileged fragment for further structural optimization. Following two subsequent rounds of optimizations, we identified compound IIB-2, which contains a 2,6-dimethoxyphenyl- and 1,4-pentadiene-3-one moieties. This compound exhibited inhibitory effects on oseltamivir-resistant strains comparable to its precursor (compound A9), while demonstrating reduced toxicity (CC50 > 100 μM). Furthermore, we investigated its mechanism of action against anti-influenza virus through immunofluorescence, Western blot, and surface plasmon resonance (SPR) experiments. The results revealed that compound IIB-2 can impede virus proliferation by blocking the export of influenza virus nucleoprotein. Thusly, our findings further emphasize influenza nuclear export as a viable target for designing novel chalcone-like derivatives with potential inhibitory properties that could be explored in future lead optimization studies.
Collapse
Affiliation(s)
- Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; Suzhou Research Institute of Shandong University, Room607, Building B of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, Jiangsu, 215123, PR China
| | - Ying Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Ping Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huinan Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Jiwei Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Edeildo Ferreira da Silva-Júnior
- Research Group of Biological and Molecular Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Lourival Melo Mota Avenue, AC. Simões Campus, 57072-970, Alagoas, Maceió, Brazil
| | - Sunanda Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Indore, 453552, Madhya Pradesh, India.
| | - Bing Huang
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
10
|
Liu C, Hu L, Dong G, Zhang Y, Ferreira da Silva-Júnior E, Liu X, Menéndez-Arias L, Zhan P. Emerging drug design strategies in anti-influenza drug discovery. Acta Pharm Sin B 2023; 13:4715-4732. [PMID: 38045039 PMCID: PMC10692392 DOI: 10.1016/j.apsb.2023.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 12/05/2023] Open
Abstract
Influenza is an acute respiratory infection caused by influenza viruses (IFV), According to the World Health Organization (WHO), seasonal IFV epidemics result in approximately 3-5 million cases of severe illness, leading to about half a million deaths worldwide, along with severe economic losses and social burdens. Unfortunately, frequent mutations in IFV lead to a certain lag in vaccine development as well as resistance to existing antiviral drugs. Therefore, it is of great importance to develop anti-IFV drugs with high efficiency against wild-type and resistant strains, needed in the fight against current and future outbreaks caused by different IFV strains. In this review, we summarize general strategies used for the discovery and development of antiviral agents targeting multiple IFV strains (including those resistant to available drugs). Structure-based drug design, mechanism-based drug design, multivalent interaction-based drug design and drug repurposing are amongst the most relevant strategies that provide a framework for the development of antiviral drugs targeting IFV.
Collapse
Affiliation(s)
- Chuanfeng Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Guanyu Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ying Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Medicinal Chemistry, Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió 57072-970, Alagoas, Brazil
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), Madrid 28049, Spain
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
11
|
Dong M, Wang Y, Li P, Chen Z, Anirudhan V, Cui Q, Rong L, Du R. Allopregnanolone targets nucleoprotein as a novel influenza virus inhibitor. Virol Sin 2023; 38:931-939. [PMID: 37741571 PMCID: PMC10786660 DOI: 10.1016/j.virs.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023] Open
Abstract
Influenza A virus (IAV) poses a global public health concern and remains an imminent threat to human health. Emerging antiviral resistance to the currently approved influenza drugs emphasizes the urgent need for new therapeutic entities against IAV. Allopregnanolone (ALLO) is a natural product that has been approved as an antidepressant drug. In the present study, we repurposed ALLO as a novel inhibitor against IAVs. Mechanistic studies demonstrated that ALLO inhibited virus replication by interfering with the nucleus translocation of viral nucleoprotein (NP). In addition, ALLO showed significant synergistic activity with compound 16, a hemagglutinin inhibitor of IAVs. In summary, we have identified ALLO as a novel influenza virus inhibitor targeting NP, providing a promising candidate that deserves further investigation as a useful anti-influenza strategy in the future.
Collapse
Affiliation(s)
- Meiyue Dong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanyan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zinuo Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA
| | - Qinghua Cui
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA.
| | - Ruikun Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| |
Collapse
|
12
|
He Q, Zhao X, Wu D, Jia S, Liu C, Cheng Z, Huang F, Chen Y, Lu T, Lu S. Hydrophobic tag-based protein degradation: Development, opportunity and challenge. Eur J Med Chem 2023; 260:115741. [PMID: 37607438 DOI: 10.1016/j.ejmech.2023.115741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) has emerged as a promising approach for drug development, particularly for undruggable targets. TPD technology has also been instrumental in overcoming drug resistance. While some TPD molecules utilizing proteolysis-targeting chimera (PROTACs) or molecular glue strategies have been approved or evaluated in clinical trials, hydrophobic tag-based protein degradation (HyT-PD) has also gained significant attention as a tool for medicinal chemists. The increasing number of reported HyT-PD molecules possessing high efficiency in degrading protein and good pharmacokinetic (PK) properties, has further fueled interest in this approach. This review aims to present the design rationale, hydrophobic tags in use, and diverse mechanisms of action of HyT-PD. Additionally, the advantages and disadvantages of HyT-PD in protein degradation are discussed. This review may help inspire the development of more HyT-PDs with superior drug-like properties for clinical evaluation.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaofei Zhao
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siming Jia
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Canlin Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
13
|
Franzi E, Mathez G, Dinant S, Deloizy C, Kaiser L, Tapparel C, Le Goffic R, Cagno V. Non-Steroidal Estrogens Inhibit Influenza Virus by Interacting with Hemagglutinin and Preventing Viral Fusion. Int J Mol Sci 2023; 24:15382. [PMID: 37895062 PMCID: PMC10607366 DOI: 10.3390/ijms242015382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza virus is one of the main causes of respiratory infections worldwide. Despite the availability of seasonal vaccines and antivirals, influenza virus infections cause an important health and economic burden. Therefore, the need to identify alternative antiviral strategies persists. In this study, we identified non-steroidal estrogens as potent inhibitors of influenza virus due to their interaction with the hemagglutinin protein, preventing viral entry. This activity is maintained in vitro, ex vivo, and in vivo. Therefore, we found a new domain to target on the hemagglutinin and a class of compounds that could be further optimized for influenza treatment.
Collapse
Affiliation(s)
- Elisa Franzi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Gregory Mathez
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Soraya Dinant
- INRAE, UVSQ, UMR892 VIM, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Charlotte Deloizy
- INRAE, UVSQ, UMR892 VIM, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Laurent Kaiser
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva, University of Geneva, 1206 Geneva, Switzerland
- Center for Emerging Viruses, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Ronan Le Goffic
- INRAE, UVSQ, UMR892 VIM, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Valeria Cagno
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
14
|
Blake ME, Kleinpeter AB, Jureka AS, Petit CM. Structural Investigations of Interactions between the Influenza a Virus NS1 and Host Cellular Proteins. Viruses 2023; 15:2063. [PMID: 37896840 PMCID: PMC10612106 DOI: 10.3390/v15102063] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The Influenza A virus is a continuous threat to public health that causes yearly epidemics with the ever-present threat of the virus becoming the next pandemic. Due to increasing levels of resistance, several of our previously used antivirals have been rendered useless. There is a strong need for new antivirals that are less likely to be susceptible to mutations. One strategy to achieve this goal is structure-based drug development. By understanding the minute details of protein structure, we can develop antivirals that target the most conserved, crucial regions to yield the highest chances of long-lasting success. One promising IAV target is the virulence protein non-structural protein 1 (NS1). NS1 contributes to pathogenicity through interactions with numerous host proteins, and many of the resulting complexes have been shown to be crucial for virulence. In this review, we cover the NS1-host protein complexes that have been structurally characterized to date. By bringing these structures together in one place, we aim to highlight the strength of this field for drug discovery along with the gaps that remain to be filled.
Collapse
Affiliation(s)
| | | | | | - Chad M. Petit
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (M.E.B.)
| |
Collapse
|
15
|
Lim HT, Kok BH, Leow CY, Leow CH. Exploring shark VNAR antibody against infectious diseases using phage display technology. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108986. [PMID: 37541634 DOI: 10.1016/j.fsi.2023.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Antibody with high affinity and specificity to antigen has widely used as a tool to combat various diseases. The variable domain of immunoglobulin new antigen receptor (VNAR) naturally found in shark contains autonomous function as single-domain antibody. Due to its excellent characteristics, the small, non-complex, and highly stable have made shark VNAR can acquires the antigen-binding capability that might not be reached by conventional antibody. Phage display technology enables shark VNAR to be presented on the surface of phage, allowing the exploration of shark VNAR as an alternative antibody format to target antigens from various infectious diseases. The application of phage-displayed shark VNAR in antibody library and biopanning eventually leads to the discovery and isolation of antigen-specific VNARs with diagnostic and therapeutic potential towards infectious diseases. This review provides an overview of the shark VNAR antibody, the types of phage display technology with comparison to the other types of display system, as well as the application and case studies of phage-displayed shark VNAR antibodies against infectious diseases.
Collapse
Affiliation(s)
- Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|
16
|
Hu Y, Lewandowski EM, Tan H, Zhang X, Morgan RT, Zhang X, Jacobs LMC, Butler SG, Gongora MV, Choy J, Deng X, Chen Y, Wang J. Naturally Occurring Mutations of SARS-CoV-2 Main Protease Confer Drug Resistance to Nirmatrelvir. ACS CENTRAL SCIENCE 2023; 9:1658-1669. [PMID: 37637734 PMCID: PMC10451032 DOI: 10.1021/acscentsci.3c00538] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/29/2023]
Abstract
The SARS-CoV-2 main protease (Mpro) is the drug target of Pfizer's oral drug nirmatrelvir. The emergence of SARS-CoV-2 variants with mutations in Mpro raised the alarm of potential drug resistance. To identify potential clinically relevant drug-resistant mutants, we systematically characterized 102 naturally occurring Mpro mutants located at 12 residues at the nirmatrelvir-binding site, among which 22 mutations in 5 residues, including S144M/F/A/G/Y, M165T, E166 V/G/A, H172Q/F, and Q192T/S/L/A/I/P/H/V/W/C/F, showed comparable enzymatic activity to the wild-type (kcat/Km < 10-fold change) while being resistant to nirmatrelvir (Ki > 10-fold increase). X-ray crystal structures were determined for six representative mutants with and/or without GC-376/nirmatrelvir. Using recombinant SARS-CoV-2 viruses generated from reverse genetics, we confirmed the drug resistance in the antiviral assay and showed that Mpro mutants with reduced enzymatic activity had attenuated viral replication. Overall, our study identified several drug-resistant hotspots in Mpro that warrant close monitoring for possible clinical evidence of nirmatrelvir resistance, some of which have already emerged in independent viral passage assays conducted by others.
Collapse
Affiliation(s)
- Yanmei Hu
- Department
of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Eric M. Lewandowski
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Haozhou Tan
- Department
of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08854, United States
| | - Xiaoming Zhang
- Department
Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, United States
- Oklahoma
Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Ryan T. Morgan
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Xiujun Zhang
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Lian M. C. Jacobs
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Shane G. Butler
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Maura V. Gongora
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - John Choy
- Department
Biology, School of Arts and Sciences, the
Catholic University of America, Washington, DC 20064, United States
| | - Xufang Deng
- Department
Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, United States
- Oklahoma
Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Yu Chen
- Department
of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Jun Wang
- Department
of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08854, United States
| |
Collapse
|
17
|
Kang Y, Shi Y, Xu S. Arbidol: The current demand, strategies, and antiviral mechanisms. Immun Inflamm Dis 2023; 11:e984. [PMID: 37647451 PMCID: PMC10461429 DOI: 10.1002/iid3.984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND High morbidity and mortality of influenza virus infection have made it become one of the most lethal diseases threatening public health; the lack of drugs with strong antiviral activity against virus strains exacerbates the problem. METHODS Two independent researchers searched relevant studies using Embase, PubMed, Web of Science, Google Scholar, and MEDLINE databases from its inception to December 2022. RESULTS Based on the different antiviral mechanisms, current antiviral strategies can be mainly classified into virus-targeting approaches such as neuraminidase inhibitors, matrix protein 2 ion channel inhibitors, polymerase acidic protein inhibitors and other host-targeting antivirals. However, highly viral gene mutation has underscored the necessity of novel antiviral drug development. Arbidol (ARB) is a Russian-made indole-derivative small molecule licensed in Russia and China for the prevention and treatment of influenza and other respiratory viral infections. ARB also has inhibitory effects on many other viruses such as severe acute respiratory syndrome coronavirus 2, Coxsackie virus, respiratory syncytial virus, Hantaan virus, herpes simplex virus, and hepatitis B and C viruses. ARB is a promising drug which can not only exert activity against virus at different steps of virus replication cycle, but also directly target on hosts before infection to prevent virus invasion. CONCLUSION ARB is a broad-spectrum antiviral drug that inhibits several viruses in vivo and in vitro, with high safety profile and low resistance; the antiviral mechanisms of ARB deserve to be further explored and more high-quality clinical studies are required to establish the efficacy and safety of ARB.
Collapse
Affiliation(s)
- Yue Kang
- Jiangsu Key Laboratory of NeurodegenerationSchool of Pharmacy, Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yin Shi
- Department of PharmacyJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Silu Xu
- Department of PharmacyJiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| |
Collapse
|
18
|
Moianos D, Prifti GM, Makri M, Zoidis G. Targeting Metalloenzymes: The "Achilles' Heel" of Viruses and Parasites. Pharmaceuticals (Basel) 2023; 16:901. [PMID: 37375848 DOI: 10.3390/ph16060901] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Metalloenzymes are central to the regulation of a wide range of essential viral and parasitic functions, including protein degradation, nucleic acid modification, and many others. Given the impact of infectious diseases on human health, inhibiting metalloenzymes offers an attractive approach to disease therapy. Metal-chelating agents have been expansively studied as antivirals and antiparasitics, resulting in important classes of metal-dependent enzyme inhibitors. This review provides the recent advances in targeting the metalloenzymes of viruses and parasites that impose a significant burden on global public health, including influenza A and B, hepatitis B and C, and human immunodeficiency viruses as well as Trypanosoma brucei and Trypanosoma cruzi.
Collapse
Affiliation(s)
- Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria Makri
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| |
Collapse
|
19
|
Kyaw A, Roepke K, Arthur T, Howard KP. Conformation of influenza AM2 membrane protein in nanodiscs and liposomes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184152. [PMID: 36948480 PMCID: PMC10175228 DOI: 10.1016/j.bbamem.2023.184152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The influenza A M2 protein (AM2) is a multifunctional membrane-associated homotetramer that orchestrates several essential events in the viral infection cycle including viral assembly and budding. An atomic-level conformational understanding of this key player in the influenza life cycle could inform new antiviral strategies. For conformational studies of complex systems like the AM2 membrane protein, a multipronged approach using different biophysical methods and different model membranes is a powerful way to incorporate complementary data and achieve a fuller, more robust understanding of the system. However, one must be aware of how the sample composition required for a particular method impacts the data collected and how conclusions are drawn. In that spirit, we systematically compared the properties of AM2 in two different model membranes: nanodiscs and liposomes. Electron paramagnetic spectroscopy of spin-labeled AM2 showed that the conformation and dynamics were strikingly similar in both AM2-nanodiscs and AM2-liposomes consistent with similar conformations in both model membranes. Analysis of spin labeled lipids embedded in both model membranes revealed that the bilayer in AM2-liposomes was more fluid and permeable to oxygen than AM2-nanodiscs with the same lipid composition. Once the difference in the partitioning of the paramagnetic oxygen relaxation agent was taken into account, the membrane topology of AM2 appeared to be the same in both liposomes and nanodiscs. Finally, functionally relevant AM2 conformational shifts previously seen in liposomes due to the addition of cholesterol were also observed in nanodiscs.
Collapse
Affiliation(s)
- Aye Kyaw
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Kyra Roepke
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Tyrique Arthur
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Kathleen P Howard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America.
| |
Collapse
|
20
|
Liang J, Wu Y, Lan K, Dong C, Wu S, Li S, Zhou HB. Antiviral PROTACs: Opportunity borne with challenge. CELL INSIGHT 2023; 2:100092. [PMID: 37398636 PMCID: PMC10308200 DOI: 10.1016/j.cellin.2023.100092] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 07/04/2023]
Abstract
Proteolysis targeting chimera (PROTAC) degradation of pathogenic proteins by hijacking of the ubiquitin-proteasome-system has become a promising strategy in drug design. The overwhelming advantages of PROTAC technology have ensured a rapid and wide usage, and multiple PROTACs have entered clinical trials. Several antiviral PROTACs have been developed with promising bioactivities against various pathogenic viruses. However, the number of reported antiviral PROTACs is far less than that of other diseases, e.g., cancers, immune disorders, and neurodegenerative diseases, possibly because of the common deficiencies of PROTAC technology (e.g., limited available ligands and poor membrane permeability) plus the complex mechanism involved and the high tendency of viral mutation during transmission and replication, which may challenge the successful development of effective antiviral PROTACs. This review highlights the important advances in this rapidly growing field and critical limitations encountered in developing antiviral PROTACs by analyzing the current status and representative examples of antiviral PROTACs and other PROTAC-like antiviral agents. We also summarize and analyze the general principles and strategies for antiviral PROTAC design and optimization with the intent of indicating the potential strategic directions for future progress.
Collapse
Affiliation(s)
- Jinsen Liang
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Yihe Wu
- Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chune Dong
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Shuwen Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shu Li
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Hai-Bing Zhou
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
- Provincial Key Laboratory of Developmentally Originated Disease, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
21
|
Zhou R, Hu J, Qiu J, Lu S, Lin H, Huang R, Zhou S, Huang G, He J. Phenolic compound SG-1 from Balanophora harlandii and its derivatives exert anti-influenza A virus activity via activation of the Nrf2/HO-1 pathway. Biochem Pharmacol 2023; 210:115495. [PMID: 36918045 DOI: 10.1016/j.bcp.2023.115495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Influenza A virus (IAV) is one of the leading causes of respiratory illness and continues to cause pandemics around the world. Against this backdrop, drug resistance poses a challenge to existing antiviral drugs, and hence, there is an urgent need for developing new antiviral drugs. In this study, we obtained a phenolic compound SG-7, a derivative of natural compound 2-hydroxymethyl-1,4-hydroquinone, which exhibits inhibitory activity toward a panel of influenza viruses and has low cellular toxicity. Mechanistic studies have shown that SG-7 exerts its anti-IAV properties by acting on the virus itself and modulating host signaling pathways. Namely, SG-7 targets the HA2 subunit of hemagglutinin (HA) to block the fusion of viral-cellular membranes and inhibits IAV-induced oxidative stress and overexpression of pro-inflammatory factors by activating the Nrf2/HO-1 pathway and reducing NF-κB activation. In addition, SG-7 can enhance type I IFN antiviral response by inducing Nrf2 expression. Importantly, SG-7 showed the ability to inhibit viral replication in the lungs of IAV-infected mice and reduce their mortality. Therefore, SG-7 may be a promising lead compound for anti-influenza drug development.
Collapse
Affiliation(s)
- Runhong Zhou
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jianan Hu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jingnan Qiu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Shengsheng Lu
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Haixing Lin
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Ruifeng Huang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Shaofen Zhou
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Guoqing Huang
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China
| | - Jian He
- Group of Peptides and Natural Products Research, School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou 510515, China.
| |
Collapse
|
22
|
Kumari R, Sharma SD, Kumar A, Ende Z, Mishina M, Wang Y, Falls Z, Samudrala R, Pohl J, Knight PR, Sambhara S. Antiviral Approaches against Influenza Virus. Clin Microbiol Rev 2023; 36:e0004022. [PMID: 36645300 PMCID: PMC10035319 DOI: 10.1128/cmr.00040-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preventing and controlling influenza virus infection remains a global public health challenge, as it causes seasonal epidemics to unexpected pandemics. These infections are responsible for high morbidity, mortality, and substantial economic impact. Vaccines are the prophylaxis mainstay in the fight against influenza. However, vaccination fails to confer complete protection due to inadequate vaccination coverages, vaccine shortages, and mismatches with circulating strains. Antivirals represent an important prophylactic and therapeutic measure to reduce influenza-associated morbidity and mortality, particularly in high-risk populations. Here, we review current FDA-approved influenza antivirals with their mechanisms of action, and different viral- and host-directed influenza antiviral approaches, including immunomodulatory interventions in clinical development. Furthermore, we also illustrate the potential utility of machine learning in developing next-generation antivirals against influenza.
Collapse
Affiliation(s)
- Rashmi Kumari
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suresh D. Sharma
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zachary Ende
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, Tennessee, USA
| | - Margarita Mishina
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuanyuan Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Association of Public Health Laboratories, Silver Spring, Maryland, USA
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul R. Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Liao Y, Ye Y, Liu M, Liu Z, Wang J, Li B, Huo L, Zhuang Y, Chen L, Chen J, Gao Y, Ning X, Li S, Liu S, Song G. Identification of N- and C-3-Modified Laudanosoline Derivatives as Novel Influenza PA N Endonuclease Inhibitors. J Med Chem 2023; 66:188-219. [PMID: 36521178 DOI: 10.1021/acs.jmedchem.2c00857] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Influenza PAN inhibitors are of particular importance in current efforts to develop a new generation of antiviral drugs due to the growing emergence of highly pathogenic influenza viruses and the resistance to existing antiviral inhibitors. Herein, we design and synthesize a set of 1,3-cis-N-substituted-1,2,3,4-tetrahydroisoquinoline derivatives to enhance their potency by further exploiting the pockets 3 and 4 in the PAN endonuclease based on the hit d,l-laudanosoline. Particularly, the lead compound 35 exhibited potent and broad anti-influenza virus effects with EC50 values ranging from 0.43 to 1.12 μM in vitro and good inhibitory activity in a mouse model. Mechanistic studies demonstrated that 35 could bind tightly to the PAN endonuclease of RNA-dependent RNA polymerase, thus blocking the viral replication to exert antiviral activity. Overall, our study might establish the importance of 1,2,3,4-tetrahydroisoquinoline-6,7-diol-based derivatives for the development of novel PAN inhibitors of influenza viruses.
Collapse
Affiliation(s)
- Yixian Liao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yilu Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Baixi Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Lijian Huo
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yilian Zhuang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Liye Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongfeng Gao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyun Ning
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Sumei Li
- College of Basic Medicine and Public Hygiene, Jinan University, Guangzhou 510632, China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
Wang J, Sun Y, Liu S. Emerging antiviral therapies and drugs for the treatment of influenza. Expert Opin Emerg Drugs 2022; 27:389-403. [PMID: 36396398 DOI: 10.1080/14728214.2022.2149734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Both vaccines and antiviral drugs represent the mainstay for preventing and treating influenza. However, approved M2 ion channel inhibitors, neuraminidase inhibitors, polymerase inhibitors, and various vaccines cannot meet therapeutic needs because of viral resistance. Thus, the discovery of new targets for the virus or host and the development of more effective inhibitors are essential to protect humans from the influenza virus. AREAS COVERED This review summarizes the latest progress in vaccines and antiviral drug research to prevent and treat influenza, providing the foothold for developing novel antiviral inhibitors. EXPERT OPINION Vaccines embody the most effective approach to preventing influenza virus infection, and recombinant protein vaccines show promising prospects in developing next-generation vaccines. Compounds targeting the viral components of RNA polymerase, hemagglutinin and nucleoprotein, and the modification of trusted neuraminidase inhibitors are future research directions for anti-influenza virus drugs. In addition, some host factors affect the replication of virus in vivo, which can be used to develop antiviral drugs.
Collapse
Affiliation(s)
- Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Yihang Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou Guangdong China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Nanfang Hospital, Guangzhou Guangdong China
| |
Collapse
|
25
|
Wang K, Zhang H, Tian Y. The current strategies of optimization of oseltamivir against mutant neuraminidases of influenza A:A review. Eur J Med Chem 2022; 243:114711. [DOI: 10.1016/j.ejmech.2022.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
|
26
|
Radilová K, Zima V, Kráľ M, Machara A, Majer P, Hodek J, Weber J, Brynda J, Strmeň T, Konvalinka J, Kožíšek M. Thermodynamic and structural characterization of an optimized peptide-based inhibitor of the influenza polymerase PA-PB1 subunit interaction. Antiviral Res 2022; 208:105449. [DOI: 10.1016/j.antiviral.2022.105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022]
|
27
|
In Silico Evaluation of Hexamethylene Amiloride Derivatives as Potential Luminal Inhibitors of SARS-CoV-2 E Protein. Int J Mol Sci 2022; 23:ijms231810647. [PMID: 36142556 PMCID: PMC9503309 DOI: 10.3390/ijms231810647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
The coronavirus E proteins are small membrane proteins found in the virus envelope of alpha and beta coronaviruses that have a high degree of overlap in their biochemical and functional properties despite minor sequence variations. The SARS-CoV-2 E is a 75-amino acid transmembrane protein capable of acting as an ion channel when assembled in a pentameric fashion. Various studies have found that hexamethylene amiloride (HMA) can inhibit the ion channel activity of the E protein in bilayers and also inhibit viral replication in cultured cells. Here, we use the available structural data in conjunction with homology modelling to build a comprehensive model of the E protein to assess potential binding sites and molecular interactions of HMA derivatives. Furthermore, we employed an iterative cycle of molecular modelling, extensive docking simulations, molecular dynamics and leveraging steered molecular dynamics to better understand the pore characteristics and quantify the affinity of the bound ligands. Results from this work highlight the potential of acylguanidines as blockers of the E protein and guide the development of subsequent small molecule inhibitors.
Collapse
|
28
|
He J, Huang H, Li B, Li H, Zhao Y, Li Y, Ye W, Qi W, Tang W, Wang L. Identification of cytochrome c oxidase subunit 4 isoform 1 as a positive regulator of influenza virus replication. Front Microbiol 2022; 13:862205. [PMID: 35928150 PMCID: PMC9343726 DOI: 10.3389/fmicb.2022.862205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/28/2022] [Indexed: 11/14/2022] Open
Abstract
Human infection with highly pathogenic H5N1 influenza virus causes severe respiratory diseases. Currently, the drugs against H5N1 are limited to virus-targeted inhibitors. However, drug resistance caused by these inhibitors is becoming a serious threat to global public health. An alternative strategy to reduce the resistance risk is to develop antiviral drugs targeting host cell proteins. In this study, we demonstrated that cytochrome c oxidase subunit 4 isoform 1 (COX41) of host cell plays an important role in H5N1 infection. Overexpression of COX41 promoted viral replication, which was inhibited by silencing or knockout the expression of COX41 in the host cell. The ribonucleoproteins (RNPs) of H5N1 were retained in the cell nucleus after knockout cellular COX41. Strikingly, inhibition of cellular COX41 by lycorine, a small-molecule compound isolated from Amaryllidaceae plants, reduced the levels of COX41-induced ROS and phosphorylation of extracellular signal-regulated kinase (ERK) in cells, thus resulting in the blockage of nuclear export of vRNP and inhibition of viral replication. In H5N1-infected mice that were treated with lycorine, we observed a reduction of viral titers and inhibition of pathological changes in the lung and trachea tissues. Importantly, no resistant virus was generated after culturing the virus with the continuous treatment of lycorine. Collectively, these findings suggest that COX41 is a positive regulator of H5N1 replication and might serve as an alternative target for anti-influenza drug development.
Collapse
Affiliation(s)
- Jun He
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Huibin Huang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- Pharmacy Department, Wenzhou People’s Hospital, Wenzhou, China
| | - Bo Li
- National Avian Influenza Professional Laboratory, Key Laboratory of Zoonoses, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Huanan Li
- National Avian Influenza Professional Laboratory, Key Laboratory of Zoonoses, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yue Zhao
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Yaolan Li
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wencai Ye
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenbao Qi
- National Avian Influenza Professional Laboratory, Key Laboratory of Zoonoses, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Wei Tang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- *Correspondence: Lei Wang, Wei Tang,
| | - Lei Wang
- Center for Bioactive Natural Molecules and Innovative Drugs Research, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
- *Correspondence: Lei Wang, Wei Tang,
| |
Collapse
|
29
|
Antiviral Effects of ABMA and DABMA against Influenza Virus In Vitro and In Vivo via Regulating the Endolysosomal Pathway and Autophagy. Int J Mol Sci 2022; 23:ijms23073940. [PMID: 35409297 PMCID: PMC8999625 DOI: 10.3390/ijms23073940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Influenza virus is an acute and highly contagious respiratory pathogen that causes great concern to public health and for which there is a need for extensive drug discovery. The small chemical compound ABMA and its analog DABMA, containing an adamantane or a dimethyl-adamantane group, respectively, have been demonstrated to inhibit multiple toxins (diphtheria toxin, Clostridium difficile toxin B, Clostridium sordellii lethal toxin) and viruses (Ebola, rabies virus, HSV-2) by acting on the host’s vesicle trafficking. Here, we showed that ABMA and DABMA have antiviral effects against both amantadine-sensitive influenza virus subtypes (H1N1 and H3N2), amantadine-resistant subtypes (H3N2), and influenza B virus with EC50 values ranging from 2.83 to 7.36 µM (ABMA) and 1.82 to 6.73 µM (DABMA), respectively. ABMA and DABMA inhibited the replication of influenza virus genomic RNA and protein synthesis by interfering with the entry stage of the virus. Molecular docking evaluation together with activity against amantadine-resistant influenza virus strains suggested that ABMA and DABMA were not acting as M2 ion channel blockers. Subsequently, we found that early internalized H1N1 virions were retained in accumulated late endosome compartments after ABMA treatment. Additionally, ABMA disrupted the early stages of the H1N1 life cycle or viral RNA synthesis by interfering with autophagy. ABMA and DABMA protected mice from an intranasal H1N1 challenge with an improved survival rate of 67%. The present study suggests that ABMA and DABMA are potential antiviral leads for the development of a host-directed treatment against influenza virus infection.
Collapse
|
30
|
Hou L, Zhang Y, Ju H, Cherukupalli S, Jia R, Zhang J, Huang B, Loregian A, Liu X, Zhan P. Contemporary medicinal chemistry strategies for the discovery and optimization of influenza inhibitors targeting vRNP constituent proteins. Acta Pharm Sin B 2022; 12:1805-1824. [PMID: 35847499 PMCID: PMC9279641 DOI: 10.1016/j.apsb.2021.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Influenza is an acute respiratory infectious disease caused by the influenza virus, affecting people globally and causing significant social and economic losses. Due to the inevitable limitations of vaccines and approved drugs, there is an urgent need to discover new anti-influenza drugs with different mechanisms. The viral ribonucleoprotein complex (vRNP) plays an essential role in the life cycle of influenza viruses, representing an attractive target for drug design. In recent years, the functional area of constituent proteins in vRNP are widely used as targets for drug discovery, especially the PA endonuclease active site, the RNA-binding site of PB1, the cap-binding site of PB2 and the nuclear export signal of NP protein. Encouragingly, the PA inhibitor baloxavir has been marketed in Japan and the United States, and several drug candidates have also entered clinical trials, such as favipiravir. This article reviews the compositions and functions of the influenza virus vRNP and the research progress on vRNP inhibitors, and discusses the representative drug discovery and optimization strategies pursued.
Collapse
|
31
|
Optimized POCl3-assisted synthesis of 2-amino-1,3,4-thiadiazole/1,3,4-oxadiazole derivatives as anti-influenza agents. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
32
|
Chen W, Shao J, Ying Z, Du Y, Yu Y. Approaches for discovery of small-molecular antivirals targeting to influenza A virus PB2 subunit. Drug Discov Today 2022; 27:1545-1553. [PMID: 35247593 DOI: 10.1016/j.drudis.2022.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/03/2022]
Abstract
Influenza is an acute respiratory infectious disease caused by influenza virus, leading to huge morbidity and mortality in humans worldwide. Despite the availability of antivirals in the clinic, the emergence of resistant strains calls for antivirals with novel mechanisms of action. The PB2 subunit of the influenza A virus polymerase is a promising target because of its vital role in the 'cap-snatching' mechanism. In this review, we summarize the technologies and medicinal chemistry strategies for hit identification, hit-to-lead and lead-to-candidate optimization, and current challenges in PB2 inhibitor development, as well as offering insights for the fight against drug resistance.
Collapse
Affiliation(s)
- Wenteng Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Zhimin Ying
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yushen Du
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China(1)
| | - Yongping Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
33
|
Targeted inhibition of the endonuclease activity of influenza polymerase acidic proteins. Future Med Chem 2022; 14:571-586. [PMID: 35213253 DOI: 10.4155/fmc-2021-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Influenza is a type of acute respiratory virus infection caused by the influenza virus that occurs in epidemics worldwide every year. Due to the increasing incidence of influenza virus resistance to existing drugs, researchers are looking for novel antiviral drugs with new mechanisms. The endonuclease activity of polymerase acidic protein is essential in the process of influenza virus reproduction, and inhibiting it could prevent the virus from replicating. There are relatively few drugs that act on this protein, and only baloxavir marboxil has been approved for clinical use. In this article, the structure and function of influenza virus polymerase acidic protein endonuclease, mechanism of action of polymerase acidic endonuclease inhibitors and the research progress of inhibitors are reviewed.
Collapse
|
34
|
Melnik LI, Guha S, Ghimire J, Smither AR, Beddingfield BJ, Hoffmann AR, Sun L, Ungerleider NA, Baddoo MC, Flemington EK, Gallaher WR, Wimley WC, Garry RF. Ebola virus delta peptide is an enterotoxin. Cell Rep 2022; 38:110172. [PMID: 34986351 DOI: 10.1016/j.celrep.2021.110172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/27/2021] [Accepted: 12/03/2021] [Indexed: 12/21/2022] Open
Abstract
During the 2013-2016 West African (WA) Ebola virus (EBOV) outbreak, severe gastrointestinal symptoms were common in patients and associated with poor outcome. Delta peptide is a conserved product of post-translational processing of the abundant EBOV soluble glycoprotein (sGP). The murine ligated ileal loop model was used to demonstrate that delta peptide is a potent enterotoxin. Dramatic intestinal fluid accumulation follows injection of biologically relevant amounts of delta peptide into ileal loops, along with gross alteration of villous architecture and loss of goblet cells. Transcriptomic analyses show that delta peptide triggers damage response and cell survival pathways and downregulates expression of transporters and exchangers. Induction of diarrhea by delta peptide occurs via cellular damage and regulation of genes that encode proteins involved in fluid secretion. While distinct differences exist between the ileal loop murine model and EBOV infection in humans, these results suggest that delta peptide may contribute to EBOV-induced gastrointestinal pathology.
Collapse
Affiliation(s)
- Lilia I Melnik
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shantanu Guha
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Allison R Smither
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Brandon J Beddingfield
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Andrew R Hoffmann
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Leisheng Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | - Melody C Baddoo
- Tulane Cancer Center, Tulane University, New Orleans, LA 70112, USA
| | | | - William R Gallaher
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA 70112, USA; Mockingbird Nature Research Group, Pearl River, LA 70452, USA
| | - William C Wimley
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Robert F Garry
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Zalgen Labs, Germantown, MD 20876, USA.
| |
Collapse
|
35
|
Shelef O, Gutkin S, Feder D, Ben-Bassat A, Mandelboim M, Haitin Y, Ben-Tal N, Bacharach E, Shabat D. Ultrasensitive chemiluminescent neuraminidase probe for rapid screening and identification of small-molecules with antiviral activity against influenza A virus in mammalian cells. Chem Sci 2022; 13:12348-12357. [PMID: 36382275 PMCID: PMC9629042 DOI: 10.1039/d2sc03460c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Influenza A virus is the most virulent influenza subtype and is associated with large-scale global pandemics characterized by high levels of morbidity and mortality. Developing simple and sensitive molecular methods for detecting influenza viruses is critical. Neuraminidase, an exo-glycosidase displayed on the surface of influenza virions, is responsible for the release of the virions and their spread in the infected host. Here, we present a new phenoxy-dioxetane chemiluminescent probe (CLNA) that can directly detect neuraminidase activity. The probe exhibits an effective turn-on response upon reaction with neuraminidase and produces a strong emission signal at 515 nm with an extremely high signal-to-noise ratio. Comparison measurements of our new probe with previously reported analogous neuraminidase optical probes showed superior detection capability in terms of response time and sensitivity. Thus, as far as we know, our probe is the most sensitive neuraminidase probe known to date. The chemiluminescence turn-on response produced by our neuraminidase probe enables rapid screening for small molecules that inhibit viral replication through different mechanisms as validated directly in influenza A-infected mammalian cells using the known inhibitors oseltamivir and amantadine. We expect that our new chemiluminescent neuraminidase probe will prove useful for various applications requiring neuraminidase detection including drug discovery assays against various influenza virus strains in mammalian cells. A new chemiluminescence neuraminidase probe enables rapid screening of small molecules that inhibit viral replication, directly in influenza A-infected mammalian cells.![]()
Collapse
Affiliation(s)
- Omri Shelef
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Sara Gutkin
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Daniel Feder
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ariel Ben-Bassat
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Sheba Medical Center, Tel Hashomer, Ramat-Gan 52620, Israel
- School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Ben-Tal
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eran Bacharach
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
36
|
Mizuta S, Otaki H, Ishikawa T, Makau JN, Yamaguchi T, Fujimoto T, Takakura N, Sakauchi N, Kitamura S, Nono H, Nishi R, Tanaka Y, Takeda K, Nishida N, Watanabe K. Lead Optimization of Influenza Virus RNA Polymerase Inhibitors Targeting PA-PB1 Interaction. J Med Chem 2021; 65:369-385. [PMID: 34905383 DOI: 10.1021/acs.jmedchem.1c01527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Influenza viruses are responsible for contagious respiratory illnesses in humans and cause seasonal epidemics and occasional pandemics worldwide. Previously, we identified a quinolinone derivative PA-49, which inhibited the influenza virus RNA-dependent RNA polymerase (RdRp) by targeting PA-PB1 interaction. This paper reports the structure optimization of PA-49, which resulted in the identification of 3-((dibenzylamino)methyl)quinolinone derivatives with more potent anti-influenza virus activity. During the optimization, the hit compound 89, which was more active than PA-49, was identified. Further optimization and scaffold hopping of 89 led to the most potent compounds 100 and a 1,8-naphthyridinone derivative 118, respectively. We conclusively determined that compounds 100 and 118 suppressed the replication of influenza virus and exhibited anti-influenza virus activity against both influenza virus types A and B in the range of 50% effective concentration (EC50) = 0.061-0.226 μM with low toxicity (50% cytotoxic concentration (CC50) >10 μM).
Collapse
Affiliation(s)
- Satoshi Mizuta
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Hiroki Otaki
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Juliann Nzembi Makau
- Center for Virus Research, Kenya Medical Research Institute, 54840-00200 Nairobi, Kenya
| | - Tomoko Yamaguchi
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Takuya Fujimoto
- Chemistry, Discovery Science, Axcelead Drug Discovery Partners, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Nobuyuki Takakura
- Chemistry, Discovery Science, Axcelead Drug Discovery Partners, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Nobuki Sakauchi
- Chemistry, Discovery Science, Axcelead Drug Discovery Partners, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Shuji Kitamura
- Chemistry, Discovery Science, Axcelead Drug Discovery Partners, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Hikaru Nono
- School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Ryota Nishi
- School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Kohsuke Takeda
- Department of Cell Regulation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Ken Watanabe
- Department of Lifestyle Design, Faculty of Human Ecology, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami Ward, Hiroshima 731-0153, Japan
| |
Collapse
|
37
|
Townsend JA, Sanders HM, Rolland AD, Park CK, Horton NC, Prell JS, Wang J, Marty MT. Influenza AM2 Channel Oligomerization Is Sensitive to Its Chemical Environment. Anal Chem 2021; 93:16273-16281. [PMID: 34813702 DOI: 10.1021/acs.analchem.1c04660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Viroporins are small viral ion channels that play important roles in the viral infection cycle and are proven antiviral drug targets. Matrix protein 2 from influenza A (AM2) is the best-characterized viroporin, and the current paradigm is that AM2 forms monodisperse tetramers. Here, we used native mass spectrometry and other techniques to characterize the oligomeric state of both the full-length and transmembrane (TM) domain of AM2 in a variety of different pH and detergent conditions. Unexpectedly, we discovered that AM2 formed a range of different oligomeric complexes that were strongly influenced by the local chemical environment. Native mass spectrometry of AM2 in nanodiscs with different lipids showed that lipids also affected the oligomeric states of AM2. Finally, nanodiscs uniquely enabled the measurement of amantadine binding stoichiometries to AM2 in the intact lipid bilayer. These unexpected results reveal that AM2 can form a wider range of oligomeric states than previously thought possible, which may provide new potential mechanisms of influenza pathology and pharmacology.
Collapse
Affiliation(s)
- Julia A Townsend
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Henry M Sanders
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States.,Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, United States
| | - Chad K Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States.,Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, The University of Arizona, Tucson, Arizona 85721, United States.,Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States.,Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
38
|
Cáceres CJ, Hu Y, Cárdenas-García S, Wu X, Tan H, Carnaccini S, Gay LC, Geiger G, Ma C, Zhang QY, Rajao D, Perez DR, Wang J. Rational design of a deuterium-containing M2-S31N channel blocker UAWJ280 with in vivo antiviral efficacy against both oseltamivir sensitive and -resistant influenza A viruses. Emerg Microbes Infect 2021; 10:1832-1848. [PMID: 34427541 PMCID: PMC8451667 DOI: 10.1080/22221751.2021.1972769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 10/28/2022]
Abstract
Seasonal influenza A virus (IAV) infections are among the most important global health problems. FDA-approved antiviral therapies against IAV include neuraminidase inhibitors, M2 inhibitors, and polymerase inhibitor baloxavir. Resistance against adamantanes (amantadine and rimantadine) is widespread as virtually all IAV strains currently circulating in the human population are resistant to adamantanes through the acquisition of the S31N mutation. The neuraminidase inhibitor-resistant strains also contain the M2-S31N mutant, suggesting M2-S31N is a high-profile antiviral drug target. Here we report the development of a novel deuterium-containing M2-S31N inhibitor UAWJ280. UAWJ280 had broad-spectrum antiviral activity against both oseltamivir sensitive and -resistant influenza A strains and had a synergistic antiviral effect in combination with oseltamivir in cell culture. In vivo pharmacokinetic (PK) studies demonstrated that UAWJ280 had favourable PK properties. The in vivo mouse model study showed that UAWJ280 was effective alone or in combination with oseltamivir in improving clinical signs and survival after lethal challenge with an oseltamivir sensitive IAV H1N1 strain. Furthermore, UAWJ280 was also able to ameliorate clinical signs and increase survival when mice were challenged with an oseltamivir-resistant IAV H1N1 strain. In conclusion, we show for the first time that the M2-S31N channel blocker UAWJ280 has in vivo antiviral efficacy in mice that are infected with either oseltamivir sensitive or -resistant IAVs, and it has a synergistic antiviral effect with oseltamivir.
Collapse
Affiliation(s)
- C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Stivalis Cárdenas-García
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Haozhou Tan
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Silvia Carnaccini
- Tifton diagnostic laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, USA
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Daniela Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
39
|
Hossain MG, Akter S, Dhole P, Saha S, Kazi T, Majbauddin A, Islam MS. Analysis of the Genetic Diversity Associated With the Drug Resistance and Pathogenicity of Influenza A Virus Isolated in Bangladesh From 2002 to 2019. Front Microbiol 2021; 12:735305. [PMID: 34603265 PMCID: PMC8484749 DOI: 10.3389/fmicb.2021.735305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
The subtype prevalence, drug resistance- and pathogenicity-associated mutations, and the distribution of the influenza A virus (IAV) isolates identified in Bangladesh from 2002 to 2019 were analyzed using bioinformatic tools. A total of 30 IAV subtypes have been identified in humans (4), avian species (29), and environment (5) in Bangladesh. The predominant subtypes in human and avian species are H1N1/H3N2 and H5N1/H9N2, respectively. However, the subtypes H5N1/H9N2 infecting humans and H3N2/H1N1 infecting avian species have also been identified. Among the avian species, the maximum number of subtypes (27) have been identified in ducks. A 3.56% of the isolates showed neuraminidase inhibitor (NAI) resistance with a prevalence of 8.50, 1.33, and 2.67% in avian species, humans, and the environment, respectively, the following mutations were detected: V116A, I117V, D198N, I223R, S247N, H275Y, and N295S. Prevalence of adamantane-resistant IAVs was 100, 50, and 30.54% in humans, the environment, and avian species, respectively, the subtypes H3N2, H1N1, H9N2, and H5N2 were highly prevalent, with the subtype H5N1 showing a comparatively lower prevalence. Important PB2 mutations such D9N, K526R, A588V, A588I, G590S, Q591R, E627K, K702R, and S714R were identified. A wide range of IAV subtypes have been identified in Bangladesh with a diversified genetic variation in the NA, M2, and PB2 proteins providing drug resistance and enhanced pathogenicity. This study provides a detailed analysis of the subtypes, and the host range of the IAV isolates and the genetic variations related to their proteins, which may aid in the prevention, treatment, and control of IAV infections in Bangladesh, and would serve as a basis for future investigations.
Collapse
Affiliation(s)
- Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sharmin Akter
- Department of Physiology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Priya Dhole
- Department of Biology, The Pennsylvania State University, Pennsylvania, PA, United States
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Taheruzzaman Kazi
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Abir Majbauddin
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Md Sayeedul Islam
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
40
|
Rostaminia S, Aghaei SS, Farahmand B, Nazari R, Ghaemi A. Computational Design and Analysis of a Multi-epitope Against Influenza A virus. Int J Pept Res Ther 2021; 27:2625-2638. [PMID: 34539293 PMCID: PMC8435298 DOI: 10.1007/s10989-021-10278-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/28/2022]
Abstract
Influenza A viruses are among the most studied viruses, however no effective prevention against influenza infection has been developed. So, designing an effective vaccine against Influenza A virus is a critical issue in the field of medical biotechnology. For this reason, to combat this disease, we have designed a novel multi-epitope vaccine candidate based on the several conserved and potential linear B-cell and T-cell binding epitopes by using the in silico approach. This vaccine consists of an ER signal conserved sequence, the PADRE conserved epitope and two conserved epitopes of Influenza matrix protein 2. T-cell binding epitopes from Matrix protein 2 were predicted by in silico tools of epitope prediction. The selected epitopes were joined by flexible linkers and physicochemical properties, toxicity, and allergenecity were investigated. The designed vaccine was antigenic, immunogenic, and non-allergenic with suitable physicochemical properties and has higher solubility. The final multi-epitope construct was modeled, confirmed by different programs and the molecular interactions with immune receptors were considered. The molecular docking assay indicated the interactions with immune-stimulatory toll-like receptor 3 (TLR3) and major histocompatibility complex class I (MHCI). The HADDOCK and H DOCK servers were used to make docking analysis, respectively. The docking analysis indicated a strong and stable binding interaction between the vaccine construct with major histocompatibility complex (MHC) class I and toll-like receptor 3. Overall, the findings suggest that the current vaccine may be a promising vaccine to prevent Influenza infection.
Collapse
Affiliation(s)
- Samaneh Rostaminia
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, P.O.Box: 1316943551, Tehran, Iran
| | - Raziye Nazari
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, P.O.Box: 1316943551, Tehran, Iran
| |
Collapse
|
41
|
Hiscox JA, Khoo SH, Stewart JP, Owen A. Shutting the gate before the horse has bolted: is it time for a conversation about SARS-CoV-2 and antiviral drug resistance? J Antimicrob Chemother 2021; 76:2230-2233. [PMID: 34142123 PMCID: PMC8361339 DOI: 10.1093/jac/dkab189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This article provides a brief overview of drug resistance to antiviral therapy as well as known and emergent variability in key SARS-CoV-2 viral sequences. The purpose is to stimulate deliberation about the need to consider drug resistance prior to widespread roll-out of antivirals for SARS-CoV-2. Many existing candidate agents have mechanisms of action involving drug targets likely to be critical for future drug development. Resistance emerged quickly with monotherapies deployed for other pulmonary viruses such as influenza virus, and in HIV mutations in key drug targets compromised efficacy of multiple drugs within a class. The potential for drug resistance in SARS-CoV-2 has not yet been rigorously debated or assessed, and we call for more academic and industry research on this potentially important future threat prior to widespread roll-out of monotherapies for COVID-19 treatment and prevention.
Collapse
Affiliation(s)
- Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Infectious Diseases Horizontal Technology Centre (ID HTC), A*STAR, Singapore
| | - Saye H. Khoo
- Department of Pharmacology and Therapeutics, Materials Innovation Factory, University of Liverpool, Liverpool, L7 3NY, UK
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Materials Innovation Factory, University of Liverpool, Liverpool, L7 3NY, UK
- Centre of Excellence in Long acting Therapeutics (CELT), University of Liverpool, Liverpool, L69 3BX, UK
| |
Collapse
|
42
|
Javanian M, Barary M, Ghebrehewet S, Koppolu V, Vasigala V, Ebrahimpour S. A brief review of influenza virus infection. J Med Virol 2021; 93:4638-4646. [PMID: 33792930 DOI: 10.1002/jmv.26990] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022]
Abstract
Influenza is an acute viral respiratory infection that affects all age groups and is associated with high mortality during pandemics, epidemics, and sporadic outbreaks. Nearly 10% of the world's population is affected by influenza annually, with about half a million deaths each year. Influenza vaccination is the most effective method for preventing influenza infection and its complications. The influenza vaccine's efficacy varies each season based on the circulating influenza strains and vaccine uptake rates. Currently, three antiviral drugs targeting the influenza virus surface glycoprotein neuraminidase are available for treatment and prophylaxis of disease. Given the significant burden of influenza infection globally, this review is focused on the latest findings in the etiology, epidemiology, transmission, clinical manifestation, diagnosis, prevention, and treatment of influenza.
Collapse
Affiliation(s)
- Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Barary
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Sam Ghebrehewet
- Cheshire and Merseyside Health Protection Team, Public Health England North West, Liverpool, UK
| | - Veerendra Koppolu
- Scientist, Department of Analytical Biotechnology, MedImmune/AstraZeneca, Gaithersburg, Maryland, 20878, USA
| | - VeneelaKrishnaRekha Vasigala
- Department of General Medicine, Rangaraya Medical College, NTR University of Health Sciences, Vijayawada, Andhra Pradesh, India
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
43
|
Mtambo SE, Amoako DG, Somboro AM, Agoni C, Lawal MM, Gumede NS, Khan RB, Kumalo HM. Influenza Viruses: Harnessing the Crucial Role of the M2 Ion-Channel and Neuraminidase toward Inhibitor Design. Molecules 2021; 26:880. [PMID: 33562349 PMCID: PMC7916051 DOI: 10.3390/molecules26040880] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
As a member of the Orthomyxoviridae family of viruses, influenza viruses (IVs) are known causative agents of respiratory infection in vertebrates. They remain a major global threat responsible for the most virulent diseases and global pandemics in humans. The virulence of IVs and the consequential high morbidity and mortality of IV infections are primarily attributed to the high mutation rates in the IVs' genome coupled with the numerous genomic segments, which give rise to antiviral resistant and vaccine evading strains. Current therapeutic options include vaccines and small molecule inhibitors, which therapeutically target various catalytic processes in IVs. However, the periodic emergence of new IV strains necessitates the continuous development of novel anti-influenza therapeutic options. The crux of this review highlights the recent studies on the biology of influenza viruses, focusing on the structure, function, and mechanism of action of the M2 channel and neuraminidase as therapeutic targets. We further provide an update on the development of new M2 channel and neuraminidase inhibitors as an alternative to existing anti-influenza therapy. We conclude by highlighting therapeutic strategies that could be explored further towards the design of novel anti-influenza inhibitors with the ability to inhibit resistant strains.
Collapse
Affiliation(s)
- Sphamadla E. Mtambo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Daniel G. Amoako
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Anou M. Somboro
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Clement Agoni
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Monsurat M. Lawal
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Nelisiwe S. Gumede
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Rene B. Khan
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Hezekiel M. Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| |
Collapse
|
44
|
Zhang Y, Zheng QC. In Silico Analysis Revealed a Unique Binding but Ineffective Mode of Amantadine to Influenza Virus B M2 Channel. J Phys Chem Lett 2021; 12:1169-1174. [PMID: 33480694 DOI: 10.1021/acs.jpclett.0c03560] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The M2 proton channel of influenza A (AM2) and B (BM2) have a highly conserved function motif, considered as the effective target. As yet, there is no effective drug against BM2. Research showed that AM2 channel blocker, amantadine (AMT), was able to bind to BM2 channel, but AMT lacked inhibition against BM2. Nevertheless, the study of the binding but ineffective mode of AMT to BM2 is challenging. To resolve the challenge and obtain more information for drug design of inhibitors targeting BM2, multiple molecular dynamics simulations were performed. We discovered AMT mainly adopted up binding mode in BM2, involved in a transition flipping from down mode to up mode. Furthermore, we discovered a new key factor to explain ineffective inhibition of AMT to BM2 because of the unmatched spatial geometry between AMT and BM2. Our work could enrich structural feature information on BM2 and provide a new perspective for rational drug design of anti-influenza B.
Collapse
Affiliation(s)
- Yue Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Qing-Chuan Zheng
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130023, People's Republic of China
| |
Collapse
|
45
|
Yin H, Jiang N, Shi W, Chi X, Liu S, Chen JL, Wang S. Development and Effects of Influenza Antiviral Drugs. Molecules 2021; 26:molecules26040810. [PMID: 33557246 PMCID: PMC7913928 DOI: 10.3390/molecules26040810] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal outbreaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates, posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently, there are two classes of antiviral drugs available that are chemosynthetic and approved against influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant virus strains is a serious issue that strikes at the core of influenza control. There is therefore an urgent need to develop new antiviral drugs. Many reports have shown that the development of novel bioactive plant extracts and microbial extracts has significant advantages in influenza treatment. This paper comprehensively reviews the development and effects of chemosynthetic drugs, plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some references for novel antiviral drug design and promising alternative candidates for further anti-influenza drug development.
Collapse
|
46
|
Terrier O, Slama-Schwok A. Anti-Influenza Drug Discovery and Development: Targeting the Virus and Its Host by All Possible Means. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:195-218. [PMID: 34258742 DOI: 10.1007/978-981-16-0267-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infections by influenza virus constitute a major and recurrent threat for human health. Together with vaccines, antiviral drugs play a key role in the prevention and treatment of influenza virus infection and disease. Today, the number of antiviral molecules approved for the treatment of influenza is relatively limited, and their use is threatened by the emergence of viral strains with resistance mutations. There is therefore a real need to expand the prophylactic and therapeutic arsenal. This chapter summarizes the state of the art in drug discovery and development for the treatment of influenza virus infections, with a focus on both virus-targeting and host cell-targeting strategies. Novel antiviral strategies targeting other viral proteins or targeting the host cell, some of which are based on drug repurposing, may be used in combination to strengthen our therapeutic arsenal against this major pathogen.
Collapse
Affiliation(s)
- Olivier Terrier
- CIRI, Centre International de Recherche en Infectiologie, (Team VirPath), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Anny Slama-Schwok
- Sorbonne Université, Centre de Recherche Saint-Antoine, INSERM U938, Biologie et Thérapeutique du Cancer, Paris, France.
| |
Collapse
|
47
|
Quade BN, Parker MD, Occhipinti R. The therapeutic importance of acid-base balance. Biochem Pharmacol 2021; 183:114278. [PMID: 33039418 PMCID: PMC7544731 DOI: 10.1016/j.bcp.2020.114278] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Baking soda and vinegar have been used as home remedies for generations and today we are only a mouse-click away from claims that baking soda, lemon juice, and apple cider vinegar are miracles cures for everything from cancer to COVID-19. Despite these specious claims, the therapeutic value of controlling acid-base balance is indisputable and is the basis of Food and Drug Administration-approved treatments for constipation, epilepsy, metabolic acidosis, and peptic ulcers. In this narrative review, we present evidence in support of the current and potential therapeutic value of countering local and systemic acid-base imbalances, several of which do in fact involve the administration of baking soda (sodium bicarbonate). Furthermore, we discuss the side effects of pharmaceuticals on acid-base balance as well as the influence of acid-base status on the pharmacokinetic properties of drugs. Our review considers all major organ systems as well as information relevant to several clinical specialties such as anesthesiology, infectious disease, oncology, dentistry, and surgery.
Collapse
Affiliation(s)
- Bianca N Quade
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, The State University of New York, The University at Buffalo, Buffalo, NY 14203, USA; Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA; State University of New York Eye Institute, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rossana Occhipinti
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
48
|
Watkins LC, DeGrado WF, Voth GA. Influenza A M2 Inhibitor Binding Understood through Mechanisms of Excess Proton Stabilization and Channel Dynamics. J Am Chem Soc 2020; 142:17425-17433. [PMID: 32933245 PMCID: PMC7564090 DOI: 10.1021/jacs.0c06419] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Prevalent resistance to inhibitors
that target the influenza A
M2 proton channel has necessitated a continued drug design effort,
supported by a sustained study of the mechanism of channel function
and inhibition. Recent high-resolution X-ray crystal structures present
the first opportunity to see how the adamantyl amine class of inhibitors
bind to M2 and disrupt and interact with the channel’s water
network, providing insight into the critical properties that enable
their effective inhibition in wild-type M2. In this work, we examine
the hypothesis that these drugs act primarily as mechanism-based inhibitors
by comparing hydrated excess proton stabilization during proton transport
in M2 with the interactions revealed in the crystal structures, using
the Multiscale Reactive Molecular Dynamics (MS-RMD) methodology. MS-RMD,
unlike classical molecular dynamics, models the hydrated proton (hydronium-like
cation) as a dynamic excess charge defect and allows bonds to break
and form, capturing the intricate interactions between the hydrated
excess proton, protein atoms, and water. Through this, we show that
the ammonium group of the inhibitors is effectively positioned to
take advantage of the channel’s natural ability to stabilize
an excess protonic charge and act as a hydronium mimic. Additionally,
we show that the channel is especially stable in the drug binding
region, highlighting the importance of this property for binding the
adamantane group. Finally, we characterize an additional hinge point
near Val27, which dynamically responds to charge and inhibitor binding.
Altogether, this work further illuminates a dynamic understanding
of the mechanism of drug inhibition in M2, grounded in the fundamental
properties that enable the channel to transport and stabilize excess
protons, with critical implications for future drug design efforts.
Collapse
Affiliation(s)
- Laura C Watkins
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
49
|
Dong J, Xiao M, Ma Q, Zhang G, Zhao W, Kong M, Zhang Y, Qiu L, Hu W. Design and synthesis of pinane oxime derivatives as novel anti-influenza agents. Bioorg Chem 2020; 102:104106. [PMID: 32739481 DOI: 10.1016/j.bioorg.2020.104106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Abstract
Parasitic characteristics, mutations and resistance of influenza A virus make it difficult for current influenza antiviral drugs to maintain long-term effectiveness. Currently, to design non-adamantane compounds targeting the S31N mutant of M2 proton channel is a promising direction for the development of novel anti-influenza drugs. In our previous research, a pinanamine-based antiviral M090 was discovered to target hemagglutinin instead of M2, with its structure being highly similar to reported M2-S31N inhibitors. Herein, a series of pinane oxime derivatives were designed from scratch and evaluated for anti-influenza activity and their cytotoxicity in vitro. Utilizing a combination of structure-activity relationship analysis, electrophysiological assay and molecular docking, the most potent compound 11h, as a M2-S31N blocker, exhibited excellent activity with EC50 value at the low micromolar level against both H3N2 and H1N1. No significant toxicity of 11h was observed. In addition, compound 11h was located tightly in the pore of the drug-binding site with the thiophene moiety facing down toward the C-terminus, and did not adopt a similar position and orientation as the reference inhibitor.
Collapse
Affiliation(s)
- Jianghong Dong
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China.
| | - Mengjie Xiao
- School of Life Sciences, Chinese University of Hong Kong, Shatin, N.T, Hong Kong SAR 999077, China
| | - Qinge Ma
- Key Laboratory of Modern Preparation of TCM of Ministry of Education & Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Guicheng Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Weijie Zhao
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Mengjie Kong
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yue Zhang
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Luyun Qiu
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Wenhui Hu
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
50
|
Alam I, Kamau AA, Kulmanov M, Jaremko Ł, Arold ST, Pain A, Gojobori T, Duarte CM. Functional Pangenome Analysis Shows Key Features of E Protein Are Preserved in SARS and SARS-CoV-2. Front Cell Infect Microbiol 2020; 10:405. [PMID: 32850499 PMCID: PMC7396417 DOI: 10.3389/fcimb.2020.00405] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/30/2020] [Indexed: 11/13/2022] Open
Abstract
The spread of the novel coronavirus (SARS-CoV-2) has triggered a global emergency, that demands urgent solutions for detection and therapy to prevent escalating health, social, and economic impacts. The spike protein (S) of this virus enables binding to the human receptor ACE2, and hence presents a prime target for vaccines preventing viral entry into host cells. The S proteins from SARS and SARS-CoV-2 are similar, but structural differences in the receptor binding domain (RBD) preclude the use of SARS-specific neutralizing antibodies to inhibit SARS-CoV-2. Here we used comparative pangenomic analysis of all sequenced reference Betacoronaviruses, complemented with functional and structural analyses. This analysis reveals that, among all core gene clusters present in these viruses, the envelope protein E shows a variant cluster shared by SARS and SARS-CoV-2 with two completely-conserved key functional features, namely an ion-channel, and a PDZ-binding motif (PBM). These features play a key role in the activation of the inflammasome causing the acute respiratory distress syndrome, the leading cause of death in SARS and SARS-CoV-2 infections. Together with functional pangenomic analysis, mutation tracking, and previous evidence, on E protein as a determinant of pathogenicity in SARS, we suggest E protein as an alternative therapeutic target to be considered for further studies to reduce complications of SARS-CoV-2 infections in COVID-19.
Collapse
Affiliation(s)
- Intikhab Alam
- Biological and Environmental Science and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Allan A. Kamau
- Biological and Environmental Science and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maxat Kulmanov
- Biological and Environmental Science and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefan T. Arold
- Biological and Environmental Science and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Arnab Pain
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takashi Gojobori
- Biological and Environmental Science and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Carlos M. Duarte
- Biological and Environmental Science and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|