1
|
Basharat Z, Foster LJ, Abbas S, Yasmin A. Comparative Proteomics of Bacteria Under Stress Conditions. Methods Mol Biol 2025; 2859:129-162. [PMID: 39436600 DOI: 10.1007/978-1-0716-4152-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Bacteria are unicellular organisms with the ability to exist in the harshest of climate and cope with sub-optimal fluctuating environmental conditions. They accomplish this by modification of their internal cellular environment. When external conditions are varied, change in the cell is triggered at the transcriptional level, which usually leads to proteolysis and rewiring of the proteome. Changes in cellular homeostasis, modifications in proteome, and dynamics of such survival mechanisms can be studied using various scientific techniques. Our focus in this chapter would be on comparative proteomics of bacteria under stress conditions using approaches like 2D electrophoresis accompanied by N-terminal sequencing and recently, mass spectrometry. More than 170 such studies on bacteria have been accomplished till to date and involve analysis of whole cells as well as that of cellular fractions, i.e., outer membrane, inner membrane, cell envelope, cytoplasm, thylakoid, lipid bodies, etc. Similar studies conducted on gram-negative and gram-positive model organism, i.e., Escherichia coli and Bacillus subtilis, respectively, have been summarized. Vital information, hypothesis about conservation of stress-specific proteome, and conclusions are also presented in the light of research conducted over the last decades.
Collapse
Affiliation(s)
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Labs, University of British Columbia, Vancouver, BC, Canada
| | - Sidra Abbas
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan.
| |
Collapse
|
2
|
Nanda SP, Panda BP, Panigrahi KCS, Pradhan A. Ecological risk assessment of heavy metals contaminated mining sites of eastern india using soil and moss. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1029. [PMID: 39375203 DOI: 10.1007/s10661-024-13166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024]
Abstract
The blooming industrialization and urbanization is leading to increased mining operations. These intensified mining activities emit heavy metals into the environment, posing serious threats to ecosystems. Hence, this study focused on assessing heavy metal pollution in mining soil, utilizing mosses as bioindicators. The ecological risk, geo-accumulation factor, and contamination factor have been calculated to know the harmful effect of heavy metals on ecosystem. The study covered three distinct mining sites of eastern India within Odisha: Jajpur's Sukinda Valley (SP1, Cr), Keonjhar's Joda-Barbil (SP2, Fe and Mn), and Sundargarh's Koira-Joda (SP3, Fe). The collection of 48 soil samples through random sampling revealed significant variations in heavy metal concentrations. SP1 recorded Cr concentration of 6572 ± 445 mg/kg and Ni of 8042.47 ± 501.38 mg/kg, surpassing eco-toxicological levels. The storage site in SP2 exhibited the highest Fe concentration at 9872 ± 502 mg/kg, and Mn levels in SP3 were at 7884 ± 432 mg/kg. Storage areas in all three regions held the highest concentrations of heavy metals. Mosses in studied area demonstrated as potential bioindicators for monitoring heavy metal pollution. EF and Igeo assessments showed Cd, Pb, Hg, and other heavy metal contamination compared to earlier investigations. This study indicated higher ecological risks for Pb, As, Cu, Ni, and Zn. The Hyophila involuta accumulates Mn, Cr, Cd, Pb, Fe, and Hg, while Barbula arcuata accumulates Mn, As, and Cu in SP1. Hyophila involuta and Trematodon longicollis accumulate Mn, Cr, Cd, Pb, Fe, Hg, and Zn in SP2. Trematodon ambiguous accumulates Cd, Fe, and Ni, while Fissidens diversifolius accumulates Mn, Cr, Hg, As, Cu, and Zn in SP3. These findings emphasize the necessity of monitoring heavy metal pollution in contaminated zones using moss as a potential bioindicator.
Collapse
Affiliation(s)
- Swayam Prakash Nanda
- Environmental Science, Department of Chemistry, Institute of Technical Education & Research, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Bibhu Prasad Panda
- Environmental Science, Department of Chemistry, Institute of Technical Education & Research, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Kishore C S Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Jatni, Bhubaneswar, Odisha, India
| | - Abanti Pradhan
- Environmental Science, Department of Chemistry, Institute of Technical Education & Research, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
3
|
Anju VT, Busi S, Mohan MS, Salim SA, Ar S, Imchen M, Kumavath R, Dyavaiah M, Prasad R. Surveillance and mitigation of soil pollution through metagenomic approaches. Biotechnol Genet Eng Rev 2024; 40:589-622. [PMID: 36881114 DOI: 10.1080/02648725.2023.2186330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Soil pollution is one of the serious global threats causing risk to environment and humans. The major cause of accumulation of pollutants in soil are anthropogenic activities and some natural processes. There are several types of soil pollutants which deteriorate the quality of human life and animal health. They are recalcitrant hydrocarbon compounds, metals, antibiotics, persistent organic compounds, pesticides and different kinds of plastics. Due to the detrimental properties of pollutants present in soil on human life and ecosystem such as carcinogenic, genotoxic and mutagenic effects, alternate and effective methods to degrade the pollutants are recommended. Bioremediation is an effective and inexpensive method of biological degradation of pollutants using plants, microorganisms and fungi. With the advent of new detection methods, the identification and degradation of soil pollutants in different ecosystems were made easy. Metagenomic approaches are a boon for the identification of unculturable microorganisms and to explore the vast bioremediation potential for different pollutants. Metagenomics is a power tool to study the microbial load in polluted or contaminated land and its role in bioremediation. In addition, the negative ecosystem and health effect of pathogens, antibiotic and metal resistant genes found in the polluted area can be studied. Also, the identification of novel compounds/genes/proteins involved in the biotechnology and sustainable agriculture practices can be performed with the integration of metagenomics.
Collapse
Affiliation(s)
- V T Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Mahima S Mohan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Simi Asma Salim
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sabna Ar
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ranjith Kumavath
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Bihar, India
| |
Collapse
|
4
|
Fernandez M, Callegari EA, Paez MD, González PS, Agostini E. Functional response of Acinetobacter guillouiae SFC 500-1A to tannery wastewater as revealed by a complementary proteomic approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118333. [PMID: 37320920 DOI: 10.1016/j.jenvman.2023.118333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/22/2023] [Accepted: 06/04/2023] [Indexed: 06/17/2023]
Abstract
Acinetobacter guillouiae SFC 500-1 A is a promising candidate for the bioremediation of tannery wastewater. In this study, we applied shotgun proteomic technology in conjunction with a gel-based assay (Gel-LC) to explore the strain's intracellular protein profile when grown in tannery wastewater as opposed to normal culture conditions. A total of 1775 proteins were identified, 52 of which were unique to the tannery wastewater treatment. Many of them were connected to the degradation of aromatic compounds and siderophore biosynthesis. On the other hand, 1598 proteins overlapped both conditions but were differentially expressed in each. Those that were upregulated in wastewater (109) were involved in the processes mentioned above, as well as in oxidative stress mitigation and intracellular redox state regulation. Particularly interesting were the downregulated proteins under the same treatment (318), which were diverse but mainly linked to the regulation of basic cellular functions (replication, transcription, translation, cell cycle, and wall biogenesis); metabolism (amino acids, lipids, sulphate, energetic processes); and other more complex responses (cell motility, exopolysaccharide production, biofilm formation, and quorum sensing). The findings suggest that SFC 500-1 A engages in survival and stress management strategies to cope with the toxic effects of tannery wastewater, and that such strategies may be mostly oriented at keeping metabolic processes to a minimum. Altogether, the results might be useful in the near future to improve the strain's effectiveness if it will be applied for bioremediation.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| | - Eduardo A Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA.
| | - María D Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA.
| | - Paola S González
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto (UNRC), 5800, Río Cuarto, Córdoba, Argentina; Instituto de Biotecnología Ambiental y Salud (INBIAS-CONICET), Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
5
|
Jamil Emon F, Rohani MF, Sumaiya N, Tuj Jannat MF, Akter Y, Shahjahan M, Abdul Kari Z, Tahiluddin AB, Goh KW. Bioaccumulation and Bioremediation of Heavy Metals in Fishes-A Review. TOXICS 2023; 11:510. [PMID: 37368610 DOI: 10.3390/toxics11060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/29/2023]
Abstract
Heavy metals, the most potent contaminants of the environment, are discharged into the aquatic ecosystems through the effluents of several industries, resulting in serious aquatic pollution. This type of severe heavy metal contamination in aquaculture systems has attracted great attention throughout the world. These toxic heavy metals are transmitted into the food chain through their bioaccumulation in different tissues of aquatic species and have aroused serious public health concerns. Heavy metal toxicity negatively affects the growth, reproduction, and physiology of fish, which is threatening the sustainable development of the aquaculture sector. Recently, several techniques, such as adsorption, physio-biochemical, molecular, and phytoremediation mechanisms have been successfully applied to reduce the toxicants in the environment. Microorganisms, especially several bacterial species, play a key role in this bioremediation process. In this context, the present review summarizes the bioaccumulation of different heavy metals into fishes, their toxic effects, and possible bioremediation techniques to protect the fishes from heavy metal contamination. Additionally, this paper discusses existing strategies to bioremediate heavy metals from aquatic ecosystems and the scope of genetic and molecular approaches for the effective bioremediation of heavy metals.
Collapse
Affiliation(s)
- Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Nusrat Sumaiya
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst Fatema Tuj Jannat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Yeasmin Akter
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | - Albaris B Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, Bongao 7500, Philippines
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
6
|
Hassan S, Sabreena, Khurshid Z, Bhat SA, Kumar V, Ameen F, Ganai BA. Marine Bacteria and Omic Approaches: A Novel and Potential Repository for Bioremediation Assessment. J Appl Microbiol 2022; 133:2299-2313. [PMID: 35818751 DOI: 10.1111/jam.15711] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
Marine environments accommodating diverse assortments of life constitute a great pool of differentiated natural resources. The cumulative need to remedy unpropitious effects of anthropogenic activities on estuaries, and coastal marine ecosystems has propelled the development of effective bioremediation strategies. Marine bacteria producing biosurfactants are promising agents for bio-remediating oil pollution in marine environments, making them prospective candidates for enhancing oil recovery. Molecular omics technologies are considered an emerging field of research in ecological and diversity assessment owing to their utility in environmental surveillance and bioremediation of polluted sites. A thorough literature review was undertaken to understand the applicability of different omic techniques employed for bioremediation assessment using marine bacteria. This review further establishes that for bioremediation of environmental pollutants (i.e., heavy metals, hydrocarbons, xenobiotic and numerous recalcitrant compounds), organisms isolated from marine environments can be better utilized for their removal. The literature survey shows that omics approaches can provide exemplary knowledge about microbial communities and their role in the bioremediation of environmental pollutants. This review centres on applications of marine bacteria in enhanced bioremediation, utilizing the omics approaches that can be a vital biological contrivance in environmental monitoring to tackle environmental degradation. The paper aims to identify the gaps in investigations involving marine bacteria to help researchers, ecologists, and decision-makers to develop a holistic understanding regarding their utility in bioremediation assessment.
Collapse
Affiliation(s)
- Shahnawaz Hassan
- Department of Environmental Science, University of Kashmir, India
| | - Sabreena
- Department of Environmental Science, University of Kashmir, India
| | | | | | - Vineet Kumar
- Department of Botany, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh-495009, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
7
|
Genetically Engineered Organisms: Possibilities and Challenges of Heavy Metal Removal and Nanoparticle Synthesis. CLEAN TECHNOLOGIES 2022. [DOI: 10.3390/cleantechnol4020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heavy metal removal using genetically engineered organisms (GEOs) offer more cost and energy-efficient, safer, greener, and environmentally-friendly opportunities as opposed to conventional strategies requiring hazardous or toxic chemicals, complex processes, and high pressure/temperature. Additionally, GEOs exhibited superior potentials for biosynthesis of nanoparticles with significant capabilities in bioreduction of heavy metal ions that get accumulated as nanocrystals of various shapes/dimensions. In this context, GEO-aided nanoparticle assembly and the related reaction conditions should be optimized. Such strategies encompassing biosynthesized nanoparticle conforming to the green chemistry precepts help minimize the deployment of toxic precursors and capitalize on the safety and sustainability of the ensuing nanoparticle. Different GEOs with improved uptake and appropriation of heavy metal ions potentials have been examined for bioreduction and biorecovery appliances, but effective implementation to industrial-scale practices is nearly absent. In this perspective, the recent developments in heavy metal removal and nanoparticle biosynthesis using GEOs are deliberated, focusing on important challenges and future directions.
Collapse
|
8
|
Mining marine metagenomes revealed a quorum-quenching lactonase with improved biochemical properties that inhibits the food spoilage bacteria Pseudomonas fluorescens. Appl Environ Microbiol 2021; 88:e0168021. [PMID: 34910563 DOI: 10.1128/aem.01680-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine environment presents great potential as a source of microorganisms that possess novel enzymes with unique activities and biochemical properties. Examples of such are the quorum-quenching (QQ) enzymes that hydrolyze bacterial quorum-sensing (QS) signaling molecules, such as N-acyl-homoserine lactones (AHLs). QS is a form of cell-to-cell communication that enables bacteria to synchronize gene expression in correlation with population density. Searching marine metagenomes for sequences homologous to an AHL lactonase from the phosphotriesterase-like lactonase (PLL) family, we identified new putative AHL lactonases (sharing 30-40% amino acid identity to a thermostable PLL member). Phylogenetic analysis indicated that these putative AHL lactonases comprise a new clade of marine enzymes in the PLL family. Following recombinant expression and purification, we verified the AHL lactonase activity for one of these proteins, named marine originated Lactonase Related Protein (moLRP). This enzyme presented greater activity and stability at a broad range of temperatures and pH, and tolerance to high salinity levels (up to 5M NaCl), as well as higher durability in bacterial culture, compared to another PLL member. The addition of purified moLRP to cultures of Pseudomonas fluorescens inhibited its extracellular protease activity, expression of the protease encoding gene, biofilm formation, and the sedimentation process in milk-based medium. These findings suggest that moLRP is adapted to the marine environment, and can potentially serve as an effective QQ enzyme, inhibiting the QS process in gram-negative bacteria involved in food spoilage. Importance Our results emphasize the potential of sequence and structure-based identification of new quorum-quenching (QQ) enzymes from environmental metagenomes, such as from the ocean, with improved stability or activity. The findings also suggest that purified QQ enzymes can present new strategies against food spoilage, in addition to their recognized involvement in inhibiting bacterial pathogen virulence factors. Future studies on the delivery and safety of enzymatic QQ strategy against bacterial food spoilage should be performed.
Collapse
|
9
|
Lelièvre C, Rouwane A, Poirier I, Bertrand M, Gallon RK, Murat A. ED-XRF: a promising method for accurate and rapid quantification of metals in a bacterial matrix. ENVIRONMENTAL TECHNOLOGY 2021; 42:4466-4474. [PMID: 32349631 DOI: 10.1080/09593330.2020.1763479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
ABSTRACTThe remediation of metal-polluted water using bacterial biofilms is a promising technology. In order to help its development, the present study aims to evaluate the feasibility to utilize XRF spectrometry for accurate and rapid measurement of metal concentrations in bacterial biofilms used in treatment plants. For that purpose, an ED-XRF spectrometer was used to measure Cd, Cu, Fe, Mn, Ni and Zn concentrations within a matrix of marine bacteria Pseudomonas fluorescens BA3SM1 and its metabolites. Contaminated and control cultures of the strain BA3SM1 were dried and crushed, then analysed by ED-XRF. The LOD value of the analysed metals was between 2.08 and 10.5 µg g-1. Metal concentrations were also measured by ICP-AES or ICP-MS to support ED-XRF results. The two techniques showed a good linear correlation with a slope of at least 0.949 and R2 of at least 0.985. These results confirm the possibility to measure metal contents by ED-XRF in bacterial matrices.
Collapse
Affiliation(s)
- Céline Lelièvre
- UFR des Sciences Université de Caen Normandie, Cherbourg-en-Cotentin, France
- Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), Université de Caen Normandie, Cherbourg en Cotentin, France
| | - Asmaa Rouwane
- National Institute of Marine Sciences & Techniques, CNAM, Cherbourg en Cotentin, France
- Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), Université de Caen Normandie, Cherbourg en Cotentin, France
| | - Isabelle Poirier
- National Institute of Marine Sciences & Techniques, CNAM, Cherbourg en Cotentin, France
- Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), Université de Caen Normandie, Cherbourg en Cotentin, France
| | - Martine Bertrand
- National Institute of Marine Sciences & Techniques, CNAM, Cherbourg en Cotentin, France
- Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), Université de Caen Normandie, Cherbourg en Cotentin, France
| | - Régis Kévin Gallon
- National Institute of Marine Sciences & Techniques, CNAM, Cherbourg en Cotentin, France
- Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), Université de Caen Normandie, Cherbourg en Cotentin, France
| | - Anne Murat
- National Institute of Marine Sciences & Techniques, CNAM, Cherbourg en Cotentin, France
- Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), Université de Caen Normandie, Cherbourg en Cotentin, France
| |
Collapse
|
10
|
Xu H, Guo J, Meng Q, Xie Z. Morphological changes and bioaccumulation in response to cadmium exposure in Morchella spongiola, a fungus with potential for detoxification. Can J Microbiol 2021; 67:789-798. [PMID: 34228941 DOI: 10.1139/cjm-2020-0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Morchella is a genus of edible fungi with strong resistance to Cd and the ability to accumulate it in the mycelium. However, the mechanisms conferring Cd resistance in Morchella are unknown. In the present study, morphological and physiological responses to Cd were evaluated in the mycelia of Morchella spongiola. Variations in hyphal micro-morphology including twisting, folding and kinking in mycelia exposed to different Cd concentrations (0.15, 0.9, 1.5, 2.4, 5.0 mg/L) were observed using scanning electron microscopy. Deposition of Cd precipitates on cell surfaces (at Cd concentrations > 2.4 mg/L) was shown by SEM-EDS. Transmission electron microscopy analysis of cells exposed to different concentrations of Cd revealed the loss of intracellular structures and the localization of Cd depositions inside/outside the cell. FTIR analysis showed that functional groups such as C=O, -OH, -NH and -CH could be responsible for Cd binding on the cell surface of M. spongiola. In addition, intracellular accumulation was observed in cultures at low Cd concentrations (< 0.9 mg/L), while extracellular adsorption occurred at higher concentrations. These results provide valuable information on the Cd tolerance mechanism in M. spongiola and constitute a robust foundation for further studies on fungal bioremediation strategies.
Collapse
Affiliation(s)
- Hongyan Xu
- Qinghai University, 207475, Xining, Qinghai, China;
| | - Jing Guo
- Qinghai University, 207475, Xining, Qinghai, China;
| | - Qing Meng
- Qinghai University, 207475, Xining, Qinghai, China;
| | - Zhanling Xie
- Qinghai University, 207475, Xining, Qinghai, China, 810016;
| |
Collapse
|
11
|
Umasuthan N, Valderrama K, Vasquez I, Segovia C, Hossain A, Cao T, Gnanagobal H, Monk J, Boyce D, Santander J. A Novel Marine Pathogen Isolated from Wild Cunners ( Tautogolabrus adspersus): Comparative Genomics and Transcriptome Profiling of Pseudomonas sp. Strain J380. Microorganisms 2021; 9:812. [PMID: 33921528 PMCID: PMC8069873 DOI: 10.3390/microorganisms9040812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cunner (Tautogolabrus adspersus) is a cleaner fish being considered for utilized in the North Atlantic salmon (Salmo salar) aquaculture industry to biocontrol sea lice infestations. However, bacterial diseases due to natural infections in wild cunners have yet to be described. This study reports the isolation of Pseudomonas sp. J380 from infected wild cunners and its phenotypic, genomic, and transcriptomic characterization. This Gram-negative motile rod-shaped bacterium showed a mesophilic (4-28 °C) and halotolerant growth. Under iron-limited conditions, Pseudomonas sp. J380 produced pyoverdine-type fluorescent siderophore. Koch's postulates were verified in wild cunners by intraperitoneally (i.p.) injecting Pseudomonas sp. J380 at 4 × 103, 4 × 105, and 4 × 107 colony forming units (CFU)/dose. Host-range and comparative virulence were also investigated in lumpfish and Atlantic salmon i.p. injected with ~106 CFU/dose. Lumpfish were more susceptible compared to cunners, and Atlantic salmon was resistant to Pseudomonas sp. J380 infection. Cunner tissues were heavily colonized by Pseudomonas sp. J380 compared to lumpfish and Atlantic salmon suggesting that it might be an opportunistic pathogen in cunners. The genome of Pseudomonas sp. J380 was 6.26 megabases (Mb) with a guanine-cytosine (GC) content of 59.7%. Biochemical profiles, as well as comparative and phylogenomic analyses, suggested that Pseudomonas sp. J380 belongs to the P. fluorescens species complex. Transcriptome profiling under iron-limited vs. iron-enriched conditions identified 1159 differentially expressed genes (DEGs). Cellular metabolic processes, such as ribosomal and energy production, and protein synthesis, were impeded by iron limitation. In contrast, genes involved in environmental adaptation mechanisms including two-component systems, histidine catabolism, and redox balance were transcriptionally up-regulated. Furthermore, iron limitation triggered the differential expression of genes encoding proteins associated with iron homeostasis. As the first report on a bacterial infection in cunners, the current study provides an overview of a new marine pathogen, Pseudomonas sp. J380.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (N.U.); (K.V.); (I.V.); (C.S.); (A.H.); (T.C.); (H.G.)
| | - Katherinne Valderrama
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (N.U.); (K.V.); (I.V.); (C.S.); (A.H.); (T.C.); (H.G.)
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (N.U.); (K.V.); (I.V.); (C.S.); (A.H.); (T.C.); (H.G.)
| | - Cristopher Segovia
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (N.U.); (K.V.); (I.V.); (C.S.); (A.H.); (T.C.); (H.G.)
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (N.U.); (K.V.); (I.V.); (C.S.); (A.H.); (T.C.); (H.G.)
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (N.U.); (K.V.); (I.V.); (C.S.); (A.H.); (T.C.); (H.G.)
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (N.U.); (K.V.); (I.V.); (C.S.); (A.H.); (T.C.); (H.G.)
| | - Jennifer Monk
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University of Newfoundland, Logy Bay, NL A1C 5S7, Canada; (J.M.); (D.B.)
| | - Danny Boyce
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University of Newfoundland, Logy Bay, NL A1C 5S7, Canada; (J.M.); (D.B.)
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (N.U.); (K.V.); (I.V.); (C.S.); (A.H.); (T.C.); (H.G.)
| |
Collapse
|
12
|
Lotlikar N, Damare S, Meena RM, Jayachandran S. Variable protein expression in marine-derived filamentous fungus Penicillium chrysogenum in response to varying copper concentrations and salinity. Metallomics 2020; 12:1083-1093. [PMID: 32301940 DOI: 10.1039/c9mt00316a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper is one of the essential trace dietary minerals for all living organisms, but is potentially toxic at higher concentrations, mainly due to the redox reactions in its transition state. Tolerance of microbes towards copper is primarily attributed to chelation and biosorption. In this study, marine-derived filamentous fungi were evaluated for their ability to remove Cu(ii) from a culture medium. Further, the cellular response of a select isolate to salinity stress (0, 35 and 100 PSU) and Cu(ii) stress (0, 100, and 500 ppm) was studied using the peptide mass fingerprinting technique, which revealed expression of 919 proteins, of which 55 proteins were commonly expressed across all conditions. Housekeeping proteins such as citrate synthase, pyruvate carboxylase, ribosomal proteins, ATP synthases, and more were expressed across all conditions. Reactive oxygen species scavenging proteins such as glutaredoxin, mitochondrial peroxiredoxins and thioredoxins were expressed under Cu(ii) and salinity stresses individually as well as in combination. Up-regulation of glutaredoxin under Cu(ii) stress with fold change values of 18.3 and 13.9 under 100 ppm and 500 ppm of Cu(ii) indicated active scavenging of free radicals to combat oxidative damage. The common mechanisms reported were enzymatic scavenging of free radicals, activation of DNA damage and repair proteins and probable intracellular metal chelation. This indicated multiple stress mechanisms employed by the isolate to combat the singular and synergistic effects of Cu(ii) and salinity stress.
Collapse
Affiliation(s)
- Nikita Lotlikar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa - 403004, India.
| | | | | | | |
Collapse
|
13
|
Sustainable Approaches to Remove Heavy Metals from Water. ENVIRONMENTAL AND MICROBIAL BIOTECHNOLOGY 2020. [DOI: 10.1007/978-981-15-2817-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
14
|
Kapahi M, Sachdeva S. Bioremediation Options for Heavy Metal Pollution. J Health Pollut 2019; 9:191203. [PMID: 31893164 PMCID: PMC6905138 DOI: 10.5696/2156-9614-9.24.191203] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/20/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rapid industrialization and anthropogenic activities such as the unmanaged use of agro-chemicals, fossil fuel burning and dumping of sewage sludge have caused soils and waterways to be severely contaminated with heavy metals. Heavy metals are non-biodegradable and persist in the environment. Hence, remediation is required to avoid heavy metal leaching or mobilization into environmental segments and to facilitate their extraction. OBJECTIVES The present work briefly outlines the environmental occurrence of heavy metals and strategies for using microorganisms for bioremediation processes as reported in the scientific literature. METHODS Databases were searched from different libraries, including Google Scholar, Medline and Scopus. Observations across studies were then compared with the standards for discharge of environmental pollutants. DISCUSSION Bioremediation employs microorganisms for removing heavy metals. Microorganisms have adopted different mechanisms for bioremediation. These mechanisms are unique in their specific requirements, advantages, and disadvantages, the success of which depends chiefly upon the kind of organisms and the contaminants involved in the process. CONCLUSIONS Heavy metal pollution creates environmental stress for human beings, plants, animals and other organisms. A complete understanding of the process and various alternatives for remediation at different steps is needed to ensure effective and economic processes. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Meena Kapahi
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, India
- Department of Chemistry, Manav Rachna University, Faridabad, India
| | - Sarita Sachdeva
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, India
| |
Collapse
|
15
|
Bonilla JO, Callegari EA, Estevéz MC, Villegas LB. Intracellular Proteomic Analysis of Streptomyces sp. MC1 When Exposed to Cr(VI) by Gel-Based and Gel-Free Methods. Curr Microbiol 2019; 77:62-70. [PMID: 31705393 DOI: 10.1007/s00284-019-01790-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023]
Abstract
The actinobacterium Streptomyces sp. MC1 has previously shown the capacity to resist and remove Cr(VI) from liquid culture media. The aim of this work is to analyze the differential expression pattern of intracellular proteins when Streptomyces sp. MC1 is exposed to Cr(VI) in order to explain the molecular mechanisms of resistance that this microorganism possesses. For this purpose, 2D-PAGE and shotgun proteomic analyses (2D-nanoUPLC-ESI-MS/MS) were applied. The presence of Cr(VI) induced the expression of proteins involved in molecular biosynthesis and energy generation, chaperones with a key role in the repair of misfolded proteins and stress response, transcription proteins, proteins of importance in the DNA supercoiling, repair and replication, and dehydrogenases involved in oxidation-reduction processes. These dehydrogenases can be associated with the reduction of Cr(VI) to Cr(III). The results of this study show that proteins from the groups mentioned before are important to face the stress caused by the Cr(VI) presence and help the microorganism to counteract the toxicity of the metal. The use of two proteomic approaches resulted in a larger number of peptides identified, which is also transduced in a significant number of protein ID. This decreased the potential complexity of the sample because of the protein dynamic range, as well as increased the recovery of peptides from the gel after digestion.
Collapse
Affiliation(s)
- José O Bonilla
- Instituto de Química San Luis (INQUISAL), CONICET, Chacabuco 917, 5700, San Luis, Argentina.,Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, 5700, San Luis, Argentina
| | - Eduardo A Callegari
- Division of Basic Biomedical Sciences Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | - María C Estevéz
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CONICET, Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina.,Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, Tucumán, Argentina
| | - Liliana B Villegas
- Instituto de Química San Luis (INQUISAL), CONICET, Chacabuco 917, 5700, San Luis, Argentina. .,Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, 5700, San Luis, Argentina.
| |
Collapse
|
16
|
Liu J, Yao J, Sunahara G, Wang F, Li Z, Duran R. Nonferrous metal (loid) s mediate bacterial diversity in an abandoned mine tailing impoundment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24806-24818. [PMID: 31240654 DOI: 10.1007/s11356-019-05092-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Migration and transformation of toxic metal (loid) s in tailing sites inevitably lead to ecological disturbances and serious threats to the surroundings. However, the horizontal and vertical distribution of bacterial diversity has not been determined in nonferrous metal (loid) tailing ponds, especially in Guangxi China, where the world's largest and potentially most toxic sources of metal (loid) s are located. Distribution of bacterial communities was stable at horizontal levels. At the surface (0-10 cm), the stability was most attributed to Bacillus and Enterococcus, while bacterial communities at the subsurface (50 cm) were mainly contributed by Nitrospira and Sulfuricella. Variable vertical distribution of bacterial communities has led to the occurrence of specific genera and specific predicted functions (such as transcription regulation factors). Sulfurifustis (a S-oxidizing and inorganic carbon fixing bacteria) genera were specific at the surface, whereas Streptococcus-related genera were found at the surface and subsurface, but were more abundant in the latter depth. Physical-chemical parameters, such as pH, TN, and metal (loid) (As, Cd, Pb, Cu, and Zn) concentrations were the main drivers of bacterial community abundance, diversity, composition, and metabolic functions. These results increase our understanding of the physical-chemical effects on the spatial distribution of bacterial communities and provide useful insight for the bioremediation and site management of nonferrous metal (loid) tailings.
Collapse
Affiliation(s)
- Jianli Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment Engineering, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Geoffrey Sunahara
- School of Water Resource and Environment Engineering, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Department of Natural Resource Sciences, McGill University, Montreal, H9X3V9, Quebec, Canada
| | - Fei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zifu Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Robert Duran
- School of Water Resource and Environment Engineering, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France
| |
Collapse
|
17
|
Capeness MJ, Imrie L, Mühlbauer LF, Le Bihan T, Horsfall LE. Shotgun proteomic analysis of nanoparticle-synthesizing Desulfovibrio alaskensis in response to platinum and palladium. MICROBIOLOGY-SGM 2019; 165:1282-1294. [PMID: 31361216 PMCID: PMC7376266 DOI: 10.1099/mic.0.000840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platinum and palladium are much sought-after metals of critical global importance in terms of abundance and availability. At the nano-scale these metals are of even higher value due to their catalytic abilities for industrial applications. Desulfovibrio alaskensis is able to capture ionic forms of both of these metals, reduce them and synthesize elemental nanoparticles. Despite this ability, very little is known about the biological pathways involved in the formation of these nanoparticles. Proteomic analysis of D. alaskensis in response to platinum and palladium has highlighted those proteins involved in both the reductive pathways and the wider stress-response system. A core set of 13 proteins was found in both treatments and consisted of proteins involved in metal transport and reduction. There were also seven proteins that were specific to either platinum or palladium. Overexpression of one of these platinum-specific genes, a NiFe hydrogenase small subunit (Dde_2137), resulted in the formation of larger nanoparticles. This study improves our understanding of the pathways involved in the metal resistance mechanism of Desulfovibrio and is informative regarding how we can tailor the bacterium for nanoparticle production, enhancing its application as a bioremediation tool and as a way to capture contaminant metals from the environment.
Collapse
Affiliation(s)
- Michael J Capeness
- Institute of Quantitative Biology, Biochemistry and Biotechnology/CSEC, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Lisa Imrie
- EdinOmics, SynthSys, CH Waddington Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Lukas F Mühlbauer
- Institute of Quantitative Biology, Biochemistry and Biotechnology/CSEC, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Thierry Le Bihan
- Currently: Rapid Novor, Inc., Kitchener, Ontario N2G 4P3, Canada.,EdinOmics, SynthSys, CH Waddington Building, Max Born Crescent, The King's Buildings, Edinburgh, EH9 3BF, UK
| | - Louise E Horsfall
- Institute of Quantitative Biology, Biochemistry and Biotechnology/CSEC, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| |
Collapse
|
18
|
Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J Toxicol 2018; 2018:2568038. [PMID: 30363677 PMCID: PMC6180975 DOI: 10.1155/2018/2568038] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/17/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022] Open
Abstract
The discharge of untreated tannery wastewater containing biotoxic substances of heavy metals in the ecosystem is one of the most important environmental and health challenges in our society. Hence, there is a growing need for the development of novel, efficient, eco-friendly, and cost-effective approach for the remediation of inorganic metals (Cr, Hg, Cd, and Pb) released into the environment and to safeguard the ecosystem. In this regard, recent advances in microbes-base heavy metal have propelled bioremediation as a prospective alternative to conventional techniques. Heavy metals are nonbiodegradable and could be toxic to microbes. Several microorganisms have evolved to develop detoxification mechanisms to counter the toxic effects of these inorganic metals. This present review offers a critical evaluation of bioremediation capacity of microorganisms, especially in the context of environmental protection. Furthermore, this article discussed the biosorption capacity with respect to the use of bacteria, fungi, biofilm, algae, genetically engineered microbes, and immobilized microbial cell for the removal of heavy metals. The use of biofilm has showed synergetic effects with many fold increase in the removal of heavy metals as sustainable environmental technology in the near future.
Collapse
Affiliation(s)
- Bernard E. Igiri
- Chemical and Biochemical Remediation Unit, Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria 810001, Kaduna State, Nigeria
| | - Stanley I. R. Okoduwa
- Chemical and Biochemical Remediation Unit, Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria 810001, Kaduna State, Nigeria
- Infohealth Awareness Department, SIRONigeria Global Limited, Abuja 900001, FCT, Nigeria
| | - Grace O. Idoko
- Chemical and Biochemical Remediation Unit, Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria 810001, Kaduna State, Nigeria
| | - Ebere P. Akabuogu
- Chemical and Biochemical Remediation Unit, Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria 810001, Kaduna State, Nigeria
| | - Abraham O. Adeyi
- Chemical and Biochemical Remediation Unit, Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria 810001, Kaduna State, Nigeria
| | - Ibe K. Ejiogu
- Chemical and Biochemical Remediation Unit, Directorate of Research and Development, Nigerian Institute of Leather and Science Technology, Zaria 810001, Kaduna State, Nigeria
| |
Collapse
|
19
|
Huang F, Wang ZH, Cai YX, Chen SH, Tian JH, Cai KZ. Heavy metal bioaccumulation and cation release by growing Bacillus cereus RC-1 under culture conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:216-226. [PMID: 29625395 DOI: 10.1016/j.ecoenv.2018.03.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
In an effort to explore the detoxifying mechanisms of B. cereus RC-1 under heavy metal stress, the bioaccumulation by growing cells under varying range of pH, culture time and initial metal concentration were investigated from a perspective of cation release. The maximum removal efficiencies were 16.7%, 38.3%, 81.4% and 40.3% for Cu2+, Zn2+, Cd2+ and Pb2+, respectively, with initial concentrations of 10 mg/L at pH 7.0. In presence of Cu2+ or Zn2+, large quantities of cations were released into the medium in descending order of Na+>K+>Ca2+>Mg2+, while bioremoval of the two essential metals Cd2+ and Pb2+ was accompanied with cellular Na+ and Mg2+ uptake from the medium, respectively. The relative mean contributions of intracellular accumulation to the total removal were approximately 19.6% for Cu2+, 12.8% for Zn2+, 51.1% for Cd2+, and only 4.6% for Pb2+. Following exposure at high concentration, B. cereus RC-1 could keep intracellular Cd2+ concentrations constant, possibly by means of a Cd-efflux system whose activity coincided with uptake of Na+, and reduce intracellular Pb2+ concentration due to the effect of Mg2+ on limiting Pb2+ access to the cells. Cellular morphology, surface functional groups and intracellular trace elements were further investigated by SEM-EDX, TEM-EDX, FTIR and ICP-MS analysis. The phenomena that removal of Cd2+ and Pb2+ coincided with uptake of Na+ and Mg2+, respectively, inspires a novel research perspective towards the study of protective mechanism of bacterial cells against the toxicity of heavy metals.
Collapse
Affiliation(s)
- Fei Huang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China.
| | - Ze-Huang Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Xia Cai
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Shao-Hua Chen
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Ji-Hui Tian
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China
| | - Kun-Zheng Cai
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou 510642, China.
| |
Collapse
|
20
|
Rani A, Babu S. Environmental proteomic studies: closer step to understand bacterial biofilms. World J Microbiol Biotechnol 2018; 34:120. [PMID: 30022302 DOI: 10.1007/s11274-018-2504-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023]
Abstract
Advancement in proteome analytical techniques and the development of protein databases have been helping to understand the physiology and subtle molecular mechanisms behind biofilm formation in bacteria. This review is to highlight how the evolving proteomic approaches have revealed fundamental molecular processes underlying the formation and regulation of bacterial biofilms. Based on the survey of research reports available on differential expression of proteins in biofilms of bacterial from wide range of environments, four important cellular processes viz. metabolism, motility, transport and stress response that contribute to formation of bacterial biofilms are discussed. This review might answer how proteins related to these cellular processes contribute significantly in stabilizing biofilms of different bacteria in diverse environmental conditions.
Collapse
Affiliation(s)
- Anupama Rani
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Subramanian Babu
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
21
|
Svenningsen NB, Martínez-García E, Nicolaisen MH, de Lorenzo V, Nybroe O. The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure. Microbiology (Reading) 2018; 164:883-888. [DOI: 10.1099/mic.0.000667] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Nanna B. Svenningsen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Mette H. Nicolaisen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Victor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ole Nybroe
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
22
|
Izrael-Živković L, Rikalović M, Gojgić-Cvijović G, Kazazić S, Vrvić M, Brčeski I, Beškoski V, Lončarević B, Gopčević K, Karadžić I. Cadmium specific proteomic responses of a highly resistantPseudomonas aeruginosasan ai. RSC Adv 2018; 8:10549-10560. [PMID: 35540485 PMCID: PMC9078880 DOI: 10.1039/c8ra00371h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/07/2018] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa san ai is a promising candidate for bioremediation of cadmium pollution, as it resists a high concentration of up to 7.2 mM of cadmium. Leaving biomass of P. aeruginosa san ai exposed to cadmium has a large biosorption potential, implying its capacity to extract heavy metal from contaminated medium. In the present study, we investigated tolerance and accumulation of cadmium on protein level by shotgun proteomics approach based on liquid chromatography and tandem mass spectrometry coupled with bioinformatics to identify proteins. Size exclusion chromatography was used for protein prefractionation to preserve native forms of metalloproteins and protein complexes. Using this approach a total of 60 proteins were observed as up-regulated in cadmium-amended culture. Almost a third of the total numbers of up-regulated were metalloproteins. Particularly interesting are denitrification proteins which are over expressed but not active, suggesting their protective role in conditions of heavy metal exposure. P. aeruginosa san ai developed a complex mechanism to adapt to cadmium, based on: extracellular biosorption, bioaccumulation, the formation of biofilm, controlled siderophore production, enhanced respiration and modified protein profile. An increased abundance of proteins involved in: cell energy metabolism, including denitrification proteins; amino acid metabolism; cell motility and posttranslational modifications, primarily based on thiol-disulfide exchange, were observed. Enhanced oxygen consumption of biomass in cadmium-amended culture versus control was found. Our results signify that P. aeruginosa san ai is naturally well equipped to overcome and survive high doses of cadmium and, as such, has a great potential for application in bioremediation of cadmium polluted sites. When exposed to cadmium a highly resistant strain P. aeruginosa san ai responds by an increased metalloprotein expression (particularly denitrification proteins), an enhanced respiration, and a pronounced thiol-disulfide protein modifications.![]()
Collapse
Affiliation(s)
| | - Milena Rikalović
- Faculty of Applied Ecology Futura
- University of Singidunum
- Belgrade
- Serbia
| | - Gordana Gojgić-Cvijović
- Institute of Chemistry
- Technology and Metallurgy
- Department of Chemistry
- University of Belgrade
- Belgrade
| | | | - Miroslav Vrvić
- Faculty of Chemistry
- University of Belgrade
- Belgrade
- Serbia
| | - Ilija Brčeski
- Faculty of Chemistry
- University of Belgrade
- Belgrade
- Serbia
| | | | - Branka Lončarević
- Institute of Chemistry
- Technology and Metallurgy
- Department of Chemistry
- University of Belgrade
- Belgrade
| | - Kristina Gopčević
- Department of Chemistry
- Faculty of Medicine
- University of Belgrade
- Belgrade
- Serbia
| | - Ivanka Karadžić
- Department of Chemistry
- Faculty of Medicine
- University of Belgrade
- Belgrade
- Serbia
| |
Collapse
|
23
|
Ren Z, Li S, Zhang T, Qi L, Xing N, Yu H, Jian J, Chon TS, Tang B. Behavior persistence in defining threshold switch in stepwise response of aquatic organisms exposed to toxic chemicals. CHEMOSPHERE 2016; 165:409-417. [PMID: 27668718 DOI: 10.1016/j.chemosphere.2016.09.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 06/06/2023]
Abstract
As a characteristic in bacterial colony, persistence model described the dynamics of two subpopulations (normal (n) and persister (p)). In order to illustrate the switch of "Threshold" in the stepwise behavior responses of organisms, it is hypothesized that total behavior (Bt) of organisms consists of two types in behavior tendency, intoxication (Bp) and normal/recovery behavior (Bn). Both Bp and Bn could be concurrently affected by environmental stress E, and behavior response modes (M) are decided by the relationship between E and toxicity threshold of test organisms (Ti). The results suggested stress constant λ was decided by the constant rates gnE,gpE, an and ap. Due to different stress constant λ, the behavior responses of indicators showed great difference in different M, which included 'safe mode' (Ms), 'acclimation mode' (Mac), 'adjustment mode' (Maj) and 'toxic effect' (Mte). Usually, Bt during Ms could maintain around 0.8, and Mte would happen once it is lower than 0.2. According to the relationship between Bt values and E changes in 7 Majs, behavior persistence relying on adjustment could reflect the behavior homeostasis of organisms under environmental stress and be regarded as a threshold switch for the stepwise behavior responses. The mathematical analysis of behavior persistence allows making a quantitative prediction on environment assessment that would promote the emergence of persistence, as well as evaluating its ecological implications.
Collapse
Affiliation(s)
- Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China.
| | - Shangge Li
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Tingting Zhang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Luhuizi Qi
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Na Xing
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Huimin Yu
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Jinfeng Jian
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China
| | - Tae-Soo Chon
- Department of Biological Sciences, Pusan National University, Busan 609735, Republic of Korea; Ecology and Future Research Association, Busan 609802, Republic of Korea
| | - Bo Tang
- Institute of Environment and Ecology, Shandong Normal University, Ji'nan 250014, PR China.
| |
Collapse
|
24
|
Poirier I, Kuhn L, Demortière A, Mirvaux B, Hammann P, Chicher J, Caplat C, Pallud M, Bertrand M. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles. J Proteomics 2016; 148:213-27. [DOI: 10.1016/j.jprot.2016.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/04/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
|
25
|
da Costa JP, Girão AV, Trindade T, Costa MC, Duarte A, Rocha-Santos T. Biological synthesis of nanosized sulfide semiconductors: current status and future prospects. Appl Microbiol Biotechnol 2016; 100:8283-302. [PMID: 27550218 DOI: 10.1007/s00253-016-7756-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/24/2016] [Accepted: 07/27/2016] [Indexed: 12/26/2022]
Abstract
There have been extensive and comprehensive reviews in the field of metal sulfide precipitation in the context of environmental remediation. However, these works have focused mainly on the removal of metals from aqueous solutions-usually, metal-contaminated effluents-with less emphasis on the precipitation process and on the end-products, frequently centering on metal removal efficiencies. Recently, there has been an increasing interest not only in the possible beneficial effects of these bioremediation strategies for metal-rich effluents but also on the formed precipitates. These metal sulfide materials are of special relevance in industry, due to their optical, electronic, and mechanical properties. Hence, identifying new routes for synthesizing these materials, as well as developing methodologies allowing for the control of the shape and size of particulates, is of environmental, economic, and practical importance. Multiple studies have shown proof-of-concept for the biological synthesis of inorganic metallic sulfide nanoparticles (NPs), resorting to varied organisms or cell components, though this information has scarcely been structured and compiled in a systematic manner. In this review, we overview the biological synthesis methodologies of nanosized metal sulfides and the advantages of these strategies when compared to more conventional chemical routes. Furthermore, we highlight the possibility of the use of numerous organisms for the synthesis of different metal sulfide NPs, with emphasis on sulfate-reducing bacteria (SRB). Finally, we put in perspective the potential of these methodologies in the emerging research areas of biohydrometallurgy and nanobiotechnology for the uptake of metals in the form of metal sulfide nanoparticles. A more complete understanding of the principles underlying the (bio)chemistry of formation of solids in these conditions may lead to the large-scale production of such metal sulfides, while simultaneously allowing an enhanced control over the size and shape of these biogenic nanomaterials.
Collapse
Affiliation(s)
- João Pinto da Costa
- Department of Chemistry-CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Ana Violeta Girão
- Department of Chemistry-CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry-CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Maria Clara Costa
- CCMAR, University of the Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | - Armando Duarte
- Department of Chemistry-CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Teresa Rocha-Santos
- Department of Chemistry-CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
26
|
Zelaya-Molina LX, Hernández-Soto LM, Guerra-Camacho JE, Monterrubio-López R, Patiño-Siciliano A, Villa-Tanaca L, Hernández-Rodríguez C. Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings. MICROBIAL ECOLOGY 2016; 72:324-346. [PMID: 27138047 DOI: 10.1007/s00248-016-0771-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola.
Collapse
Affiliation(s)
- Lily X Zelaya-Molina
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Luis M Hernández-Soto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Jairo E Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Ricardo Monterrubio-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Alfredo Patiño-Siciliano
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico.
| |
Collapse
|
27
|
Gillan DC. Metal resistance systems in cultivated bacteria: are they found in complex communities? Curr Opin Biotechnol 2016; 38:123-30. [DOI: 10.1016/j.copbio.2016.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
|
28
|
Dekker L, Arsène-Ploetze F, Santini JM. Comparative proteomics of Acidithiobacillus ferrooxidans grown in the presence and absence of uranium. Res Microbiol 2016; 167:234-9. [DOI: 10.1016/j.resmic.2016.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
29
|
Hao X, Xie P, Zhu YG, Taghavi S, Wei G, Rensing C. Copper tolerance mechanisms of Mesorhizobium amorphae and its role in aiding phytostabilization by Robinia pseudoacacia in copper contaminated soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2328-2340. [PMID: 25594414 DOI: 10.1021/es504956a] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The legume-rhizobium symbiosis has been proposed as an important system for phytoremediation of heavy metal contaminated soils due to its beneficial activity of symbiotic nitrogen fixation. However, little is known about metal resistant mechanism of rhizobia and the role of metal resistance determinants in phytoremediation. In this study, copper resistance mechanisms were investigated for a multiple metal resistant plant growth promoting rhizobium, Mesorhizobium amorphae 186. Three categories of determinants involved in copper resistance were identified through transposon mutagenesis, including genes encoding a P-type ATPase (CopA), hypothetical proteins, and other proteins (a GTP-binding protein and a ribosomal protein). Among these determinants, copA played the dominant role in copper homeostasis of M. amorphae 186. Mutagenesis of a hypothetical gene lipA in mutant MlipA exhibited pleiotropic phenotypes including sensitivity to copper, blocked symbiotic capacity and inhibited growth. In addition, the expression of cusB encoding part of an RND-type efflux system was induced by copper. To explore the possible role of copper resistance mechanism in phytoremediation of copper contaminated soil, the symbiotic nodulation and nitrogen fixation abilities were compared using a wild-type strain, a copA-defective mutant, and a lipA-defective mutant. Results showed that a copA deletion did not affect the symbiotic capacity of rhizobia under uncontaminated condition, but the protective role of copA in symbiotic processes at high copper concentration is likely concentration-dependent. In contrast, inoculation of a lipA-defective strain led to significant decreases in the functional nodule numbers, total N content, plant biomass and leghemoglobin expression level of Robinia pseudoacacia even under conditions of uncontaminated soil. Moreover, plants inoculated with lipA-defective strain accumulated much less copper than both the wild-type strain and the copA-defective strain, suggesting an important role of a healthy symbiotic relationship between legume and rhizobia in phytostabilization.
Collapse
Affiliation(s)
- Xiuli Hao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A&F University , Yangling, Shaanxi 712100, China
| | | | | | | | | | | |
Collapse
|
30
|
Sun J, Zhou J, Wang Z, He W, Zhang D, Tong Q, Su X. Multi-omics based changes in response to cadmium toxicity in Bacillus licheniformis A. RSC Adv 2015. [DOI: 10.1039/c4ra15280h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cadmium (Cd), a widespread substance with high toxicity and persistence, is known to cause a broad range of adverse effects in all living organisms.
Collapse
Affiliation(s)
- Jing Sun
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
- College of Food Science and Technology
| | - Jun Zhou
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
| | - Zhonghua Wang
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
| | - Weina He
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
| | - Dijun Zhang
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
| | - Qianqian Tong
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
| | - Xiurong Su
- School of Marine Sciences
- Ningbo University
- Ningbo 315211
- China
| |
Collapse
|
31
|
Poirier I, Kuhn L, Caplat C, Hammann P, Bertrand M. The effect of cold stress on the proteome of the marine bacterium Pseudomonas fluorescens BA3SM1 and its ability to cope with metal excess. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:120-133. [PMID: 25456226 DOI: 10.1016/j.aquatox.2014.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 08/06/2014] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
This study examined the effect of cold stress on the proteome and metal tolerance of Pseudomonas fluorescens BA3SM1, a marine strain isolated from tidal flat sediments. When cold stress (+10 °C for 36 h) was applied before moderate metal stress (0.4 mM Cd, 0.6 mM Cd, 1.5 mM Zn, and 1.5 mM Cu), growth disturbances induced by metal, in comparison with respective controls, were reduced for Cd and Zn while they were pronounced for Cu. This marine strain was able to respond to cold stress through a number of changes in protein regulation. Analysis of the predicted differentially expressed protein functions demonstrated that some mechanisms developed under cold stress were similar to those developed in response to Cd, Zn, and Cu. Therefore, pre-cold stress could help this strain to better counteract toxicity of moderate concentrations of some metals. P. fluorescens BA3SM1 was able to remove up to 404.3 mg Cd/g dry weight, 172.5 mg Zn/g dry weight, and 11.3 mg Cu/g dry weight and its metal biosorption ability seemed to be related to the bacterial growth phase. Thus, P. fluorescens BA3SM1 appears as a promising agent for bioremediation processes, even at low temperatures.
Collapse
Affiliation(s)
- Isabelle Poirier
- Microorganismes Métaux et Toxicité, Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, BP 324, 50103 Cherbourg-Octeville Cedex, France.
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC1589, Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, 67084 Strasbourg Cedex, France
| | - Christelle Caplat
- UMR BOREA, Université de Caen Basse-Normandie, Esplanade de la Paix, BP 5186, 14032 Caen Cedex, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC1589, Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, 67084 Strasbourg Cedex, France
| | - Martine Bertrand
- Microorganismes Métaux et Toxicité, Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, BP 324, 50103 Cherbourg-Octeville Cedex, France
| |
Collapse
|
32
|
Masoudzadeh N, Alidoust L, Samie N, Hajfarajollah H, Sharafi H, Modiri S, Zahiri HS, Vali H, Noghabi KA. Distinctive protein expression patterns of the strain Brevundimonas sp. ZF12 isolated from the aqueous zone containing high levels of radiation to cadmium-induced stress. J Biotechnol 2014; 186:49-57. [PMID: 24997353 DOI: 10.1016/j.jbiotec.2014.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 11/18/2022]
Abstract
In the current study, different protein expression profiles in a strain Brevundimonas sp. ZF12, isolated from the aqueous zone containing high levels of radiation, were characterized following exposure to cadmium (II) using a proteomic strategy. In order to gain a deeper understanding of the cellular events that allow this strain to survive and undergo cadmium adaptation and sorption, the strain was tested under three experimental conditions of 5, 10 and 30 ppm cadmium (II) ions stress. Two-dimensional polyacrylamide gel electrophoresis and mass spectrometry were used to identify the differentially expressed proteins under cadmium (II) stress. 20 differentially expressed spots were successfully identified by MS/MS analysis. These proteins are involved in DNA repair and protection, amino acid metabolism, nucleotide metabolism, energy homeostasis, oxidative stress response, redox homeostasis, protein folding and heat-shock response. The results obviously indicate that the ZF12 strain tends to endure the cadmium (II) stress conditions by modification in many aspects of its cellular physiology and metabolism.
Collapse
Affiliation(s)
- Nasrin Masoudzadeh
- Division of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran, Iran
| | - Leila Alidoust
- Division of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran, Iran
| | - Nima Samie
- Division of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran, Iran
| | - Hamidreza Hajfarajollah
- Division of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran, Iran
| | - Hakimeh Sharafi
- Division of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran, Iran
| | - Sima Modiri
- Division of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran, Iran
| | - Hossein Shahbani Zahiri
- Division of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran, Iran
| | - Hojatollah Vali
- Facility for Electron Microscopy Research, McGill University, 3640 Street, Montreal, Canada
| | - Kambiz Akbari Noghabi
- Division of Industrial & Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O. Box 14155-6343, Tehran, Iran.
| |
Collapse
|
33
|
Roosa S, Wauven CV, Billon G, Matthijs S, Wattiez R, Gillan DC. The Pseudomonas community in metal-contaminated sediments as revealed by quantitative PCR: a link with metal bioavailability. Res Microbiol 2014; 165:647-56. [PMID: 25102022 DOI: 10.1016/j.resmic.2014.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/21/2014] [Indexed: 01/05/2023]
Abstract
Pseudomonas bacteria are ubiquitous Gram-negative and aerobic microorganisms that are known to harbor metal resistance mechanisms such as efflux pumps and intracellular redox enzymes. Specific Pseudomonas bacteria have been quantified in some metal-contaminated environments, but the entire Pseudomonas population has been poorly investigated under these conditions, and the link with metal bioavailability was not previously examined. In the present study, quantitative PCR and cell cultivation were used to monitor and characterize the Pseudomonas population at 4 different sediment sites contaminated with various levels of metals. At the same time, total metals and metal bioavailability (as estimated using an HCl 1 m extraction) were measured. It was found that the total level of Pseudomonas, as determined by qPCR using two different genes (oprI and the 16S rRNA gene), was positively and significantly correlated with total and HCl-extractable Cu, Co, Ni, Pb and Zn, with high correlation coefficients (>0.8). Metal-contaminated sediments featured isolates of the Pseudomonas putida, Pseudomonas fluorescens, Pseudomonas lutea and Pseudomonas aeruginosa groups, with other bacterial genera such as Mycobacterium, Klebsiella and Methylobacterium. It is concluded that Pseudomonas bacteria do proliferate in metal-contaminated sediments, but are still part of a complex community.
Collapse
Affiliation(s)
- Stéphanie Roosa
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 Place du Parc, B-7000 Mons, Belgium.
| | - Corinne Vander Wauven
- Institut de Recherches Microbiologiques JMW, 1 Av. E. Gryzon, 1070 Bruxelles, Belgium.
| | - Gabriel Billon
- Géosystèmes Lab, UFR de Chimie, Lille-1 University, Sciences and Technologies, 59655 Villeneuve d'Ascq, France.
| | - Sandra Matthijs
- Institut de Recherches Microbiologiques JMW, 1 Av. E. Gryzon, 1070 Bruxelles, Belgium.
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 Place du Parc, B-7000 Mons, Belgium.
| | - David C Gillan
- Proteomics and Microbiology Lab, Research Institute for Biosciences, Université de Mons, 20 Place du Parc, B-7000 Mons, Belgium.
| |
Collapse
|
34
|
Lange H, Zuber H, Sement FM, Chicher J, Kuhn L, Hammann P, Brunaud V, Bérard C, Bouteiller N, Balzergue S, Aubourg S, Martin-Magniette ML, Vaucheret H, Gagliardi D. The RNA helicases AtMTR4 and HEN2 target specific subsets of nuclear transcripts for degradation by the nuclear exosome in Arabidopsis thaliana. PLoS Genet 2014; 10:e1004564. [PMID: 25144737 PMCID: PMC4140647 DOI: 10.1371/journal.pgen.1004564] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 06/28/2014] [Indexed: 11/19/2022] Open
Abstract
The RNA exosome is the major 3'-5' RNA degradation machine of eukaryotic cells and participates in processing, surveillance and turnover of both nuclear and cytoplasmic RNA. In both yeast and human, all nuclear functions of the exosome require the RNA helicase MTR4. We show that the Arabidopsis core exosome can associate with two related RNA helicases, AtMTR4 and HEN2. Reciprocal co-immunoprecipitation shows that each of the RNA helicases co-purifies with the exosome core complex and with distinct sets of specific proteins. While AtMTR4 is a predominantly nucleolar protein, HEN2 is located in the nucleoplasm and appears to be excluded from nucleoli. We have previously shown that the major role of AtMTR4 is the degradation of rRNA precursors and rRNA maturation by-products. Here, we demonstrate that HEN2 is involved in the degradation of a large number of polyadenylated nuclear exosome substrates such as snoRNA and miRNA precursors, incompletely spliced mRNAs, and spurious transcripts produced from pseudogenes and intergenic regions. Only a weak accumulation of these exosome substrate targets is observed in mtr4 mutants, suggesting that MTR4 can contribute, but plays rather a minor role for the degradation of non-ribosomal RNAs and cryptic transcripts in Arabidopsis. Consistently, transgene post-transcriptional gene silencing (PTGS) is marginally affected in mtr4 mutants, but increased in hen2 mutants, suggesting that it is mostly the nucleoplasmic exosome that degrades aberrant transgene RNAs to limit their entry in the PTGS pathway. Interestingly, HEN2 is conserved throughout green algae, mosses and land plants but absent from metazoans and other eukaryotic lineages. Our data indicate that, in contrast to human and yeast, plants have two functionally specialized RNA helicases that assist the exosome in the degradation of specific nucleolar and nucleoplasmic RNA populations, respectively.
Collapse
Affiliation(s)
- Heike Lange
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Hélène Zuber
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| | - François M. Sement
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Johana Chicher
- Platforme Protéomique Strasbourg-Esplanade, Centre National de la Recherche Scientifique, FRC 1589, Université de Strasbourg, Strasbourg, France
| | - Lauriane Kuhn
- Platforme Protéomique Strasbourg-Esplanade, Centre National de la Recherche Scientifique, FRC 1589, Université de Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Platforme Protéomique Strasbourg-Esplanade, Centre National de la Recherche Scientifique, FRC 1589, Université de Strasbourg, Strasbourg, France
| | - Véronique Brunaud
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, Saclay Plant Sciences, ERL CNRS 8196, Evry, France
| | | | - Nathalie Bouteiller
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Sandrine Balzergue
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, Saclay Plant Sciences, ERL CNRS 8196, Evry, France
| | - Sébastien Aubourg
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, Saclay Plant Sciences, ERL CNRS 8196, Evry, France
| | - Marie-Laure Martin-Magniette
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, Saclay Plant Sciences, ERL CNRS 8196, Evry, France
- UMR AgroParisTech-INRA MIA 518, Paris, France
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
35
|
Huang F, Guo CL, Lu GN, Yi XY, Zhu LD, Dang Z. Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. CHEMOSPHERE 2014; 109:134-42. [PMID: 24560281 DOI: 10.1016/j.chemosphere.2014.01.066] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 05/27/2023]
Abstract
In an effort to explore the protective mechanism of growing Bacillus cereus RC-1 against the toxicity of different Cd(II) concentrations, bacterial growth, cadmium consumption, surface interactions and intra- and extra-cellular Cd(II) contents were examined. Cellular morphology and growth were evidently affected by the initial metal concentrations above 20 mg L(-1), according to the analysis of SEM, AFM, TEM and UV spectrophotometer. Surface complexation and electrostatic attraction played an important role in the different Cd(II) concentrations, as determined by the FTIR and Zeta potential analysis. Intracellular accumulation was the predominant mechanism in culture with lower metal concentrations (below 20 mg L(-1)), but was overshadowed by extracellular adsorption at higher concentrations. This suggested that the growing cells might employ one dominant mechanism at lower concentrations and then shift to another at higher concentrations. These results suggest options could be exploited for bioremediation of aqueous solution in which the Cd(II) concentration is less than 20 mg L(-1).
Collapse
Affiliation(s)
- Fei Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Chu-Ling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Gui-Ning Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Xiao-Yun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Lian-Dong Zhu
- Faculty of Technology, University of Vaasa, FI-65101 Vaasa, Finland
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
36
|
Alhasawi A, Auger C, Appanna VP, Chahma M, Appanna VD. Zinc toxicity and ATP production in Pseudomonas fluorescens. J Appl Microbiol 2014; 117:65-73. [PMID: 24629129 DOI: 10.1111/jam.12497] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/28/2014] [Accepted: 03/08/2014] [Indexed: 01/15/2023]
Abstract
AIMS To identify the molecular networks in Pseudomonas fluorescens that convey resistance to toxic concentrations of Zn, a common pollutant and hazard to biological systems. METHODS AND RESULTS Pseudomonas fluorescens strain ATCC 13525 was cultured in growth medium with millimolar concentrations of Zn. Enzymatic activities and metabolite levels were monitored with the aid of in-gel activity assays and high-performance liquid chromatography, respectively. As oxidative phosphorylation was rendered ineffective, the assimilation of citric acid mediated sequentially by citrate lyase (CL), phosphoenolpyruvate carboxylase (PEPC) and pyruvate phosphate dikinase (PPDK) appeared to play a key role in ATP synthesis via substrate-level phosphorylation (SLP). Enzymes generating the antioxidant, reduced nicotinamide adenine dinucleotide phosphate (NADPH) were enhanced, while metabolic modules mediating the formation of the pro-oxidant, reduced nicotinamide adenine dinucleotide (NADH) were downregulated. CONCLUSIONS Pseudomonas fluorescens reengineers its metabolic networks to generate ATP via SLP, a stratagem that allows the microbe to compensate for an ineffective electron transport chain provoked by excess Zn. SIGNIFICANCE AND IMPACT OF THE STUDY The molecular insights described here are critical in devising strategies to bioremediate Zn-polluted environments.
Collapse
Affiliation(s)
- A Alhasawi
- Department Chemistry & Biochemistry, Laurentian University, Sudbury, ON, Canada
| | | | | | | | | |
Collapse
|