1
|
Lachaux N, Cossu-Leguille C, Zaffino M, Simon C, Beuret M, Giamberini L, Minguez L. Health check-up of a freshwater bivalve exposed to lithium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 367:125573. [PMID: 39716500 DOI: 10.1016/j.envpol.2024.125573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Lithium (Li) has become essential for energy and digital transitions, especially as a component of rechargeable batteries. Its growing uses worldwide lead to increasing anthropogenic releases of Li into the environment, which is making Li as an emerging contaminant. It is thus critical to evaluate the ecotoxicological impact of Li, which has been poorly studied unlike its human toxicology. The objectives of this work were to assess the potential adverse effects of Li on aquatic ecosystems. Bioaccumulation and potential sublethal effects (at individual and cellular levels) of Li have been investigated in the widespread and ecologically relevant freshwater bivalve Dreissena polymorpha. To tackle these issues, mussels were exposed to several spiking of 40, 100 and 250 μg Li L-1 for 28 days to reproduce anthropogenic contamination scenario. Results demonstrated that bivalves significantly accumulated Li in a dose-dependent manner, from 2 to 10 μg g-1 dry weight (bioaccumulation factor, BAF ≈ 19 L kg-1). Bioaccumulation of Li reached a steady-state from seven days of exposure and BAF values were constant regardless the exposure concentration indicating a tight regulation of Li body burden. Lithium exposure leads to increased energy demand associated with a higher lactate dehydrogenase activity and the decrease of protein concentrations. The observed weight gain, increased cellular metabolism, decreased apoptosis, induction of antioxidant defenses and cation content modification in D. polymorpha were also reported in previous studies on humans. The observed effects intensified with exposure concentration and duration, which implies an increased risk for aquatic organisms exposed to Li chronic contamination. Overall, the present study provides new knowledge concerning the impact of Li on non-targeted species, which have implications for the environmental risk assessment of Li in freshwater ecosystems. It also open new perspectives for the understanding of Li toxicokinetics and toxicodynamics on freshwater organisms.
Collapse
Affiliation(s)
- N Lachaux
- Université de Lorraine, LIEC, CNRS, F-57000, Metz, France.
| | | | - M Zaffino
- Université de Lorraine, LIEC, CNRS, F-57000, Metz, France; Pôle de compétences Biologie environnementale, ANATELO, Université de Lorraine, F-57000, Metz, France
| | - C Simon
- Université de Lorraine, LIEC, CNRS, F-57000, Metz, France; Pôle de compétences Biologie environnementale, ANATELO, Université de Lorraine, F-57000, Metz, France
| | - M Beuret
- Université de Lorraine, LIEC, CNRS, F-57000, Metz, France; Pôle de compétences Chimie analytique environnementale, ANATELO, Université de Lorraine, F-57000, Metz, France
| | - L Giamberini
- Université de Lorraine, LIEC, CNRS, F-57000, Metz, France
| | - L Minguez
- Université de Lorraine, LIEC, CNRS, F-57000, Metz, France.
| |
Collapse
|
2
|
Impellitteri F, Yunko K, Calabrese G, Porretti M, Martyniuk V, Gnatyshyna L, Nava V, Potortì AG, Piccione G, Di Bella G, Stoliar O, Faggio C. Chlorpromazine's impact on Mytilus galloprovincialis: a multi-faceted investigation. CHEMOSPHERE 2024; 350:141079. [PMID: 38160957 DOI: 10.1016/j.chemosphere.2023.141079] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The antipsychotic chlorpromazine (Cpz) has raised concern as a pharmaceutical effluent due to its wide medical applications. Moreover, its potent pro-oxidant properties and impact on the cell viability of the marine mollusc Mytilus galloprovincialis, even at low concentrations (ng/L), have been noted. Based on this evidence, in this study, we investigated the physiological effects of Cpz on M. galloprovincialis, to elucidate its fate within the organism, in terms of bioaccumulation, biotransformation, byssus changes and stress responses of the cellular thiolome. Histological and indicators of vitality analyses were also performed to better evaluate the influence of the drug on the morphology and cell viability of the digestive gland. To this end, two different concentrations of Cpz (Cpz I (12 ng/L or 37 pM) and Cpz II (12 μg/L or 37 nM)) were administered to mussels over 14 days. Cpz accumulation in the digestive gland significantly increased with water concentration (BCF of Cpz I and Cpz II). Biochemical analyses indicated lysosomal dysfunction, reflected in elevated total Cathepsin D activity and compromised lysosomal membrane stability. Stress-related and metal-buffering proteins (GST and metallothionein) responded to both Cpz concentrations. Cpz I induced phase I biotransformation activity (CYP450-dependent EROD), while Cpz II triggered caspase-3 activation, indicative of detoxification overload. Histological analysis revealed digestive gland atrophy, epithelial thinning, haemocyte infiltration, and brown cell presence. Byssus analysis showed significant alterations. In conclusion, our study underscores Cpz-induced physiological and histological changes in M. galloprovincialis, posing potential implications for mussel health and confirming the utilisation of this mussel as an indication of Cpz ecotoxicity.
Collapse
Affiliation(s)
- Federica Impellitteri
- Dept. of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Katerina Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine.
| | - Giovanna Calabrese
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Miriam Porretti
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- I.Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001, Ternopil, Ukraine.
| | - Vincenzo Nava
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Angela Giorgia Potortì
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Giuseppe Piccione
- Dept. of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci Snc, 98168, Messina, Italy.
| | - Giuseppa Di Bella
- University of Messina, Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), 98100, Messina, Italy.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027, Ternopil, Ukraine; Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| | - Caterina Faggio
- Dept. of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy; Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
3
|
Matskiv T, Martyniuk V, Khoma V, Yunko K, Orlova-Hudim K, Gnatyshyna L, Geffard A, Palos-Ladeiro M, Stoliar O. Biochemical basis of resistance to multiple contaminations in the native and invasive populations of Dreissena polymorpha. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109803. [PMID: 38008240 DOI: 10.1016/j.cbpc.2023.109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
The zebra mussel Dreissena polymorpha (Pallas, 1771) is an invasive species and a valuable bioindicator in the inland waters. Nevertheless, the biochemical reasons for the unique competitiveness of zebra mussels are not clear. This study aimed to compare the native and invasive populations of D. polymorpha in their ability to withstand the same multiple environmental challenges (i.e. chemical: microplastics and caffeine; physical: temperatures). The specimens from the invasive population in west Ukraine (Tn) and native population at lower streams of river Dnipro (south Ukraine, Kh) were sampled in the August of 2021 y. Molluscs from both populations were treated simultaneously with microplastics (MP, 1 mg L-1, pore size 2 μm); caffeine (Caf, 20.0 μg L-1) at 18 °C, elevated temperature (25 °C) and MP and Caf combinations at 18 °C and 25 °C for 14 days. Untreated molluscs exposed at 18 °C represented control groups. A set of the 20 markers of oxidative stress, biotransformation, detoxification and apoptosis were assayed in the total soft tissues. From the two controls, Kh-group indicated lower stressful impact. However, both populations increased caspase-3 and GST activities and lysosomal instability in most exposures, and cholinesterase and phenoloxidase activities under the heating and combine exposures, indicating the remarkable properties to respond to new challenges and synergistic effect of mixtures. Inter-population differences were related to the metallothionein, cathepsin D, cytochrome P540 and oxidative stress responses that reflect population-dependent adverse outcome pathways. The discriminant analysis separated two populations with a substantially lesser magnitude of responses in the invasive population as a sign of higher resistance.
Collapse
Affiliation(s)
- Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine; I. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Kateryna Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | | | - Lesya Gnatyshyna
- I. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, Reims, France.
| | - Melissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne, Normandie Université, ULH, INERIS, SEBIO, UMR-I 02, Reims, France.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| |
Collapse
|
4
|
Lance E, Sartor L, Foucault P, Geffard A, Marie B. Insights on the Organ-Dependent, Molecular Sexual Dimorphism in the Zebra Mussel, Dreissena polymorpha, Revealed by Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Metabolomics. Metabolites 2023; 13:1046. [PMID: 37887371 PMCID: PMC10609167 DOI: 10.3390/metabo13101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The zebra mussel, Dreissena polymorpha, is extensively used as a sentinel species for biosurveys of environmental contaminants in freshwater ecosystems and for ecotoxicological studies. However, its metabolome remains poorly understood, particularly in light of the potential molecular sexual dimorphism between its different tissues. From an ecotoxicological point of view, inter-sex and inter-organ differences in the metabolome suggest variability in responsiveness, which can influence the analysis and interpretation of data, particularly in the case where males and females would be analyzed indifferently. This study aimed to assess the extent to which the molecular fingerprints of functionally diverse tissues like the digestive glands, gonads, gills, and mantle of D. polymorpha can reveal tissue-specific molecular sexual dimorphism. We employed a non-targeted metabolomic approach using liquid chromatography high-resolution mass spectrometry and revealed a significant sexual molecular dimorphism in the gonads, and to a lesser extent in the digestive glands, of D. polymorpha. Our results highlight the critical need to consider inter-sex differences in the metabolome of D. polymorpha to avoid confounding factors, particularly when investigating environmental effects on molecular regulation in the gonads, and to a lesser extent in the digestive glands.
Collapse
Affiliation(s)
- Emilie Lance
- UMR MNHN/CNRS Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum National d’Histoire Naturelle, 75005 Paris, France (P.F.); (B.M.)
- UMR-I 02 SEBIO, University of Reims, BP 1039, CEDEX 2, 51687 Reims, France;
| | - Lucas Sartor
- UMR MNHN/CNRS Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum National d’Histoire Naturelle, 75005 Paris, France (P.F.); (B.M.)
- UMR-I 02 SEBIO, University of Reims, BP 1039, CEDEX 2, 51687 Reims, France;
| | - Pierre Foucault
- UMR MNHN/CNRS Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum National d’Histoire Naturelle, 75005 Paris, France (P.F.); (B.M.)
| | - Alain Geffard
- UMR-I 02 SEBIO, University of Reims, BP 1039, CEDEX 2, 51687 Reims, France;
| | - Benjamin Marie
- UMR MNHN/CNRS Molécules de Communication et Adaptations des Microorganismes (MCAM), Muséum National d’Histoire Naturelle, 75005 Paris, France (P.F.); (B.M.)
| |
Collapse
|
5
|
Impellitteri F, Yunko K, Martyniuk V, Khoma V, Piccione G, Stoliar O, Faggio C. Cellular and oxidative stress responses of Mytilus galloprovincialis to chlorpromazine: implications of an antipsychotic drug exposure study. Front Physiol 2023; 14:1267953. [PMID: 37772055 PMCID: PMC10526897 DOI: 10.3389/fphys.2023.1267953] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction: Bivalve molluscs like Mytilus galloprovincialis are valuable bioindicators due to their filter-feeding lifestyle, wide distribution, and ability to concentrate xenobiotics. Studying the effects of pharmaceuticals on these molluscs is crucial given their presence in surface waters. This study investigated the response of M. galloprovincialis to chlorpromazine (Cpz), an antipsychotic with antiviral activity against influenza, HIV, and coronaviruses in human cells. Methods: In this study, we examined the 14-day impact of chlorpromazine (Cpz) on the model species M. galloprovincialis at two concentrations (Cpz 1: 12 ng L-1 or 37 pM; Cpz 2: 12 µg L-1 or 37 nM). To ensure controlled exposure, a stock solution of Cpz was prepared and introduced into the tanks to match the intended concentrations. Seawater and stock solutions were refreshed every 48 h. The primary focus of this study centered on evaluating cell viability, cell volume regulation, and oxidative stress indicators. Results: Although cell volume regulation, as assessed by decreasing regulatory volume Regulation volume decrease, did not show statistically significant changes during the experiment, digestive cell viability, on the other hand, showed a significant decrease (p < 0.01) in the Cpz 2 group, suggesting effects on the general health and survival of these cells. Biochemically, in both Cpz 1 and Cpz 2, superoxide dismutase activity increased, while catalase (CAT) decreased, causing an elevated lipid peroxidation thiobarbituric acid-reactive substances and protein carbonyls, particularly in the Cpz 2 group. The level of reduced glutathione (GSH) increased in both exposures, whereas the level of GSSG increased only in the Cpz 1 group. Consequently, the GSH/GSSG ratio was elevated in the Cpz 2 group only. Discussion: A comparison of the magnitudes of anti- and pro-oxidative manifestations indicated a pro-oxidative shift in both exposures. These findings show that Cpz induces non-specific symptoms of biochemical and cellular disturbances in M. galloprovincialis even at the low picomolar concentration.
Collapse
Affiliation(s)
| | - Kateryna Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Vira Khoma
- Ternopil Scientific Research Forensic Center of the Ministry of Internal Affairs of Ukraine, Ternopil, Ukraine
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Devin S, Potet M, Louis F, Pauly D, Rocher B, Wagner P, Giambérini L, Pain-Devin S. Spatial and seasonal use of biomarkers in dreissenids: implications for biomonitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28126-3. [PMID: 37358775 DOI: 10.1007/s11356-023-28126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/01/2023] [Indexed: 06/27/2023]
Abstract
In addition to pollution, organisms are exposed to natural variations of the biotic and abiotic factors of their environment. A battery of sub-cellular biomarkers has been measured seasonally in several populations of both Dreissena polymorpha and Dreissena rostriformis bugensis. To observe and understand the variability associated with biomarker responses, water physicochemistry, sediment contamination, and internal concentrations of contaminants in soft tissues were also considered. Results evidenced seasonal, inter-specific, and inter-populational variability of the measured responses, highlighting the needs (1) to acquire long-term data on the studied populations and (2) to incorporate environmental parameters and contamination in the interpretation of biological responses. From a biomonitoring perspective, significant relationships were identified between biomarkers, internal concentrations of contaminants in soft tissues, and sediment contamination in D. r. bugensis and, to a lesser extent, in D. polymorpha. The detailed interpretation of each biomarker of the battery measured is complex, but a global analysis of all biomarkers at once allows to obtain this signature of the contamination of the studied sites.
Collapse
Affiliation(s)
- Simon Devin
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France.
- LTSER-Zone Atelier Moselle, 57000, Metz, France.
| | - Marine Potet
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France
- LTSER-Zone Atelier Moselle, 57000, Metz, France
| | - Fanny Louis
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France
| | - Danièle Pauly
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France
| | - Béatrice Rocher
- UMR-I 02 INERIS-URCA-ULH SEBIO/Unité Stress Environnementaux Et BIOsurveillance Des Milieux Aquatiques, FR CNRS 3730 Scale, Université Le Havre Normandie, 76063, Le Havre Cedex, France
| | - Philippe Wagner
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France
| | - Laure Giambérini
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France
- LTSER-Zone Atelier Moselle, 57000, Metz, France
| | - Sandrine Pain-Devin
- CNRS UMR 7360, Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université de Lorraine, Campus Bridoux, Rue du Général Delestraint, 57000, Metz, France
- LTSER-Zone Atelier Moselle, 57000, Metz, France
| |
Collapse
|
7
|
Afsa S, De Marco G, Cristaldi A, Giannetto A, Galati M, Billè B, Conti GO, Ben Mansour H, Ferrante M, Cappello T. Single and combined effects of caffeine and salicylic acid on mussel Mytilus galloprovincialis: Changes at histomorphological, molecular and biochemical levels. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104167. [PMID: 37286067 DOI: 10.1016/j.etap.2023.104167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
Caffeine (CAF) and salicylic acid (SA) are frequently detected in waterbody, though information on their biological impact is poor. This work assesses the effects of CAF (5ng/L to 10µg/L) and SA (0.05µg/L to 100µg/L) alone and combined as CAF+SA (5ng/L+0.05µg/L to 10µg/L+100µg/L) on mussel Mytilus galloprovincialis under 12-days exposure by histomorphology of digestive gland and oxidative stress defense at molecular and biochemical levels. Besides evaluating tissue accumulation, absence of histomorphological damage and haemocyte infiltration highlighted activation of defensive mechanisms. Up-regulation of Cu/Zn-sod, Mn-sod, cat and gst combined with increased catalase and glutathione S-transferase activity were found in CAF-exposed mussels, while SA reduced ROS production and mitochondrial activity. CAF+SA exposure induced differential responses, and the integrated biomarker response (IBR) revealed more pronounced effects of SA than CAF. These results enlarge knowledge on pharmaceuticals impact on non-target organisms, emphasizing the need for proper environmental risk assessment.
Collapse
Affiliation(s)
- Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Antonio Cristaldi
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Margherita Ferrante
- Environmental and Food Hygiene (LIAA), Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
8
|
Catteau A, Le Guernic A, Palos Ladeiro M, Dedourge-Geffard O, Bonnard M, Bonnard I, Delahaut L, Bado-Nilles A, Porcher JM, Lopes C, Geffard O, Geffard A. Integrative biomarker response - Threshold (IBR-T): Refinement of IBRv2 to consider the reference and threshold values of biomarkers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118049. [PMID: 37182402 DOI: 10.1016/j.jenvman.2023.118049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
The Integrated Biomarker Response (IBR) is one of the most used index in biomonitoring, especially the IBRv2 integrating a reference condition. However, some limitations remain for its routine and large-scale use. The IBRv2 is proportional to the total number of biomarkers, is dependent on the nature of biomarkers and considers all biomarkers modulations, even small and biologically non-significant. In addition, IBRv2 relies on reference values but the references are often different between each study, making it difficult to compare results between studies and/or campaigns. To overcome these limitations, the present work proposed a new index called IBR-T ("Integrated Biomarker Response - Threshold") which considers the threshold values of biomarkers by limiting the calculation of the IBR value to biomarkers with significant modulations. The IBRv2 and the IBR-T were calculated and compared on four datasets from active biomonitoring campaigns using Dreissena polymorpha, a bivalve widely used in freshwater biomonitoring studies. The comparison between indices has demonstrated that the IBR-T presents a better correlation (0.907 < r2 < 0.998) with the percentage of biomarkers significantly modulated than the IBRv2 (0.002 < r2 < 0.759). The IBRv2 could not be equal to 0 (0.915 < intercept <1.694) because the value was dependent on the total number of biomarkers, whereas the IBR-T reached 0 when no biomarker was significantly modulated, which appears more biologically relevant. The final ranking of sites was different between the two index and the IBR-T ranking tends to be more ecologically relevant that the IBRv2 ranking. This IBR-T have shown an undeniable interest for biomonitoring and could be used by environmental managers to simplify the interpretation of large datasets, directly interpret the contamination status of the site, use it to decision-making, and finally to easily communicate the results of biomonitoring studies to the general public.
Collapse
Affiliation(s)
- Audrey Catteau
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France.
| | - Antoine Le Guernic
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France.
| | - Mélissa Palos Ladeiro
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France
| | - Odile Dedourge-Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France
| | - Anne Bado-Nilles
- Institut National de L'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), BP 2, 60550, Verneuil-en-Halatte, France
| | - Jean-Marc Porcher
- Institut National de L'Environnement et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), BP 2, 60550, Verneuil-en-Halatte, France
| | - Christelle Lopes
- Univ Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, 69622, Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire D'écotoxicologie, F-69625, Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de La Housse, BP 1039, 51687, Reims, France
| |
Collapse
|
9
|
Pham DN, Sokolova IM. Dissecting integrated indices of multiple biomarker responses: Think before use. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:302-311. [PMID: 36000445 DOI: 10.1002/ieam.4676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The multiple biomarker approach is an effective tool to study the responses of aquatic organisms to contaminants. Summarizing multiple biomarker responses for facilitated communication of research findings has been aided by some integrated indices. Here we explain how existing integrated indices were built and why they turn out to be the wheel reinvented. We discuss the role of integrated indices in ecological risk assessment and recommend some changes in summarizing multiple biomarker results. Integr Environ Assess Manag 2023;19:302-311. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Duy Nghia Pham
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
10
|
Martyniuk V, Khoma V, Matskiv T, Yunko K, Gnatyshyna L, Stoliar O, Faggio C. Combined effect of microplastic, salinomycin and heating on Unio tumidus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104068. [PMID: 36680920 DOI: 10.1016/j.etap.2023.104068] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microplastic (MP) and heating (T) suspected to modulate biological effects of aquatic contaminants. Salinomycin (Sal) is veterinary antibiotic and anticancer agent. The goal of this study was to examine the multistress effect of MP, Sal and T on the bioindicator bivalve mollusc. The Unio tumidus were treated with MP (1 mg L-1), Sal (0.6 µg L-1), their combination under 18° C (Mix) and 25° C (MixT) for 14 days. The digestive glands were analyzed. MP and Sal did not cause changes of Mn- and Cu,Zn-SOD, lipid peroxidation and Cyp-450-depended EROD levels, whereas catalase, GST and protein carbonyls (Sal-group) increased compared to control. In the Mix-group, enzymes, particularly EROD and GST (by 34% and 115% respectively) were up-regulated. However, in the MixT-group, they were corresponding to control or lesser (EROD, catalase). Our findings emphasize the need to take into account multistress interactions in the MP environmental risk assessment.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine; I. Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Kateryna Yunko
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine; I. Ya. Horbachevsky Ternopil National Medical University, Maidan Voli 1, 46001 Ternopil, Ukraine.
| | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, M. Kryvonosa Str. 2, 46027 Ternopil, Ukraine.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 S Agata -Messina, Italy.
| |
Collapse
|
11
|
Martyniuk V, Gylytė B, Matskiv T, Khoma V, Tulaidan H, Gnatyshyna L, Orlova-Hudim K, Manusadžianas L, Stoliar O. Stress responses of bivalve mollusc Unio tumidus from two areas to ibuprofen, microplastic and their mixture. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1369-1381. [PMID: 36208366 DOI: 10.1007/s10646-022-02594-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Even though bivalve molluscs are recognized as bioindicators of freshwater quality, their responses to multiple stressors are unpredictable. This study aims to elucidate the inter-population peculiarities of the effect in the sub-chronic environmentally relevant exposure to novel contaminants. The specimens of Unio tumidus from reference (Pr) and contaminated (Ct) areas were treated with ibuprofen (IBU, 0.8 µg L-1), microplastic (MP, 1.0 mg L-1, size 0.1-0.5 mm), or their combination (Mix) for 14 days. Untreated mussels (PrC- and CtC-groups) served as controls. The PrC-group had higher levels of antioxidants Mn-SOD, Cu,Zn-SOD, catalase, and cholinesterase (AChE) as well as lesser levels of oxidative lesions (TBARS and protein carbonyls) in digestive glands, indicating lower environmental impact than in the CtC-group. However, lysosomal stability was similar in both control groups. Among antioxidants, Mn-SOD activity was affected most prominently, increasing in all exposed Ct-groups. TBARS level was increased only in PrMP-group compared to responsive control. IBU and Mix enhanced protein carbonyl concentration in the Pr-groups, and decreased it in the Ct-groups. AChE was induced in the CtIBU- and PrMix-groups, and lysosomal integrity increased in the CtIBU and CtMix-groups. Discriminant analyses indicated lesser differences between Pr-groups, demonstrating lower cumulative stress compared to Ct-groups. Generally, the most remarkable response was revealed in the CtIBU-group, and distortion of individual effects was established in combined exposures. The qualification of stress-neutral and stress-positive populations was proposed for Pr- and Ct-populations correspondingly. Inter-site peculiarities must be taken into consideration when the environmental impact of MP and pharmaceuticals is evaluated.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | | | - Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Halyna Tulaidan
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | | | | | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| |
Collapse
|
12
|
Martyniuk V, Khoma V, Matskiv T, Baranovsky V, Orlova-Hudim K, Gylytė B, Symchak R, Matciuk O, Gnatyshyna L, Manusadžianas L, Stoliar O. Indication of the impact of environmental stress on the responses of the bivalve mollusk Unio tumidus to ibuprofen and microplastics based on biomarkers of reductive stress and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2022; 261:109425. [PMID: 35914710 DOI: 10.1016/j.cbpc.2022.109425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022]
Abstract
The vulnerability of bivalve mollusks to micropollutants is estimated mainly in single model exposures. However, chronic environmental stress and complex exposures can modulate their responses. To evaluate the impact of population-dependent adaptations on the ability to react to common micropollutants, we compared freshwater bivalves Unio tumidus from two distinct populations, pure (Pr) and contaminated (Ct), in their exposures to microplastics (MP, 1 mg L-1, size 0.1-0.5 mm), pharmaceutical ibuprofen (IBU, 0.8 μg L-1), or their combination (Mix) for 14 days. Control groups from both sites showed remarkable differences, with lower levels of total antioxidant capacity (TAC), metallothionein protein (MTSH), NADH and NAD+, cytochrome P450-related EROD, glutathione-S transferase (GST), and citrate synthase (CS) but higher levels of GSH, GSSG, caspase-3 and cathepsin D (CTD) in the Ct-control group. These data indicate a chronic stress impact in the Ct population. Under exposures, we found an almost common strategy in both populations for NAD+/NADH and MTSH suppression and CTD induction. Additionally, Mix exposure caused an increase in CS, and IBU did not change GSH in both populations. However, the expected response to IBU - the suppression of caspase-3 - was indicated only in PrIBU- and PrMix-mollusks. CTD efflux increased dramatically only in PrMP- and PrMix- groups, and suppression of EROD and GST was detected in the PrMix-group. According to discriminant analysis, exposed Pr-groups were highly differentiated from control, whereas Ct-control and exposed groups had common localization demonstrating high resistance to environmental stress. Thus, the same exposures resulted in different adverse outcome pathways depending on the population.
Collapse
Affiliation(s)
- Viktoria Martyniuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Vira Khoma
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Tetiana Matskiv
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine; I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | - Vitaliy Baranovsky
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | | | | | - Ruslan Symchak
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Matciuk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| | - Lesya Gnatyshyna
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine; I.Ya. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine.
| | | | - Oksana Stoliar
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine.
| |
Collapse
|
13
|
Zieritz A, Sousa R, Aldridge DC, Douda K, Esteves E, Ferreira‐Rodríguez N, Mageroy JH, Nizzoli D, Osterling M, Reis J, Riccardi N, Daill D, Gumpinger C, Vaz AS. A global synthesis of ecosystem services provided and disrupted by freshwater bivalve molluscs. Biol Rev Camb Philos Soc 2022; 97:1967-1998. [PMID: 35770724 PMCID: PMC9545824 DOI: 10.1111/brv.12878] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Identification of ecosystem services, i.e. the contributions that ecosystems make to human well-being, has proven instrumental in galvanising public and political support for safeguarding biodiversity and its benefits to people. Here we synthesise the global evidence on ecosystem services provided and disrupted by freshwater bivalves, a heterogenous group of >1200 species, including some of the most threatened (in Unionida) and invasive (e.g. Dreissena polymorpha) taxa globally. Our systematic literature review resulted in a data set of 904 records from 69 countries relating to 24 classes of provisioning (N = 189), cultural (N = 491) and regulating (N = 224) services following the Common International Classification of Ecosystem Services (CICES). Prominent ecosystem services included (i) the provisioning of food, materials and medicinal products, (ii) knowledge acquisition (e.g. on water quality, past environments and historical societies), ornamental and other cultural contributions, and (iii) the filtration, sequestration, storage and/or transformation of biological and physico-chemical water properties. About 9% of records provided evidence for the disruption rather than provision of ecosystem services. Synergies and trade-offs of ecosystem services were observed. For instance, water filtration by freshwater bivalves can be beneficial for the cultural service 'biomonitoring', while negatively or positively affecting food consumption or human recreation. Our evidence base spanned a total of 91 genera and 191 species, dominated by Unionida (55% of records, 76% of species), Veneroida (21 and 9%, respectively; mainly Corbicula spp.) and Myoida (20 and 4%, respectively; mainly Dreissena spp.). About one third of records, predominantly from Europe and the Americas, related to species that were non-native to the country of study. The majority of records originated from Asia (35%), with available evidence for 23 CICES classes, as well as Europe (29%) and North America (23%), where research was largely focused on 'biomonitoring'. Whilst the earliest record (from 1949) originated from North America, since 2000, annual output of records has increased rapidly in Asia and Europe. Future research should focus on filling gaps in knowledge in lesser-studied regions, including Africa and South America, and should look to provide a quantitative valuation of the socio-economic costs and benefits of ecosystem services shaped by freshwater bivalves.
Collapse
Affiliation(s)
- Alexandra Zieritz
- School of GeographyUniversity of NottinghamUniversity Park, Sir Clive Granger BuildingNG7 2RDNottinghamUK
| | - Ronaldo Sousa
- CBMA – Centre of Molecular and Environmental Biology, Department of BiologyUniversity of MinhoCampus Gualtar4710‐057BragaPortugal
| | - David C. Aldridge
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUK
| | - Karel Douda
- Department of Zoology and FisheriesCzech University of Life Sciences PragueKamýcká129PragueCzech Republic
| | - Eduardo Esteves
- Departamento de Engenharia Alimentar, Instituto Superior de Engenharia and CCMAR Centre of Marine SciencesUniversidade do AlgarveEstr. da Penha8005‐139FaroPortugal
| | - Noé Ferreira‐Rodríguez
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de BioloxíaUniversidade de VigoCampus As Lagoas – Marcosende36310VigoSpain
| | - Jon H. Mageroy
- Norwegian Institute of Nature Research, OsloSognsveien 680855OsloNorway
| | - Daniele Nizzoli
- Department of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaViale delle Scienze, 11/A43124ParmaItaly
| | - Martin Osterling
- Department of Environmental and Life Sciences – BiologyKarlstad UniversityUniversitetsgatan 2651 88KarlstadSweden
| | - Joaquim Reis
- Faculdade de Ciências da Universidade de LisboaMARE – Marine and Environmental Sciences CentreCampo Grande1749‐016LisbonPortugal
| | - Nicoletta Riccardi
- CNR‐IRSA Water Research InstituteCorso Tonolli, 5028922Verbania Pallanza (VB)Italy
| | - Daniel Daill
- blattfisch e.U. – Consultants in Aquatic Ecology and EngineeringGabelsbergerstraße 74600WelsAustria
| | - Clemens Gumpinger
- blattfisch e.U. – Consultants in Aquatic Ecology and EngineeringGabelsbergerstraße 74600WelsAustria
| | - Ana Sofia Vaz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do Porto4485‐661VairãoPortugal
- Departamento de Biologia, Faculdade de CiênciasUniversidade do Porto4099‐002PortoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão4485‐661VairãoPortugal
| |
Collapse
|
14
|
Baratange C, Paris-Palacios S, Bonnard I, Delahaut L, Grandjean D, Wortham L, Sayen S, Gallorini A, Michel J, Renault D, Breider F, Loizeau JL, Cosio C. Metabolic, cellular and defense responses to single and co-exposure to carbamazepine and methylmercury in Dreissena polymorpha. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118933. [PMID: 35122922 DOI: 10.1016/j.envpol.2022.118933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Carbamazepine (CBZ) and Hg are widespread and persistent micropollutants in aquatic environments. Both pollutants are known to trigger similar toxicity mechanisms, e.g. reactive oxygen species (ROS) production. Here, their effects were assessed in the zebra mussel Dreissena polymorpha, frequently used as a freshwater model in ecotoxicology and biomonitoring. Single and co-exposures to CBZ (3.9 μg L-1) and MeHg (280 ng L-1) were performed for 1 and 7 days. Metabolomics analyses evidenced that the co-exposure was the most disturbing after 7 days, reducing the amount of 25 metabolites involved in protein synthesis, energy metabolism, antioxidant response and osmoregulation, and significantly altering cells and organelles' structure supporting a reduction of functions of gills and digestive glands. CBZ alone after 7 days decreased the amount of α-aminobutyric acid and had a moderate effect on the structure of mitochondria in digestive glands. MeHg alone had no effect on mussels' metabolome, but caused a significant alteration of cells and organelles' structure in gills and digestive glands. Single exposures and the co-exposure increased antioxidant responses vs control in gills and digestive glands, without resulting in lipid peroxidation, suggesting an increased ROS production caused by both pollutants. Data globally supported that a higher number of hyperactive cells compensated cellular alterations in the digestive gland of mussels exposed to CBZ or MeHg alone, while CBZ + MeHg co-exposure overwhelmed this compensation after 7 days. Those effects were unpredictable based on cellular responses to CBZ and MeHg alone, highlighting the need to consider molecular toxicity pathways for a better anticipation of effects of pollutants in biota in complex environmental conditions.
Collapse
Affiliation(s)
- Clément Baratange
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Séverine Paris-Palacios
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Dominique Grandjean
- ENAC, IIE, Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015, Lausanne, Switzerland
| | - Laurence Wortham
- Inserm UMR-S-1250 P3Cell, Université de Reims Champagne-Ardenne, 51685, Reims, Cedex 2, France
| | - Stéphanie Sayen
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, BP 1039, F-51687 Reims Cedex 2, France
| | - Andrea Gallorini
- Department F.-A. Forel for Environmental and Aquatic Sciences, And Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Jean Michel
- Inserm UMR-S-1250 P3Cell, Université de Reims Champagne-Ardenne, 51685, Reims, Cedex 2, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, évolution), UMR, 6553, Rennes, France; Institut Universitaire de France, 1 Rue Descartes, 75231, Paris Cedex 05, France
| | - Florian Breider
- ENAC, IIE, Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015, Lausanne, Switzerland
| | - Jean-Luc Loizeau
- Department F.-A. Forel for Environmental and Aquatic Sciences, And Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Claudia Cosio
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France.
| |
Collapse
|
15
|
Louis F, Delahaut L, Gaillet V, Bonnard I, Paris-Palacios S, David E. Effect of reproduction cycle stage on energy metabolism responses in a sentinel species (Dreissena polymorpha) exposed to cadmium: What consequences for biomonitoring? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105699. [PMID: 33290890 DOI: 10.1016/j.aquatox.2020.105699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Metal trace elements such as cadmium (Cd) are commonly present in ecosystems and could lead to impairment of mitochondrial functions and energy imbalance in aquatic organisms including molluscs. Combined exposure to increasing temperatures and Cd could enhance such an impact on animals. Seasonal fluctuations, such as temperature, and the corresponding reproduction cycle can affect biomarker responses. However, the reproduction cycle stage is rarely taken into account in ecotoxicological studies. Thus, this work aimed at understanding energy metabolism responses in a sentinel species, Dreissena polymorpha. Mussels were collected during the rest and the reproduction periods and were exposed to 10 μg.L-1 of cadmium (Cd) at two temperatures (in situ temperature and in situ temperature + 5°C) during 7 days. Energy metabolism was monitored by measuring reserves and energy nucleotides charge and by assessing aerobic and anaerobic metabolism markers, and upstream regulation pathways. Markers related to OXPHOS activity revealed seasonal variations under laboratory conditions. Conversely, adenylate nucleotides, glycogen, lipid and transcript levels of AMP-activated protein kinase, citrate synthase, ATP synthase and cytochrome b encoding genes remained steady after the acclimation period. No evident effect of Cd on energy metabolism markers was noticed for both exposures although the transcript level of succinate dehydrogenase and citrate synthase encoding genes decreased with Cd during the rest period. Cellular stress, revealed by lipid peroxidation and catalase mRNA levels, only occurred in Cd and warming co-exposed mussels during the reproduction period. These results suggest that contaminant impact might differ according to the reproduction cycle stage. The effect of confounding factors on biomarker variations should be further investigated to have a deeper knowledge of metabolism responses under laboratory conditions.
Collapse
Affiliation(s)
- Fanny Louis
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France.
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| | - Véronique Gaillet
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| | | | - Elise David
- Université de Reims Champagne-Ardenne, INERIS-SEBIO UMR I-02, Reims, France
| |
Collapse
|
16
|
Shen Y, Li Y, Zhu M, Li J, Qin Z. Transcriptional changes caused by estrogenic endocrine disrupting chemicals in gonad-mesonephros complexes of genetic male Xenopus laevis: Multiple biomarkers for early detection of testis differentiation disruption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138522. [PMID: 32335401 DOI: 10.1016/j.scitotenv.2020.138522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Our recent study revealed some early molecular and cellular events in which 17β-estradiol (E2) disrupted testis differentiation and resulted in feminization in Xenopus laevis (the African clawed frog), an ideal species for studying reproductive endocrine disruption by estrogenic endocrine disrupting chemicals (EDCs). On this basis, we aimed to develop multiple biomarkers for early detection of testis differentiation disruption by estrogenic EDCs in X. laevis. Tadpoles at stage 45/46 were exposed to four known estrogenic EDCs with different estrogenic activities, including E2, diethylstilbestrol (DES), mestranol (MES) and 4-n-nonyphenol (NP). At stage 53, gonadal morphological and histological changes as well as altered sex-dimorphic gene expression in gonad-mesonephros complexes (GMCs) showed that these estrogenic EDCs disrupted testis differentiation and caused feminization to different degrees. Then we measured transcriptional changes of 48 candidate genes, which are believed to be associated with E2-induced testis differentiation alterations, in GMCs at stage 50. As a result, 19 genes were found to be transcriptionally altered by all test chemicals and proposed as promising biomarkers for early detection of testis differentiation disruption by estrogenic EDCs. Finally, all biomarker responses were integrated as integrated biomarker response (IBR) index to characterize testis differentiation disruption by these estrogenic EDCs in X. laevis. Compared with the methods used in previous studies, the multiple biomarker test using X. laevis at early developmental stages largely shortens the exposure duration, thereby achieving the goal of rapid detection. Certainly, the biomarker test needs further validations in the future study.
Collapse
Affiliation(s)
- Yanping Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinbo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanfen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Blalock BJ, Robinson WE, Poynton HC. Assessing legacy and endocrine disrupting pollutants in Boston Harbor with transcriptomic biomarkers. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105397. [PMID: 31954981 DOI: 10.1016/j.aquatox.2019.105397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Within monitoring frameworks, biomarkers provide several benefits because they serve as intermediates between pollutant exposure and effects, and integrate the responses of contaminants that operate through the same mechanism of action. This study was designed to verify the use of transcriptomic biomarkers developed in our prior work (i.e., Coastal Biosensor of Endocrine Disruption; C-BED assay) on Mytilus edulis and identify additional biomarkers for legacy pollutants. M. edulis were collected from a reference site in Pemaquid, ME, USA and deployed by the Massachusetts Water Resources Authority (MWRA) at locations in and outside Boston Harbor, MA, USA: including (1) Boston Inner Harbor (IH), (2) the current outfall (OS), (3) 1 km away from the current outfall (LNB), and (4) Deer Island (DI), the site where untreated wastewater was formerly discharged into the bay. Differential gene expression was quantified with a high density microarray. Seven genes significantly correlated with whole tissue concentration of PAHs, and six genes significantly correlated with whole body concentrations of PCBs, two groups of legacy contaminants that were elevated at stations IH, OS, and DI. Enrichment analysis indicated that IH mussels had the highest induction of stress response genes, which correlated with the higher levels of contaminants measured at this site. Based on the C-BED assay gene analysis, stations IH and OS exhibited signs of endocrine disruption, which were further confirmed by incorporating the results for the C-BED assay within the Integrated Biomarker Response (IBR) approach. This study successfully demonstrated the potential use of transcriptomic biomarkers within a monitoring program to identify the presence and organismal responses to endocrine disrupting and legacy contaminant classes.
Collapse
Affiliation(s)
- Bonnie J Blalock
- School for the Environment, University of Massachusetts Boston, Boston, MA 02125 United States
| | - William E Robinson
- School for the Environment, University of Massachusetts Boston, Boston, MA 02125 United States
| | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, Boston, MA 02125 United States.
| |
Collapse
|
18
|
Reyna PB, Ballesteros ML, Albá ML, Bertrand L, González M, Miglioranza KSB, Tatián M, Hued AC. A multilevel response approach reveals the Asian clam Corbicula largillierti as a mirror of aquatic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:175-187. [PMID: 31344570 DOI: 10.1016/j.scitotenv.2019.07.194] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/22/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
The endobenthic bivalves are widely used as a bioindicators since they inhabit the sediment-water interface and are able to accumulate a different kind of contaminants. In the present work, we evaluated wild Corbicula largillierti (Phillippi, 1844) as a bioindicator of water quality in the central region of Argentina. The responses at different levels of the biological organization were used. We measured organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) levels in water and clams tissues. The biomarkers selected were enzymatic activities (Glutathione S-Transferase, Catalase, Acetyl-, Butyryl-cholinesterase, and Carboxylesterase) morphometry of the digestive gland, condition index and morphology of valves. In order to integrate all the responses a multivariate analysis and integrated stress index were applied. Our results showed the presence of contaminants along the studied river and the ability of C. largillierti to bioaccumulate them. All the biomarkers selected varied according to the water quality gradient, although there was no specific correlation with OCPs and PCBs levels. At the most polluted sites, the detoxification and oxidative stress enzymes, the morphometric analysis of the digestive gland and the variation in the morphology of the valves indicated the water quality degradation. The multivariate analyses allowed to discriminate the sites according to the different biomarker responses. The IBR index also showed a variation pattern according to the environmental quality gradient along the basin. According to the responses shown by C. largillierti we suggest this species as an useful bioindicator of aquatic pollution.
Collapse
Affiliation(s)
- P B Reyna
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - M L Ballesteros
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - M L Albá
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina
| | - L Bertrand
- Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Centro de Investigaciones en Bioquímica e Inmunología, CONICET, Córdoba, Argentina
| | - M González
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | - K S B Miglioranza
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | - M Tatián
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
| | - A C Hued
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales Departamento de Diversidad Biológica y Ecología, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina.
| |
Collapse
|
19
|
Gao Y, Kang L, Zhang Y, Feng J, Zhu L. Toxicokinetic and toxicodynamic (TK-TD) modeling to study oxidative stress-dependent toxicity of heavy metals in zebrafish. CHEMOSPHERE 2019; 220:774-782. [PMID: 30611076 DOI: 10.1016/j.chemosphere.2018.12.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 05/13/2023]
Abstract
Adverse outcome pathways (AOP) have been proposed as a new method to improve the ecological risk assessment of pollutants, but it requires quantitation linkage between exposure, biomarker response and toxicity of pollutants. A toxicokinetic and toxicodynamic (TK-TD) model was used to quantify AOP of the toxicity of Cd and Pb to zebrafish, including the quantitative relationship between Cd and Pb accumulation in gill and oxidative damage level based on ROS or MDA, and LC50 values at different times. Significant relationships were found between the oxidative damage level characterized by ROS and MDA content and Cd or Pb accumulation in gill (R2 > 0.60), and the TK model could better simulate the Pb accumulation in the gills (R2 > 0.60) than Cd. The increasing of Cd or Pb concentrations induced the generation of ROS and the formation of ROS initiated the fluctuation of MDA level in the cells as compared to controls (p < 0.05). For the individual level effect, the Damage Assessment Model (DAM) could successfully explain the change of LC50-ROS and LC50-MDA values at different times (R2 > 0.99). Our findings suggested that the TK-TD model based on ROS and MDA could be used as a quantitative AOP to predict toxicity of metals to zebrafish.
Collapse
Affiliation(s)
- Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lili Kang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
20
|
Louis F, Devin S, Giambérini L, Potet M, David E, Pain-Devin S. Energy allocation in two dreissenid species under metal stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:889-897. [PMID: 30508792 DOI: 10.1016/j.envpol.2018.11.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023]
Abstract
Measurements of biological responses on living organisms are essential in aquatic biomonitoring. In freshwaters, Dreissena polymorpha is an invasive bivalve commonly used in ecotoxicological studies and considered as a model organism. However, D. polymorpha abundances are declining while another species colonizes most of the freshwaters: Dreissena rostriformis bugensis. This species has already been studied in ecophysiology but there is still a lack of data concerning its responses to stressors before its use as a bioindicator of environmental pollution. This study aims to compare the responses of the two species exposed to metal stress. Responses at different levels of biological organization were targeted with measurement of sub-cellular and individual biomarkers following an exposure of up to 7 days to cadmium at 10 μg.L-1. At the individual level, the scope for growth (SFG) was measured. It corresponds to the energy allocated to growth and reproduction. D. polymorpha exhibits variations in biomarker measurements as well as in the SFG in presence of Cd. D. r. bugensis shows no variation in its responses at the different targeted levels. According to the present results, energy metabolism seems to have an essential role for these species when facing a metal stress. Different energy allocation strategies were evidenced between the two species, although the link with biochemical biomarkers is more evident for D. polymorpha than for D. r. bugensis.
Collapse
Affiliation(s)
- Fanny Louis
- Université de Reims Champagne-Ardenne, UMR 02 SEBIO (Stress environnementaux et biosurveillance des milieux aquatiques), Reims, France; Université de Lorraine, CNRS, LIEC, F-57000, Metz, France.
| | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | | | - Marine Potet
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Elise David
- Université de Reims Champagne-Ardenne, UMR 02 SEBIO (Stress environnementaux et biosurveillance des milieux aquatiques), Reims, France
| | | |
Collapse
|
21
|
Milojković JV, Popović-Djordjević JB, Pezo LL, Brčeski ID, Kostić AŽ, Milošević VD, Stojanović MD. Applying multi-criteria analysis for preliminary assessment of the properties of alginate immobilized Myriophyllum spicatum in lake water samples. WATER RESEARCH 2018; 141:163-171. [PMID: 29783169 DOI: 10.1016/j.watres.2018.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
The preliminary assessment of the properties of alginate immobilized aquatic weed Myriophyllum spicatum beads-MsAlg in a multi-element system of nine Serbian lakes water samples was done. Herein, the results obtained in the biosorption experiment with MsAlg contents of twenty-two elements analysed by inductively coupled plasma-optical emission spectrometry, biosorption capacity, element removal efficiency, total hardness (TH) and quality index of water (WQI) are presented. Scanning electron microscopy with energy dispersive X-ray spectroscopy was used for the characterization of M. spicatum and its beads. The study showed that aluminium, magnesium and strontium were adsorbed by MsAlg in the water samples from all examined lakes; barium and iron in the water samples from six lakes. The overall average efficiency of MsAlg in biosorption of elements was in the following order: Al > Ba > Sr > Fe > Mg (58.6, 51.7, 48.2, 23.9 and 17.7%, respectively). The increase of TH and WQI values after the biosorption was noticed in all studied lake water samples. The most significant correlations for pH were regarding the contents of B, Mg and Ca, whereas WQI was highly correlated to the contents of B and Mg, and pH. The complexity of the obtained data was explained by Cluster Analysis and Principal Component Analysis, which showed good discrimination capabilities between the water samples taken from different locations. Considering that the invasive M. spicatum is natural, widespread and that its immobilization is cheap and eco-friendly, presented findings could be helpful in further assessment of MsAlg beads for its potential use as biofilter.
Collapse
Affiliation(s)
- Jelena V Milojković
- Institute for Technology of Nuclear and Other Mineral Raw Materials, 86 Franchet d'Esperey St., Belgrade, Serbia.
| | - Jelena B Popović-Djordjević
- University of Belgrade, Faculty of Agriculture, Department of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Lato L Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentski Trg 12 - 16, 11000 Belgrade, Serbia
| | - Ilija D Brčeski
- University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Aleksandar Ž Kostić
- University of Belgrade, Faculty of Agriculture, Department of Chemistry and Biochemistry, Nemanjina 6, 11080 Belgrade, Serbia
| | - Vladan D Milošević
- Institute for Technology of Nuclear and Other Mineral Raw Materials, 86 Franchet d'Esperey St., Belgrade, Serbia
| | - Mirjana D Stojanović
- Institute for Technology of Nuclear and Other Mineral Raw Materials, 86 Franchet d'Esperey St., Belgrade, Serbia
| |
Collapse
|
22
|
Bertrand L, Monferrán MV, Mouneyrac C, Amé MV. Native crustacean species as a bioindicator of freshwater ecosystem pollution: A multivariate and integrative study of multi-biomarker response in active river monitoring. CHEMOSPHERE 2018; 206:265-277. [PMID: 29753289 DOI: 10.1016/j.chemosphere.2018.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to evaluate the ability of Palaemonetes argentinus to evidence the environmental degradation due to pollutants mixture in a freshwater aquatic ecosystem. For this purpose, an active monitoring (96 h exposure) was carried out in seven sites along the Ctalamochita River basin (Córdoba, Argentina), as a case of study. Our results evidenced sewage discharges impact in the water quality index, as well as metal pollution in water (Ag, Al, B, Pb, Hg) and sediments (Hg) with a potential effect on aquatic biota. The accumulation of total metals measured in exposed P. argentinus showed significant correlation with metals in water. Also, metallothioneins in cephalothorax showed significant changes along the basin, correlating with soluble concentrations of Cr, Zn, Cd, Hg, and V measured in shrimp tissues, which would be reflecting their bioavailability in the environment. In addition, the increase in antioxidant and detoxifying enzymes suggests the occurrence of oxidative stress in exposed shrimps. The integrative biomarker response index (IBR) pointed out the effect of metals on P. argentinus but also the occurrence of others pollutants. Finally, a high consensus was observed for water, sediments, and shrimps through the multivariate analysis (90%), indicating that P. argentinus can reflect changes in the abiotic matrixes. Moreover, studied sites were grouped according to their environmental quality. The use of active biomonitoring and the integration of biological responses through an IBR confirm that native biota could be a useful monitoring tool for bioavailable pollutants in aquatic ecosystems constituting a highly valuable approach.
Collapse
Affiliation(s)
- Lidwina Bertrand
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - CIBICI, Facultad de Ciencias Químicas, CONICET, UNC, Haya de la Torre esq. Medina Allende, 5000, Córdoba, Argentina
| | - Magdalena Victoria Monferrán
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - CIBICI, Facultad de Ciencias Químicas, CONICET, UNC, Haya de la Torre esq. Medina Allende, 5000, Córdoba, Argentina
| | - Catherine Mouneyrac
- Université Catholique de l'Ouest, MMS EA2160, LUNAM université, 3 place André Leroy, BP10808, 49008 Angers Cedex 01, France
| | - María Valeria Amé
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - CIBICI, Facultad de Ciencias Químicas, CONICET, UNC, Haya de la Torre esq. Medina Allende, 5000, Córdoba, Argentina.
| |
Collapse
|
23
|
Cao R, Wang D, Wei Q, Wang Q, Yang D, Liu H, Dong Z, Zhang X, Zhang Q, Zhao J. Integrative Biomarker Assessment of the Influence of Saxitoxin on Marine Bivalves: A Comparative Study of the Two Bivalve Species Oysters, Crassostrea gigas, and Scallops, Chlamys farreri. Front Physiol 2018; 9:1173. [PMID: 30246779 PMCID: PMC6110902 DOI: 10.3389/fphys.2018.01173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023] Open
Abstract
Harmful algae blooms have expanded greatly in recent decades, and their secreted toxins pose a severe threat to human health and marine ecosystems. Saxitoxin (STX) is a main paralytic shellfish poison naturally produced by marine microalgae of the genus Alexandrium. Despite numerous studies have assessed the impacts of STX on marine bivalves, comparative in vivo study on the toxicity of STX on bivalves with distinct accumulation ability (such as oysters and scallops) has been seldom investigated. The aim of this study was to identify whether distinct sensitivity exists between oysters, Crassostrea gigas, and scallops, Chlamys farreri under the same amount of STX exposure using multiple biomarker responses. The responses of different biochemical markers including oxidative stress markers (catalase, superoxide dismutase, glutathione S-transferase, and lipid peroxidation) and immunotoxicity biomarkers (hemocyte phagocytosis rate, reactive oxidative species production, and DNA damages) were evaluated in bivalves after 12, 48, and 96 h of exposure to STX. The integrated biomarker responses value combined with two-way ANOVA analysis suggested that STX posed slightly severer stress on scallops than oysters for the extended period of time. This study provided preliminary results on the usefulness of a multi-biomarker approach to assess the toxicity associated with STX exposure in marine bivalves.
Collapse
Affiliation(s)
- Ruiwen Cao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qianyu Wei
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qing Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Dinglong Yang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Hui Liu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaoli Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qianqian Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
24
|
Evariste L, David E, Cloutier PL, Brousseau P, Auffret M, Desrosiers M, Groleau PE, Fournier M, Betoulle S. Field biomonitoring using the zebra mussel Dreissena polymorpha and the quagga mussel Dreissena bugensis following immunotoxic reponses. Is there a need to separate the two species? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:706-716. [PMID: 29621730 DOI: 10.1016/j.envpol.2018.03.098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
The zebra mussel, Dreissena polymorpha constitutes an extensively used sentinel species for biomonitoring in European and North American freshwater systems. However, this invasive species is gradually replaced in freshwater ecosystem by Dreissena bugensis, a closely related dreissenid species that shares common morphological characteristics but possess some physiological differences. However, few are known about differences on more integrated physiological processes that are generally used as biomarkers in biological monitoring studies. Declining of zebra mussel populations raises the question of the sustainability of using one or both species indifferently to maintain the quality of environmental pollution monitoring data. In our study, we performed a field comparative study measuring immune-related markers and bioaccumulation of PCBs, PAHs and PBDEs in sympatrically occurring mussel populations from three sites of the St. Lawrence River. For tested organisms, species were identified using RFLP analysis. Measurement of bioaccumulated organic compounds indicated a higher accumulation of PCBs and PBDEs in D. bugensis soft tissues compared to D. polymorpha while no differences were noticed for PAHs. Results of hemocytic parameters highlighted that differences of hemocyte distributions were associated to modulations of phagocytic activities. Moreover, marked differences occurred in measurement of hemocytic oxidative activity, indicating divergences between the two species for ROS regulation strategies. This physiological characteristic may deeply influence species responses facing environmental or pollution related stress and induce bias if the two species are not differentiated in further biomarker or bioaccumulation measurement-based studies.
Collapse
Affiliation(s)
- Lauris Evariste
- Université de Reims Champagne-Ardenne, UMR-INERIS 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Reims, France; INRS, Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada.
| | - Elise David
- Université de Reims Champagne-Ardenne, UMR-INERIS 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Reims, France
| | - Pierre-Luc Cloutier
- INRS, Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada; Centre d'expertise en Analyse Environnementale du Québec, Ministère du Développement Durable, de l'Environnement et de la Lutte Contre les Changements Climatiques, 2700, Rue Einstein, Québec City, Québec, G1P 3W8, Canada
| | - Pauline Brousseau
- INRS, Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Michel Auffret
- Institut Universitaire Européen de la Mer, Laboratoire LEMAR, Plouzané, France
| | - Mélanie Desrosiers
- Centre d'expertise en Analyse Environnementale du Québec, Ministère du Développement Durable, de l'Environnement et de la Lutte Contre les Changements Climatiques, 2700, Rue Einstein, Québec City, Québec, G1P 3W8, Canada
| | - Paule Emilie Groleau
- Centre d'expertise en Analyse Environnementale du Québec, Ministère du Développement Durable, de l'Environnement et de la Lutte Contre les Changements Climatiques, 850, Boulevard Vanier, Laval, QC, H7C 2M7, Canada
| | - Michel Fournier
- INRS, Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Québec, H7V 1B7, Canada
| | - Stéphane Betoulle
- Université de Reims Champagne-Ardenne, UMR-INERIS 02 SEBIO (Stress Environnementaux et Biosurveillance des Milieux Aquatiques), Reims, France
| |
Collapse
|
25
|
Differential tolerance to nickel between Dreissena polymorpha and Dreissena rostriformis bugensis populations. Sci Rep 2018; 8:700. [PMID: 29335592 PMCID: PMC5768691 DOI: 10.1038/s41598-018-19228-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/21/2017] [Indexed: 11/23/2022] Open
Abstract
Differential tolerance to stress is partly responsible for the heterogeneity of biomarker responses between populations of a sentinel species. Although currently used for freshwater biomonitoring, studies concerning inter-populational variability in tolerance to contaminants for the zebra mussel (Dreissena polymorpha) are scarce. Moreover, this well-known invader is currently replaced by another, the quagga mussel (Dreissena rostriformis bugensis). To evaluate the differential tolerance between dreissenids, several populations of both species were exposed to a high concentration of nickel. A LT50 (time when 50% of individuals were dead) was established for each population. Biomarker responses and internal nickel concentration were also measured, to link tolerance with physiological status. Results evidenced that D. polymorpha populations are more heterogeneous and more tolerant than D. r. bugensis ones. For D. polymorpha populations only, LT50 values were positively correlated with the nickel contamination in situ, with higher anti-oxidative defences and a higher Integrated Biomarker Response value in the field. Such findings may be explained by local adaptation and invasion dynamic within each species. The significance of this differential tolerance when using biomarker responses for biomonitoring purposes is thus discussed.
Collapse
|
26
|
Lasota R, Gierszewska K, Viard F, Wolowicz M, Dobrzyn K, Comtet T. Abnormalities in bivalve larvae from the Puck Bay (Gulf of Gdansk, southern Baltic Sea) as an indicator of environmental pollution. MARINE POLLUTION BULLETIN 2018; 126:363-371. [PMID: 29421113 DOI: 10.1016/j.marpolbul.2017.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 11/10/2017] [Accepted: 11/11/2017] [Indexed: 06/08/2023]
Abstract
This study described the occurrence of abnormalities in bivalve larvae from the Puck Bay. Analyses of plankton samples collected in 2012-2013 showed that larval Mytilus trossulus, Mya arenaria, and Cerastoderma glaucum exhibited abnormalities that could indicate adverse environmental impacts. The deformities were mainly in shells, but missing soft tissue fragments and protruding vela were also noted. In addition to larval studies, we analyzed benthic postlarvae of Mytilus trossulus. Interestingly, grooves and notches at different locations of the prodissoconch, dissoconch, and shell margin were observed. Some of these deformations were reminiscent of the indentations found on the shell edge of larvae. Comparing the proportion of abnormal postlarvae to larvae with shell abnormalities suggested that the survival of larvae with shell abnormalities was low. Overall, our results suggested that the ratio of abnormal bivalve larvae could be used as an indicator of the biological effects of hazardous substances in the pelagic environment.
Collapse
Affiliation(s)
- Rafal Lasota
- University of Gdansk, Faculty of Oceanography and Geography, Department of Marine Ecosystems Functioning, Laboratory of Estuarine Ecology, Al. M. Pilsudskiego 46, 81-372 Gdynia, Poland.
| | - Katarzyna Gierszewska
- University of Gdansk, Faculty of Oceanography and Geography, Department of Marine Ecosystems Functioning, Laboratory of Estuarine Ecology, Al. M. Pilsudskiego 46, 81-372 Gdynia, Poland
| | - Frédérique Viard
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Equipe DIVCO, Station Biologique, Roscoff, France; CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique, Roscoff, France
| | - Maciej Wolowicz
- University of Gdansk, Faculty of Oceanography and Geography, Department of Marine Ecosystems Functioning, Laboratory of Estuarine Ecology, Al. M. Pilsudskiego 46, 81-372 Gdynia, Poland
| | - Katarzyna Dobrzyn
- University of Gdansk, Faculty of Oceanography and Geography, Department of Marine Ecosystems Functioning, Laboratory of Estuarine Ecology, Al. M. Pilsudskiego 46, 81-372 Gdynia, Poland
| | - Thierry Comtet
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7144, Equipe DIVCO, Station Biologique, Roscoff, France; CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique, Roscoff, France
| |
Collapse
|
27
|
Farkas A, Ács A, Vehovszky Á, Falfusynska H, Stoliar O, Specziár A, Győri J. Interspecies comparison of selected pollution biomarkers in dreissenid spp. inhabiting pristine and moderately polluted sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:760-770. [PMID: 28499224 DOI: 10.1016/j.scitotenv.2017.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Stress biomarkers, which can outline impacts of contaminants in aquatic biota at the biochemical level, are increasingly used as early warning tools in environmental monitoring. Reliable biomarker based assessment schemes, however, request appropriate knowledge of baseline levels of selected endpoints, and the potential influence of a range of natural influencing factors (both abiotic and biotic) as well. In this study, we examined the interspecies variability of various biomarkers (metallothioneins (MT), ethoxyresorufin-O-deethylase activity (EROD), lipid peroxidation (LPO), DNA strand breaks (DNA_sb), vitellogenin-like proteins (Vtg)) in Dreissena polymorpha and Dreissena bugensis inhabiting either pristine- or moderately impacted sites of Lake Balaton (Hungary). Levels of all biomarkers considered revealed low interspecies variability in the two dreissenid species at all sampling sites, with consistently higher (but statistically insignificant) values in Dreissena polymorpha. Levels of all biomarkers varied within the two investigated seasons, with significant influence of the reproduction cycle particularly on the levels of metallothioneins and vitellogenin-like proteins. Each biomarker considered was elevated by October, with significantly higher values in the mussels inhabiting harbours. Insignificant spatial and temporal variability in the general health indicators (condition index, total protein content) of dreissenids was observed, which, in parallel with evident rise in biomarker levels, apparently suggest that the anthropogenic impacts in harbours affect mussel fitness yet at sub organismal level. Our data might serve useful basis for future environmental monitoring surveys, especially in habitats where the progressive replacement of Dreissena polymorpha by Dreissena bugensis is taking place, as the interspecies variability in susceptibility to chemical stress of the two species is well comparable.
Collapse
Affiliation(s)
- A Farkas
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary.
| | - A Ács
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| | - Á Vehovszky
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| | - H Falfusynska
- General Chemistry Department, Ternopil Medical State University, Maidan Voli, 1, Ternopil 46001, Ukraine
| | - O Stoliar
- Research Laboratory of Molecular Biology and Comparative Biochemistry, Ternopil National Pedagogical University, Kryvonosa Str., 2, Ternopil 46027, Ukraine
| | - A Specziár
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| | - J Győri
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| |
Collapse
|
28
|
Pedrosa J, Gravato C, Campos D, Cardoso P, Figueira E, Nowak C, Soares AMVM, Barata C, Pestana JLT. Investigating heritability of cadmium tolerance in Chironomus riparius natural populations: A physiological approach. CHEMOSPHERE 2017; 170:83-94. [PMID: 28006760 DOI: 10.1016/j.chemosphere.2016.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/06/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
Physiological responses allow populations to cope with metal contamination and can be involved in the evolution of tolerance under historical metal contamination scenarios. Here we investigate physiological aspects that might be underlying the heritable high tolerance to cadmium (Cd) in two Chironomus riparius populations collected from historically metal contaminated sites in comparison to two populations from reference sites. To evaluate differences in the physiological response to short-term Cd exposure, protein expression profiles, metallothioneins [MTs] and several antioxidant defences such as total glutathione (GSHt), catalase (CAT) and glutathione-S-transferases [GSTs], were measured in all four populations reared for at least 8 generations under laboratory clean conditions. Cd-induced oxidative damage in lipids and energy related parameters (energy consumption and energy reserves) were also assessed. Results showed two major gradients of protein profiles according to Cd concentration and population tolerance. Furthermore, Cd-tolerant populations showed higher baseline levels of MTs and GSHt while Cd-sensitive populations, collected from reference sites, showed significant induction of GSHt levels with Cd exposure that were nonetheless insufficient to avoid increased oxidative damage to lipids. Cd exposure had no clear effects on the antioxidant enzymes or energy reserves but triggered a general increase in energy consumption. Finally, energy consumption was higher in Cd-tolerant populations across experimental conditions. Altogether, results demonstrate that inherited Cd-tolerance in these midge populations is related, at least in part, with different constitutive levels and plasticity of different defence mechanisms confirming the validity of using multiple physiological traits when studying evolution of tolerance.
Collapse
Affiliation(s)
- João Pedrosa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum of Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany.
| | - Carlos Gravato
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Campos
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum of Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
29
|
Devin S, Buffet PE, Châtel A, Perrein-Ettajani H, Valsami-Jones E, Mouneyrac C. The integrated biomarker response: a suitable tool to evaluate toxicity of metal-based nanoparticles. Nanotoxicology 2016; 11:1-6. [DOI: 10.1080/17435390.2016.1269374] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Simon Devin
- Laboratoire interdisciplinaire des environnements continentaux (LIEC), CNRS UMR 7360, Campus Bridoux, rue du Général Delestraint, Université de Lorraine, Metz, France
| | - Pierre E. Buffet
- Laboratoire Mer, Molécules, UBL, Université Catholique de l’Ouest, Angers, France
| | - Amélie Châtel
- Laboratoire Mer, Molécules, UBL, Université Catholique de l’Ouest, Angers, France
| | | | - Eugénia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Catherine Mouneyrac
- Laboratoire Mer, Molécules, UBL, Université Catholique de l’Ouest, Angers, France
| |
Collapse
|
30
|
Kerambrun E, Rioult D, Delahaut L, Evariste L, Pain-Devin S, Auffret M, Geffard A, David E. Variations in gene expression levels in four European zebra mussel, Dreissena polymorpha, populations in relation to metal bioaccumulation: A field study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:53-63. [PMID: 27588554 DOI: 10.1016/j.ecoenv.2016.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
The present study was performed to validate the suitability of using gene expression in zebra mussels, Dreissena polymorpha, for biomonitoring of freshwater environment. Mussels were collected in four French rivers (Meuse, Moselle, Oise and Vilaine) in spring and autumn. Relative gene expression of 9 candidate genes involved in cellular metabolic activities (Cytochrome-c-oxidase - cox, and ATP synthase - atp), detoxification process (Metallothionein - mt and Glutathion-S-Transferase - gst), oxidative stress (Catalase - cat, Superoxyde Dismutase - sod and Glutathion peroxidase - gpx) and digestive functions (Amylase - amy and Cellulase - ghf) were measured in digestive gland. Metal bioaccumulation in tissues and morphometric parameters were also analyzed to interpret molecular responses. All our results are consistent with different physiological reactions to environmental condition between zebra mussel populations. In spring, the levels of mt, sod, gpx, cat, atp, amy and ghf relative expression were significantly higher in mussels with the lowest metal bioaccumulation (the Meuse) compared to at least one of the other sites. In autumn, this higher expression levels in Meuse River were still observed for gpx, cat, atp and amy. This study has also pointed out different sources of variability in gene expression (individual size, season, trophic resources and origin of mussels) which are inevitable in natural fluctuant environment. This underlines the importance to take them into account in field study to propose a correct interpretation of biomarker responses.
Collapse
Affiliation(s)
- E Kerambrun
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), INERIS-URCA-ULH, France.
| | - D Rioult
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), INERIS-URCA-ULH, France; Université de Reims Champagne-Ardenne/INERIS, Plateau Technique mobile de cytométrie environnementale MOBICYTE, France
| | - L Delahaut
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), INERIS-URCA-ULH, France
| | - L Evariste
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), INERIS-URCA-ULH, France; Institut National de la Recherche Scientifique, INRS, Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Quebec, Canada H7V 1B7
| | - S Pain-Devin
- Université de Lorraine, UMR 7360 LIEC (Laboratoire Interdisciplinaire des Environnements Continentaux), CNRS, France
| | - M Auffret
- Université de Bretagne Occidentale, UMR 6539-LEMAR (Laboratoire des Sciences de l'Environnement Marin), IUEM, UBO-CNRS-IRD-Ifremer, F-29280 Plouzane, France
| | - A Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), INERIS-URCA-ULH, France
| | - E David
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), INERIS-URCA-ULH, France
| |
Collapse
|
31
|
Potet M, Devin S, Pain-Devin S, Rousselle P, Giambérini L. Integrated multi-biomarker responses in two dreissenid species following metal and thermal cross-stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:39-49. [PMID: 27552036 DOI: 10.1016/j.envpol.2016.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
With current global changes, the combination of several stressors such as temperature and contaminants may impact species distribution and ecosystem functioning. In this study, we evaluated the combined impact of two metals (Ni and Cr) with a thermal stress (from 12 to 17 °C) on biomarker responses in two bivalves, Dreissena rostriformis bugensis and Dreissena polymorpha. Biomarkers are informative tools to evaluate exposure and effects of stressors on organisms. The set of 14 biomarkers measured here was representative of both physiologic (filtration activity) and cellular antioxidant and detoxification mechanisms. Our aim was to study the response pattern of both species, and its meaning in terms of invasive potential. The implications for the use of these mussels in environmental monitoring are also discussed. Results evidenced that the two species do not respond to multiple stressors in the same way. Indeed, the effects of contamination on biomarker responses were more marked for D. polymorpha, especially under nickel exposure. While we cannot conclude as to the effect of temperature, invasiveness could be influenced by species sensitivity to contaminants. The physiological and cellular differences between D. polymorpha and D. r. bugensis might also be of concern for environmental risk assessment. The two species present differential bioaccumulation patterns, filtration activity and cellular biomarker responses. If D. polymorpha populations decline, their substitution by D. r. bugensis for biomonitoring or laboratory studies will not be possible without a deeper understanding of biomarker responses of the new invasive.
Collapse
Affiliation(s)
- Marine Potet
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, 57070 Metz, France.
| | - Simon Devin
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, 57070 Metz, France.
| | - Sandrine Pain-Devin
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, 57070 Metz, France.
| | - Philippe Rousselle
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, 57070 Metz, France.
| | - Laure Giambérini
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux, Rue du Général Delestraint, 57070 Metz, France.
| |
Collapse
|
32
|
Garaud M, Auffan M, Devin S, Felten V, Pagnout C, Pain-Devin S, Proux O, Rodius F, Sohm B, Giamberini L. Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha. Nanotoxicology 2016; 10:935-44. [DOI: 10.3109/17435390.2016.1146363] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maël Garaud
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix En Provence, France,
| | - Mélanie Auffan
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix En Provence, France,
- CNRS, Aix-Marseille Université, France, and
| | - Simon Devin
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
| | - Vincent Felten
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
| | - Christophe Pagnout
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix En Provence, France,
| | - Sandrine Pain-Devin
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
| | - Olivier Proux
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix En Provence, France,
- Observatoire Des Sciences De L’univers De Grenoble, UMS 832, CNRS, Université Joseph Fourier, Grenoble, France
| | - François Rodius
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
| | - Bénédicte Sohm
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
| | - Laure Giamberini
- Laboratoire Interdisciplinaire Des Environnements Continentaux (LIEC), Université De Lorraine, CNRS UMR 7360, Metz France,
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix En Provence, France,
| |
Collapse
|
33
|
Azevedo CC, Guzmán-Guillén R, Martins JC, Osório H, Vasconcelos V, da Fonseca RR, Campos A. Proteomic profiling of gill GSTs in Mytilus galloprovincialis from the North of Portugal and Galicia evidences variations at protein isoform level with a possible relation with water quality. MARINE ENVIRONMENTAL RESEARCH 2015; 110:152-161. [PMID: 26364681 DOI: 10.1016/j.marenvres.2015.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 08/20/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
Glutathione transferases (GSTs) are key for xenobiotic detoxification at the molecular level across phyla. These enzymes are therefore likely to be part of the defence mechanisms used by marine organisms, such as mussels, that thrive in highly polluted environments. Taking this hypothesis into account, we used proteomics to characterize the profile of GSTs from the gills of marine mussel Mytilus galloprovincialis in order to discriminate natural mussel populations exposed to different levels of pollution. Samples were collected between Cabo Home (Spain) and Matosinhos (Portugal) covering a north-south transect of approximately 122 Km of the Atlantic Ocean along the Western Coast of the Iberian Peninsula. GSTs from mussel gills were extracted and purified by affinity chromatography with glutathione as the binding substrate to the solid medium. We studied the abundance of GST isoforms by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-time of flight mass spectrometry and assessed total activity. Eleven putative individual GSTs from classes Mu, Pi and Sigma were identified by proteomics. Few variations were observed in total GST activity of post-mitochondrial samples between sampling sites, with animals from Matosinhos (polluted site) showing highest GST activity and Cabo Home (clean site) showing lowest. This contrasts with the increased number of differences in the individual GST isoforms. Each mussel population showed unique GST proteomic profiles. Based on the results we conclude that proteomics surpasses the conventional GST enzymatic activity method to discriminate natural mussel populations and has potential application in environmental monitoring. It is reasonable to suggest that the GST proteomic profiles observed may reflect differences in contamination levels.
Collapse
Affiliation(s)
- Catarina C Azevedo
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Porto, Portugal
| | | | - José C Martins
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Porto, Portugal
| | - Hugo Osório
- Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Porto, Portugal; Department of Biology, Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Rute R da Fonseca
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR/CIMAR, Porto, Portugal.
| |
Collapse
|
34
|
Dallas LJ, Jha AN. Applications of biological tools or biomarkers in aquatic biota: A case study of the Tamar estuary, South West England. MARINE POLLUTION BULLETIN 2015; 95:618-633. [PMID: 25817310 DOI: 10.1016/j.marpolbul.2015.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 02/15/2015] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
Biological systems are the ultimate recipients of pollutant-induced damage. Consequently, our traditional reliance on analytical tools is not enough to assess ecosystem health. Biological responses or biomarkers are therefore also considered to be important tools for environmental hazard and risk assessments. Due to historical mining, other anthropogenic activities, and its conservational importance (e.g. NATURA sites, SACs), the Tamar estuary in South West England is an ideal environment in which to examine applications of such biological tools. This review presents a thorough and critical evaluation of the different biological tools used in the Tamar estuary thus far, while also discussing future perspectives for biomarker studies from a global perspective. In particular, we focus on the challenges which hinder applications of biological tools from being more readily incorporated into regulatory frameworks, with the aim of enabling both policymakers and primary stakeholders to maximise the environmental relevance and regulatory usefulness of such tools.
Collapse
Affiliation(s)
- Lorna J Dallas
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | - Awadhesh N Jha
- School of Biological Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
35
|
Wu SM, Tsai JW, Tzeng WN, Chen WY, Shih WY. Analyzing the effectiveness of using branchial NKA activity as a biomarker for assessing waterborne copper toxicity in tilapia (Oreochromis mossambicus): A damage-based modeling approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 163:51-59. [PMID: 25854698 DOI: 10.1016/j.aquatox.2015.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
Branchial Na(+)-K(+)-ATPase (NKA) activity has been suggested as a promising biomarker for assessing metal stress in aquatic organisms. However, studies that systematically show the effectiveness of using NKA activity to detect metal exposure and toxicity at the individual level are limited. In this study, we aimed to determine whether branchial NKA activity mechanistically responds to the accumulation of waterborne copper (Cu) and accounts for observed toxicity over time under environmentally-relevant and aquafarming Cu exposure levels (0.2, 1 and 2 mg L(-1)). Temporal trends in Cu accumulation and the corresponding responses of branchial NKA activity resulting from Cu exposure were investigated in laboratory experiments conducted on juvenile tilapia (Oreochromis mossambicus), a freshwater teleost that shows potential as a bioindicator of real-time and historical metal pollution. We used the process-based damage assessment model (DAM) to inspect the time course of Cu toxicity by integrating the compensation process between Cu-induced inhibition and repair of branchial NKA activity. NKA activity acted as a sensitive biomarker for Cu exposure and accumulation in tilapia, which showed induced impairment of osmoregulation and lethality when they were exposed to environmentally relevant levels (0.2 mg L(-1)), but not to higher exposure levels (1 and 2 mg L(-1)) in aquaculture farms or contaminated aquatic ecosystems. This study highlights the benefits and limitations of using branchial NKA activity as a sensitive biomarker to assess the health status of a fish population and its ecosystem.
Collapse
Affiliation(s)
- Su-Mei Wu
- Department of Aquatic Biosciences, National Chiayi University, No. 300 University Rd., Chiayi 600, Taiwan
| | - Jeng-Wei Tsai
- Department of Biological Science and Technology, China Medical University, No. 91, Hsueh-Shih Rd., Taichung 404, Taiwan.
| | - Wen-Nan Tzeng
- Department of Aquatic Biosciences, National Chiayi University, No. 300 University Rd., Chiayi 600, Taiwan
| | - Wei-Yu Chen
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd., Kaohsiung 807, Taiwan
| | - Wan-Yu Shih
- Department of Science Education and Application, National Taichung University of Education, No. 140, Minsheng Rd., Taichung 403, Taiwan
| |
Collapse
|