1
|
Naveenkumar PM, Roemling LJ, Sultan U, Vogel N. Fabrication of Spherical Colloidal Supraparticles via Membrane Emulsification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22245-22255. [PMID: 39383325 DOI: 10.1021/acs.langmuir.4c02803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Colloidal supraparticles are micrometer-scale assemblies of primary particles. These supraparticles have potential application in photonic materials, catalysis, gas adsorption, and drug delivery. Thus, the synthesis of colloidal supraparticles with a narrow size distribution and high yield has become essential. Here, we demonstrate membrane emulsification as a high-throughput approach for fabricating spherical supraparticles with a narrow size distribution and control over particle size and crystallinity. Spherical supraparticles with well-ordered surface structures are synthesized by generating emulsion droplets of an aqueous colloidal dispersion in fluorocarbon oil using a Shirasu porous glass membrane followed by the consolidation of particles through water removal within the emulsion. We systematically investigate process parameters, including the flow rate of the particle dispersion, the particle concentration, and the average pore diameter of the membrane, on the mean size and size distribution of the supraparticles, revealing key factors governing supraparticle properties and production throughput. A comparative evaluation with commonly employed methods highlights the advantage of membrane emulsification, which combines well-defined internal structure and controlled supraparticle sizes with comparably high yields on the order of tens of grams per day. Importantly, in contrast to widely used droplet-based microfluidics, membrane emulsification allows fabrication of supraparticles in nonfluorinated oil. Overall, membrane emulsification offers a simple yet versatile method for fabricating colloidal supraparticles with high quality and yield and may serve as a bridge between existing high-precision techniques, such as droplet-based microfluidics, and high-throughput processes with less control, such as spray-drying.
Collapse
Affiliation(s)
- Parinamipura M Naveenkumar
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Lukas J Roemling
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Umair Sultan
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Zafar S, Sayed E, Rana SJ, Rasekh M, Onaiwu E, Nazari K, Kucuk I, Fatouros DG, Arshad MS, Ahmad Z. Particulate atomisation design methods for the development and engineering of advanced drug delivery systems: A review. Int J Pharm 2024; 666:124771. [PMID: 39341385 DOI: 10.1016/j.ijpharm.2024.124771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The role and opportunities presented by particulate technologies (due to novel processing methods and advanced materials) have multiplied over the last few decades, leading to promising and ideal properties for drug delivery. For example, the dissolution and bioavailability of poorly soluble drug substances and achieving site- specific drug delivery with a desired release profile are crucial aspects of forming (to some extent) state-of-the-art platforms. Atomisation techniques are intended to achieve efficient control over particle size, improved processing time, improved drug loading efficiency, and the opportunity to encapsulate a broad range of viable yet sensitive therapeutic moieties. Particulate engineering through atomization is accomplished by employing various mechanisms such as air, no air, centrifugal, electrohydrodynamic, acoustic, and supercritical fluid driven processes. These driving forces overcome capillary stresses (e.g., liquid viscosity, surface tension) and transform formulation media (liquid) into fine droplets. More frequently, solvent removal, multiple methods are included to reduce the final size distribution. Nevertheless, a thorough understanding of fluid mechanics, thermodynamics, heat, and mass transfer is imperative to appreciate and predict outputs in real time. More so, in recent years, several advancements have been introduced to improve such processes through complex particle design coupled with quality by-design (QbD) yielding optimal particulate geometry in a predictable manner. Despite these valuable and numerous advancements, atomisation techniques face difficulty scaling up from laboratory scales to manufacturing industry scales. This review details the various atomisation techniques (from design to mechanism) along with examples of drug delivery systems developed. In addition, future perspectives and bottlenecks are provided while highlighting current and selected seminal developments in the field.
Collapse
Affiliation(s)
- Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Elshaimaa Sayed
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, United Kingdom
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Israfil Kucuk
- Institute of Nanotechnology, Gebze Technical University, Gebze, Turkiye
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom.
| |
Collapse
|
3
|
Simon A, Velloso-Junior SO, Mesquita RD, Fontao APGA, Costa TEMM, Honorio TS, Guimaraes TF, Sousa EGR, Viçosa AL, Sampaio ALF, do Carmo FA, Healy AM, Cabral LM, Castro RR. Development of inhaled moxifloxacin-metformin formulation as an alternative for pulmonary tuberculosis treatment. Int J Pharm 2024; 666:124740. [PMID: 39341387 DOI: 10.1016/j.ijpharm.2024.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Resistant M. tuberculosis strains threaten pulmonary tuberculosis (P-TB) control since they limit drug options. Drug repositioning and new development strategies are urgently required to overcome resistance. Studies have already shown the beneficial role of the oral antidiabetic metformin as an anti-tuberculosis adjuvant drug. This work aimed to develop an inhalatory dry powder co-formulation of metformin and moxifloxacin to figure out a future option for P-TB treatment. Pre-formulation evaluations indicated the physicochemical compatibility of constituents, demonstrating powder crystallinity and acceptable drug content. Eight moxifloxacin-metformin dry powder formulations were produced by spray drying, and solid-state characterizations showed partial amorphization, ascribed to moxifloxacin. Four formulations containing L-leucine exhibited micromeritic and in vitro deposition profiles indicating pulmonary delivery suitability, like spherical and corrugated particle surface, geometric diameters < 5 μm, high emitted doses (>85 %), and mass median aerodynamic diameters between 1-5 μm. The use of a second spray dryer model further optimized the aerodynamic properties and yield of the best formulation, demonstrating the influence of the equipment used on the product obtained. Moreover, the final formulation showed high in vitro cell tolerability and characteristics in permeability studies indicative of good drug retention in the lungs.
Collapse
Affiliation(s)
- A Simon
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - S O Velloso-Junior
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - R D Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A P G A Fontao
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - T E M M Costa
- Laboratório de Farmacologia Aplicada, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - T S Honorio
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - T F Guimaraes
- Seção de Análise e Identificação de Compostos com Potencial Terapêutico, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - E G R Sousa
- Seção de Análise e Identificação de Compostos com Potencial Terapêutico, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - A L Viçosa
- Laboratorio de Farmacotécnica Experimental, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - A L F Sampaio
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - F A do Carmo
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - A M Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - L M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Brazil
| | - R R Castro
- Laboratório de Farmacologia Molecular, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Groppe P, Reichstein J, Carl S, Cuadrado Collados C, Niebuur BJ, Zhang K, Apeleo Zubiri B, Libuda J, Kraus T, Retzer T, Thommes M, Spiecker E, Wintzheimer S, Mandel K. Catalyst Supraparticles: Tuning the Structure of Spray-Dried Pt/SiO 2 Supraparticles via Salt-Based Colloidal Manipulation to Control their Catalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310813. [PMID: 38700050 DOI: 10.1002/smll.202310813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/10/2024] [Indexed: 05/05/2024]
Abstract
The structure of supraparticles (SPs) is a key parameter for achieving advanced functionalities arising from the combination of different nanoparticle (NP) types in one hierarchical entity. However, whenever a droplet-assisted forced assembly approach is used, e.g., spray-drying, the achievable structure is limited by the inherent drying phenomena of the method. In particular, mixed NP dispersions of differently sized colloids are heavily affected by segregation during the assembly. Herein, the influence of the colloidal arrangement of Pt and SiO2 NPs within a single supraparticulate entity is investigated. A salt-based electrostatic manipulation approach of the utilized NPs is proposed to customize the structure of spray-dried Pt/SiO2 SPs. By this, size-dependent separation phenomena of NPs during solvent evaporation, that limit the catalytic performance in the reduction of 4-nitrophenol, are overcome by achieving even Pt NP distribution. Additionally, the textural properties (pore size and distribution) of the SiO2 pore framework are altered to improve the mass transfer within the material leading to increased catalytic activity. The suggested strategy demonstrates a powerful, material-independent, and universally applicable approach to deliberately customize the structure and functionality of multi-component SP systems. This opens up new ways of colloidal material combinations and structural designs in droplet-assisted forced assembly approaches like spray-drying.
Collapse
Affiliation(s)
- Philipp Groppe
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Jakob Reichstein
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Simon Carl
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058, Erlangen, Germany
| | - Carlos Cuadrado Collados
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Bart-Jan Niebuur
- INM - Leibniz-Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Kailun Zhang
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058, Erlangen, Germany
| | - Jörg Libuda
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Colloid and Interface Chemistry, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany
| | - Tanja Retzer
- Interface Research and Catalysis, Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Matthias Thommes
- Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstrasse 3, 91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
5
|
Pérez-Pérez V, Jiménez-Martínez C, González-Escobar JL, Corzo-Ríos LJ. Exploring the impact of encapsulation on the stability and bioactivity of peptides extracted from botanical sources: trends and opportunities. Front Chem 2024; 12:1423500. [PMID: 39050374 PMCID: PMC11266027 DOI: 10.3389/fchem.2024.1423500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Bioactive peptides derived from plant sources have gained significant attention for their potential use in preventing and treating chronic degenerative diseases. However, the efficacy of these peptides depends on their bioaccessibility, bioavailability, and stability. Encapsulation is a promising strategy for improving the therapeutic use of these compounds. It enhances their stability, prolongs their shelf life, protects them from degradation during digestion, and enables better release control by improving their bioaccessibility and bioavailability. This review aims to analyze the impact of various factors related to peptide encapsulation on their stability and release to enhance their biological activity. To achieve this, it is necessary to determine the composition and physicochemical properties of the capsule, which are influenced by the wall materials, encapsulation technique, and operating conditions. Furthermore, for peptide encapsulation, their charge, size, and hydrophobicity must be considered. Recent research has focused on the advancement of novel encapsulation methodologies that permit the formation of uniform capsules in terms of size and shape. In addition, it explores novel wall materials, including polysaccharides derived from unconventional sources, that allow the precise regulation of the rate at which peptides are released into the intestine.
Collapse
Affiliation(s)
- Viridiana Pérez-Pérez
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (IPN), México City, Mexico
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Jorge Luis González-Escobar
- Instituto Tecnológico de Ciudad Valles, Tecnológico Nacional de México, Ciudad Valles, San Luis Potosí, Mexico
| | - Luis Jorge Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (IPN), México City, Mexico
| |
Collapse
|
6
|
Vecchio G, Darcos V, Grill SL, Brouillet F, Coppel Y, Duttine M, Pugliara A, Combes C, Soulié J. Spray-dried ternary bioactive glass microspheres: Direct and indirect structural effects of copper-doping on acellular degradation behavior. Acta Biomater 2024; 181:453-468. [PMID: 38723927 DOI: 10.1016/j.actbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Silicate-based bioactive glass nano/microspheres hold significant promise for bone substitution by facilitating osteointegration through the release of biologically active ions and the formation of a biomimetic apatite layer. Cu-doping enhances properties such as pro-angiogenic and antibacterial behavior. While sol-gel methods usually yield homogeneous spherical particles for pure silica or binary glasses, synthesizing poorly aggregated Cu-doped ternary glass nano/microparticles without a secondary CuO crystalline phase remains challenging. This article introduces an alternative method for fabricating Cu-doped ternary microparticles using sol-gel chemistry combined with spray-drying. The resulting microspheres exhibit well-defined, poorly aggregated particles with spherical shapes and diameters of a few microns. Copper primarily integrates into the microspheres as Cu0 nanoparticles and as Cu2+ within the amorphous network. This doping affects silica network connectivity, as calcium and phosphorus are preferentially distributed in the glass network (respectively as network modifiers and formers) or involved in amorphous calcium phosphate nano-domains depending on the doping rate. These differences affect the interaction with simulated body fluid. Network depolymerization, ion release (SiO44-, Ca2+, PO43-, Cu2+), and apatite nanocrystal layer formation are impacted, as well as copper release. The latter is mainly provided by the copper involved in the silica network and not from metal nanoparticles, most of which remain in the microspheres after interaction. This understanding holds promising implications for potential therapeutic applications, offering possibilities for both short-term and long-term delivery of a tunable copper dose. STATEMENT OF SIGNIFICANCE: A novel methodology, scalable to industrial levels, enables the synthesis of copper-doped ternary bioactive glass microparticles by combining spray-drying and sol-gel chemistry. It provides precise control over the copper percentage in microspheres. This study explores the influence of synthesis conditions on the copper environment, notably Cu0 and Cu2+ ratios, characterized by EPR spectroscopy, an aspect poorly described for copper-doped bioactive glass. Additionally, copper indirectly affects silica network connectivity and calcium/phosphorus distribution, as revealed by SSNMR. Multiscale characterization illustrates how these features impact acellular degradation in simulated body fluid, highlighting the therapeutic potential for customizable copper dosing to address short- and long-term needs.
Collapse
Affiliation(s)
- Gabriele Vecchio
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France; CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Vincent Darcos
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Sylvain Le Grill
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Fabien Brouillet
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination (LCC), Université de Toulouse, CNRS, UPR 8241, Université Toulouse 3 - Paul Sabatier, Toulouse 31077, France
| | - Mathieu Duttine
- Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France
| | - Alessandro Pugliara
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France; Centre de MicroCaractérisation Raimond Castaing, Université Toulouse 3 - Paul Sabatier, Toulouse INP, INSA Toulouse, CNRS, 31400 Toulouse, France
| | - Christèle Combes
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France
| | - Jérémy Soulié
- CIRIMAT, Toulouse INP, Université Toulouse 3 Paul Sabatier, CNRS, Université de Toulouse, ENSIACET, 31030 Toulouse, France.
| |
Collapse
|
7
|
Kadota K, Uchiyama H, Kämäräinen T, Tanaka S, Tozuka Y. Building respirable powder architectures: utilizing polysaccharides for precise control of particle morphology for enhanced pulmonary drug delivery. Expert Opin Drug Deliv 2024; 21:945-963. [PMID: 38961522 DOI: 10.1080/17425247.2024.2376702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Dry powder inhaler (DPI) formulations are gaining attention as universal formulations with applications in a diverse range of drug formulations. The practical application of DPIs to pulmonary drugs requires enhancing their delivery efficiency to the target sites for various treatment modalities. Previous reviews have not explored the relation between particle morphology and delivery to different pulmonary regions. This review introduces new approaches to improve targeted DPI delivery using novel particle design such as supraparticles and metal-organic frameworks based on cyclodextrin. AREAS COVERED This review focuses on the design of DPI formulations using polysaccharides, promising excipients not yet approved by regulatory agencies. These excipients can be used to design various particle morphologies by controlling their physicochemical properties and manufacturing methods. EXPERT OPINION Challenges associated with DPI formulations include poor access to the lungs and low delivery efficiency to target sites in the lung. The restricted applicability of typical excipients contributes to their limited use. However, new formulations based on polysaccharides are expected to establish a technological foundation for the development of DPIs capable of delivering modalities specific to different lung target sites, thereby enhancing drug delivery.
Collapse
Affiliation(s)
- Kazunori Kadota
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
- School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Hiromasa Uchiyama
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Tero Kämäräinen
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Shunsuke Tanaka
- Faculty of Environmental and Urban Engineering, Kansai University, Suita, Osaka, Japan
| | - Yuichi Tozuka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
8
|
Abdul Ajiz H, Widiyastuti W, Setyawan H, Nurtono T. Amine-functionalized porous silica production via ex- and in-situ method using silicate precursors as a selective adsorbent for CO 2 capture applications. Heliyon 2024; 10:e26691. [PMID: 38455574 PMCID: PMC10918157 DOI: 10.1016/j.heliyon.2024.e26691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
A comparison of the amine-modified silica particle's characteristics via ex- and in-situ routes and their application as a CO2 gas adsorbent is reported. Modifying silica particles via ex-situ involves two separate steps: forming porous silica particles with sodium lauryl sulfate (SLS) as a template and impregnation using ultrasound assistance. In contrast to ex-situ modification, in-situ modification of silica particles is carried out in one step by mixing directly between the silica source and the modifying agent. Controlling the characteristics of modified silica particles via in-situ is carried out by adding an SLS template removed simultaneously with particle formation to increase the surface area and porosity. Increasing the SLS template concentration shows a linear relationship between increasing particle surface area and amine loading. However, two different modification routes exert a direct influence on aminopropyl distribution. Silanization via in-situ which involves a simultaneous condensation reaction produces a higher amine loading reaching 1.2845 mmol/g of silica than via ex-situ which is only 0.9610 mmol/g of silica. The amount of aminopropyl that can be grafted on the silica surface shows a linear relationship to the quantity of CO2 gas adsorption capacity. Amine-modified silica particles obtained the highest adsorption capability via the in-situ route with an SLS 3 CMC template of 2.32 mmol/g silica at an operating pressure of 6 bar.
Collapse
Affiliation(s)
- Hendrix Abdul Ajiz
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - W. Widiyastuti
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Heru Setyawan
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Tantular Nurtono
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| |
Collapse
|
9
|
Miles B, Chan DH, Varlas S, Mahato LK, Archer J, Miles RE, Armes SP, Reid JP. Effect of the Addition of Diblock Copolymer Nanoparticles on the Evaporation Kinetics and Final Particle Morphology for Drying Aqueous Aerosol Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:734-743. [PMID: 38128476 PMCID: PMC10786045 DOI: 10.1021/acs.langmuir.3c02930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
A deeper understanding of the key processes that determine the particle morphologies generated during aerosol droplet drying is highly desirable for spray-drying of powdered pharmaceuticals and foods, predicting the properties of atmospheric particles, and monitoring disease transmission. Particle morphologies are affected by the drying kinetics of the evaporating droplets, which are in turn influenced by the composition of the initial droplet as well as the drying conditions. Herein, we use polymerization-induced self-assembly (PISA) to prepare three types of sterically stabilized diblock copolymer nanoparticles comprising the same steric stabilizer block and differing core blocks with z-average diameters ranging from 32 to 238 nm. These well-defined nanoparticles enable a systematic investigation of the effect of the nanoparticle size and composition on the drying kinetics of aqueous aerosol droplets (20-28 μm radius) and the final morphology of the resulting microparticles. A comparative kinetics electrodynamic balance was used to obtain evaporation profiles for 10 examples of nanoparticles at a relative humidity (RH) of 0, 45, or 65%. Nanoparticles comprising the same core block with mean diameters of 32, 79, and 214 nm were used to produce microparticles, which were dried under different RH conditions in a falling droplet column. Scanning electron microscopy was used to examine how the drying kinetics influenced the final microparticle morphology. For dilute droplets, the chemical composition of the nanoparticles had no effect on the evaporation rate. However, employing smaller nanoparticles led to the formation of dried microparticles with a greater degree of buckling.
Collapse
Affiliation(s)
| | - Derek H.H. Chan
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield S3 7HF, South Yorkshire, U.K.
| | - Spyridon Varlas
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield S3 7HF, South Yorkshire, U.K.
| | - Lukesh K. Mahato
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Justice Archer
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | | | - Steven P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield S3 7HF, South Yorkshire, U.K.
| | - Jonathan P. Reid
- School
of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| |
Collapse
|
10
|
Banat H, Csóka I, Paróczai D, Burian K, Farkas Á, Ambrus R. A Novel Combined Dry Powder Inhaler Comprising Nanosized Ketoprofen-Embedded Mannitol-Coated Microparticles for Pulmonary Inflammations: Development, In Vitro-In Silico Characterization, and Cell Line Evaluation. Pharmaceuticals (Basel) 2024; 17:75. [PMID: 38256908 PMCID: PMC10818896 DOI: 10.3390/ph17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pulmonary inflammations such as chronic obstructive pulmonary disease and cystic fibrosis are widespread and can be fatal, especially when they are characterized by abnormal mucus accumulation. Inhaled corticosteroids are commonly used for lung inflammations despite their considerable side effects. By utilizing particle engineering techniques, a combined dry powder inhaler (DPI) comprising nanosized ketoprofen-embedded mannitol-coated microparticles was developed. A nanoembedded microparticle system means a novel advance in pulmonary delivery by enhancing local pulmonary deposition while avoiding clearance mechanisms. Ketoprofen, a poorly water-soluble anti-inflammatory drug, was dispersed in the stabilizer solution and then homogenized by ultraturrax. Following this, a ketoprofen-containing nanosuspension was produced by wet-media milling. Furthermore, co-spray drying was conducted with L-leucine (dispersity enhancer) and mannitol (coating and mucuactive agent). Particle size, morphology, dissolution, permeation, viscosity, in vitro and in silico deposition, cytotoxicity, and anti-inflammatory effect were investigated. The particle size of the ketoprofen-containing nanosuspension was ~230 nm. SEM images of the spray-dried powder displayed wrinkled, coated, and nearly spherical particles with a final size of ~2 µm (nano-in-micro), which is optimal for pulmonary delivery. The mannitol-containing samples decreased the viscosity of 10% mucin solution. The results of the mass median aerodynamic diameter (2.4-4.5 µm), fine particle fraction (56-71%), permeation (five-fold enhancement), and dissolution (80% release in 5 min) confirmed that the system is ideal for local inhalation. All samples showed a significant anti-inflammatory effect and decreased IL-6 on the LPS-treated U937 cell line with low cytotoxicity. Hence, developing an innovative combined DPI comprising ketoprofen and mannitol by employing a nano-in-micro approach is a potential treatment for lung inflammations.
Collapse
Affiliation(s)
- Heba Banat
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| | - Dóra Paróczai
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Katalin Burian
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm Square 10, 6720 Szeged, Hungary; (D.P.); (K.B.)
| | - Árpád Farkas
- Centre for Energy Research, Hungarian Academy of Sciences, 1121 Budapest, Hungary;
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u.6, 6720 Szeged, Hungary; (H.B.); (I.C.)
| |
Collapse
|
11
|
Amante C, Falcone G, Aquino RP, Russo P, Nicolais L, Del Gaudio P. In Situ Hydrogel Formulation for Advanced Wound Dressing: Influence of Co-Solvents and Functional Excipient on Tailored Alginate-Pectin-Chitosan Blend Gelation Kinetics, Adhesiveness, and Performance. Gels 2023; 10:3. [PMID: 38275841 PMCID: PMC10815700 DOI: 10.3390/gels10010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Chronic skin wounds affect more than 40 million patients worldwide, representing a huge problem for healthcare systems. This study elucidates the optimization of an in situ gelling polymer blend powder for biomedical applications through the use of co-solvents and functional excipients, underlining the possibility of tailoring microparticulate powder properties to generate, in situ, hydrogels with advanced properties that are able to improve wound management and patient well-being. The blend was composed of alginate, pectin, and chitosan (APC). Various co-solvents (ethanol, isopropanol, and acetone), and salt excipients (sodium bicarbonate and ammonium carbonate) were used to modulate the gelation kinetics, rheology, adhesiveness, and water vapor transmission rate of the gels. The use of co-solvents significantly influenced particle size (mean diameter ranging from 2.91 to 5.05 µm), depending on the solvent removal rate. Hydrogels obtained using ethanol were able to absorb over 15 times their weight in simulated wound fluid within just 5 min, whereas when sodium bicarbonate was used, complete gelation was achieved in less than 30 s. Such improvement was related to the internal microporous network typical of the particle matrix obtained with the use of co-solvents, whereas sodium bicarbonate was able to promote the formation of allowed particles. Specific formulations demonstrated an optimal water vapor transmission rate, enhanced viscoelastic properties, gel stiffness, and adhesiveness (7.7 to 9.9 kPa), facilitating an atraumatic removal post-use with minimized risk of unintended removal. Microscopic analysis unveiled that porous inner structures were influencing fluid uptake, gel formation, and transpiration. In summary, this study provided valuable insights for optimizing tailored APC hydrogels as advanced wound dressings for chronic wounds, including vascular ulcers, pressure ulcers, and partial and full-thickness wounds, characterized by a high production of exudate.
Collapse
Affiliation(s)
- Chiara Amante
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy (G.F.); (R.P.A.); (P.R.)
| | - Giovanni Falcone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy (G.F.); (R.P.A.); (P.R.)
| | - Rita P. Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy (G.F.); (R.P.A.); (P.R.)
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy (G.F.); (R.P.A.); (P.R.)
| | - Luigi Nicolais
- Materias s.r.l., University of Naples “Federico II” Campus San Giovanni a Teduccio, 84146 Naples, Italy
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy (G.F.); (R.P.A.); (P.R.)
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
12
|
Rodríguez-Nogales C, Meeus J, Thonus G, Corveleyn S, Allémann E, Jordan O. Spray-dried nanocrystal-loaded polymer microparticles for long-term release local therapies: an opportunity for poorly soluble drugs. Drug Deliv 2023; 30:2284683. [PMID: 37994039 PMCID: PMC10987046 DOI: 10.1080/10717544.2023.2284683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
Nano- and micro-technologies can salvage drugs with very low solubility that were doomed to pre-clinical and clinical failure. A unique design approach to develop drug nanocrystals (NCs) loaded in extended release polymeric microparticles (MPs) for local treatments is presented here through the case of a potential osteoarthritis (OA) drug candidate for intra-articular (IA) administration. Optimizing a low-shear wet milling process allowed the production of NCs that can be subsequently freeze-dried (FD) and redispersed in a hydrophobic polymer-organic solvent solution to form spray-dried MPs. Results demonstrated a successful development of a ready-to-upscale formulation containing PLGA MPs with high drug NC encapsulation rates that showed a continuous and controlled drug release profile over four months. The screenings and procedures described allowed for identifying and overcoming common difficulties and challenges raised along the drug reduction to nano-size and spray-drying process. Above all, the technical knowledge acquired is intended for formulation scientists aiming to improve the therapeutic perspectives of poorly soluble drugs.
Collapse
Affiliation(s)
- Carlos Rodríguez-Nogales
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland
| | - Joke Meeus
- CMC Analytical Development, Galapagos NV, Mechelen, Belgium
| | - Gaby Thonus
- CMC Analytical Development, Galapagos NV, Mechelen, Belgium
| | - Sam Corveleyn
- CMC Analytical Development, Galapagos NV, Mechelen, Belgium
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, Geneva, Switzerland
| |
Collapse
|
13
|
Wintzheimer S, Luthardt L, Cao KLA, Imaz I, Maspoch D, Ogi T, Bück A, Debecker DP, Faustini M, Mandel K. Multifunctional, Hybrid Materials Design via Spray-Drying: Much more than Just Drying. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306648. [PMID: 37840431 DOI: 10.1002/adma.202306648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Spray-drying is a popular and well-known "drying tool" for engineers. This perspective highlights that, beyond this application, spray-drying is a very interesting and powerful tool for materials chemists to enable the design of multifunctional and hybrid materials. Upon spray-drying, the confined space of a liquid droplet is narrowed down, and its ingredients are forced together upon "falling dry." As detailed in this article, this enables the following material formation strategies either individually or even in combination: nanoparticles and/or molecules can be assembled; precipitation reactions as well as chemical syntheses can be performed; and templated materials can be designed. Beyond this, fragile moieties can be processed, or "precursor materials" be prepared. Post-treatment of spray-dried objects eventually enables the next level in the design of complex materials. Using spray-drying to design (particulate) materials comes with many advantages-but also with many challenges-all of which are outlined here. It is believed that multifunctional, hybrid materials, made via spray-drying, enable very unique property combinations that are particularly highly promising in myriad applications-of which catalysis, diagnostics, purification, storage, and information are highlighted.
Collapse
Affiliation(s)
- Susanne Wintzheimer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| | - Leoni Luthardt
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
| | - Kiet Le Anh Cao
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Takashi Ogi
- Chemical Engineering Program, Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| | - Andreas Bück
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Damien P Debecker
- Université catholique de Louvain (UCLouvain), Institute of Condensed Matter and Nanosciences (IMCN), Place Louis Pasteur, 1, 348, Louvain-la-Neuve, Belgium
| | - Marco Faustini
- Sorbonne Université, Collège de France, CNRS, Laboratoire Chimie de la Matière Condensée de Paris (LCMCP), Paris, F-75005, France
- Institut Universitaire de France (IUF), Paris, 75231, France
| | - Karl Mandel
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058, Erlangen, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, 97082, Würzburg, Germany
| |
Collapse
|
14
|
Lechanteur A, Gresse E, Orozco L, Plougonven E, Léonard A, Vandewalle N, Lumay G, Evrard B. Inhalation powder development without carrier: How to engineer ultra-flying microparticles? Eur J Pharm Biopharm 2023; 191:26-35. [PMID: 37595762 DOI: 10.1016/j.ejpb.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Particle engineering technologies have led to the commercialization of new inhaled powders like PulmoSolTM or PulmoSphereTM. Such platforms are produced by spray drying, a well-known process popular for its versatility, thanks to wide-ranging working parameters. Whereas these powders contain a high drug-loading, we have studied a low-dose case, in optimizing the production of powders with two anti-asthmatic drugs, budesonide and formoterol. Using a Design of Experiments approach, 27 powders were produced, with varying excipient mixes (cyclodextrins, raffinose and maltodextrins), solution concentrations, and spray drying parameters in order to maximize deep lung deposition, measured through fine particle fraction (next generation impactor). Based on statistical analysis, two powders made of hydropropyl-β-cyclodextrin alone or mixed with raffinose and L-leucine were selected. Indeed, the two powders demonstrated very high fine particle fraction (>55%), considerably better than commercially available products. Deep lung deposition has been correlated to very fine particle size and lower microparticles interactions shown by laser diffraction assays at different working pressures, and particle morphometry. Moreover, the two drugs would be predicted to deposit homogeneously into the lung according to impaction studies. Uniform delivery is fundamental to control symptoms of asthma. In this study, we develop carrier-free inhalation powders promoting very efficient lung deposition and demonstrate the high impact of inter-particular interactions intensity on their aerosolization behaviour.
Collapse
Affiliation(s)
- Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium.
| | - Eva Gresse
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Luisa Orozco
- Group of Research and Applications in Statistical Physics, CESAM Research Unit Institute of Physics B5a, University of Liège, Liège 4000, Belgium
| | - Erwan Plougonven
- PEPs, Laboratory of Chemical Engineering, Department of Applied Chemistry, University of Liège, Building B6a, Sart-Tilman, Liège 4000, Belgium
| | - Angélique Léonard
- PEPs, Laboratory of Chemical Engineering, Department of Applied Chemistry, University of Liège, Building B6a, Sart-Tilman, Liège 4000, Belgium
| | - Nicolas Vandewalle
- Group of Research and Applications in Statistical Physics, CESAM Research Unit Institute of Physics B5a, University of Liège, Liège 4000, Belgium
| | - Geoffroy Lumay
- Group of Research and Applications in Statistical Physics, CESAM Research Unit Institute of Physics B5a, University of Liège, Liège 4000, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| |
Collapse
|
15
|
Sterle Zorec B, Dreu R. Development of Simvastatin-Loaded Particles Using Spray Drying Method for Ex Tempore Preparation of Cartridges for 2D Printing Technology. Pharmaceutics 2023; 15:2221. [PMID: 37765190 PMCID: PMC10537374 DOI: 10.3390/pharmaceutics15092221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
In this work, a spray drying method was developed to produce drug/polymer (simvastatin/polycaprolactone) microparticles that have the potential to be used as a pre-formulation for ex tempore preparation of 2D printing cartridges. An experimental model was designed with the process parameters set to predict the smallest particle size required for successful 2D printing. Three different types of particles (lactose, nanocellulose/lactose, calcium silicate) were produced, and the average size of the dry particles varied depending on the sampling location (cyclone, collection vessel). The encapsulation efficiency of simvastatin was highest with nanocellulose/lactose from the collection vessel. The one-month stability of simvastatin in the particles showed low content, but the addition of ascorbic acid as an antioxidant increased the chemical stability of the drug. Interestingly, the addition of antioxidants decreased the stability of simvastatin in the calcium silicate particles from the collection vessel. Dispersion of the particles in three different propylene glycol and water mixtures (10/90, 50/50, and 90/10% (v/v)), representing a printable ink medium with three different viscosity and surface tension properties, showed that nanocellulose/lactose was the most suitable antiadhesive in terms of dispersed particle size (˂1 µm). After one month of storage, the dispersed particles remained in the same size range without undesirable particle agglomeration.
Collapse
Affiliation(s)
- Barbara Sterle Zorec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia;
| | | |
Collapse
|
16
|
Jiao Y, Hu X, Zhu Y, Guo Y, Ji J, Du Y, Wang J, Liu X, Wang W, Liu K. Dynamic Behavior of Droplet Impact on Laminar Superheated Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11925-11933. [PMID: 37566515 DOI: 10.1021/acs.langmuir.3c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
The impact of droplets on particles involves a wide range of complex phenomena and mechanisms, including bubble nucleation, crater formation, fluidization, and more intricate changes in the boiling regime when impacting superheated particles. In this study, we focus on droplet impact behavior on superheated laminar particles at various temperatures and define six typical characteristic patterns of a single droplet impact on superheated laminar particles, including film evaporation, bubbly boiling, immersion boiling, sputter boiling, transition boiling, and film boiling. It is worth noting that the variations of inertial force FI caused by gravity, the capillary force FC generated by the pores of the droplets, and the dewetting force by the vapor phase FV are the main contributors to different evaporation regimes. Interestingly, we find that the Leidenfrost point (LFP) of droplets on the laminar superheated particles decreases with particle size, which is related to the effect of the pore space generated between the laminar particles. Finally, the effect of temperature, particle size, and Weber number (We) on the dynamic behavior of droplet impact is revealed. Experimental results show that the instantaneous diameter of droplets is inversely proportional to the change of height, with different patterns of maximum spreading diameter and maximum bounce height at different particle sizes, while the maximum spreading velocity and maximum bounce velocity are independent of particle size. We believe the present work would provide a broader knowledge and comprehension of the droplet impact on heated particles and promote the development of the safety and productivity of industrial processes such as fluid catalytic cracking, spray drying, and spray cooling.
Collapse
Affiliation(s)
- Yunlong Jiao
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Xidong Hu
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Yongqing Zhu
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Yuhang Guo
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Jiawei Ji
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Yu Du
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Jiaxiang Wang
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Xiaojun Liu
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Kun Liu
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
17
|
Hueppe N, Wurm FR, Landfester K. Nanocarriers with Multiple Cargo Load-A Comprehensive Preparation Guideline Using Orthogonal Strategies. Macromol Rapid Commun 2023; 44:e2200611. [PMID: 36098551 DOI: 10.1002/marc.202200611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Indexed: 11/06/2022]
Abstract
Multifunctional nanocarriers enhance the treatment efficacy for modern therapeutics and have gained increasing importance in biomedical research. Codelivery of multiple bioactive molecules enables synergistic therapies. Coencapsulation of cargo molecules into one nanocarrier system is challenging due to different physicochemical properties of the cargo molecules. Additionally, coencapsulation of multiple molecules simultaneously shall proceed with high control and efficiency. Orthogonal approaches for the preparation of nanocarriers are essential to encapsulate sensitive bioactive molecules while preserving their bioactivity. Preparation of nanocarriers by physical processes (i.e., self-assembly or coacervation) and chemical reactions (i.e., click reactions, polymerizations, etc.) are considered as orthogonal methods to most cargo molecules. This review shall act as a guideline to allow the reader to select a suitable preparation protocol for a desired nanocarrier system. This article helps to select for combinations of cargo molecules (hydrophilic-hydrophobic, small-macro, organic-inorganic) with nanocarrier material and synthesis protocols. The focus of this article lies on the coencapsulation of multiple cargo molecules into biocompatible and biodegradable nanocarriers prepared by orthogonal strategies. With this toolbox, the selection of a preparation method for a known set of cargo molecules to prepare the desired biodegradable and loaded nanocarrier shall be provided.
Collapse
Affiliation(s)
- Natkritta Hueppe
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Sustainable Polymer Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
18
|
Wang B, Xiang J, He B, Tan S, Zhou W. Enhancing bioavailability of natural extracts for nutritional applications through dry powder inhalers (DPI) spray drying: technological advancements and future directions. Front Nutr 2023; 10:1190912. [PMID: 37476406 PMCID: PMC10354342 DOI: 10.3389/fnut.2023.1190912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Natural ingredients have many applications in modern medicine and pharmaceutical projects. However, they often have low solubility, poor chemical stability, and low bioavailability in vivo. Spray drying technology can overcome these challenges by enhancing the properties of natural ingredients. Moreover, drug delivery systems can be flexibly designed to optimize the performance of natural ingredients. Among the various drug delivery systems, dry powder inhalation (DPI) has attracted much attention in pharmaceutical research. Therefore, this review will focus on the spray drying of natural ingredients for DPI and discuss their synthesis and application.
Collapse
Affiliation(s)
- Bo Wang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Jia Xiang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
19
|
Yanagishita T, Otomo R, Masuda H. Preparation of size-controlled LiCoPO 4 particles by membrane emulsification using anodic porous alumina and their application as cathode active materials for Li-ion secondary batteries. RSC Adv 2023; 13:16549-16558. [PMID: 37274395 PMCID: PMC10234092 DOI: 10.1039/d3ra01035j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023] Open
Abstract
Membrane emulsification using anodic porous alumina is an effective method for preparing monodisperse droplets with controlled sizes. In this study, membrane emulsification using anodic porous alumina was applied to the preparation of size-controlled particles composed of composite metal oxides. To obtain size-controlled composite metal oxide particles, membrane emulsification was performed using an aqueous solution containing a water-soluble monomer and metal salts as a dispersed phase. After the membrane emulsification, composite metal oxide particles were obtained by solidifying the droplets in a continuous phase and subsequent heat treatment. Here, as a demonstration of this process, the fabrication of size-controlled LiCoPO4 particles, which are considered high-potential cathode active materials for Li-ion secondary batteries (LIBs), was investigated. The application of the obtained LiCoPO4 particles as cathode active materials for LIBs was also investigated. The results of this study showed that LiCoPO4 particles with controlled sizes could be fabricated on the basis of this process and that their cathode properties could be improved by optimizing the heat treatment conditions and particle sizes. According to this process, size-controlled particles composed of various metal oxides can be fabricated by changing the metal salt in the dispersed phase, and the resulting size-controlled particles are expected to be applied not only as cathode active materials for LIBs but also as components of various functional devices.
Collapse
Affiliation(s)
- Takashi Yanagishita
- Department of Applied Chemistry, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Raraka Otomo
- Department of Applied Chemistry, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| | - Hideki Masuda
- Department of Applied Chemistry, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo 192-0397 Japan
| |
Collapse
|
20
|
Hou D, Wang G, Gao J, Luo KH. Molecular dynamics study on evaporation of metal nitrate-containing nanodroplets in flame spray pyrolysis. NANOSCALE 2023; 15:5877-5890. [PMID: 36876507 DOI: 10.1039/d3nr00060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flame spray pyrolysis (FSP) provides an advantageous synthetic route for LiNi1-x-yCoxMnyO2 (NCM) materials, which are one of the most practical and promising cathode materials for Li-ion batteries. However, a detailed understanding of the NCM nanoparticle formation mechanisms through FSP is lacking. To shed light on the evaporation of NCM precursor droplets in FSP, in this work, we employ classical molecular dynamics (MD) simulations to explore the dynamic evaporation process of nanodroplets composed of metal nitrates (including LiNO3, Ni(NO3)2, Co(NO3)2, and Mn(NO3)2 as solutes) and water (as solvent) from a microscopic point of view. Quantitative analysis on the evaporation process has been performed by tracking the temporal evolution of key features including the radial distribution of mass density, the radial distribution of number density of metal ions, droplet diameter, and coordination number (CN) of metal ions with oxygen atoms. Our MD simulation results show that during the evaporation of an MNO3-containing (M = Li, Ni, Co, or Mn) nanodroplet, Ni2+, Co2+, and Mn2+ will precipitate on the droplet surface, forming a solvent-core-solute-shell structure; whereas the distribution of Li+ within the evaporating LiNO3-containing droplet is more even due to the high diffusivity of Li+ compared with other metal ions. For the evaporation of a Ni(NO3)2- or Co(NO3)2-containing nanodroplet, the temporal evolution of the CN of M-OW (M = Ni or Co; OW represents O atoms from water) suggests a "free H2O" evaporation stage, during which both CN of M-OW and CN of M-ON are unchanged with time. Evaporation rate constants at various conditions are extracted by making analogy to the classical D2 law for droplet evaporation. Unlike Ni or Co, CN of Mn-OW keeps changing with time, yet the temporal evolution of the squared droplet diameter indicates the evaporation rate for a Ni(NO3)2-, Co(NO3)2-, or Mn(NO3)2-containing droplet is hardly affected by the different types of the metal ions.
Collapse
Affiliation(s)
- Dingyu Hou
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Geng Wang
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Jingqi Gao
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
21
|
Yang D, Tu S, Chen J, Zhang H, Chen W, Hu D, Lin J. Phase Change Composite Microcapsules with Low-Dimensional Thermally Conductive Nanofillers: Preparation, Performance, and Applications. Polymers (Basel) 2023; 15:polym15061562. [PMID: 36987342 PMCID: PMC10054001 DOI: 10.3390/polym15061562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Phase change materials (PCMs) have been extensively utilized in latent thermal energy storage (TES) and thermal management systems to bridge the gap between thermal energy supply and demand in time and space, which have received unprecedented attention in the past few years. To effectively address the undesirable inherent defects of pristine PCMs such as leakage, low thermal conductivity, supercooling, and corrosion, enormous efforts have been dedicated to developing various advanced microencapsulated PCMs (MEPCMs). In particular, the low-dimensional thermally conductive nanofillers with tailorable properties promise numerous opportunities for the preparation of high-performance MEPCMs. In this review, recent advances in this field are systematically summarized to deliver the readers a comprehensive understanding of the significant influence of low-dimensional nanofillers on the properties of various MEPCMs and thus provide meaningful enlightenment for the rational design and multifunction of advanced MEPCMs. The composition and preparation strategies of MEPCMs as well as their thermal management applications are also discussed. Finally, the future perspectives and challenges of low-dimensional thermally conductive nanofillers for constructing high performance MEPCMs are outlined.
Collapse
Affiliation(s)
- Danni Yang
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Sifan Tu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Jiandong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Haichen Zhang
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Wanjuan Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Dechao Hu
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jing Lin
- Key Lab of Guangdong High Property and Functional Macromolecular Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
22
|
Sultan U, Götz A, Schlumberger C, Drobek D, Bleyer G, Walter T, Löwer E, Peuker UA, Thommes M, Spiecker E, Apeleo Zubiri B, Inayat A, Vogel N. From Meso to Macro: Controlling Hierarchical Porosity in Supraparticle Powders. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300241. [PMID: 36932894 DOI: 10.1002/smll.202300241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/19/2023] [Indexed: 06/18/2023]
Abstract
A drying droplet containing colloidal particles can consolidate into a spherical assembly called a supraparticle. Such supraparticles are inherently porous due to the spaces between the constituent primary particles. Here, the emergent, hierarchical porosity in spray-dried supraparticles is tailored via three distinct strategies acting at different length scales. First, mesopores (<10 nm) are introduced via the primary particles. Second, the interstitial pores are tuned from the meso- (35 nm) to the macro scale (250 nm) by controlling the primary particle size. Third, defined macropores (>100 nm) are introduced via templating polymer particles, which can be selectively removed by calcination. Combining all three strategies creates hierarchical supraparticles with fully tailored pore size distributions. Moreover, another level of the hierarchy is added by fabricating supra-supraparticles, using the supraparticles themselves as building blocks, which provide additional pores with micrometer dimensions. The interconnectivity of the pore networks within all supraparticle types is investigated via detailed textural and tomographic analysis. This work provides a versatile toolbox for designing porous materials with precisely tunable, hierarchical porosity from the meso- (3 nm) to the macroscale (≈10 µm) that can be utilized for applications in catalysis, chromatography, or adsorption.
Collapse
Affiliation(s)
- Umair Sultan
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
- Institute of Chemical Reaction Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Alexander Götz
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Carola Schlumberger
- Institute of Separation Science and Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Dominik Drobek
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Gudrun Bleyer
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Teresa Walter
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| | - Erik Löwer
- Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Urs Alexander Peuker
- Institute of Mechanical Process Engineering and Mineral Processing, Technische Universität Bergakademie Freiberg, 09599, Freiberg, Germany
| | - Matthias Thommes
- Institute of Separation Science and Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Alexandra Inayat
- Institute of Chemical Reaction Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058, Erlangen, Germany
| |
Collapse
|
23
|
Afaq S, Akram MU, Malik WMA, Ismail M, Ghafoor A, Ibrahim M, Nisa MU, Ashiq MN, Verpoort F, Chughtai AH. Amide Functionalized Mesoporous MOF LOCOM-1 as a Stable Highly Active Basic Catalyst for Knoevenagel Condensation Reaction. ACS OMEGA 2023; 8:6638-6649. [PMID: 36844569 PMCID: PMC9948166 DOI: 10.1021/acsomega.2c07137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Acyl-amide is extensively used as functional group and is a superior contender for the design of MOFs with the guest accessible functional organic sites. A novel acyl-amide-containing tetracarboxylate ligand, bis(3,5-dicarboxy-pheny1)terephthalamide, has been successfully synthesized. The H4L linker has some fascinating attributes as follows: (i) four carboxylate moieties as the coordination sites confirm affluent coordination approaches to figure a diversity of structure; (ii) two acyl-amide groups as the guest interaction sites can engender guest molecules integrated into the MOF networks through H-bonding interfaces and have a possibility to act as functional organic sites for the condensation reaction. A mesoporous MOF ([Cu2(L)(H2O)3]·4DMF·6H2O) has been prepared in order to produce the amide FOS within the MOF, which will work as guest accessible sites. The prepared MOF was characterized by CHN analysis, PXRD, FTIR spectroscopy, and SEM analysis. The MOF showed superior catalytic activity for Knoevenagel condensation. The catalytic system endures a broad variety of the functional groups and presents high to modest yields of aldehydes containing electron withdrawing groups (4-chloro, 4-fluoro, 4-nitro), offering a yield > 98 in less reaction time as compared to aldehydes with electron donationg groups (4-methyl). The amide decorated MOF (LOCOM-1-) as a heterogeneous catalyst can be simply recovered by centrifugation and recycled again without a flagrant loss of its catalytic efficiency.
Collapse
Affiliation(s)
- Sheereen Afaq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Muhammad Usman Akram
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Wasif Mahmood Ahmed Malik
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
- Department
of Chemistry, Emerson University Multan, Multan 60000, Pakistan
| | - Muhammad Ismail
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Abdul Ghafoor
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Muhammad Ibrahim
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mehr un Nisa
- Department
of Chemistry, University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Naeem Ashiq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Francis Verpoort
- Laboratory
of Organometallics, Catalysis and Ordered Materials, State Key Laboratory
of Advanced Technology for the Materials Synthesis and Processing,
Center for the Chemical and Material Engineering, Wuhan University of Technology, Wuhan 430070, China
| | | |
Collapse
|
24
|
Zhang Y, Wakabayashi R, Kimura T. Aerosol-assisted synthesis of titania-based spherical and fibrous materials with a rational design of mesopores using PS- b-PEO. Dalton Trans 2023; 52:1543-1550. [PMID: 36533632 DOI: 10.1039/d2dt03402f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Surfactant-assisted synthesis is a promising technique for the tailor-made design of highly porous metal oxide based nanomaterials. There has been a demand for the comprehensive design of their morphology, porous structure and crystallinity to extend potential applications using metal oxide based materials such as titania (TiO2). However, the porous structure is often deformed and/or destroyed during the process of crystallizing metal oxide frameworks. Herein, the aerosol-assisted synthesis of mesoporous TiO2 powders was conducted in the presence of high-molecular-weight poly(styrene)-block-poly(ethylene oxide) (PS-b-PEO), which improved the stability of the derivative mesoporous structure with an increase in the thickness of the TiO2 frameworks. To propose a rational synthetic route for stable and porous metal oxides, the resultant mesoporous structure and the textural morphology of the mesoporous TiO2 powders were surveyed using PS-b-PEO with different lengths of PS and PEO chains. By a judicious choice of the molecular structure of PS-b-PEO, the morphological design of the fully crystallized anatase phase of TiO2 from spherical to fibrous ones was achieved with control over the mesopore diameter.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sakurazaka, Moriyama-ku, Nagoya 463-8560, Japan.
| | - Ryutaro Wakabayashi
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sakurazaka, Moriyama-ku, Nagoya 463-8560, Japan.
| | - Tatsuo Kimura
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sakurazaka, Moriyama-ku, Nagoya 463-8560, Japan.
| |
Collapse
|
25
|
Constantino VRL, Figueiredo MP, Magri VR, Eulálio D, Cunha VRR, Alcântara ACS, Perotti GF. Biomaterials Based on Organic Polymers and Layered Double Hydroxides Nanocomposites: Drug Delivery and Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020413. [PMID: 36839735 PMCID: PMC9961265 DOI: 10.3390/pharmaceutics15020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The development of biomaterials has a substantial role in pharmaceutical and medical strategies for the enhancement of life quality. This review work focused on versatile biomaterials based on nanocomposites comprising organic polymers and a class of layered inorganic nanoparticles, aiming for drug delivery (oral, transdermal, and ocular delivery) and tissue engineering (skin and bone therapies). Layered double hydroxides (LDHs) are 2D nanomaterials that can intercalate anionic bioactive species between the layers. The layers can hold metal cations that confer intrinsic biological activity to LDHs as well as biocompatibility. The intercalation of bioactive species between the layers allows the formation of drug delivery systems with elevated loading capacity and modified release profiles promoted by ion exchange and/or solubilization. The capacity of tissue integration, antigenicity, and stimulation of collagen formation, among other beneficial characteristics of LDH, have been observed by in vivo assays. The association between the properties of biocompatible polymers and LDH-drug nanohybrids produces multifunctional nanocomposites compatible with living matter. Such nanocomposites are stimuli-responsive, show appropriate mechanical properties, and can be prepared by creative methods that allow a fine-tuning of drug release. They are processed in the end form of films, beads, gels, monoliths etc., to reach orientated therapeutic applications. Several studies attest to the higher performance of polymer/LDH-drug nanocomposite compared to the LDH-drug hybrid or the free drug.
Collapse
Affiliation(s)
- Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
- Correspondence: ; Tel.: +55-11-3091-9152
| | - Mariana Pires Figueiredo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vagner Roberto Magri
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Denise Eulálio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vanessa Roberta Rodrigues Cunha
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso (IFMT), Linha J, s/n–Zona Rural, Juína 78320-000, MT, Brazil
| | | | - Gustavo Frigi Perotti
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Itacoatiara 69103-128, AM, Brazil
| |
Collapse
|
26
|
Experimental study and numerical simulation of the influence of ball milling parameters on granule sizes of mold powder. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2022.118037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Raspberry Colloid Templated Catalysts Fabricated Using Spray Drying Method. Catalysts 2022. [DOI: 10.3390/catal13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The majority of industrial chemical processes—from production of organic and inorganic compounds to air and water treatment—rely on heterogeneous catalysts. The performance of these catalysts has improved over the past several decades; in parallel, many innovations have been presented in publications, demonstrating increasingly higher efficiency and selectivity. One common challenge to adopting novel materials in real-world applications is the need to develop robust and cost-effective synthetic procedures for their formation at scale. Herein, we focus on the scalable production of a promising new class of materials—raspberry-colloid-templated (RCT) catalysts—that have demonstrated exceptional thermal stability and high catalytic activity. The unique synthetic approach used for the fabrication of RCT catalysts enables great compositional flexibility, making these materials relevant to a wide range of applications. Through a series of studies, we identified stable formulations of RCT materials that can be utilized in the common industrial technique of spray drying. Using this approach, we demonstrate the production of highly porous Pt/Al2O3 microparticles with high catalytic activity toward complete oxidation of toluene as a model reaction.
Collapse
|
28
|
Wang SE, Kim D, Kim MJ, Kim JH, Kang YC, Roh KC, Choi J, Lee HW, Jung DS. Achieving Cycling Stability in Anode of Lithium-Ion Batteries with Silicon-Embedded Titanium Oxynitride Microsphere. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:132. [PMID: 36616042 PMCID: PMC9823697 DOI: 10.3390/nano13010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
Surface coating approaches for silicon (Si) have demonstrated potential for use as anodes in lithium-ion batteries (LIBs) to address the large volume change and low conductivity of Si. However, the practical application of these approaches remains a challenge because they do not effectively accommodate the pulverization of Si during cycling or require complex processes. Herein, Si-embedded titanium oxynitride (Si-TiON) was proposed and successfully fabricated using a spray-drying process. TiON can be uniformly coated on the Si surface via self-assembly, which can enhance the Si utilization and electrode stability. This is because TiON exhibits high mechanical strength and electrical conductivity, allowing it to act as a rigid and electrically conductive matrix. As a result, the Si-TiON electrodes delivered an initial reversible capacity of 1663 mA h g-1 with remarkably enhanced capacity retention and rate performance.
Collapse
Affiliation(s)
- Sung Eun Wang
- Energy Storage Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET), Jinju-si 52851, Republic of Korea
| | - DoHoon Kim
- Energy Storage Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET), Jinju-si 52851, Republic of Korea
- Department of Nanoenergy Engineering, Pusan National University, Pusan 46241, Republic of Korea
| | - Min Ji Kim
- Energy Storage Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET), Jinju-si 52851, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jung Hyun Kim
- Energy Storage Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET), Jinju-si 52851, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kwang Chul Roh
- Energy Storage Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET), Jinju-si 52851, Republic of Korea
| | - Junghyun Choi
- Energy Storage Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET), Jinju-si 52851, Republic of Korea
| | - Hyung Woo Lee
- Department of Nanoenergy Engineering, Pusan National University, Pusan 46241, Republic of Korea
- Department of Nano Fusion Engineering and Research Center of Energy Convergence Technology, Pusan University, Pusan 46241, Republic of Korea
| | - Dae Soo Jung
- Energy Storage Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET), Jinju-si 52851, Republic of Korea
| |
Collapse
|
29
|
Valentin M, Coibion D, Vertruyen B, Malherbe C, Cloots R, Boschini F. Macroporous Mannitol Granules Produced by Spray Drying and Sacrificial Templating. MATERIALS (BASEL, SWITZERLAND) 2022; 16:25. [PMID: 36614363 PMCID: PMC9821148 DOI: 10.3390/ma16010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
In pharmaceutical applications, the porous particles of organic compounds can improve the efficiency of drug delivery, for example into the pulmonary system. We report on the successful preparation of macroporous spherical granules of mannitol using a spray-drying process using polystyrene (PS) beads of ~340 nm diameter as a sacrificial templating agent. An FDA-approved solvent (ethyl acetate) was used to dissolve the PS beads. A combination of infrared spectroscopy and thermogravimetry analysis proved the efficiency of the etching process, provided that enough PS beads were exposed at the granule surface and formed an interconnected network. Using a lab-scale spray dryer and a constant concentration of PS beads, we observed similar granule sizes (~1-3 microns) and different porosity distributions for the mannitol/PS mass ratio ranging from 10:1 to 1:2. When transferred to a pilot-scale spray dryer, the 1:1 mannitol/PS composition resulted in different distributions of granule size and porosity depending on the atomization configuration (two-fluid or rotary nozzle). In all cases, the presence of PS beads in the spray-drying feedstock was found to favor the formation of the α mannitol polymorph and to lead to a small decrease in the mannitol decomposition temperature when heating in an inert atmosphere.
Collapse
Affiliation(s)
- Morgane Valentin
- GREEnMat, CESAM Research Unit, University of Liège, 4000 Liège, Belgium
| | - Damien Coibion
- GREEnMat, CESAM Research Unit, University of Liège, 4000 Liège, Belgium
| | | | - Cédric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, 4000 Liège, Belgium
| | - Rudi Cloots
- GREEnMat, CESAM Research Unit, University of Liège, 4000 Liège, Belgium
| | - Frédéric Boschini
- GREEnMat, CESAM Research Unit, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
30
|
Alginate-pectin microparticles loaded with nanoemulsions as nanocomposites for wound healing. Drug Deliv Transl Res 2022; 13:1343-1357. [PMID: 36512287 PMCID: PMC10102150 DOI: 10.1007/s13346-022-01257-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/14/2022]
Abstract
AbstractThis work combines natural polymers with nanoemulsions (NEs) to formulate nanocomposites as an innovative wound dressing. Spray-drying has been used to produce alginate-pectin in situ gelling powders as carriers for NEs loaded with curcumin (CCM), a model antimicrobial drug. The influence of NEs encapsulation in polymer-based microparticles was studied in terms of particle size distribution, morphology, and stability after spray-drying. NEs loading did not affect the size of microparticles which was around 3.5 µm, while the shape and surface morphology analyzed using scanning electron microscope (SEM) changed from irregular to spherical. Nanocomposites as dried powders were able to form a gel in less than 5 min when in contact with simulated wound fluid (SWF), while the value of moisture transmission of the in situ formed hydrogels allowed to promote good wound transpiration. Moreover, rheologic analyses showed that in situ formed gels loaded with NEs appeared more elastic than blank formulations. The in situ formed gel allowed the prolonged release of CCM-loaded NEs in the wound bed, reaching 100% in 24 h. Finally, powders cytocompatibility was confirmed by incubation with keratinocyte cells (HaCaT), proving that such nanocomposites can be considered a potential candidate for wound dressings.
Graphical Abstract
Collapse
|
31
|
Wang G, Li Y, Qin Z, Liu T. Nanosizing Coamorphous Drugs Using Top-Down Approach: The Effect of Particle Size Reduction on Dissolution Improvement. AAPS PharmSciTech 2022; 24:14. [PMID: 36478061 DOI: 10.1208/s12249-022-02475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology and coamorphous are both advanced technologies that can effectively improve the solubility of drugs. This study has been the first attempt to combine these two approaches to construct the coamorphous nanoparticles to improve the dissolution and investigated the effect of physical properties of coamorphous solid on the nanosizing process. Two types of coamorphous solid, i.e., curcumin-artemisinin and quercetin-lysine, were selected as models. Coamorphous curcumin-artemisinin could highly contribute to the size reduction during milling compared to the crystalline form, which might attribute to the change of crystallinity. Nanosized coamorphous curcumin-artemisinin showed higher dissolution than nanocrystals and single coamorphous sample. However, quercetin-lysine coamorphous nanoparticles did not reflect significant dissolution improvement compared with the microsized sample. The difference of initial dissolutions for both could be the main reason. The directly mixing and drying method was confirmed to be an effective and simple approach to maintain the dissolution of nanosized coamorphous sample.
Collapse
Affiliation(s)
- Guoliang Wang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanchao Li
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zhiguo Qin
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Tao Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
32
|
Arshad MS, Mujeeb M, Zafar S, Khan WQ, Patel M, Yousef B, Chang MW, Sayed E, Ahmad Z. EHDA engineering of Piroxicam-PVP components for pharmaceutical dosages. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Jia W, Yawman PD, Pandya KM, Sluga K, Ng T, Kou D, Nagapudi K, Luner PE, Zhu A, Zhang S, Hou HH. Assessing the Interrelationship of Microstructure, Properties, Drug Release Performance, and Preparation Process for Amorphous Solid Dispersions Via Noninvasive Imaging Analytics and Material Characterization. Pharm Res 2022; 39:3137-3154. [PMID: 35661085 DOI: 10.1007/s11095-022-03308-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/27/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE The purpose of this work is to evaluate the interrelationship of microstructure, properties, and dissolution performance for amorphous solid dispersions (ASDs) prepared using different methods. METHODS ASD of GDC-0810 (50% w/w) with HPMC-AS was prepared using methods of spray drying and co-precipitation via resonant acoustic mixing. Microstructure, particulate and bulk powder properties, and dissolution performance were characterized for GDC-0810 ASDs. In addition to application of typical physical characterization tools, we have applied X-Ray Microscopy (XRM) to assess the contribution of microstructure to the characteristics of ASDs and obtain additional quantification and understanding of the drug product intermediates and tablets. RESULTS Both methods of spray drying and co-precipitation produced single-phase ASDs. Distinct differences in microstructure, particle size distribution, specific surface area, bulk and tapped density, were observed between GDC-0810 spray dried dispersion (SDD) and co-precipitated amorphous dispersion (cPAD) materials. The cPAD powders prepared by the resonant acoustic mixing process demonstrated superior compactibility compared to the SDD, while the compressibility of the ASDs were comparable. Both SDD powder and tablets showed higher in vitro dissolution than those of cPAD powders. XRM calculated total solid external surface area (SA) normalized by calculated total solid volume (SV) shows a strong correlation with micro dissolution data. CONCLUSION Strong interrelationship of microstructure, physical properties, and dissolution performance was observed for GDC-0810 ASDs. XRM image-based analysis is a powerful tool to assess the contribution of microstructure to the characteristics of ASDs and provide mechanistic understanding of the interrelationship.
Collapse
Affiliation(s)
- Wei Jia
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Phillip D Yawman
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA
| | - Keyur M Pandya
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Kellie Sluga
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Tania Ng
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Dawen Kou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Paul E Luner
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA.,Triform Sciences LLC, Waterford, Connecticut, 06385, USA
| | - Aiden Zhu
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA
| | - Shawn Zhang
- DigiM Solution LLC, 67 South Bedford Street, Suite 400 West, Burlington, Massachusetts, 01803, USA
| | - Hao Helen Hou
- Small Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, California, 94080, USA.
| |
Collapse
|
34
|
Wenderoth S, Bleyer G, Endres J, Prieschl J, Vogel N, Wintzheimer S, Mandel K. Spray-Dried Photonic Balls with a Disordered/Ordered Hybrid Structure for Shear-Stress Indication. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203068. [PMID: 36253136 DOI: 10.1002/smll.202203068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Optical microscale shear-stress indicator particles are of interest for the in situ recording of localized forces, e.g., during 3D printing or smart skins in robotic applications. Recently developed particle systems are based on optical responses enabled by integrated organic dyes. They thus suffer from potential chemical instability and cross-sensitivities toward humidity or temperature. These drawbacks can be circumvented using photonic balls as shear-stress indicator particles, which employ structural color as the element to record forces. Here, such photonic balls are prepared from silica and iron oxide nanoparticles via the scalable and fast spray-drying technique. Process parameters to create photonic balls with a disordered core and an ordered particle structure toward the exterior of the supraparticles are reported. This hybrid disordered-ordered structure is responsible for a color loss of the indicator particles during shear-stress application because of irreversible structural destruction. By adjusting the primary silica particle sizes, nearly all colors of the visible spectrum can be achieved and the sensitivity of the response to shear stress can be adjusted.
Collapse
Affiliation(s)
- Sarah Wenderoth
- Chair of Chemical Technology of Materials Synthesis, Julius-Maximilians-University Würzburg, Röntgenring 11, D97070, Würzburg, Germany
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D97082, Würzburg, Germany
| | - Gudrun Bleyer
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, D91058, Erlangen, Germany
| | - Jakob Endres
- Chair of Chemical Technology of Materials Synthesis, Julius-Maximilians-University Würzburg, Röntgenring 11, D97070, Würzburg, Germany
| | - Johannes Prieschl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, D91058, Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Cauerstrasse 4, D91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D97082, Würzburg, Germany
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, D91058, Erlangen, Germany
| | - Karl Mandel
- Fraunhofer-Institute for Silicate Research ISC, Neunerplatz 2, D97082, Würzburg, Germany
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, D91058, Erlangen, Germany
| |
Collapse
|
35
|
Fu Y, Zhu Y, Liang X, Kong Y, Wang X, Zhang A, Zhao Z, Gou J, Wang Y, Yin T, Zhang Y, He H, Tang X. The preparation and characterisation of tasteless core-shell clarithromycin microcapsules. J Microencapsul 2022; 39:654-667. [PMID: 36476313 DOI: 10.1080/02652048.2022.2146221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims to fabricate core-shell clarithromycin (CAM) microcapsules to cover up the bitter taste of CAM by spray drying with aqueous polymer dispersion. Water dispersion of Eudragit EPO and Surelease® were innovatively used to encapsulate CAM into microcapsules via a one-step spray-drying method. The inlet air temperature, airflow rate, CAM-polymer ratio, and particle size of CAM were optimised based on drug content and T6% (the time taken for the drug to release equal to 6% w/w). The powder properties were assessed by measuring particle size and microstructure using SEM, FT-IR, and PXRD. Furthermore, selected batch was assessed for their drug content, encapsulation efficiency, in vitro release, bitterness, and stability studies. EPO-Surelease® (1: 4) microcapsules had an average diameter (D50) of 37.69 ± 3.61 μm with a span of 2.395. The drug contents and encapsulation efficiency of EPO-Surelease®(1:4) were 10.89% and 63.7%, respectively. EPO-Surelease® (1:4) microcapsules prepared by spray drying with aqueous polymer dispersion can effectively mask the bitter taste of CAM.
Collapse
Affiliation(s)
- Yu Fu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yunjing Zhu
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xue Liang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yihan Kong
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaolin Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Anan Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhiqing Zhao
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingxin Gou
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanjiao Wang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian Yin
- School of Functional food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Zhang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
36
|
Naik RR, Wang Y, Selomulya C. Spray-drying to improve the functionality of amaranth protein via ultrasonic-assisted Maillard conjugation with red seaweed polysaccharide. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
37
|
Ahmed Malik WM, Afaq S, Mahmood A, Niu L, Yousaf ur Rehman M, Ibrahim M, Mohyuddin A, Qureshi AM, Ashiq MN, Chughtai AH. A facile synthesis of CeO2 from the GO@Ce-MOF precursor and its efficient performance in the oxygen evolution reaction. Front Chem 2022; 10:996560. [PMID: 36277339 PMCID: PMC9585184 DOI: 10.3389/fchem.2022.996560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Electrochemical water splitting has enticed fascinating consideration as a key conduit for the advancement of renewable energy systems. Fabricating adequate electrocatalysts for water splitting is fervently preferred to curtail their overpotentials and hasten practical utilizations. In this work, a series of Ce-MOF, GO@Ce-MOF, calcinated Ce-MOF, and calcinated GO@Ce-MOF were synthesized and used as high-proficient electrocatalysts for the oxygen evolution reaction. The physicochemical characteristics of the prepared samples were measured by diverse analytical techniques including SEM, HRTEM, FTIR, BET, XPS, XRD, and EDX. All materials underwent cyclic voltammetry tests and were evaluated by electrochemical impedance spectroscopy and oxygen evolution reaction. Ce-MOF, GO@Ce-MOF, calcinated Ce-MOF, and calcinated GO@Ce-MOF have remarkable properties such as enhanced specific surface area, improved catalytic performance, and outstanding permanency in the alkaline solution (KOH). These factors upsurge ECSA and intensify the OER performance of the prepared materials. More exposed surface active-sites present in calcinated GO@Ce-MOF could be the logic for superior electrocatalytic activity. Chronoamperometry of the catalyst for 15°h divulges long-term stability of Ce-MOF during OER. Impedance measurements indicate higher conductivity of synthesized catalysts, facilitating the charge transfer reaction during electrochemical water splitting. This study will open up a new itinerary for conspiring highly ordered MOF-based surface active resources for distinct electrochemical energy applications.
Collapse
Affiliation(s)
- Wasif Mahmood Ahmed Malik
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- Department of Chemistry, Emerson University, Multan, Pakistan
| | - Sheereen Afaq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Azhar Mahmood
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | | | - Muhammad Ibrahim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, Emerson University, Multan, Pakistan
| | - Ashfaq Mahmood Qureshi
- Department of Chemistry, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Muhammad Naeem Ashiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Muhammad Naeem Ashiq, ; Adeel Hussain Chughtai,
| | - Adeel Hussain Chughtai
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Muhammad Naeem Ashiq, ; Adeel Hussain Chughtai,
| |
Collapse
|
38
|
Zhao P, Cao Q, Yi W, Hao X, Li J, Zhang B, Huang L, Huang Y, Jiang Y, Xu B, Shan Z, Chen J. Facile and General Method to Synthesize Pt-Based High-Entropy-Alloy Nanoparticles. ACS NANO 2022; 16:14017-14028. [PMID: 35998311 DOI: 10.1021/acsnano.2c03818] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pt-based high-entropy-alloy nanoparticles (HEA-NPs) have excellent physical and chemical properties due to the diversity of composition, complexity of surface structure, high mixing entropy, and properties of nanoscale, and they are used in a wide range of catalytic applications such as catalytic ammoxidation, the electrolysis of water to produce hydrogen, CO2/CO reduction, and ethanol/methanol oxidation reaction. However, offering a facile, low-cost, and large-scale method for preparing Pt-based HEA-NPs still faces great challenges. In this study, we employed a spray drying technique combined with thermal decomposition reduction (SD-TDR) method to synthesize a single-phase solid solution from binary nanoparticles to denary Pt-based HEA-NPs containing 10 dissimilar elements loaded on carbon supports in an H2 atmosphere with a moderate heating rate (3 °C/min), thermal decomposition temperature (300-850 °C), duration time (30 min), and low cooling rate (5-10 °C/min). The Pt autocatalytic behavior was found and investigated, confirming that Pt element could decrease the reduction temperature of other metals via autocatalytic behavior. Therefore, using the feature of Pt autocatalytic behavior, we have achieved Pt-based HEA-NPs at a minimum temperature of 300 °C. We not only prepared a series of Pt-based HEA-NPs with targetable ingredient, size, and phase using the SD-TDR method but also proved the expandability of the SD-TDR technique by synthesizing Pt-based HEA-NPs loaded on different supports. Moreover, we investigated methanol oxidation reaction (MOR) on as-synthesized senary PtCoCuRuFeNi HEA-NPs, which presented superior electrocatalytic performance over commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Panchao Zhao
- Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, People's Republic of China
| | - Qigao Cao
- Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, People's Republic of China
| | - Wei Yi
- Kunming Institute of Precious Metals, Kunming 650221, People's Republic of China
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, People's Republic of China
| | - Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Jigang Li
- Kunming Institute of Precious Metals, Kunming 650221, People's Republic of China
| | - Bosheng Zhang
- Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, People's Republic of China
| | - Long Huang
- Kunming Institute of Precious Metals, Kunming 650221, People's Republic of China
| | - Yujie Huang
- Northwest Institute for Non-ferrous Metal Research, Xi'an 710016, People's Republic of China
| | - Yunbo Jiang
- Kunming Institute of Precious Metals, Kunming 650221, People's Republic of China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Zhiwei Shan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jialin Chen
- Kunming Institute of Precious Metals, Kunming 650221, People's Republic of China
| |
Collapse
|
39
|
Ligarda-Samanez CA, Moscoso-Moscoso E, Choque-Quispe D, Palomino-Rincón H, Martínez-Huamán EL, Huamán-Carrión ML, Peralta-Guevara DE, Aroni-Huamán J, Arévalo-Quijano JC, Palomino-Rincón W, la Cruz GD, Ramos-Pacheco BS, Muñoz-Saenz JC, Muñoz-Melgarejo M. Microencapsulation of Erythrocytes Extracted from Cavia porcellus Blood in Matrices of Tara Gum and Native Potato Starch. Foods 2022; 11:2107. [PMID: 35885349 PMCID: PMC9316173 DOI: 10.3390/foods11142107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
Ferropenic anemy is the leading iron deficiency disease in the world. The aim was to encapsulate erythrocytes extracted from the blood of Cavia porcellus, in matrices of tara gum and native potato starch. For microencapsulation, solutions were prepared with 20% erythrocytes; and encapsulants at 5, 10, and 20%. The mixtures were spray-dried at 120 and 140 °C. The iron content in the erythrocytes was 3.30 mg/g and between 2.32 and 2.05 mg/g for the encapsulates (p < 0.05). The yield of the treatments varied between 47.84 and 58.73%. The moisture, water activity, and bulk density were influenced by the temperature and proportion of encapsulants. The total organic carbon in the atomized samples was around 14%. The particles had diverse reddish tonalities, which were heterogeneous in their form and size; openings on their surface were also observed by SEM. The particle size was at the nanometer level, and the zeta potential (ζ) indicated a tendency to agglomerate and precipitation the solutions. The presence of iron was observed on the surface of the atomized by SEM-EDX, and FTIR confirmed the encapsulation due to the presence of the chemical groups OH, C-O, C-H, and N-H in the atomized. On the other hand, high percentages of iron release in vitro were obtained between 88.45 and 94.71%. The treatment with the lowest proportion of encapsulants performed at 140 °C obtained the best results and could potentially be used to fortify different functional foods.
Collapse
Affiliation(s)
- Carlos A. Ligarda-Samanez
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (E.M.-M.); (M.L.H.-C.)
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (H.P.-R.); (J.A.-H.); (B.S.R.-P.)
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (E.M.-M.); (M.L.H.-C.)
| | - David Choque-Quispe
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (H.P.-R.); (J.A.-H.); (B.S.R.-P.)
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Henry Palomino-Rincón
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (H.P.-R.); (J.A.-H.); (B.S.R.-P.)
| | - Edgar L. Martínez-Huamán
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (E.L.M.-H.); (J.C.A.-Q.)
| | - Mary L. Huamán-Carrión
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (E.M.-M.); (M.L.H.-C.)
| | - Diego E. Peralta-Guevara
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru;
| | - Jimmy Aroni-Huamán
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (H.P.-R.); (J.A.-H.); (B.S.R.-P.)
| | - José C. Arévalo-Quijano
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (E.L.M.-H.); (J.C.A.-Q.)
| | - Wilbert Palomino-Rincón
- Agricultural and Livestock Engineering, Universidad Nacional San Antonio Abad, Cusco 08000, Peru;
| | - Germán De la Cruz
- Agricultural Science Facultad, Universidad Nacional San Cristobal de Huamanga, Ayacucho 05000, Peru;
| | - Betsy S. Ramos-Pacheco
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru; (D.C.-Q.); (H.P.-R.); (J.A.-H.); (B.S.R.-P.)
| | - Jenny C. Muñoz-Saenz
- Department of Human Medicine, Universidad Peruana los Andes, Huancayo 12006, Peru; (J.C.M.-S.); (M.M.-M.)
| | - Mauricio Muñoz-Melgarejo
- Department of Human Medicine, Universidad Peruana los Andes, Huancayo 12006, Peru; (J.C.M.-S.); (M.M.-M.)
| |
Collapse
|
40
|
Spray Freezing Coating on the Carrier Particles for Powder Preparation. COATINGS 2022. [DOI: 10.3390/coatings12070896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carrier particle spray freeze-drying is a new technology with high added value for thermosensitive powder spray freeze-drying. The technology includes the following steps: atomization, coating, freezing, and drying. Due to the action of carrier particles, the condensation of frozen droplets in the conventional spray freeze-drying process is overcome. However, there are many influencing factors involved in the process of freezing coating. The mechanism of the complex droplet collision freezing process still needs to be studied. In this paper, from the perspective of spray freezing coating after atomized droplets collide with low-temperature carrier particles, the coating process and freezing process of single droplets impacting the sphere are analyzed microscopically. The freezing coating processes of static and dynamic carrier particles are reviewed. Moreover, the surface evaluation of powder and equipment development for creating powder products is discussed.
Collapse
|
41
|
Jacquart S, Girod-Fullana S, Brouillet F, Pigasse C, Siadous R, Fatnassi M, Grimoud J, Rey C, Roques C, Combes C. Injectable bone cement containing carboxymethyl cellulose microparticles as a silver delivery system able to reduce implant-associated infection risk. Acta Biomater 2022; 145:342-357. [PMID: 35429671 DOI: 10.1016/j.actbio.2022.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
In the challenging quest for a solution to reduce the risk of implant-associated infections in bone substitution surgery, the use of silver ions is promising regarding its broad spectrum on planktonic, sessile as well as multiresistant bacteria. In view of controlling its delivery in situ at the desired dose, we investigated its encapsulation in carboxymethyl cellulose (CMC) microparticles by spray-drying and included the latter in the formulation of a self-setting calcium phosphate bone cement. We implemented an original step-by-step methodology starting from the in vitro study of the antibacterial properties and cytotoxicity of two silver salts of different solubility in aqueous medium and then in the cement to determine the range of silver loading able to confer anti-biofilm and non-cytotoxic properties to the biomaterial. A dose-dependent efficiency of silver was demonstrated on the main species involved in bone-implant infection (S. aureus and S. epidermidis). Loading silver in microspheres instead of loading it directly inside the cement permitted to avoid undesired silver-cement interactions during setting and led to a faster release of silver, i.e. to a higher dose released within the first days combining anti-biofilm activity and preserved cytocompatibility. In addition, a combined interest of the introduction of about 10% (w/w) silver-loaded CMC microspheres in the cement formulation was demonstrated leading to a fully injectable and highly porous (77%) cement, showing a compressive strength analogous to cancellous bone. This injectable silver-loaded biomimetic composite cement formulation constitutes a versatile bone substitute material with tunable drug delivery properties, able to fight against bone implant associated infection. STATEMENT OF SIGNIFICANCE: This study is based on two innovative scientific aspects regarding the literature: i) Choice of silver ions as antibacterial agent combined with their way of incorporation: Carboxymethylcellulose has never been tested into bone cement to control its drug loading and release properties. ii) Methodology to formulate an antibacterial and injectable bone cement: original and multidisciplinary step-by-step methodology to first define, through (micro)biological tests on two silver salts with different solubilities, the targeted range of silver dose to include in carboxymethylcellulose microspheres and, then optimization of silver-loaded microparticles processing to fulfill requirements (encapsulation efficiency and size). The obtained fully injectable composite controls the early delivery of active dose of silver (from 3 h and over 2 weeks) able to fight against bone implant-associated infections.
Collapse
Affiliation(s)
- Sylvaine Jacquart
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | - Sophie Girod-Fullana
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Fabien Brouillet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Christel Pigasse
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Robin Siadous
- Université de Bordeaux, Inserm U1026 Bioingénierie Tissulaire (BioTis), Bordeaux, France
| | - Mohamed Fatnassi
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | - Julien Grimoud
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, Université Toulouse 3 - Paul Sabatier, Toulouse, France
| | - Christian Rey
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France
| | - Christine Roques
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, Université Toulouse 3 - Paul Sabatier, Toulouse, France; CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP - ENSIACET, Toulouse, France.
| |
Collapse
|
42
|
Kämäräinen T, Kadota K, Tse JY, Uchiyama H, Yamanaka S, Tozuka Y. Modulating the Pore Architecture of Ice-Templated Dextran Microparticles Using Molecular Weight and Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6741-6751. [PMID: 35579967 DOI: 10.1021/acs.langmuir.2c00721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spray freeze drying (SFD) is an ice templating method used to produce highly porous particles with complex pore architectures governed by ice nucleation and growth. SFD particles have been advanced as drug carrier systems, but the quantitative description of the morphology formation in the SFD process is still challenging. Here, the pore space dimensions of SFD particles prepared from aqueous dextran solutions of varying molecular weights (40-200 kDa) and concentrations (5-20%) are analyzed using scanning electron microscopy. Coexisting morphologies composed of cellular and dendritic motifs are obtained, which are attributed to variations in the ice growth mechanism determined by the SFD system and modulation of these mechanisms by given precursor solution properties leading to changes in their pore dimensions. Particles with low-aspect ratio cellular pores showing variation of around 0.5-1 μm in diameter with precursor composition but roughly constant with particle diameter are ascribed to a rapid growth regime with high nucleation site density. Image analysis suggests that the pore volume decreases with dextran solid content. Dendritic pores (≈2-20 μm in diameter) with often a central cellular region are identified with surface nucleation and growth followed by a slower growth regime, leading to the overall dendrite surface area scaling approximately linearly with the particle diameter. The dendrite lamellar spacing depends on the concentration according to an inverse power law but is not significantly influenced by molecular weight. Particles with highly elongated cellular pores without lamellar formation show intermediate pore dimensions between the above two limiting morphological types. Analysis of variance and post hoc tests indicate that dextran concentration is the most significant factor in affecting the pore dimensions. The SFD dextran particles herein described could find use in pulmonary drug delivery due to their high porosity and biocompatibility of the matrix material.
Collapse
Affiliation(s)
- Tero Kämäräinen
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Jun Yee Tse
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shinya Yamanaka
- Division of Applied Sciences, Muroran Institute of Technology, Mizumoto-cho 27-1, Muroran 050-8585, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
43
|
Macroencapsulation of Paraffin in a Polymer-Gypsum Composite Using Granulation Technique. MATERIALS 2022; 15:ma15113783. [PMID: 35683081 PMCID: PMC9181731 DOI: 10.3390/ma15113783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/07/2022]
Abstract
This article shows research confirming the thesis on the use of a new material in the form of gypsum, paraffin, and polymer. The article presents an innovative method of preparing plaster with PCM and polymer. Using a special wheel, it was possible to produce a granulate consisting of a mixture of gypsum and paraffin and then spray it with various preparations in order to select the best substance for encapsulation. The article covers strength tests of the obtained granulate depending on the encapsulated material, as well as screening and separation tests depending on the diameter of the granulate. Then, samples consisting of each type of granulate were prepared and poured with gypsum. Studies of the heat conductivity coefficient, the volumetric heat capacity, and thermal diffusivity were carried out. After obtaining the test results, the development of temperature changes was examined for two gypsum boards, one made of raw gypsum and one containing granules, which achieved the best results. The test was carried out using special lamps that were supposed to emit a total of 1000 W of power. The temperature in front of and behind the plates was examined and appropriate conclusions were drawn.
Collapse
|
44
|
Artemova AV, Maklakov SS, Osipov AV, Petrov DA, Shiryaev AO, Rozanov KN, Lagarkov AN. The Size Dependence of Microwave Permeability of Hollow Iron Particles. SENSORS 2022; 22:s22083086. [PMID: 35459071 PMCID: PMC9029975 DOI: 10.3390/s22083086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023]
Abstract
Hollow ferromagnetic powders of iron were obtained by means of ultrasonic spray pyrolysis. A variation in the conditions of the synthesis allows for the adjustment of the mean size of the hollow iron particles. Iron powders were obtained by this technique, starting from the aqueous solution of iron nitrate of two different concentrations: 10 and 20 wt.%. This was followed by a reduction in hydrogen. An increase in the concentration of the solution increased the mean particle size from 0.6 to 1.0 microns and widened particle size distribution, but still produced hollow particles. Larger particles appeared problematic for the reduction, although admixture of iron oxides did not decrease the microwave permeability of the material. The paraffin wax-based composites filled with obtained powders demonstrated broadband magnetic loss with a complex structure for lesser particles, and single-peak absorption for particles of 1 micron. Potential applications are 5G technology, electromagnetic compatibility designs, and magnetic field sensing.
Collapse
|
45
|
Cao J, Yang DL, Wang D, Wang JX. Spray-drying-assisted fabrication of CaF2/SiO2 nanoclusters for dental restorative composites. Dent Mater 2022; 38:835-847. [DOI: 10.1016/j.dental.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022]
|
46
|
Deagglomeration of spray-dried submicron particles by low-power aqueous sonication. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Wenderoth S, Eigen A, Wintzheimer S, Prieschl J, Hirsch A, Halik M, Mandel K. Supraparticles with a Mechanically Triggerable Color-Change-Effect to Equip Coatings with the Ability to Report Damage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107513. [PMID: 35253355 DOI: 10.1002/smll.202107513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Small scratches and abrasion cause damage to packaging coatings. Albeit often invisible to the human eye, such small defects in the coating may ultimately have a strong negative impact on the whole system. For instance, gases may penetrate the coating and consequently the package barrier, thus leading to the degradation of sensitive goods. Herein, the indicators of mechanical damage in the form of particles are reported, which can readily be integrated into coatings. Shear stress-induced damage is indicated by the particles via a color change. The particles are designed as core-shell supraparticles. The supraparticle core is based on rhodamine B dye-doped silica nanoparticles, whereas the shell is made of alumina nanoparticles. The alumina surface is functionalized with a monolayer of a perylene dye. The resulting core-shell supraparticle system thus contains two colors, one in the core and one in the shell part of the architecture. Mechanical damage of this structure exposes the core from the shell, resulting in a color change. With particles integrated into a coating lacquer, mechanical damage of a coating can be monitored via a color change and even be related to the degree of oxygen penetration in a damaged coating.
Collapse
Affiliation(s)
- Sarah Wenderoth
- Chair of Chemical Technology of Materials Synthesis, Julius-Maximilians-University Würzburg, Röntgenring 11, D97070, Würzburg, Germany
- Fraunhofer-Institute for Silicate Research, ISC, Neunerplatz 2, D97082, Würzburg, Germany
| | - Andreas Eigen
- Organic Materials & Devices, Department of Material Science, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Cauerstrasse 3, D91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Fraunhofer-Institute for Silicate Research, ISC, Neunerplatz 2, D97082, Würzburg, Germany
- Departement of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstrasse 1, D91058, Erlangen, Germany
| | - Johannes Prieschl
- Departement of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstrasse 1, D91058, Erlangen, Germany
| | - Andreas Hirsch
- Institute of Organic Chemistry II, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, D91058, Erlangen, Germany
| | - Marcus Halik
- Organic Materials & Devices, Department of Material Science, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Cauerstrasse 3, D91058, Erlangen, Germany
| | - Karl Mandel
- Fraunhofer-Institute for Silicate Research, ISC, Neunerplatz 2, D97082, Würzburg, Germany
- Departement of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstrasse 1, D91058, Erlangen, Germany
| |
Collapse
|
48
|
Lee Y, Fujimoto T, Yamanaka S. Characterization of submicro-sized Ag/ZnO particles generated using the spray pyrolysis method. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Jo S, Kim J, Lee JE, Wurm FR, Landfester K, Wooh S. Multimodal Enzyme-Carrying Suprastructures for Rapid and Sensitive Biocatalytic Cascade Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104884. [PMID: 34939366 PMCID: PMC8981434 DOI: 10.1002/advs.202104884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Colloidal assemblies of mesoporous suprastructures provide effective catalysis in an advantageous volume-confined environment. However, typical fabrication methods of colloidal suprastructures are carried out under toxic or harmful conditions for unstable biomolecules, such as, biocatalytic enzymes. For this reason, biocatalytic enzymes have rarely been used with suprastructures, even though biocatalytic cascade reactions in confined environments are more efficient than in open conditions. Here, multimodal enzyme- and photocatalyst-carrying superstructures with efficient cascade reactions for colorimetric glucose detection are demonstrated. The suprastructures consisting of various functional nanoparticles, including enzyme-carrying nanoparticles, are fabricated by surface-templated evaporation driven suprastructure synthesis on polydimethylsiloxane-grafted surfaces at ambient conditions. For the fabrication of suprastructures, no additional chemicals and reactions are required, which allows maintaining the enzyme activities. The multimodal enzymes (glucose oxidase and peroxidase)-carrying suprastructures exhibit rapid and highly sensitive glucose detection via two enzyme cascade reactions in confined geometry. Moreover, the combination of enzymatic and photocatalytic cascade reactions of glucose oxidase to titanium dioxide nanoparticles is successfully realized for the same assay. These results show promising abilities of multiple colloidal mixtures carrying suprastructures for effective enzymatic reactions and open a new door for advanced biological reactions and enzyme-related works.
Collapse
Affiliation(s)
- Seong‐Min Jo
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Jihye Kim
- School of Chemical Engineering & Materials ScienceChung‐Ang UniversityHeukseok‐ro 84 Dongjak‐guSeoul06974Republic of Korea
| | - Ji Eun Lee
- School of Chemical Engineering & Materials ScienceChung‐Ang UniversityHeukseok‐ro 84 Dongjak‐guSeoul06974Republic of Korea
| | - Frederik R. Wurm
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
- Sustainable Polymer Chemistry GroupMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversiteit TwentePO Box 217Enschede7500 AEThe Netherlands
| | | | - Sanghyuk Wooh
- School of Chemical Engineering & Materials ScienceChung‐Ang UniversityHeukseok‐ro 84 Dongjak‐guSeoul06974Republic of Korea
| |
Collapse
|
50
|
Müssig S, Reichstein J, Miller F, Mandel K. Colorful Luminescent Magnetic Supraparticles: Expanding the Applicability, Information Capacity, and Security of Micrometer-Scaled Identification Taggants by Dual-Spectral Encoding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107511. [PMID: 35146912 DOI: 10.1002/smll.202107511] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
(Sub)micrometer-scaled identification (ID) taggants enable direct identification of arbitrary goods, thereby opening up application fields based on the possibility of tracking, tracing, and anti-counterfeiting. Due to their small dimensions, these taggants can equip in principle even the smallest subcomponents or raw materials with information. To achieve the demanded applicability, the mostly used optically encoded ID taggants must be further improved. Here, micrometer-scaled supraparticles with spectrally encoded luminescent and magnetically encoded signal characteristics are reported. They are produced in a readily customizable bottom-up fabrication procedure that enables precise adjustment of luminescent and magnetic properties on multiple hierarchy levels. The incorporation of commonly used magnetic nanoparticles and fluorescent dyes, respectively, into polymer nanocomposite particles, establishes a convenient toolbox of magnetic and luminescent building blocks. The subsequent assembly of selected building blocks in the desired ratios into supraparticles grants for all the flexibility to freely adjust both signal characteristics. The obtained spectrally resolved visible luminescent and invisible magnetic ID signatures are complementary in nature, thus expanding applicability and information security compared to recently reported optical- or magnetic-encoded taggants. Additionally, the introduced ID taggant supraparticles can significantly enhance the coding capacity. Therefore, the introduced supraparticles are considered as next-generation ID taggants.
Collapse
Affiliation(s)
- Stephan Müssig
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Jakob Reichstein
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Franziska Miller
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstraße 1, D-91058, Erlangen, Germany
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, D-97082, Würzburg, Germany
| |
Collapse
|