1
|
Li R, Liu Y, Zhang Y, Yan Z, Cao Y, Li Q, Mei Y, Sun S, Cao X, Guo L, Gao J. Effects of high α-linolenic acid transgenic rapeseed oil diet on growth performance, fat deposition, flesh quality, antioxidant capacity, and immunity of juvenile largemouth bass (Micropterus salmoides). Lipids 2025; 60:25-37. [PMID: 39356000 DOI: 10.1002/lipd.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
Omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) increases in aquatic products contributes to improving meat quality, thereby positively impacting human health. Different from marine fish which primarily obtain n-3 LC-PUFAs directly from zooplankton and algae, freshwater fish mainly utilize dietary linolenic acid (ALA) as a substrate to synthesize n-3 LC-PUFAs. Our team has successfully created a transgenic rapeseed oil (TRO) with high ALA content. Therefore, we here assessed the impacts of four different diets (LR, low-fat rapeseed oil (RO) diet; HR, high-fat RO diet; LTR, low-fat TRO diet; HTR, high-fat TRO diet) on growth performance, lipid accumulation, fatty acid composition, antioxidant capacity, immunity and serum biochemical indexes of juvenile largemouth bass (Micropterus salmoides), an economically valuable freshwater fish. The results showed no significant difference in survival rate among the four dietary groups. No significant differences in body weight gain and final weight were found between the LR and LTR groups, as well as between HR and HTR groups. No matter if it was a high-fat or low-fat diet, compared with the RO diet, TRO diets significantly increased the content of n-3 LC-PUFA, improved meat quality, effectively alleviated lipid accumulation in livers and muscles of juvenile largemouth bass. In addition, using high-fat diets, TRO diet improved the antioxidant capacity and immune ability of juvenile largemouth bass, thereby promoting the overall health of fish. This study provides novel insights for fish feed formulation optimization from the perspective of genetically modified feed ingredients, and high-quality aquatic products for human consumption.
Collapse
Affiliation(s)
- Rongyun Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Yunhao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Yunbang Zhang
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ze Yan
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yun Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Qingshan Li
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yihui Mei
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Shouxiang Sun
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Blume RY, Hotsuliak VY, Nazarenus TJ, Cahoon EB, Blume YB. Genome-wide identification and diversity of FAD2, FAD3 and FAE1 genes in terms of biotechnological importance in Camelina species. BMC Biotechnol 2024; 24:107. [PMID: 39695603 DOI: 10.1186/s12896-024-00936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND False flax, or gold-of-pleasure (Camelina sativa) is an oilseed that has received renewed research interest as a promising vegetable oil feedstock for liquid biofuel production and other non-food uses. This species has also emerged as a model for oilseed biotechnology research that aims to enhance seed oil content and fatty acid quality. To date, a number of genetic engineering and gene editing studies on C. sativa have been reported. Among the most common targets for this research are genes, encoding fatty acid desaturases, elongases, and diacylglycerol acyltransferases. However, the majority of these genes in C. sativa are present in multiple copies due to the allohexaploid nature of the species. Therefore, genetic manipulations require a comprehensive understanding of the diversity of such gene targets. RESULTS Here we report the detailed analysis of FAD2, FAD3 and FAE1 gene diversity in five Camelina species, including hexaploid C. sativa and four diploids, namely C. neglecta, C. laxa, C. hispida var. hispida and var. grandiflora. It was established that FAD2, FAD3 and FAE1 homeologs in C. sativa retain very high conservancy, despite their allohexaploid inheritance. High sequence conservancy of the identified genes along with their different expression patterns in C. sativa suggest that subfunctionalization of these homeologs is mainly grounded on the transcriptional balancing between subgenomes. Finally, fatty acid composition of seed lipids in different Camelina species was characterized, suggesting potential variability in the activity of fatty acid elongation/desaturation pathways may vary among these taxa. CONCLUSION It was shown that the FAD2, FAD3 and FAE1 genes retain high conservation, even in allohexaploid C. sativa after polyploidzation, in which the subfunctionalization of the described homeologs is mainly grounded on the expressional differences. The major differences in FA accumulation patterns within the seeds of different species were identified as well. These results provide a foundation for future precise gene editing, which would be based on targeting of particular FAD2, FAD3 and FAE1 gene copies in C. sativa that allow regulating the dosage of the mentioned genes, thus shaping the desired FA composition in cultivated false flax.
Collapse
Affiliation(s)
- Rostyslav Y Blume
- Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, 2a Baidy-Vyshnevetskoho str., Kyiv, 04123, Ukraine.
| | - Vitaliy Y Hotsuliak
- Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, 2a Baidy-Vyshnevetskoho str., Kyiv, 04123, Ukraine
| | - Tara J Nazarenus
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation & Department of Biochemistry, University of Nebraska-Lincoln, E318 Beadle Center, 1901 Vine Street, Lincoln, NE, 68588, USA
| | - Yaroslav B Blume
- Institute of Food Biotechnology and Genomics of National Academy of Sciences of Ukraine, 2a Baidy-Vyshnevetskoho str., Kyiv, 04123, Ukraine
| |
Collapse
|
3
|
Jouhet J, Alves E, Boutté Y, Darnet S, Domergue F, Durand T, Fischer P, Fouillen L, Grube M, Joubès J, Kalnenieks U, Kargul JM, Khozin-Goldberg I, Leblanc C, Letsiou S, Lupette J, Markov GV, Medina I, Melo T, Mojzeš P, Momchilova S, Mongrand S, Moreira ASP, Neves BB, Oger C, Rey F, Santaeufemia S, Schaller H, Schleyer G, Tietel Z, Zammit G, Ziv C, Domingues R. Plant and algal lipidomes: Analysis, composition, and their societal significance. Prog Lipid Res 2024; 96:101290. [PMID: 39094698 DOI: 10.1016/j.plipres.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.
Collapse
Affiliation(s)
- Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/INRAE/CEA/Grenoble Alpes Univ., 38000 Grenoble, France.
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Yohann Boutté
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | | | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Pauline Fischer
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Mara Grube
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Jérôme Joubès
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Uldis Kalnenieks
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Joanna M Kargul
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, The French Associates Institute for Dryland Agriculture and Biotechnology, The J. Blaustein Institutes for Desert Research, Ben Gurion University, Midreshet Ben Gurion 8499000, Israel
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Sophia Letsiou
- Department of Food Science and Technology, University of West Attica, Ag. Spiridonos str. Egaleo, 12243 Athens, Greece
| | - Josselin Lupette
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Isabel Medina
- Instituto de Investigaciones Marinas - Consejo Superior de Investigaciones Científicas (IIM-CSIC), Eduardo Cabello 6, E-36208 Vigo, Galicia, Spain
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
| | - Svetlana Momchilova
- Department of Lipid Chemistry, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 9, BG-1113 Sofia, Bulgaria
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200 CNRS-Université de Bordeaux, CNRS, Villenave-d'Ornon, France
| | - Ana S P Moreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Bruna B Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, University of Montpellier, ENSCN, UMR 5247 CNRS, France
| | - Felisa Rey
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal
| | - Sergio Santaeufemia
- Solar Fuels Laboratory, Center of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67083 Strasbourg, France
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev 8531100, Israel
| | - Gabrielle Zammit
- Laboratory of Applied Phycology, Department of Biology, University of Malta, Msida MSD 2080, Malta
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion 7505101, Israel
| | - Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal; CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro 3810-193, Portugal.
| |
Collapse
|
4
|
Tocher DR, Sprague M, Han L, Sayanova O, Norambuena F, Napier JA, Betancor MB. Inclusion of oil from transgenic Camelina sativa in feed effectively supplies EPA and DHA to Atlantic salmon (Salmo salar) grown to market size in seawater pens. Food Chem 2024; 456:139414. [PMID: 38901077 DOI: 10.1016/j.foodchem.2024.139414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 06/22/2024]
Abstract
Atlantic salmon were fed either a diet reflecting current commercial feeds with added oil supplied by a blend of fish oil and rapeseed oil (COM), or a diet formulated with oil from transgenic Camelina sativa containing 20% EPA + DHA (TCO). Salmon were grown from smolt to market size (>3 kg) in sea pens under semi-commercial conditions. There were no differences in growth, feed efficiency or survival between fish fed the TCO or COM diets at the end of the trial. Levels of EPA + DHA in flesh of salmon fed TCO were significantly higher than in fish fed COM. A 140 g fillet from TCO-fed salmon delivered 2.3 g of EPA + DHA, 67% of the weekly requirement level recommended by many health agencies, and 1.5-fold more than the 1.5 g of EPA + DHA for COM-fed fish. Oil from transgenic Camelina supported growth and improved the nutritional quality of farmed salmon in terms of increased "omega-3" supply for human consumers.
Collapse
Affiliation(s)
- Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom; Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Matthew Sprague
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom.
| | - Lihua Han
- Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | - Olga Sayanova
- Rothamsted Research, Harpenden AL5 2JQ, United Kingdom
| | | | | | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom.
| |
Collapse
|
5
|
Gao Y, Liu C, Wang X, Zhou H, Mai K, He G. EPA and DHA promote cell proliferation and enhance activity of the Akt-TOR-S6K anabolic signaling pathway in primary muscle cells of turbot (Scophthalmus maximus L.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1483-1494. [PMID: 38814520 DOI: 10.1007/s10695-024-01351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Fish growth and health are predominantly governed by dietary nutrient supply. Although the beneficial effects of omega-3 polyunsaturated fatty acids supplementation have been shown in a number of fish species, the underlying mechanisms are still mostly unknown. In this study, we conducted an investigation into the effects of EPA and DHA on cell proliferation, nutrient sensing signaling, and branched-chain amino acids (BCAA) transporting in primary turbot muscle cells. The findings revealed that EPA and DHA could stimulate cell proliferation, promote protein synthesis and inhibit protein degradation through activation of target of rapamycin (TOR) signaling pathway, a pivotal nutrient-sensing signaling cascade. While downregulating the expression of myogenin and myostatin, EPA and DHA increased the level of myogenic regulatory factors, such as myoD and follistatin. Furthermore, we observed a significant increase in the concentrations of intracellular BCAAs following treatment with EPA or DHA, accompanied by an upregulation of the associated amino acid transporters. Our study providing valuable insights into the mechanisms underlying the growth-promoting effects of omega-3 fatty acids in fish.
Collapse
Affiliation(s)
- Ya Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Chengdong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China.
| | - Xuan Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Huihui Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Kangsen Mai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Gen He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| |
Collapse
|
6
|
Péron M, Gonzalvez R, Hue S, Soudant P, Le Grand F, Mazurais D, Vagner M. Spatial and ontogenetic modulation of fatty acid composition in juvenile European sea bass (Dicentrarchus labrax) from two French estuaries. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106456. [PMID: 38522120 DOI: 10.1016/j.marenvres.2024.106456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/25/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
This study evaluated how estuary of origin and ontogenetic stage influence the fatty acid (FA) composition in the tissues of wild European sea bass juvenile. We evidenced tissue-specific patterns, with the brain exhibiting a distinct FA composition from the liver and muscle. Ontogenetic stage and estuary influenced the general FA profile, and particularly the essential FA (EFA) like docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) in all tissues. The data also revealed the ability of wild sea bass to modulate, at the molecular level, FA biosynthesis pathways and suggest a potential dietary DHA limitation in the natural environment. The distribution of FA within tissues might reflect shifts in diet, metabolic demands, or adaptations to environmental conditions. This study provides insights about FA dynamics in euryhaline fish during juvenile life stage, improving our understanding of the metabolism need and EFA trophic availability in a changing environment.
Collapse
Affiliation(s)
- Mickaël Péron
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France.
| | - Romain Gonzalvez
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
| | - Sarah Hue
- UMR-I 02 SEBIO - Stress Environnementaux et BIOsurveillance des milieux aquatiques, Université du Havre Normandie, France
| | - Philippe Soudant
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
| | | | - David Mazurais
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
| | - Marie Vagner
- Univ Brest, CNRS, IRD, Ifremer, UMR 6539, LEMAR, Plouzané, France
| |
Collapse
|
7
|
Péron M, Simon V, Le Grand F, Soudant P, Mazurais D, Vagner M. Non-lethal sampling method for the analysis of white muscle fatty acid profiles in European sea bass (Dicentrarchus labrax). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1381-1390. [PMID: 37948014 DOI: 10.1007/s10695-023-01262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
This study presents a novel non-lethal sampling method for assessing fatty acid (FA) composition in juvenile European sea bass (Dicentrarchus labrax) using subcutaneous white muscle biopsies. This research aimed to evaluate the suitability of the biopsy for FA analysis using two lipid extraction protocols and comparing them to a lethal routine method. The results showed that a mass of fresh tissue as low as 1.4 mg provided good quality FA chromatograms for both reserve and membrane lipids. Although the biopsy method displayed high variability in terms of FA quantity among intra-individual replicates, it showed good FA profile repeatability in both reserve and membrane lipids. The study highlights the potential of this non-lethal approach for studying FA dynamics in fish, with its application being particularly promising for ecological and experimental studies. However, careful biopsy implementation is recommended to account for potential lipid droplet and lipid distribution variability within the tissue.
Collapse
Affiliation(s)
- Mickaël Péron
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France.
| | - Victor Simon
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | | | - Philippe Soudant
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - David Mazurais
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Marie Vagner
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| |
Collapse
|
8
|
Abbas N, Riaz S, Mazhar S, Essa R, Maryam M, Saleem Y, Syed Q, Perveen I, Bukhari B, Ashfaq S, Abidi SHI. Microbial production of docosahexaenoic acid (DHA): biosynthetic pathways, physical parameter optimization, and health benefits. Arch Microbiol 2023; 205:321. [PMID: 37642791 DOI: 10.1007/s00203-023-03666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Omega-3 fatty acids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and α-linolenic acid (ALA), are essential polyunsaturated fatty acids with diverse health benefits. The limited conversion of dietary DHA necessitates its consumption as food supplements. Omega-3 fatty acids possess anti-arrhythmic and anti-inflammatory capabilities, contributing to cardiovascular health. Additionally, DHA consumption is linked to improved vision, brain, and memory development. Furthermore, omega-3 fatty acids offer protection against various health conditions, such as celiac disease, Alzheimer's, hypertension, thrombosis, heart diseases, depression, diabetes, and certain cancers. Fish oil from pelagic cold-water fish remains the primary source of omega-3 fatty acids, but the global population burden creates a demand-supply gap. Thus, researchers have explored alternative sources, including microbial systems, for omega-3 production. Microbial sources, particularly oleaginous actinomycetes, microalgae like Nannochloropsis and among microbial systems, Thraustochytrids stand out as they can store up to 50% of their dry weight in lipids. The microbial production of omega-3 fatty acids is a potential solution to meet the global demand, as these microorganisms can utilize various carbon sources, including organic waste. The biosynthesis of omega-3 fatty acids involves both aerobic and anaerobic pathways, with bacterial polyketide and PKS-like PUFA synthase as essential enzymatic complexes. Optimization of physicochemical parameters, such as carbon and nitrogen sources, pH, temperature, and salinity, plays a crucial role in maximizing DHA production in microbial systems. Overall, microbial sources hold significant promise in meeting the global demand for omega-3 fatty acids, offering an efficient and sustainable solution for enhancing human health.
Collapse
Affiliation(s)
- Naaz Abbas
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Sana Riaz
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan.
| | - Sania Mazhar
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Ramsha Essa
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Maria Maryam
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Yasar Saleem
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Quratulain Syed
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Ishrat Perveen
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Bakhtawar Bukhari
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Saira Ashfaq
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| | - Syed Hussain Imam Abidi
- Pakistan Council of Scientific and Industrial Research (PCSIR) Laboratories Complex Ferozepur Road, Lahore, Pakistan
| |
Collapse
|
9
|
Napier JA, Betancor MB. Engineering plant-based feedstocks for sustainable aquaculture. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102323. [PMID: 36508933 DOI: 10.1016/j.pbi.2022.102323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
There is a growing recognition of the challenges associated with ensuring good nutrition for all without compromising the environment. This is particularly true for aquaculture, given the reliance on marine extraction for key feed ingredients, yet at the same time it delivers key nutrients such as omega-3 long chain polyunsaturated fatty acids. This review will consider progress in transitioning away from oceanic-derived fish oils as feed ingredients, focusing on the emerging transgenic plant sources of these fatty acids. Specific consideration is given to the "validation" phase of this process, in which oils from GM plants are used as substitutes for bona fide fish oils in aquafeed diets. Equally, consideration is given to the demonstration of "real-world" potential by GM field trials. Collectively, the status of these new plant-based sources of omega-3 fish oils confirm the arrival of a new wave of plant biotech products, 25 years after the introduction of herbicide-tolerant input traits and demonstrate the power of GM agriculture to contribute to food security and operating within planetary boundaries.
Collapse
Affiliation(s)
| | - Monica B Betancor
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
10
|
Basto A, Valente LMP, Sousa V, Conde-Sieira M, Soengas JL. Total fishmeal replacement by defatted Tenebrio molitor larvae meal induces alterations in intermediary metabolism of European sea bass (Dicentrarchus labrax). J Anim Sci 2023; 101:skad040. [PMID: 36749357 PMCID: PMC9985153 DOI: 10.1093/jas/skad040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/08/2023] Open
Abstract
The replacement of fishmeal (FM) by insect meal (IM) in aquafeed formulation has been thoroughly studied lately, but little is known about their impact on nutrient metabolism of fish. This study evaluated the impact not only of partial but also total FM replacement by IM on intermediary metabolism of European sea bass (Dicentrarchus labrax). A fishmeal-based diet was used as a control (CTRL) and two other diets were formulated to include 20% and 40% of defatted Tenebrio molitor larvae meal (dTM), replacing 50% (TM50) and 100% (TM100) of fishmeal (FM), respectively. After a 16-week feeding trial, a multidisciplinary approach including assessment of histological, biochemical, molecular, and enzymatic parameters was adopted to investigate hepatic and plasmatic responses to the different dietary formulations. The results obtained demonstrated that dTM can be successfully used to replace 50% of FM in diets for European sea bass, without adversely affecting liver health or intermediary metabolism of nutrients. As for TM100, although no signs of steatosis were observed in the liver, the activity of glycolytic and lipogenic genes and enzymes increased when compared to CTRL diet (P < 0.05), resulting in higher levels of plasmatic non-esterified fatty acids and triacylglycerides (P < 0.05), which in the long-term may compromise fish health, thus precluding such a high degree of substitution for use in practical diets for European sea bass.
Collapse
Affiliation(s)
- Ana Basto
- CIIMAR/CIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research -University of Porto, Matosinhos 4450-208, Portugal
- ICBAS, School of Medicine and Biomedical Sciences – University of Porto, Porto 4050-313, Portugal
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - Luisa M P Valente
- CIIMAR/CIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research -University of Porto, Matosinhos 4450-208, Portugal
- ICBAS, School of Medicine and Biomedical Sciences – University of Porto, Porto 4050-313, Portugal
| | - Vera Sousa
- CIIMAR/CIMAR-LA, Interdisciplinary Centre of Marine and Environmental Research -University of Porto, Matosinhos 4450-208, Portugal
- ICBAS, School of Medicine and Biomedical Sciences – University of Porto, Porto 4050-313, Portugal
| | - Marta Conde-Sieira
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | - José L Soengas
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| |
Collapse
|
11
|
Venegas-Calerón M, Napier JA. New alternative sources of omega-3 fish oil. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516467 DOI: 10.1016/bs.afnr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Long-chain omega-3 polyunsaturated fatty acids such as eicosapentaenoic and docosahexaenoic acids play an important role in brain growth and development, as well as in the health of the body. These fatty acids are traditionally found in seafood, such as fish, fish oils, and algae. They can also be added to food or consumed through dietary supplements. Due to a lack of supply to meet current demand and the potential for adverse effects from excessive consumption of fish and seafood, new alternatives are being sought to achieve the recommended levels in a safe and sustainable manner. New sources have been studied and new production mechanisms have been developed. These new proposals, as well as the importance of these fatty acids, are discussed in this paper.
Collapse
|
12
|
Fish Oil Replacement by Camelina ( Camelina sativa L.) Oil in Diets for Juvenile Tench ( Tinca tinca L.): Effects on Survival, Growth, and Whole-Body Fatty Acid Profile. Animals (Basel) 2022; 12:ani12233362. [PMID: 36496883 PMCID: PMC9736473 DOI: 10.3390/ani12233362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Tench (Tinca tinca L.) plays a key role in the diversification of inland aquaculture, but its culture is mainly based on extensive culture systems with usually low and unpredictable yields. Rearing procedures under controlled conditions are essential to promote and consolidate tench production, and it is necessary to set up adequate feeding in early growth phases. Fish oil (FO) is currently the main source of lipids in aquafeeds, but considering the stagnation of smaller pelagic fisheries, alternative oils should be addressed. In a ninety-day experiment, the effects of partial and total replacement of FO with camelina oil (CO) on juvenile tench growth performance and whole-body composition were evaluated. Six isonitrogenous and isolipidic diets with different levels of CO were tested: 0% (control), 20%, 40%, 60%, 80%, and 100%. The survival rate was 100%, and no significant differences in growth performance (total length, weight, specific growth rate, feed conversion ratio, and biomass gain) were found. The lipid content in whole-body juveniles was significantly lower when juveniles were fed diets containing 40% and higher levels of CO than those fed the control diet whereas linolenic acid content was significantly higher. No differences in ΣSFA, ΣMUFA, ΣPUFA, Σn - 3, or Σn - 6 whole-body content were found. The nutritional indices ΣPUFA/ΣSFA and Σn - 6/Σn - 3 showed a linear increase trend with dietary CO inclusion whereas the EPA + DHA showed an opposite tendency. Compared to the control diet, EPA + DHA content (g kg-1) was significantly lower in juvenile tench fed a 100% CO diet, and Σn - 6/Σn - 3 was significantly higher in juvenile tench fed 80% and 100% CO diets. Overall, the results indicate that the total replacement of FO with CO in diets is feasible without negative effects on growth performance whereas the nutritional quality of juvenile tench was unaffected with a maximum replacement of 80%.
Collapse
|
13
|
Han L, Silvestre S, Sayanova O, Haslam RP, Napier JA. Using field evaluation and systematic iteration to rationalize the accumulation of omega-3 long-chain polyunsaturated fatty acids in transgenic Camelina sativa. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1833-1852. [PMID: 35656640 PMCID: PMC9398312 DOI: 10.1111/pbi.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The Brassicaceae Camelina sativa (gold of pleasure) is now an established niche crop and being used as a transgenic host for a range of novel seed traits. Most notable of these is the accumulation of omega-3 long-chain polyunsaturates such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), fatty acids normally only found in marine organisms. As part of continued efforts to optimize the accumulation of these non-native fatty acids via seed-specific expression of algal genes, a new series of iterative constructs was built and introduced into Camelina. Seed fatty acid composition was determined, and the presence of EPA and DHA was confirmed. To provide an additional level of evaluation, full environmental release was carried out on selected events, providing a real-world gauntlet against which to assess the performance of these novel lines. Composition of the seed oil triacylglycerol was determined by mass spectrometry, allowing for conclusions as to the contribution of different activities to the final accumulation of EPA and DHA. Since these data were derived from field-grown material, they also represent a robust demonstration of the stability of the omega-3 LC-PUFA trait in Camelina. We propose that field trialling should be routinely incorporated in the plant synthetic biology 'design-build-test-learn' cycle.
Collapse
Affiliation(s)
- Lihua Han
- Plant SciencesRothamsted ResearchHarpenden, HertsUK
| | | | | | | | | |
Collapse
|
14
|
Neupane D, Lohaus RH, Solomon JKQ, Cushman JC. Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060772. [PMID: 35336654 PMCID: PMC8951600 DOI: 10.3390/plants11060772] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 05/09/2023]
Abstract
Camelina sativa (L.) Crantz. is an annual oilseed crop within the Brassicaceae family. C. sativa has been grown since as early as 4000 BCE. In recent years, C. sativa received increased attention as a climate-resilient oilseed, seed meal, and biofuel (biodiesel and renewable or green diesel) crop. This renewed interest is reflected in the rapid rise in the number of peer-reviewed publications (>2300) containing “camelina” from 1997 to 2021. An overview of the origins of this ancient crop and its genetic diversity and its yield potential under hot and dry growing conditions is provided. The major biotic barriers that limit C. sativa production are summarized, including weed control, insect pests, and fungal, bacterial, and viral pathogens. Ecosystem services provided by C. sativa are also discussed. The profiles of seed oil and fatty acid composition and the many uses of seed meal and oil are discussed, including food, fodder, fuel, industrial, and medical benefits. Lastly, we outline strategies for improving this important and versatile crop to enhance its production globally in the face of a rapidly changing climate using molecular breeding, rhizosphere microbiota, genetic engineering, and genome editing approaches.
Collapse
Affiliation(s)
- Dhurba Neupane
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
| | - Richard H. Lohaus
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
| | - Juan K. Q. Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, NV 89557, USA;
| | - John C. Cushman
- MS330/Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; (D.N.); (R.H.L.)
- Correspondence: ; Tel.: +1-775-784-1918
| |
Collapse
|
15
|
Hong J, Bledsoe JW, Overturf KE, Lee S, Iassonova D, Small BC. LatitudeTM Oil as a Sustainable Alternative to Dietary Fish Oil in Rainbow Trout (Oncorhynchus mykiss): Effects on Filet Fatty Acid Profiles, Intestinal Histology, and Plasma Biochemistry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.837628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the effects of Latitude™ oil (transgenic canola) fed to rainbow trout, Oncorhynchus mykiss, for 52 weeks on growth performance, non-specific immune responses, histology, and filet omega-3 fatty acid content. Latitude™ oil (LO) has high lipid digestibility (93%), and contains omega-3 fatty acids eicosapentaenoic acid (EPA, C20:5n-3), docosapentaenoic acid (DPA, C22:5n-3), and docosahexaenoic acid (DHA, C22:6n-3). Three isonitrogenous (49%), isolipidic (20%) and isocaloric (24.2 MJ kg−1) diets differing by lipid source (0, 8, or 16% LO, replacing fish oil and poultry fat) were fed over an entire production cycle beginning with 19 g juvenile fish. At the end of the 52-week feeding trial, final body weight, weight gain and specific growth rate of fish fed 8% LO (LO-8) and 16% LO (LO-16) diets were significantly higher than those fed the 0% LO (LO-0) diet (P < 0.05). Phagocytic respiratory burst in fish fed the LO-16 diet was significantly higher than those fish fed the other 2 diets (P < 0.05). There were no differences in superoxide dismutase, catalase and lysozyme. Histological examination of the distal intestine indicated reduced inflammation in fish fed the LO-8 diet but not the LO-0 and LO-16 diets. Filet DHA content of fish fed the LO-8 and LO-16 diets were similar to those of fish fed the LO-0 diet. As these diets had lower DHA content, this suggests dietary EPA and DPA from LO was converted to DHA and deposited in the filet. This is supported by increased expression of genes involved in fatty acid elongation, desaturation and beta oxidation in both liver and muscle of fish fed LO (P < 0.05). Total EPA+DHA content of the edible filet ranged between 1,079–1,241 mg 100 g−1 across treatments, each providing the recommended daily intake for human consumption (500–1,000 mg day−1). Overall, this study demonstrated that LO fed over an entire production period is a highly digestible lipid source suitable and sustainable for meeting the fatty acid requirements of rainbow trout, as well as consumer expectations for filet omega-3 fatty acid content.
Collapse
|
16
|
Wild and Farmed Sea Bass (Dicentrarchus Labrax): Comparison of Biometry Traits, Chemical and Fatty Acid Composition of Fillets. FISHES 2022. [DOI: 10.3390/fishes7010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Sea bass is a fish widely produced, consumed and appreciated in Italy. Its intensive rearing system provides the consumption of valuable fish to a wider population. Thanks to the use of an appropriate feed, it is possible to obtain reared sea bass which are richer in total lipid with a majority presence of polyunsaturated fatty acids, such as n-3 and n-6 series. In this study, a total of 75 specimens of European sea bass coming from three different origins (two farmed and one wild) were considered, with 25 fish from each origin. Biometry traits were valued as of the chemical and fatty acid profile of fillets. Biometric indices, proximate composition and fatty acid percentage were significantly affected by the rearing system. Fishes from the intensive rearing system (IRS) showed the highest value of relative profile and condition factor, a higher content of lipid and total n-6 that influenced the n-6/n-3 ratio and the atherogenic indexes, and values that indicated their flesh for human consumption as a healthy alternative to the wild fishes.
Collapse
|
17
|
Interactions between plant lipid-binding proteins and their ligands. Prog Lipid Res 2022; 86:101156. [DOI: 10.1016/j.plipres.2022.101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 01/14/2022] [Indexed: 01/11/2023]
|
18
|
Pan YL, Rodrigues MJ, Pereira CG, Engrola S, Colen R, Mansinhos I, Romano A, Andrade PB, Fernandes F, Custódio L. Exploring the Biotechnological Value of Marine Invertebrates: A Closer Look at the Biochemical and Antioxidant Properties of Sabella spallanzanii and Microcosmus squamiger. Animals (Basel) 2021; 11:3557. [PMID: 34944333 PMCID: PMC8697903 DOI: 10.3390/ani11123557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/26/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Sabella spallanzanii and Microcosmus squamiger were profiled for proximate composition, minerals, amino acids, fatty acids (FA), carotenoids, radical scavenging activity on the 2,2-diphenyl-1- picrylhydrazyl (DPPH) radical, oxygen radical absorbance capacity (ORAC) and iron and copper chelating properties. Microcosmus squamiger had the highest level of moisture and crude protein, S. spallanzanii was enriched in crude fat and ash. Both species had similar levels of carbohydrates and energy. There was a prevalence of arginine and glycine in S. spallanzanii, and of taurine in M. squamiger. The most abundant minerals in both species were Na, Ca, and K. The methanol extract of S. spallanzanii had metal chelating properties towards copper and iron, while the methanol extract of M. squamiger was able to chelate copper. M. squamiger extracts had similar ORAC values. Fucoxanthinol and fucoxanthin were the major carotenoids in the M. squamiger dichloromethane extract. Saturated FA were more abundant than unsaturated ones in methanol extracts, and unsaturated FA prevailed in the dichloromethane extracts. Palmitic acid was the predominant FA in methanol extracts, whereas eicosapentaenoic (EPA) and dihomo-γ-linolenic acids were the major compounds in dichloromethane extracts. Low n-6/n-3 ratios were obtained. Our results suggests that both species could be explored as sources of bioactive ingredients with multiple applications.
Collapse
Affiliation(s)
- Yu-Lun Pan
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Maria João Rodrigues
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Catarina G. Pereira
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Sofia Engrola
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Rita Colen
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| | - Inês Mansinhos
- MED–Mediterranean Institute for Agriculture, Environment and Development, Faculty of Sciences and Technology, Campus de Gambelas, Ed. 8, University of Algarve, 8005-139 Faro, Portugal; (I.M.); (A.R.)
| | - Anabela Romano
- MED–Mediterranean Institute for Agriculture, Environment and Development, Faculty of Sciences and Technology, Campus de Gambelas, Ed. 8, University of Algarve, 8005-139 Faro, Portugal; (I.M.); (A.R.)
| | - Paula B. Andrade
- REQUIMTE/LAQV: Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal; (P.B.A.); (F.F.)
| | - Fátima Fernandes
- REQUIMTE/LAQV: Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal; (P.B.A.); (F.F.)
| | - Luísa Custódio
- Centre of Marine Sciences (CCMAR), Faculty of Sciences and Technology, Campus of Gambelas, Ed. 7, University of Algarve, 8005-139 Faro, Portugal; (Y.-L.P.); (M.J.R.); (C.G.P.); (S.E.); (R.C.)
| |
Collapse
|
19
|
Effect of Substituting Fish Oil with Camelina Oil on Growth Performance, Fatty Acid Profile, Digestibility, Liver Histology, and Antioxidative Status of Red Seabream ( Pagrus major). Animals (Basel) 2021; 11:ani11071990. [PMID: 34359117 PMCID: PMC8300156 DOI: 10.3390/ani11071990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The shortage of natural resources, prices, and high demand for fish oil has encouraged the use of non-traditional ingredients in aquafeed. The search for an alternative lipid source in aquafeeds has seen terrestrial vegetable oils at the epicenter of various flagship aqua-feed research. Herein, we investigated the effects of substituting fish oil (FO) with camelina oil (CO) on growth performance, fatty acid profile, digestibility, liver histology, and antioxidative status of red seabream (Pagrus major). After 56 days of the feeding trial, the results suggested that FO can be replaced with CO in the feeds of farmed red seabream without compromising growth, blood chemistry, digestibility, and overall health status. Abstract A 56-day feeding trial to evaluate the responses of red seabream (initial weight: 1.8 ± 0.02 g) to the substitution of fish oil (FO) with camelina oil (CO) at different ratios was conducted. The control diet formulated at 46% CP (6F0C) contained only FO without CO; from the second to the fifth diet, the FO was substituted with CO at rates of 5:1 (5F1C), 4:2 (4F2C), 3:3 (3F3C), 2:4 (2F4C), and 0:6 (0F6C). The results of the present study showed that up to full substitution of FO with CO showed no significant effect on growth variables BW = 26.2 g–28.3 g), body weight gain (BWG = 1275.5–1365.3%), specific growth rate (SGR = 4.6–4.7), feed intake (FI = 25.6–27.8), feed conversion ratio (FCR = 1.0–1.1), biometric indices condition factor (CF = 2.2–2.4), hepatosomatic index (HSI = 0.9–1.1), viscerasomatic index (VSI = 7.5–9.5), and survival rates (SR = 82.2–100) with different FO substitution levels with CO. Similarly, there were no significant differences (p < 0.05) found in the whole-body composition except for the crude lipid content, and the highest value was observed in the control group (291 g/kg) compared to the other groups FO5CO1 (232 k/kg), FO4CO2 (212 g/kg), FO2CO4 (232 g/kg) and FO0CO6 (244 g/kg). Blood chemistry levels were not influenced in response to test diets: hematocrit (36–33%), glucose (Glu = 78.3–71.3 mg/dL), total protein (T-pro = 3.1–3.8 g/dL), total cholesterol (T-Chol = 196.0–241 mg/dL), blood urea nitrogen (BUN = 9.0–14.6 mg/dL), total bilirubin (T-Bil = 0.4–0.5 mg/dL), triglyceride (TG = 393.3–497.6 mg/dL), alanine aminotransferase test (ALT = 50–65.5 UL/L), aspartate aminotransferase test (AST = 38–69.3 UL/L). A remarkable modulation was observed in catalase (CAT) and superoxide dismutase (SOD) activities in the liver, as CAT and SOD values were lower with the complete FO substitution with CO (0F6C), and the highest values were observed in the control and (4F2C). This study indicates that red seabream may have the ability to maintain LC-PUFAs between tissues and diets, and CO substitution of FO could improve both lipid metabolism and oxidation resistance as well as maintain digestibility. In conclusion, dietary FO can be replaced up to 100% or 95% by CO in the diets of red seabream as long as n-3 HUFA, EPA, and DHA are incorporated at the recommended level.
Collapse
|
20
|
Assessing the Camelina (Camelina sativa (L.) Crantz) Seed Harvesting Using a Combine Harvester: A Case-Study on the Assessment of Work Performance and Seed Loss. SUSTAINABILITY 2020. [DOI: 10.3390/su13010195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The growing demand in food and non-food industries for camelina oil is driving the interest of farmers and contractors in investing in such feedstock. Nonetheless, the cost, performance and critical aspects related to the harvesting stage are still not properly investigated. In the present study, an ad-hoc test was performed in Spain in order to fulfill this gap. The results support the hypothesis to harvest camelina seeds with the same combine harvester used for cereal harvesting without further investment. Theoretical field capacity (TFC), effective field capacity (EFC), material capacity (MC), and field efficiency (FE) were 4.34 ha h−1, 4.22 ha h−1, 4.66 Mg h−1 FM, and 97.24%, respectively. The harvesting cost was estimated in 48.51 € ha−1. Approximately, the seed loss of 0.057 ± 0.028 Mg ha−1 FM was due to the impact of the combine harvester header and dehiscence of pods, whilst 0.036 ± 0.006 Mg ha−1 FM of seeds were lost due to inefficiency of the threshing system of the combine harvester. Adjustment of the working speed of the combine and the rotation speed of the reel may help to reduce such loss.
Collapse
|
21
|
Huyben D, Rimoldi S, Ceccotti C, Montero D, Betancor M, Iannini F, Terova G. Effect of dietary oil from Camelina sativa on the growth performance, fillet fatty acid profile and gut microbiome of gilthead Sea bream ( Sparus aurata). PeerJ 2020; 8:e10430. [PMID: 33354421 PMCID: PMC7733328 DOI: 10.7717/peerj.10430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In the last two decades, research has focused on testing cheaper and sustainable alternatives to fish oil (FO), such as vegetable oils (VO), in aquafeeds. However, FO cannot be entirely replaced by VOs due to their lack of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA), particularly eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids. The oilseed plant, Camelina sativa, may have a higher potential to replace FO since it can contains up to 40% of the omega-3 precursors α-linolenic acid (ALA; 18:3n-3) and linoleic acid (LA; 18:2n-6). METHODS A 90-day feeding trial was conducted with 600 gilthead sea bream (Sparus aurata) of 32.92 ± 0.31 g mean initial weight fed three diets that replaced 20%, 40% and 60% of FO with CO and a control diet of FO. Fish were distributed into triplicate tanks per diet and with 50 fish each in a flow-through open marine system. Growth performance and fatty acid profiles of the fillet were analysed. The Illumina MiSeq platform for sequencing of 16S rRNA gene and Mothur pipeline were used to identify bacteria in the faeces, gut mucosa and diets in addition to metagenomic analysis by PICRUSt. RESULTS AND CONCLUSIONS The feed conversion rate and specific growth rate were not affected by diet, although final weight was significantly lower for fish fed the 60% CO diet. Reduced final weight was attributed to lower levels of EPA and DHA in the CO ingredient. The lipid profile of fillets were similar between the dietary groups in regards to total saturated, monounsaturated, PUFA (n-3 and n-6), and the ratio of n-3/n-6. Levels of EPA and DHA in the fillet reflected the progressive replacement of FO by CO in the diet and the EPA was significantly lower in fish fed the 60% CO diet, while ALA was increased. Alpha and beta-diversities of gut bacteria in both the faeces and mucosa were not affected by any dietary treatment, although a few indicator bacteria, such as Corynebacterium and Rhodospirillales, were associated with the 60% CO diet. However, lower abundance of lactic acid bacteria, specifically Lactobacillus, in the gut of fish fed the 60% CO diet may indicate a potential negative effect on gut microbiota. PICRUSt analysis revealed similar predictive functions of bacteria in the faeces and mucosa, although a higher abundance of Corynebacterium in the mucosa of fish fed 60% CO diet increased the KEGG pathway of fatty acid synthesis and may act to compensate for the lack of fatty acids in the diet. In summary, this study demonstrated that up to 40% of FO can be replaced with CO without negative effects on growth performance, fillet composition and gut microbiota of gilthead sea bream.
Collapse
Affiliation(s)
- David Huyben
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Institute of Aquaculture, Faculty of Natural Sciences,, University of Stirling, Stirling, United Kingdom
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Chiara Ceccotti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Las Palmas, Canary Islands, Spain
| | - Monica Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Federica Iannini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|