1
|
Sandforth L, Brachs S, Reinke J, Willmes D, Sancar G, Seigner J, Juarez-Lopez D, Sandforth A, McBride JD, Ma JX, Haufe S, Jordan J, Birkenfeld AL. Role of human Kallistatin in glucose and energy homeostasis in mice. Mol Metab 2024; 82:101905. [PMID: 38431218 PMCID: PMC10937158 DOI: 10.1016/j.molmet.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE Kallistatin (KST), also known as SERPIN A4, is a circulating, broadly acting human plasma protein with pleiotropic properties. Clinical studies in humans revealed reduced KST levels in obesity. The exact role of KST in glucose and energy homeostasis in the setting of insulin resistance and type 2 diabetes is currently unknown. METHODS Kallistatin mRNA expression in human subcutaneous white adipose tissue (sWAT) of 47 people with overweight to obesity of the clinical trial "Comparison of Low Fat and Low Carbohydrate Diets With Respect to Weight Loss and Metabolic Effects (B-SMART)" was measured. Moreover, we studied transgenic mice systemically overexpressing human KST (hKST-TG) and wild type littermate control mice (WT) under normal chow (NCD) and high-fat diet (HFD) conditions. RESULTS In sWAT of people with overweight to obesity, KST mRNA increased after diet-induced weight loss. On NCD, we did not observe differences between hKST-TG and WT mice. Under HFD conditions, body weight, body fat and liver fat content did not differ between genotypes. Yet, during intraperitoneal glucose tolerance tests (ipGTT) insulin excursions and HOMA-IR were lower in hKST-TG (4.42 ± 0.87 AU, WT vs. 2.20 ± 0.27 AU, hKST-TG, p < 0.05). Hyperinsulinemic euglycemic clamp studies with tracer-labeled glucose infusion confirmed improved insulin sensitivity by higher glucose infusion rates in hKST-TG mice (31.5 ± 1.78 mg/kg/min, hKST-TG vs. 18.1 ± 1.67 mg/kg/min, WT, p < 0.05). Improved insulin sensitivity was driven by reduced hepatic insulin resistance (clamp hepatic glucose output: 7.7 ± 1.9 mg/kg/min, hKST-TG vs 12.2 ± 0.8 mg/kg/min, WT, p < 0.05), providing evidence for direct insulin sensitizing effects of KST for the first time. Insulin sensitivity was differentially affected in skeletal muscle and adipose tissue. Mechanistically, we observed reduced Wnt signaling in the liver but not in skeletal muscle, which may explain the effect. CONCLUSIONS KST expression increases after weight loss in sWAT from people with obesity. Furthermore, human KST ameliorates diet-induced hepatic insulin resistance in mice, while differentially affecting skeletal muscle and adipose tissue insulin sensitivity. Thus, KST may be an interesting, yet challenging, therapeutic target for patients with obesity and insulin resistance.
Collapse
Affiliation(s)
- Leontine Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Julia Reinke
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Diana Willmes
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Gencer Sancar
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Judith Seigner
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - David Juarez-Lopez
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Arvid Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeffrey D McBride
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sven Haufe
- Department of Rehabilitation and Sports Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas L Birkenfeld
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany; Department of Diabetes, Life Sciences & Medicine, Cardiovascular Medicine & Life Sciences, King's College London, UK.
| |
Collapse
|
2
|
Fang Z, Shen G, Wang Y, Hong F, Tang X, Zeng Y, Zhang T, Liu H, Li Y, Wang J, Zhang J, Gao A, Qi W, Yang X, Zhou T, Gao G. Elevated Kallistatin promotes the occurrence and progression of non-alcoholic fatty liver disease. Signal Transduct Target Ther 2024; 9:66. [PMID: 38472195 PMCID: PMC10933339 DOI: 10.1038/s41392-024-01781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and the development of non-alcoholic steatohepatitis (NASH) might cause irreversible hepatic damage. Hyperlipidemia (HLP) is the leading risk factor for NAFLD. This study aims to illuminate the causative contributor and potential mechanism of Kallistatin (KAL) mediating HLP to NAFLD. 221 healthy control and 253 HLP subjects, 62 healthy control and 44 NAFLD subjects were enrolled. The plasma KAL was significantly elevated in HLP subjects, especially in hypertriglyceridemia (HTG) subjects, and positively correlated with liver injury. Further, KAL levels of NAFLD patients were significantly up-regulated. KAL transgenic mice induced hepatic steatosis, inflammation, and fibrosis with time and accelerated inflammation development in high-fat diet (HFD) mice. In contrast, KAL knockout ameliorated steatosis and inflammation in high-fructose diet (HFruD) and methionine and choline-deficient (MCD) diet-induced NAFLD rats. Mechanistically, KAL induced hepatic steatosis and NASH by down-regulating adipose triglyceride lipase (ATGL) and comparative gene identification 58 (CGI-58) by LRP6/Gɑs/PKA/GSK3β pathway through down-regulating peroxisome proliferator-activated receptor γ (PPARγ) and up-regulating kruppel-like factor four (KLF4), respectively. CGI-58 is bound to NF-κB p65 in the cytoplasm, and diminishing CGI-58 facilitated p65 nuclear translocation and TNFα induction. Meanwhile, hepatic CGI-58-overexpress reverses NASH in KAL transgenic mice. Further, free fatty acids up-regulated KAL against thyroid hormone in hepatocytes. Moreover, Fenofibrate, one triglyceride-lowering drug, could reverse hepatic steatosis by down-regulating KAL. These results demonstrate that elevated KAL plays a crucial role in the development of HLP to NAFLD and may be served as a potential preventive and therapeutic target.
Collapse
Affiliation(s)
- Zhenzhen Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gang Shen
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yina Wang
- Department of VIP Medical Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fuyan Hong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiumei Tang
- Physical Examination Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yongcheng Zeng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ting Zhang
- Department of Clinical Laboratory, Guangzhou First People's Hospital, Guangzhou, 510080, China
| | - Huanyi Liu
- Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yanmei Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jinhong Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jing Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Anton Gao
- Department of Health Sciences, College of Health Solutions, Arizona State University, Tempe, USA
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Diabetology, Guangzhou, 510080, China.
| | - Guoquan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Smith GR, Zhao B, Lindholm ME, Raja A, Viggars M, Pincas H, Gay NR, Sun Y, Ge Y, Nair VD, Sanford JA, Amper MAS, Vasoya M, Smith KS, Montgomery S, Zaslavsky E, Bodine SC, Esser KA, Walsh MJ, Snyder MP. Multi-omic identification of key transcriptional regulatory programs during endurance exercise training. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523450. [PMID: 36711841 PMCID: PMC9882056 DOI: 10.1101/2023.01.10.523450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Transcription factors (TFs) play a key role in regulating gene expression and responses to stimuli. We conducted an integrated analysis of chromatin accessibility, DNA methylation, and RNA expression across eight rat tissues following endurance exercise training (EET) to map epigenomic changes to transcriptional changes and determine key TFs involved. We uncovered tissue-specific changes and TF motif enrichment across all omic layers, differentially accessible regions (DARs), differentially methylated regions (DMRs), and differentially expressed genes (DEGs). We discovered distinct routes of EET-induced regulation through either epigenomic alterations providing better access for TFs to affect target genes, or via changes in TF expression or activity enabling target gene response. We identified TF motifs enriched among correlated epigenomic and transcriptomic alterations, DEGs correlated with exercise-related phenotypic changes, and EET-induced activity changes of TFs enriched for DEGs among their gene targets. This analysis elucidates the unique transcriptional regulatory mechanisms mediating diverse organ effects of EET.
Collapse
Affiliation(s)
- Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- These authors contributed equally
| | - Bingqing Zhao
- Department of Genetics, Stanford University, Stanford, CA 94305
- These authors contributed equally
| | - Malene E Lindholm
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Archana Raja
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| | - Mark Viggars
- Department of Physiology and Aging, University of Florida, Gainesville, Florida 32610
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nicole R Gay
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - James A Sanford
- Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Mary Anne S Amper
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mital Vasoya
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kevin S Smith
- Department of Genetics, Stanford University, Stanford, CA 94305
- Department of Pathology, Stanford University, Stanford, CA 94305
| | - Stephen Montgomery
- Department of Genetics, Stanford University, Stanford, CA 94305
- Department of Pathology, Stanford University, Stanford, CA 94305
| | - Elena Zaslavsky
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sue C Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, Florida 32610
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | |
Collapse
|
4
|
Lee KN, Park KH, Ahn K, Im EM, Oh E, Cho I. Extracellular matrix-related and serine protease proteins in the amniotic fluid of women with early preterm labor: Association with spontaneous preterm birth, intra-amniotic inflammation, and microbial invasion of the amniotic cavity. Am J Reprod Immunol 2023; 90:e13736. [PMID: 37382175 DOI: 10.1111/aji.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/03/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
PROBLEM We aimed to determine whether altered levels of various extracellular matrix (ECM)-related and serine protease proteins in the amniotic fluid (AF) are associated with imminent spontaneous preterm birth (SPTB; ≤7 days) and intra-amniotic inflammation and/or microbial invasion of the amniotic cavity (IAI/MIAC) in women with early preterm labor (PTL). METHOD OF STUDY This retrospective cohort study included 252 women with singleton pregnancies undergoing transabdominal amniocentesis who demonstrated PTL (24-31 weeks). The AF was cultured for microorganism detection to characterize MIAC. IL-6 concentrations were determined in the AF samples to identify IAI (≥2.6 ng/mL). The following mediators were measured in the AF samples using ELISA: kallistatin, lumican, MMP-2, SPARC, TGFBI, and uPA. RESULTS Kallistatin, MMP-2, TGFBI, and uPA levels were significantly higher and SPARC and lumican levels were significantly lower in the AF of women who spontaneously delivered within 7 days than in the AF of those who delivered after 7 days; the levels of the first five mediators were independent of baseline clinical variables. In the multivariate analysis, elevated levels of kallistatin, MMP-2, TGFBI, and uPA and low levels of lumican and SPARC in the AF were significantly associated with IAI/MIAC and MIAC, even after adjusting for the gestational age at sampling. The areas under the curves of the aforementioned biomarkers ranged from 0.58 to 0.87 for the diagnoses of each of the corresponding endpoints. CONCLUSION ECM-related (SPARC, TGFBI, lumican, and MMP-2) and serine protease (kallistatin and uPA) proteins in the AF are involved in preterm parturition and regulation of intra-amniotic inflammatory/infectious responses in PTL.
Collapse
Affiliation(s)
- Kyong-No Lee
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyo Hoon Park
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kwanghee Ahn
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Eun Mi Im
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Eunji Oh
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Iseop Cho
- Departments of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
5
|
G C, V G, R N, Kaarthikeyan G, S M. Lipid and renal profile in assessing the severity of alcoholic liver disease. Bioinformation 2022; 18:1036-1040. [PMID: 37654846 PMCID: PMC10465763 DOI: 10.6026/973206300181036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 09/02/2023] Open
Abstract
Lipid and Renal dysfunction in Alcoholic liver disease (ALD) patients occurs either due to multi-organ involvement or secondary to alcoholism. This study was conducted to evaluate the role of lipid and renal parameters in assessing the severity of progression of ALD. Sixty cases of ALD (two groups based on compensated and decompensated features) and thirty healthy controls for comparison were included. Lipid profile (Total Cholesterol, LDL, HDL and Triglycerides) and renal parameters (serum urea, creatinine and uric acid), total and direct bilirubin, total protein and albumin were measured using automated chemistry analyzer. There was a significant decrease in Total cholesterol ,LDL and HDL levels and increased triglycerides when compared to controls (mean of 128.4 ± 59 vs 155 ± 27.2, 77 ± 44.3 vs 97.4 ± 27.2, 28.3 ± 18 vs 39.5 ± 14.1 and 115.8 ± 70.4 vs 91 ± 38 mg/dL respectively). Lipid profile showed a linear decrease while progressing from compensated to decompensated ALD. Renal parameters revealed a statistically significant decrease in serum urea ,increased creatinine and uric acid levels when compared to controls (17.57±2.96 vs23.73±4.94, 1.12±0.55 vs0.88±0.16,6.60±1.32 vs 4.68±1.40 mg/dL respectively).Total cholesterol and HDL showed a linear decrease when ALD progresses. Serum uric acid showed an early increase in compensated stage of ALD. This study inferred that Total cholesterol, TGL, HDL and uric acid can be used for assessing the severity of progression of ALD.
Collapse
Affiliation(s)
| | - Gomathi V
- Institute of Biochemistry, Madras Medical College, RGGGH, Chennai, India
| | - Nachiappan R
- Institute of Biochemistry, Madras Medical College, RGGGH, Chennai, India
| | - Gurumoorthy Kaarthikeyan
- Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai - 77, India
| | - Mahalakshmi S
- Department of Biochemistry, Madurai Medical College, Madurai, Tamilnadu, India
| |
Collapse
|
6
|
Naryzhny S, Ronzhina N, Zorina E, Kabachenko F, Klopov N, Zgoda V. Construction of 2DE Patterns of Plasma Proteins: Aspect of Potential Tumor Markers. Int J Mol Sci 2022; 23:ijms231911113. [PMID: 36232415 PMCID: PMC9569744 DOI: 10.3390/ijms231911113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tumor markers aids in the early detection of cancer recurrence and prognosis. There is a hope that they might also be useful in screening tests for the early detection of cancer. Here, the question of finding ideal tumor markers, which should be sensitive, specific, and reliable, is an acute issue. Human plasma is one of the most popular samples as it is commonly collected in the clinic and provides noninvasive, rapid analysis for any type of disease including cancer. Many efforts have been applied in searching for “ideal” tumor markers, digging very deep into plasma proteomes. The situation in this area can be improved in two ways—by attempting to find an ideal single tumor marker or by generating panels of different markers. In both cases, proteomics certainly plays a major role. There is a line of evidence that the most abundant, so-called “classical plasma proteins”, may be used to generate a tumor biomarker profile. To be comprehensive these profiles should have information not only about protein levels but also proteoform distribution for each protein. Initially, the profile of these proteins in norm should be generated. In our work, we collected bibliographic information about the connection of cancers with levels of “classical plasma proteins”. Additionally, we presented the proteoform profiles (2DE patterns) of these proteins in norm generated by two-dimensional electrophoresis with mass spectrometry and immunodetection. As a next step, similar profiles representing protein perturbations in plasma produced in the case of different cancers will be generated. Additionally, based on this information, different test systems can be developed.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
- Correspondence: ; Tel.: +7-911-176-4453
| | - Natalia Ronzhina
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Elena Zorina
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| | - Fedor Kabachenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Nikolay Klopov
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| |
Collapse
|
7
|
Soares GA, Pereira GM, Romualdo GR, Biasotti GGA, Stoppa EG, Bakuzis AF, Baffa O, Barbisan LF, Miranda JRA. Biodistribution Profile of Magnetic Nanoparticles in Cirrhosis-Associated Hepatocarcinogenesis in Rats by AC Biosusceptometry. Pharmaceutics 2022; 14:pharmaceutics14091907. [PMID: 36145654 PMCID: PMC9504370 DOI: 10.3390/pharmaceutics14091907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Since magnetic nanoparticles (MNPs) have been used as multifunctional probes to diagnose and treat liver diseases in recent years, this study aimed to assess how the condition of cirrhosis-associated hepatocarcinogenesis alters the biodistribution of hepatic MNPs. Using a real-time image acquisition approach, the distribution profile of MNPs after intravenous administration was monitored using an AC biosusceptometry (ACB) assay. We assessed the biodistribution profile based on the ACB images obtained through selected regions of interest (ROIs) in the heart and liver position according to the anatomical references previously selected. The signals obtained allowed for the quantification of pharmacokinetic parameters, indicating that the uptake of hepatic MNPs is compromised during liver cirrhosis, since scar tissue reduces blood flow through the liver and slows its processing function. Since liver monocytes/macrophages remained constant during the cirrhotic stage, the increased intrahepatic vascular resistance associated with impaired hepatic sinusoidal circulation was considered the potential reason for the change in the distribution of MNPs.
Collapse
Affiliation(s)
- Guilherme A. Soares
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
- Correspondence:
| | - Gabriele M. Pereira
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Guilherme R. Romualdo
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Gabriel G. A. Biasotti
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Erick G. Stoppa
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Andris F. Bakuzis
- Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Oswaldo Baffa
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Luis F. Barbisan
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Jose R. A. Miranda
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
8
|
Application of Nanomicelles in Enhancing Bioavailability and Biological Efficacy of Bioactive Nutrients. Polymers (Basel) 2022; 14:polym14163278. [PMID: 36015535 PMCID: PMC9415603 DOI: 10.3390/polym14163278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nutraceuticals provide many biological benefits besides their basic nutritional value. However, their biological efficacies are often limited by poor absorption and low bioavailability. Nanomaterials have received much attention as potential delivery systems of nutrients and phytonutrients for multiple applications. Nanomicelles are nanosized colloidal structures with a hydrophobic core and hydrophilic shell. Due to their unique characteristics, they have shown great perspectives in food and nutraceutical science. In this review, we discussed the unique properties of nanomicelles. We also emphasized the latest advances on the design of different nanomicelles for efficient delivery and improved bioavailability of various nutrients. The role of nanomicelles in the efficacy improvement of bioactive components from nutraceutical and health foods has been included. Importantly, the safety concerns on nano-processed food products were highlighted.
Collapse
|
9
|
Cho I, Lee KN, Joo E, Kim YM, Kim TE, Park KH. Plasma E-selectin and kallistatin as predictive markers of histologic chorioamnionitis in women with preterm premature rupture of membranes. Am J Reprod Immunol 2022; 88:e13584. [PMID: 35772987 DOI: 10.1111/aji.13584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022] Open
Abstract
PROBLEM We aimed to assess the predictive potential of 12 plasma biomarkers to predict acute histologic chorioamnionitis (HCA) in women with preterm premature rupture of membranes (PPROM) and to develop multi-biomarker panels based on these biomarkers in combination with widely used conventional laboratory markers. METHOD OF STUDY This was a retrospective cohort study involving 81 singleton pregnant women (24-34 weeks of gestation) who delivered within 96 h of blood sampling. White blood cell (WBC) count, differential counts, and C-reactive protein (CRP) levels were measured at admission. The levels of DKK-3, Fas, haptoglobin, IGFBP-2, kallistatin, MIP-1α, MMP-2, MMP-8, pentraxin 3, progranulin, E-selectin, and P-selectin were evaluated by ELISA using stored plasma samples. The primary outcome measure was acute HCA. RESULTS Multivariate analyses showed that low plasma E-selectin and kallistatin levels were independently associated with HCA occurrence after adjusting for gestational age. Using a stepwise regression analysis, a multi-biomarker panel comprising plasma E-selectin, serum CRP, and WBC was developed, which provided a good prediction of acute HCA in women with PPROM (area under the curve [AUC], 0.899), with a significantly higher AUC than that of any single variable included in the panel (P<0.05). The plasma levels of DKK-3, Fas, haptoglobin, IGFBP-2, MIP-1α, MMP-2, MMP-8, pentraxin 3, and P-selectin were not significantly associated with HCA occurrence. CONCLUSIONS This study identified E-selectin and kallistatin as potential plasma biomarkers associated with acute HCA in women with PPROM. Their combined analysis with serum CRP and WBC counts significantly improved acute HCA diagnosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Iseop Cho
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyong-No Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eunwook Joo
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yu Mi Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Tae Eun Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyo Hoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
10
|
Diagnostic and prognostic potential of kallistatin in assessment of liver parenchyma changes in patients with non-alcoholic fatty liver disease and hypertension kallistatin in patients with NAFLD and hypertension. IMAGING 2021. [DOI: 10.1556/1647.2021.00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background and aim
Non-alcoholic fatty liver disease (NAFLD) is closely linked to hypertension (HT). An important issue remains the search for non-invasive tests to NAFLD detection in the early stages of liver fibrosis. The objective of the study was to evaluate the diagnostic and prognostic value of kallistatin in assessing the liver fibrosis progression in NAFLD and HT patients.
Patients and methods
One hundred fifteen patients with NAFLD with and without HT were examined, the control group consisted of 20 relatively healthy volunteers. Plasma kallistatin level measurement, ultrasound steatometry and elastography were performed in all patients.
Results
Kallistatin level was 65.03 ng mL−1 (95% CI 61.38; 68.68), 83.42 ng mL−1 (95% CI 81.89; 84.94) and 111.70 ng mL−1 (95% CI 106.14; 113.22) in patients with NAFLD and HT, isolated NAFLD and control group, respectively. There were significant differences in the liver parenchyma condition between groups. Kallistatin levels strongly inversely correlated with the attenuation coefficient and the mean liver stiffness in NAFLD and HT (rs = −0.70) and in the isolated NAFLD patients (rs = −0.56; rs = −0.68, respectively). Kallistatin level was 71.82 ng mL−1 (95% CI 70.16; 79.51) and 58.62 ng mL−1 (95% CI 55.81; 64.45) in patients with HT stage I and HT stage II, respectively (P < 0.001).
Conclusions
Concomitant HT in NAFLD patients is associated with greater severity of fatty and fibrotic liver changes. The course of NAFLD is accompanied by decrease in kallistatin level. Increased degree of liver steatosis and fibrosis, inflammation activity, increased BMI and increased stage of HT lead to inhibition of kallistatin activity. Kallistatin may be considered as a biomarker for progression assessment of NAFLD with or without HT.
Collapse
|
11
|
Güralp O, Tüten N, Gök K, Hamzaoglu K, Bulut H, Schild-Suhren M, Malik E, Tüten A. Serum kallistatin level is decreased in women with preeclampsia. J Perinat Med 2020; 49:60-66. [PMID: 32866127 DOI: 10.1515/jpm-2020-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/30/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To evaluate the serum levels of the serine proteinase inhibitor kallistatin in women with preeclampsia (PE). METHODS The clinical and laboratory parameters of 55 consecutive women with early-onset PE (EOPE) and 55 consecutive women with late-onset PE (LOPE) were compared with 110 consecutive gestational age (GA)-matched (±1 week) pregnant women with an uncomplicated pregnancy and an appropriate for gestational age fetus. RESULTS Mean serum kallistatin was significantly lower in women with PE compared to the GA-matched-controls (27.74±8.29 ng/mL vs. 37.86±20.64 ng/mL, p<0.001); in women with EOPE compared to that of women in the control group GA-matched for EOPE (24.85±6.65 ng/mL vs. 33.37±17.46 ng/mL, p=0.002); and in women with LOPE compared to that of women in the control group GA-matched for LOPE (30.87±8.81 ng/mL vs. 42.25±22.67 ng/mL, p=0.002). Mean serum kallistatin was significantly lower in women with EOPE compared to LOPE (24.85±6.65 ng/mL vs. 30.87±8.81 ng/mL, p<0.001). Serum kallistatin had negative correlations with systolic and diastolic blood pressure, creatinine, and positive correlation with GA at sampling and GA at birth. CONCLUSIONS Serum kallistatin levels are decreased in preeclamptic pregnancies compared to the GA-matched-controls. This decrease was also significant in women with EOPE compared to LOPE. Serum kallistatin had negative correlation with systolic and diastolic blood pressure, creatinine and positive correlation with GA at sampling and GA at birth.
Collapse
Affiliation(s)
- Onur Güralp
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Nevin Tüten
- Obstetrics and Gynecology, Kanuni Sultan Suleyman Education and Research Hospital, Istanbul, Turkey
| | - Koray Gök
- Obstetrics and Gynecology, Sakarya University, Education and Research Hospital, Sakarya, Turkey
| | - Kübra Hamzaoglu
- Department of Obstetrics and Gynecology, Istanbul Cerrahpasa University, Istanbul, Turkey
| | - Huri Bulut
- Medical Biochemistry Department, Istinye University, Faculty of Medicine, Istanbul, Turkey
| | - Meike Schild-Suhren
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Eduard Malik
- Carl von Ossietzky Oldenburg University, University Hospital for Gynecology and Obstetrics, Klinikum Oldenburg AöR, Oldenburg, Germany
| | - Abdullah Tüten
- Department of Obstetrics and Gynecology, Istanbul Cerrahpasa University, Istanbul, Turkey
| |
Collapse
|
12
|
He Y, Han Y, Xing J, Zhai X, Wang S, Xin S, Zhang J. Kallistatin correlates with inflammation in abdominal aortic aneurysm and suppresses its formation in mice. Cardiovasc Diagn Ther 2020; 10:107-123. [PMID: 32420091 DOI: 10.21037/cdt.2019.12.08] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Kallistatin (KS), encoded by SERPINA4, was suggested to play a protective role in many cardiovascular diseases. However, its role in the pathogenesis of abdominal aortic aneurysm (AAA) remains unclear. The aim of this study was to examine the potential association of KS with AAA pathogenesis. Methods We examined KS (SERPINA4) expression in human AAA by PCR, immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay (ELISA) and analyzed correlations between kallistain and clinical data. We then analyzed the effect of recombinant KS on AAA formation and the Wingless (Wnt) signaling pathway in a mouse AAA model developed by angiotensin II (AngII) infusion to apolipoprotein E-deficient (ApoE-/-) mice. Results In AAA tissue samples, KS was significantly increased compared with samples from the control group (P<0.001, P<0.001, respectively). Clinically, decreased SERPINA4 expression in AAA tissue samples represented an increased rate of iliac artery aneurysm [odds ratio (OR): 0.017; P=0.040]. And decreased plasma KS level represented a high risk for rupture (OR: 0.837; P=0.034). KS inhibited AAA formation and blocked the Wnt signaling pathway in AngII-infused ApoE-/- mice. Conclusions The present study demonstrates that aberrant changes in KS expression occur in AAA. KS plays an important anti-inflammatory role and showed important clinical correlations in AAA. Decreased KS (SERPINA4) level is a risk factor of AAA rupture. Our pre-clinical animal experiments indicate that treatment with recombination KS suppresses AngII-induced aortic aneurysm formation and might be a new target for the drug therapy of AAA.
Collapse
Affiliation(s)
- Yuchen He
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yanshuo Han
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jia Xing
- Department of Histology and Embryology, China Medical University, Shenyang 110122, China
| | - Xiaoyue Zhai
- Department of Histology and Embryology, China Medical University, Shenyang 110122, China
| | - Shiyue Wang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
13
|
Targeted delivery of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats. Acta Pharm Sin B 2020; 10:693-710. [PMID: 32322471 PMCID: PMC7161713 DOI: 10.1016/j.apsb.2019.07.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis is one kind of liver diseases with a high mortality rate and incidence. The activation and proliferation of hepatic stellate cells (HSCs) is the most fundamental reason of hepatic fibrosis. There are no specific and effective drug delivery carriers for the treatment of hepatic fibrosis at present. We found that when hepatic fibrosis occurs, the expression of CD44 receptors on the surface of HSCs is significantly increased. Based on this finding, we designed silibinin-loaded hyaluronic acid (SLB-HA) micelles to achieve the treatment of hepatic fibrosis. Meanwhile, we constructed liver fibrosis rat model using Sprague–Dawley rats. We demonstrated that HA micelles had specific uptake to HSCs in vitro while avoiding the distribution in normal liver cells and the phagocytosis of macrophages. Importantly, HA micelles showed a significant liver targeting effect in vivo, especially in fibrotic liver which highly expressed CD44 receptors. In addition, SLB-HA micelles could selectively kill activated HSCs, having an excellent anti-hepatic fibrosis effect in vivo and a significant sustained release effect, and also had a good biological safety and biocompatibility. Overall, HA micelles represented a novel nanomicelle system which showed great potentiality in anti-hepatic fibrosis drugs delivery.
Collapse
|
14
|
Sobhey OM, Jouda AA, Metwally A, Shawky NM, Elkhashab MN. Evaluation of serum kallistatin level as a predictor of esophageal varices in cirrhotic patients. ALEXANDRIA JOURNAL OF MEDICINE 2020. [DOI: 10.1080/20905068.2020.1714191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Osama M. Sobhey
- Tropical Medicine Department, Faculty of Medicine, Zagazig University and Zagazig University Hospitals, Zagazig, Sharqueya, Egypt
| | - Amal A. Jouda
- Tropical Medicine Department, Faculty of Medicine, Zagazig University and Zagazig University Hospitals, Zagazig, Sharqueya, Egypt
| | - Ashraf Metwally
- Tropical Medicine Department, Faculty of Medicine, Zagazig University and Zagazig University Hospitals, Zagazig, Sharqueya, Egypt
| | - Nagwa M. Shawky
- Clinical Pathology Department, Faculty of Medicine, Zagazig University and Zagazig University Hospitals, Zagazig, Sharqueya, Egypt
| | - Mohammad N. Elkhashab
- Tropical Medicine Department, Faculty of Medicine, Zagazig University and Zagazig University Hospitals, Zagazig, Sharqueya, Egypt
| |
Collapse
|
15
|
Wu H, Li R, Zhang Z, Jiang H, Ma H, Yuan C, Sun C, Li Y, Kong B. Kallistatin inhibits tumour progression and platinum resistance in high-grade serous ovarian cancer. J Ovarian Res 2019; 12:125. [PMID: 31884974 PMCID: PMC6935502 DOI: 10.1186/s13048-019-0601-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/10/2019] [Indexed: 11/10/2022] Open
Abstract
Ovarian cancer is the most lethal gynaecologic malignancy. Although there are various subtypes of ovarian cancer, high-grade serous ovarian cancer (HGSOC) accounts for 70% of ovarian cancer deaths. Chemoresistance is the primary reason for the unfavourable prognosis of HGSOC. Kallistatin (KAL), also known as SERPINA4, is part of the serpin family. Kallistatin has been discovered to exert multiple effects on angiogenesis, inflammation and tumour progression. However, the roles and clinical significance of kallistatin in HGSOC remain unclear. Here, we showed that kallistatin was significantly downregulated in HGSOC compared to normal fallopian tube (FT) tissues. Low expression of kallistatin was associated with unfavourable prognosis and platinum resistance in HGSOC. Overexpression of kallistatin significantly inhibited proliferation and metastasis, and enhanced platinum sensitivity and apoptosis in ovarian cancer cells. Collectively, these findings demonstrate that kallistatin serves as a prognostic predictor and provide a potential therapeutic target for HGSOC.
Collapse
Affiliation(s)
- Huan Wu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Rongrong Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Zhiwei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Huiyang Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China. .,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China.
| |
Collapse
|
16
|
Yao Y, Li B, Liu C, Fu C, Li P, Guo Y, Ma G, Liu N, Chao L, Chao J. Reduced Plasma Kallistatin Is Associated With the Severity of Coronary Artery Disease, and Kallistatin Treatment Attenuates Atherosclerotic Plaque Formation in Mice. J Am Heart Assoc 2018; 7:e009562. [PMID: 30554563 PMCID: PMC6404169 DOI: 10.1161/jaha.118.009562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Kallistatin exerts beneficial effects on organ injury by inhibiting oxidative stress and inflammation. However, the role of kallistatin in atherosclerosis is largely unknown. Here, we investigated the role and mechanisms of kallistatin in patients with coronary artery disease ( CAD ), atherosclerotic plaques of apoE-/- mice, and endothelial activation. Methods and Results Plasma kallistatin levels were analyzed in 453 patients at different stages of CAD . Kallistatin levels were significantly lower in patients with CAD and negatively associated with CAD severity and oxidative stress. Human kallistatin cDNA in an adenoviral vector was injected intravenously into apoE-/- mice after partial carotid ligation, with or without nitric oxide synthase inhibitor (Nω-nitro-L-arginine methyl ester) or sirtuin 1 inhibitor (nicotinamide). Kallistatin gene delivery significantly reduced macrophage deposition, oxidative stress, and plaque volume in the carotid artery, compared with control adenoviral injection. Kallistatin administration increased endothelial nitrous oxide synthase, sirtuin 1, interleukin-10, superoxide dismutase 2, and catalase expression in carotid plaques. The beneficial effects of kallistatin in mice were mitigated by Nω-nitro-L-arginine methyl ester or nicotinamide. Furthermore, human kallistatin protein suppressed tumor necrosis factor-α-induced NADPH oxidase activity and increased endothelial nitrous oxide synthase and sirtuin 1 expression in cultured human endothelial cells. These effects were also abolished by Nω-nitro-L-arginine methyl ester or nicotinamide. Conclusions This was the first study to demonstrate that reduced plasma kallistatin levels in patients are associated with CAD severity and oxidative stress. Kallistatin treatment prevents carotid atherosclerotic plaque formation in mice by stimulating the sirtuin 1/endothelial nitrous oxide synthase pathway. These findings indicate the potential protective effects of kallistatin on atherosclerosis in human subjects and mouse models.
Collapse
Affiliation(s)
- Yuyu Yao
- 1 Department of Cardiology Zhongda Hospital Medical School of Southeast University Nanjing China
| | - Bing Li
- 1 Department of Cardiology Zhongda Hospital Medical School of Southeast University Nanjing China
| | - Chang Liu
- 1 Department of Cardiology Zhongda Hospital Medical School of Southeast University Nanjing China
| | - Cong Fu
- 1 Department of Cardiology Zhongda Hospital Medical School of Southeast University Nanjing China
| | - Pengfei Li
- 2 Department of Biochemistry and Molecular Biology Medical University of South Carolina Charleston SC
| | - Youming Guo
- 2 Department of Biochemistry and Molecular Biology Medical University of South Carolina Charleston SC
| | - Genshan Ma
- 1 Department of Cardiology Zhongda Hospital Medical School of Southeast University Nanjing China
| | - Naifeng Liu
- 1 Department of Cardiology Zhongda Hospital Medical School of Southeast University Nanjing China
| | - Lee Chao
- 2 Department of Biochemistry and Molecular Biology Medical University of South Carolina Charleston SC
| | - Julie Chao
- 2 Department of Biochemistry and Molecular Biology Medical University of South Carolina Charleston SC
| |
Collapse
|
17
|
Frühbeck G, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Valentí V, Moncada R, Becerril S, Unamuno X, Silva C, Salvador J, Catalán V. Novel protective role of kallistatin in obesity by limiting adipose tissue low grade inflammation and oxidative stress. Metabolism 2018; 87:123-135. [PMID: 29679615 DOI: 10.1016/j.metabol.2018.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Kallistatin plays an important role in the inhibition of inflammation, oxidative stress, fibrosis and angiogenesis. We aimed to determine the impact of kallistatin on obesity and its associated metabolic alterations as well as its role in adipocyte inflammation and oxidative stress. METHODS Samples obtained from 95 subjects were used in a case-control study. Circulating concentrations and expression levels of kallistatin as well as key inflammation, oxidative stress and extracellular matrix remodelling-related genes were analyzed. Circulating kallistatin concentrations were measured before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB). The impact of kallistatin on lipopolysaccharide (LPS)- and tumour necrosis factor (TNF)-α-mediated inflammatory as well as oxidative stress signalling pathways was evaluated. RESULTS We show that the reduced (P < 0.00001) circulating levels of kallistatin in obese patients increased (P < 0.00001) after RYGB. Moreover, gene expression levels of SERPINA4, the gene coding for kallistatin, were downregulated (P < 0.01) in the liver from obese subjects with non-alcoholic fatty liver disease. Additionally, we revealed that kallistatin reduced (P < 0.05) the expression of inflammation-related genes (CCL2, IL1B, IL6, IL8, TNFA, TGFB) and, conversely, upregulated (P < 0.05) mRNA levels of ADIPOQ and KLF4 in human adipocytes in culture. Kallistatin inhibited (P < 0.05) LPS- and TNF-α-induced inflammation in human adipocytes via downregulating the expression and secretion of key inflammatory markers. Furthermore, kallistatin also blocked (P < 0.05) TNF-α-mediated lipid peroxidation as well as NOX2 and HIF1A expression while stimulating (P < 0.05) the expression of SIRT1 and FOXO1. CONCLUSIONS These findings provide, for the first time, evidence of a novel role of kallistatin in obesity and its associated comorbidities by limiting adipose tissue inflammation and oxidative stress.
Collapse
Affiliation(s)
- Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Beatriz Ramírez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Víctor Valentí
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Rafael Moncada
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Anesthesia, Clínica Universidad de Navarra, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain
| | - Xabier Unamuno
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Camilo Silva
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Salvador
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
18
|
Kim T, Suh GJ, Kwon WY, Kim KS, Jung YS, Shin SM. Lower serum kallistatin level is associated with 28-day mortality in patients with septic shock. J Crit Care 2018; 48:328-333. [PMID: 30286402 DOI: 10.1016/j.jcrc.2018.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE Investigation for whether serum levels of kallistatin, vascular cell adhesion molecule-1 (VCAM-1), and E-selectin are associated with outcomes in patients with septic shock MATERIAL AND METHODS: Biomarker levels were measured using blood samples from patients with septic shock at admission, 24 h, and 72 h and from healthy volunteers. The primary outcome was 28-day mortality. RESULTS Fifty-eight survivors, fourteen non-survivors, and six healthy volunteers were enrolled. Serum kallistatin level was lower and serum VCAM-1 and E-selectin levels were higher in patients at admission compared with healthy volunteers. Serum kallistatin levels were higher in survivors compared with non-survivors at all time points (4.4 μg/mL [2.9-6.1] vs. 2.5 μg/mL [2.1-5.0], P = 0.019 at admission; 4.3 μg/mL [3.3-5.2] vs. 3.2 μg/mL [2.2-3.8], P = 0.004 at 24 h; 3.1 μg/mL [2.5-4.2] vs. 2.3 μg/mL [1.7-3.1], P = 0.012 at 72 h), while VCAM-1 and E-selectin levels showed no difference. In the multivariable analysis, serum kallistatin level at 24 h was independently associated with 28-day mortality (OR, 0.29; 95% CI, 0.08-0.69, P = 0.024). CONCLUSIONS Lower serum kallistatin level at 24 h was independently associated with 28-day mortality in patients with septic shock.
Collapse
Affiliation(s)
- Taegyun Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Emergency Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Emergency Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea.
| | - Kyung Su Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Yoon Sun Jung
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - So Mi Shin
- Division of Critical Care Medicine, Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
19
|
Nallagangula KS, Nagaraj SK, Venkataswamy L, Chandrappa M. Liver fibrosis: a compilation on the biomarkers status and their significance during disease progression. Future Sci OA 2018; 4:FSO250. [PMID: 29255622 PMCID: PMC5729599 DOI: 10.4155/fsoa-2017-0083] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 02/08/2023] Open
Abstract
Liver fibrosis occurs in response to different etiologies of chronic liver injury. Diagnosing degree of liver fibrosis is a crucial step in evaluation of severity of the disease. An invasive liver biopsy is the gold standard method associated with pain and complications. Biomarkers to detect liver fibrosis include direct markers of extracellular matrix turnover and indirect markers as a reflection of liver dysfunction. Although a single marker may not be useful for successful management, a mathematical equation combining tests might be effective. The main purpose of this review is to understand the diagnostic accuracy of biomarkers and scoring systems for liver fibrosis. Advances in -omics approach have generated clinically significant biomarker candidates for liver fibrosis that need further evaluation.
Collapse
Affiliation(s)
| | - Shashidhar Kurpad Nagaraj
- Department of Biochemistry, Sri Devaraj Urs Medical College, SDUAHER, Tamaka, Kolar, Karnataka, India
| | - Lakshmaiah Venkataswamy
- Department of Medicine, Sri Devaraj Urs MedicalCollege, SDUAHER, Tamaka, Kolar, Karnataka, India
| | - Muninarayana Chandrappa
- Department of Community Medicine, Sri DevarajUrs Medical College, SDUAHER, Tamaka, Kolar, Karnataka, India
| |
Collapse
|
20
|
Nallagangula KS, Shashidhar K, Lakshmaiah V, Muninarayana C. Cirrhosis of liver: Interference of serpins in quantification of SERPINA4 - A preliminary study. Pract Lab Med 2017; 9:53-57. [PMID: 29159256 PMCID: PMC5683666 DOI: 10.1016/j.plabm.2017.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/28/2017] [Accepted: 10/06/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cirrhosis of liver is a pathological condition, wherein functions of liver are impaired by chronic liver exploitations. Due to decrease in synthetic capacity, expressions of plasma proteins tend to decrease in blood stream. Serpins (Serine protease inhibitors) are class of plasma proteins expressed from liver with structural similarities and diverse functions. SERPINA4 (Kallistatin) is a multifunctional serpin clade A protein expressed from liver and concentration in serum is the reflection of extent of liver dysfunction. OBJECTIVE To identify interference of other serpins by immunological cross reactivity with SERPINA4 in cirrhotic liver and healthy subjects. MATERIALS AND METHODS Blood samples were collected from 20 subjects (10 cirrhotic liver, 10 healthy) from R.L. Jalappa Hospital and Research Centre, Kolar, Karnataka, India. Separation of proteins was carried out by SDS-PAGE. Cross reactivity study was analyzed using western blot. RESULTS Proteins present in cirrhotic liver and healthy subject's serum were separated by SDS PAGE. There was no band detection on both (cirrhotic liver and healthy) PVDF (polyvinylidene diflouride) membranes. However, a significant band was observed with recombinant kallistatin. CONCLUSION Structurally similar serpins with minor amino acid sequence similarities did not show any immunological cross reactivity with SERPINA4 due to non identical epitope in cirrhotic liver and healthy subjects. Present study revealed that there is no interference of serpins for immunological reactions in quantitative estimation of kallistatin which needs further validation.
Collapse
Affiliation(s)
| | - K.N. Shashidhar
- Department of Biochemistry, Sri Devaraj Urs Medical College, SDUAHER, Tamaka, Kolar, Karnataka, India
| | | | | |
Collapse
|
21
|
Chao J, Li P, Chao L. Kallistatin: double-edged role in angiogenesis, apoptosis and oxidative stress. Biol Chem 2017; 398:1309-1317. [DOI: 10.1515/hsz-2017-0180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 01/25/2023]
Abstract
AbstractKallistatin, via its two structural elements – an active site and a heparin-binding domain – displays a double-edged function in angiogenesis, apoptosis and oxidative stress. First, kallistatin has both anti-angiogenic and pro-angiogenic effects. Kallistatin treatment attenuates angiogenesis and tumor growth in cancer-bearing mice. Kallistatin via its heparin-binding site inhibits angiogenesis by blocking vascular endothelial growth factor (VEGF)-induced growth, migration and adhesion of endothelial cells. Conversely, kallistatin via the active site promotes neovascularization by stimulating VEGF levels in endothelial progenitor cells. Second, kallistatin inhibits or induces apoptosis depending on cell types. Kallistatin attenuates organ injury and apoptosis in animal models, and its heparin-binding site is essential for blocking tumor necrosis factor (TNF)-α-induced apoptosis in endothelial cells. However, kallistatin via its active site induces apoptosis in breast cancer cells by up-regulating miR-34a and down-regulating miR-21 and miR-203 synthesis. Third, kallistatin can act as an antioxidant or pro-oxidant. Kallistatin treatment inhibits oxidative stress and tissue damage in animal models and cultured cells. Kallistatin via the heparin-binding domain antagonizes TNF-α-induced oxidative stress, whereas its active site is crucial for stimulating antioxidant enzyme expression. In contrast, kallistatin provokes oxidant formation, leading to blood pressure reduction and bacterial killing. Kallistatin-mediated vasodilation is partly mediated by H2O2, as the effect is abolished by the antioxidant enzyme catalase. Moreover, kallistatin exerts a bactericidal effect by stimulating superoxide production in neutrophils of mice with microbial infection as well as in cultured immune cells. Thus, kallistatin’s dual roles in angiogenesis, apoptosis and oxidative stress contribute to its beneficial effects in various diseases.
Collapse
|
22
|
Lin WC, Chen CW, Chao L, Chao J, Lin YS. Plasma kallistatin in critically ill patients with severe sepsis and septic shock. PLoS One 2017; 12:e0178387. [PMID: 28542440 PMCID: PMC5443576 DOI: 10.1371/journal.pone.0178387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/14/2017] [Indexed: 02/03/2023] Open
Abstract
Kallistatin, an endogenous serine proteinase inhibitor, is protective against sepsis in animal models. The aim of this study was to determine the plasma concentration of kallistatin in intensive care unit (ICU) patients with severe sepsis and septic shock and to determine their potential correlation with disease severity and outcomes. We enrolled 86 ICU patients with severe sepsis and septic shock. Their plasma concentrations of kallistatin, kallikrein, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-8 were measured by enzyme-linked immunosorbent assay. The association of kallistatin levels with disease severity and patient outcomes was evaluated. The relationship between kallistatin and other biomarkers was also analyzed. Plasma kallistatin levels on day 1 of ICU admission were lower in patients with septic shock compared with patients with severe sepsis (p = 0.004). Twenty-nine patients who died in the hospital had significantly lower day 1 kallistatin levels than patients who survived (p = 0.031). Using the optimal cutoff value (4 μg/ml) of day 1 plasma kallistatin determined by receiver operating characteristic curves for 60-day mortality, we found that high kallistatin levels were associated with a preferable 60-day survival (p = 0.012) by Kaplan-Meier analysis and lower Sequential Organ Failure Assessment (SOFA) scores over the first 5 days in the ICU (p = 0.001). High kallistatin levels were also independently associated with a decreased risk of septic shock, the development of acute respiratory distress syndrome, and positive blood cultures. In addition, there were inverse correlations between day 1 kallistatin levels and the levels of TNF-α, IL-1β, IL-6, and C-reactive protein, and SOFA scores on day 1. Our results indicate that during severe sepsis and septic shock, a decrease in plasma concentrations of kallistatin reflects increased severity and poorer outcome of disease.
Collapse
Affiliation(s)
- Wei-Chieh Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Wen Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
23
|
Chao J, Li P, Chao L. Kallistatin suppresses cancer development by multi-factorial actions. Crit Rev Oncol Hematol 2017; 113:71-78. [PMID: 28427524 PMCID: PMC5441310 DOI: 10.1016/j.critrevonc.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 01/07/2023] Open
Abstract
Kallistatin was first identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin via its two structural elements regulates differential signaling cascades, and thus a wide spectrum of biological functions. Kallistatin's active site is essential for: inhibiting tissue kallikrein's activity; stimulating endothelial nitric oxide synthase and sirtuin 1 expression and activation; and modulating the synthesis of the microRNAs, miR-34a, miR-21 and miR-203. Kallistatin's heparin-binding site is crucial for antagonizing the signaling pathways of vascular endothelial growth factor, tumor necrosis factor-α, Wnt, transforming growth factor-β and epidermal growth factor. Circulating kallistatin levels are markedly reduced in patients with prostate and colon cancer. Kallistatin administration attenuates angiogenesis, inflammation, tumor growth and invasion in animal models and cultured cells. Therefore, tumor progression may be substantially suppressed by kallistatin's pleiotropic activities. In this review, we will discuss the role and mechanisms of kallistatin in the regulation of cancer development.
Collapse
Affiliation(s)
- Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
24
|
Affiliation(s)
- Julie Chao
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.).
| | - Grant Bledsoe
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.)
| | - Lee Chao
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.)
| |
Collapse
|
25
|
Clinical diagnostics and therapy monitoring in the congenital disorders of glycosylation. Glycoconj J 2016; 33:345-58. [PMID: 26739145 PMCID: PMC4891361 DOI: 10.1007/s10719-015-9639-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/03/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Abnormal protein glycosylation is observed in many common disorders like cancer, inflammation, Alzheimer’s disease and diabetes. However, the actual use of this information in clinical diagnostics is still very limited. Information is usually derived from analysis of total serum N-glycan profiling methods, whereas the current use of glycoprotein biomarkers in the clinical setting is commonly based on protein levels. It can be envisioned that combining protein levels and their glycan isoforms would increase specificity for early diagnosis and therapy monitoring. To establish diagnostic assays, based on the mass spectrometric analysis of protein-specific glycosylation abnormalities, still many technical improvements have to be made. In addition, clinical validation is equally important as well as an understanding of the genetic and environmental factors that determine the protein-specific glycosylation abnormalities. Important lessons can be learned from the group of monogenic disorders in the glycosylation pathway, the Congenital Disorders of Glycosylation (CDG). Now that more and more genetic defects are being unraveled, we start to learn how genetic factors influence glycomics profiles of individual and total serum proteins. Although only in its initial stages, such studies suggest the importance to establish diagnostic assays for protein-specific glycosylation profiling, and the need to look beyond the single glycoprotein diagnostic test. Here, we review progress in and lessons from genetic disease, and review the increasing opportunities of mass spectrometry to analyze protein glycosylation in the clinical diagnostic setting. Furthermore, we will discuss the possibilities to expand current CDG diagnostics and how this can be used to approach glycoprotein biomarkers for more common diseases.
Collapse
|