1
|
Prause HC, Berk D, Alves-de-Souza C, Hansen PJ, Larsen TO, Marko D, Favero GD, Place A, Varga E. How relevant are sterols in the mode of action of prymnesins? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107080. [PMID: 39276607 DOI: 10.1016/j.aquatox.2024.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Prymnesins, produced by the haptophyte Prymnesium parvum, are considered responsible for fish kills when this species blooms. Although their toxic mechanism is not fully understood, membrane disruptive properties have been ascribed to A-type prymnesins. Currently it is suggested that pore-formation is the underlying cause of cell disruption. Here the hypothesis that A-, B-, and C-type prymnesins interact with sterols in order to create pores was tested. Prymnesin mixtures containing various analogs of the same type were applied in hemolysis and cytotoxicity assays using Atlantic salmon Salmo salar erythrocytes or rainbow trout RTgill-W1 cells. The hemolytic potency of the prymnesin types reflected their cytotoxic potential, with approximate concentrations reaching 50 % hemolysis (HC50) of 4 nM (A-type), 54 nM (C-type), and 600 nM (B-type). Variabilities in prymnesin profiles were shown to influence potency. Prymnesin-A (3 Cl) + 2 pentose + hexose was likely responsible for the strong toxicity of A-type samples. Co-incubation with cholesterol and epi-cholesterol pre-hemolysis reduced the potential by about 50 % irrespective of sterol concentration, suggesting interactions with sterols. However, this effect was not observed in RTgill-W1 toxicity. Treatment of RTgill-W1 cells with 10 µM lovastatin or 10 µM methyl-β-cyclodextrin-cholesterol modified cholesterol levels by 20-30 %. Regardless, prymnesin cytotoxicity remained unaltered in the modified cells. SPR data showed that B-type prymnesins likely bound with a single exponential decay while A-types seemed to have a more complex binding. Overall, interaction with cholesterol appeared to play only a partial role in the cytotoxic mechanism of pore-formation. It is suggested that prymnesins initially interact with cholesterol and stabilize pores through a subsequent, still unknown mechanism possibly including other membrane lipids or proteins.
Collapse
Affiliation(s)
- Hélène-Christine Prause
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna Austria
| | - Deniz Berk
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Catharina Alves-de-Souza
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile; Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepción, Chile
| | - Per J Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Elsinore, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Str. 38-42, 1090 Vienna, Austria
| | - Allen Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090 Vienna, Austria; Unit Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
2
|
Varga E, Prause HC, Riepl M, Hochmayr N, Berk D, Attakpah E, Kiss E, Medić N, Del Favero G, Larsen TO, Hansen PJ, Marko D. Cytotoxicity of Prymnesium parvum extracts and prymnesin analogs on epithelial fish gill cells RTgill-W1 and the human colon cell line HCEC-1CT. Arch Toxicol 2024; 98:999-1014. [PMID: 38212450 PMCID: PMC10861388 DOI: 10.1007/s00204-023-03663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024]
Abstract
Harmful algal blooms kill fish populations worldwide, as exemplified by the haptophyte microalga Prymnesium parvum. The suspected causative agents are prymnesins, categorized as A-, B-, and C-types based on backbone carbon atoms. Impacts of P. parvum extracts and purified prymnesins were tested on the epithelial rainbow trout fish gill cell line RTgill-W1 and on the human colon epithelial cells HCEC-1CT. Cytotoxic potencies ranked A > C > B-type with concentrations spanning from low (A- and C-type) to middle (B-type) nM ranges. Although RTgill-W1 cells were about twofold more sensitive than HCEC-1CT, the cytotoxicity of prymnesins is not limited to fish gills. Both cell lines responded rapidly to prymnesins; with EC50 values for B-types in RTgill-W1 cells of 110 ± 11 nM and 41.5 ± 0.6 nM after incubations times of 3 and 24 h. Results of fluorescence imaging and measured lytic effects suggest plasma membrane interactions. Postulating an osmotic imbalance as mechanisms of toxicity, incubations with prymnesins in media lacking either Cl-, Na+, or Ca2+ were performed. Cl- removal reduced morphometric rearrangements observed in RTgill-W1 and cytotoxicity in HCEC-1CT cells. Ca2+-free medium in RTgill-W1 cells exacerbated effects on the cell nuclei. Prymnesin composition of different P. parvum strains showed that analog composition within one type scarcely influenced the cytotoxic potential, while analog type potentially dictate potency. Overall, A-type prymnesins were the most potent ones in both cell lines followed by the C-types, and lastly B-types. Disturbance of Ca2+ and Cl- ionoregulation may be integral to prymnesin toxicity.
Collapse
Affiliation(s)
- Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria.
- Unit Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Hélène-Christine Prause
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Matthias Riepl
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| | - Nadine Hochmayr
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| | - Deniz Berk
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| | - Eva Attakpah
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| | - Endre Kiss
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Str. 38-42, 1090, Vienna, Austria
| | - Nikola Medić
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
- Center for Bioresources, Division for Food and Production, Danish Technological Institute, Gregersensvej 8, 2630, Taastrup, Denmark
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna, Währinger Str. 38-42, 1090, Vienna, Austria
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs, Lyngby, Denmark
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38-40, 1090, Vienna, Austria
| |
Collapse
|
3
|
Jian J, Wu Z, Silva-Núñez A, Li X, Zheng X, Luo B, Liu Y, Fang X, Workman CT, Larsen TO, Hansen PJ, Sonnenschein EC. Long-read genome sequencing provides novel insights into the harmful algal bloom species Prymnesium parvum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168042. [PMID: 37898203 DOI: 10.1016/j.scitotenv.2023.168042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
Prymnesium parvum is a toxin-producing haptophyte that causes harmful algal blooms worldwide, which are often associated with massive fish-kills and subsequent economic losses. In here, we present nuclear and plastid genome assemblies using PacBio HiFi long reads and DNBseq short reads for the two P. parvum strains UTEX 2797 and CCMP 3037, representing producers of type A prymnesins. Our results show that the P. parvum strains have a moderate haptophyte genome size of 97.56 and 107.32 Mb. The genome assemblies present one of highest contiguous assembled contig sequences to date consisting of 463 and 362 contigs with a contig N50 of 596.99 kb and 968.39 kb for strain UTEX 2797 and CCMP 3037, respectively. The assembled contigs of UTEX 2797 and CCMP 3037 were anchored to 34 scaffolds, with a scaffold N50 of 5.35 Mb and 3.61 Mb, respectively, accounting for 93.2 % and 97.9 % of the total length. Each plastid genome comprises a circular contig. A total of 20,578 and 19,426 protein-coding genes were annotated for UTEX 2797 and CCMP 3037. The expanded gene family analysis showed that starch and sucrose metabolism, sulfur metabolism, energy metabolism and ABC transporters are involved in the evolution of P. parvum. Polyketide synthase (PKS) genes responsible for the production of secondary metabolites such as prymnesins displayed different expression patterns under nutrient limitation. Overlap with repeats and horizontal gene transfer may be two contributing factors to the high number of PKS genes found in this species. The two high quality P. parvum genomes will serve as valuable resources for ecological, genetic, and toxicological studies of haptophytes that can be used to monitor and potentially manage harmful blooms of ichthyotoxic P. parvum in the future.
Collapse
Affiliation(s)
- Jianbo Jian
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Arisbe Silva-Núñez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Tecnologico de Monterrey, School of Engineering and Science, Monterrey, Nuevo León, Mexico
| | - Xiaohui Li
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Bei Luo
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yun Liu
- BGI-Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Christopher T Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Per Juel Hansen
- Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Department of Biosciences, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
4
|
Wisecaver JH, Auber RP, Pendleton AL, Watervoort NF, Fallon TR, Riedling OL, Manning SR, Moore BS, Driscoll WW. Extreme genome diversity and cryptic speciation in a harmful algal-bloom-forming eukaryote. Curr Biol 2023; 33:2246-2259.e8. [PMID: 37224809 PMCID: PMC10247466 DOI: 10.1016/j.cub.2023.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Harmful algal blooms of the toxic haptophyte Prymnesium parvum are a recurrent problem in many inland and estuarine waters around the world. Strains of P. parvum vary in the toxins they produce and in other physiological traits associated with harmful algal blooms, but the genetic basis for this variation is unknown. To investigate genome diversity in this morphospecies, we generated genome assemblies for 15 phylogenetically and geographically diverse strains of P. parvum, including Hi-C guided, near-chromosome-level assemblies for two strains. Comparative analysis revealed considerable DNA content variation between strains, ranging from 115 to 845 Mbp. Strains included haploids, diploids, and polyploids, but not all differences in DNA content were due to variation in genome copy number. Haploid genome size between strains of different chemotypes differed by as much as 243 Mbp. Syntenic and phylogenetic analyses indicate that UTEX 2797, a common laboratory strain from Texas, is a hybrid that retains two phylogenetically distinct haplotypes. Investigation of gene families variably present across the strains identified several functional categories associated with metabolic and genome size variation in P. parvum, including genes for the biosynthesis of toxic metabolites and proliferation of transposable elements. Together, our results indicate that P. parvum comprises multiple cryptic species. These genomes provide a robust phylogenetic and genomic framework for investigations into the eco-physiological consequences of the intra- and inter-specific genetic variation present in P. parvum and demonstrate the need for similar resources for other harmful algal-bloom-forming morphospecies.
Collapse
Affiliation(s)
- Jennifer H Wisecaver
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA.
| | - Robert P Auber
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Amanda L Pendleton
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Nathan F Watervoort
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Timothy R Fallon
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California San Diego, 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - Olivia L Riedling
- Department of Biochemistry, Purdue University, 175 S University St, West Lafayette, IN 47907, USA; Purdue Center for Plant Biology, Purdue University, 175 S University St, West Lafayette, IN 47907, USA
| | - Schonna R Manning
- Department of Biological Sciences, Institute of Environment, Florida International University, 3000 NE 151st Street, MSB 250B, North Miami, FL 33181, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and University of California San Diego, 9500 Gilman Dr #0204, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, 9500 Gilman Dr #0204, La Jolla, CA 92093, USA
| | - William W Driscoll
- Department of Biology, Penn State Harrisburg, 777 W. Harrisburg Pike, Middletown, PA 17057, USA
| |
Collapse
|
5
|
Caron DA, Lie AAY, Buckowski T, Turner J, Frabotta K. The Effect of pH and Salinity on the Toxicity and Growth of the Golden Alga, Prymnesium parvum. Protist 2023; 174:125927. [PMID: 36565615 DOI: 10.1016/j.protis.2022.125927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Bioassays using cultures of the toxic haptophyte Prymnesium parvum and the ciliate Cyclidium sp. as prey were conducted to test the effect of pH (range = 6.5 - 8.5), salinity (range = 1.50 - 7.50‰), and a combination of pH and salinity on the toxicity of P. parvum. pH had a significant effect on P. parvum toxicity. Toxicity was rapidly (within 24 hr) induced by increasing pH of the medium, or reduced by lowering pH. Conversely, lowering salinity reduced toxicity, albeit less effectively compared to pH, and P. parvum cells remained toxic at the lowest values tested (1.50‰ at pH 7.5). An additional effect between pH and salinity was also observed: low salinity combined with low pH led to not only decreased toxicity, but also resulted in lower P. parvum growth rates. Such effects of pH and salinity on P. parvum growth and toxicity provide insight into the environmental factors supporting community dominance and toxic blooms of the alga.
Collapse
Affiliation(s)
- David A Caron
- Aquatic EcoTechnologies, LLC, Santa Cruz, CA 95065, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Alle A Y Lie
- Aquatic EcoTechnologies, LLC, Santa Cruz, CA 95065, USA
| | - Tom Buckowski
- Lake Mission Viejo Association, Mission Viejo, CA 92692, USA
| | - Jim Turner
- Lake Mission Viejo Association, Mission Viejo, CA 92692, USA
| | - Kevin Frabotta
- Lake Mission Viejo Association, Mission Viejo, CA 92692, USA
| |
Collapse
|
6
|
Sundaravadivelu D, Sanan TT, Venkatapathy R, Mash H, Tettenhorst D, DAnglada L, Frey S, Tatters AO, Lazorchak J. Determination of Cyanotoxins and Prymnesins in Water, Fish Tissue, and Other Matrices: A Review. Toxins (Basel) 2022; 14:toxins14030213. [PMID: 35324710 PMCID: PMC8949488 DOI: 10.3390/toxins14030213] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Harmful algal blooms (HABs) and their toxins are a significant and continuing threat to aquatic life in freshwater, estuarine, and coastal water ecosystems. Scientific understanding of the impacts of HABs on aquatic ecosystems has been hampered, in part, by limitations in the methodologies to measure cyanotoxins in complex matrices. This literature review discusses the methodologies currently used to measure the most commonly found freshwater cyanotoxins and prymnesins in various matrices and to assess their advantages and limitations. Identifying and quantifying cyanotoxins in surface waters, fish tissue, organs, and other matrices are crucial for risk assessment and for ensuring quality of food and water for consumption and recreational uses. This paper also summarizes currently available tissue extraction, preparation, and detection methods mentioned in previous studies that have quantified toxins in complex matrices. The structural diversity and complexity of many cyanobacterial and algal metabolites further impede accurate quantitation and structural confirmation for various cyanotoxins. Liquid chromatography–triple quadrupole mass spectrometer (LC–MS/MS) to enhance the sensitivity and selectivity of toxin analysis has become an essential tool for cyanotoxin detection and can potentially be used for the concurrent analysis of multiple toxins.
Collapse
Affiliation(s)
| | - Toby T. Sanan
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, U.S. EPA, Cincinnati, OH 45268, USA; (H.M.); (D.T.)
- Correspondence: (T.T.S.); (J.L.); Tel.: +1-513-569-7076 (J.L.)
| | | | - Heath Mash
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, U.S. EPA, Cincinnati, OH 45268, USA; (H.M.); (D.T.)
| | - Dan Tettenhorst
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, U.S. EPA, Cincinnati, OH 45268, USA; (H.M.); (D.T.)
| | - Lesley DAnglada
- Office of Water, Science and Technology, U.S. EPA, Washington, DC 20004, USA; (L.D.); (S.F.)
| | - Sharon Frey
- Office of Water, Science and Technology, U.S. EPA, Washington, DC 20004, USA; (L.D.); (S.F.)
| | - Avery O. Tatters
- Center for Environmental Measurement and Modeling, U.S. EPA, Gulf Breeze, FL 32561, USA;
| | - James Lazorchak
- Center for Environmental Measurement and Modeling, U.S. EPA, Cincinnati, OH 45268, USA
- Correspondence: (T.T.S.); (J.L.); Tel.: +1-513-569-7076 (J.L.)
| |
Collapse
|
7
|
Medić N, Varga E, Waal DBVD, Larsen TO, Hansen PJ. The coupling between irradiance, growth, photosynthesis and prymnesin cell quota and production in two strains of the bloom-forming haptophyte, Prymnesium parvum. HARMFUL ALGAE 2022; 112:102173. [PMID: 35144820 DOI: 10.1016/j.hal.2022.102173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/22/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Prymnesium parvum causes harmful algal blooms worldwide that are often associated with massive fish-kills and subsequent economic losses. Most of our knowledge of the toxicity of P. parvum derives from bioassays since methods for the identification and quantification of their toxins have been lacking. Recently, a quantitation method was developed for the causative lytic toxins, the prymnesins. Here, we for the first time present data on the influence of irradiance on cellular content and production of prymnesins under nutrient replete conditions in two P. parvum strains, which both produce B-type prymnesins. Large differences were observed between the two strains with regard to the influence of irradiance on prymnesin cell quota and production rates. At the highest irradiance level (550 µmol photons m-2 s-1), the cellular prymnesin quota was thirty times higher in strain K-0081 strain than in K-0374. The cellular prymnesin quota and production rates were closely linked to rates of growth and photosynthesis in strain K-0081, while this was not the case for K-0374. Yet, growth rate did explain the differences in prymnesin quota in the two strains. Consequently, the maximum prymnesin production rate (414 attomol cell-1 d-1) was only about three times higher in strain K-0081 than in K-0374, and revealed an optimum at the same irradiance of 200 µmol photons m-2 s-1 in both strains. At low irradiance levels, the difference in production rates between both strains became smaller, with 41 and 49 attomol cell-1 d-1 for K-0081 and K-0374, respectively. The carbon content of prymnesins made up for ∼3% and <1% of the total cellular carbon content in strains K-0081 and K-0374, respectively. The fraction of extracellular dissolved prymnesins was measured for strain K-0081, where it accounted for 14-30% of total prymnesin concentration in the cultures, irrespective of irradiance. The concentrations of prymnesins released to the water by the K-0081 strain were not significantly influenced by irradiance. Overall, we observed comparable responses in growth and photosynthesis of both tested strains toward changes in irradiance. However, the effects of irradiance on prymnesin quota and production rates were remarkably different between the two strains.
Collapse
Affiliation(s)
- Nikola Medić
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 40, 1090 Vienna, Austria
| | - Dedmer B Van de Waal
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs Lyngby, Denmark
| | - Per Juel Hansen
- Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| |
Collapse
|
8
|
Clinton M, Król E, Sepúlveda D, Andersen NR, Brierley AS, Ferrier DEK, Hansen PJ, Lorenzen N, Martin SAM. Gill Transcriptomic Responses to Toxin-producing Alga Prymnesium parvum in Rainbow Trout. Front Immunol 2021; 12:794593. [PMID: 34956228 PMCID: PMC8693183 DOI: 10.3389/fimmu.2021.794593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
The gill of teleost fish is a multifunctional organ involved in many physiological processes, including protection of the mucosal gill surface against pathogens and other environmental antigens by the gill-associated lymphoid tissue (GIALT). Climate change associated phenomena, such as increasing frequency and magnitude of harmful algal blooms (HABs) put extra strain on gill function, contributing to enhanced fish mortality and fish kills. However, the molecular basis of the HAB-induced gill injury remains largely unknown due to the lack of high-throughput transcriptomic studies performed on teleost fish in laboratory conditions. We used juvenile rainbow trout (Oncorhynchus mykiss) to investigate the transcriptomic responses of the gill tissue to two (high and low) sublethal densities of the toxin-producing alga Prymnesium parvum, in relation to non-exposed control fish. The exposure time to P. parvum (4–5 h) was sufficient to identify three different phenotypic responses among the exposed fish, enabling us to focus on the common gill transcriptomic responses to P. parvum that were independent of dose and phenotype. The inspection of common differentially expressed genes (DEGs), canonical pathways, upstream regulators and downstream effects pointed towards P. parvum-induced inflammatory response and gill inflammation driven by alterations of Acute Phase Response Signalling, IL-6 Signalling, IL-10 Signalling, Role of PKR in Interferon Induction and Antiviral Response, IL-8 Signalling and IL-17 Signalling pathways. While we could not determine if the inferred gill inflammation was progressing or resolving, our study clearly suggests that P. parvum blooms may contribute to the serious gill disorders in fish. By providing insights into the gill transcriptomic responses to toxin-producing P. parvum in teleost fish, our research opens new avenues for investigating how to monitor and mitigate toxicity of HABs before they become lethal.
Collapse
Affiliation(s)
- Morag Clinton
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom.,Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Elżbieta Król
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Dagoberto Sepúlveda
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Andrew S Brierley
- Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
| | - David E K Ferrier
- Scottish Oceans Institute, University of St Andrews, St Andrews, United Kingdom
| | - Per Juel Hansen
- Department of Biology, Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Niels Lorenzen
- National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Samuel A M Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
9
|
Long M, Krock B, Castrec J, Tillmann U. Unknown Extracellular and Bioactive Metabolites of the Genus Alexandrium: A Review of Overlooked Toxins. Toxins (Basel) 2021; 13:905. [PMID: 34941742 PMCID: PMC8703713 DOI: 10.3390/toxins13120905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Various species of Alexandrium can produce a number of bioactive compounds, e.g., paralytic shellfish toxins (PSTs), spirolides, gymnodimines, goniodomins, and also uncharacterised bioactive extracellular compounds (BECs). The latter metabolites are released into the environment and affect a large range of organisms (from protists to fishes and mammalian cell lines). These compounds mediate allelochemical interactions, have anti-grazing and anti-parasitic activities, and have a potentially strong structuring role for the dynamic of Alexandrium blooms. In many studies evaluating the effects of Alexandrium on marine organisms, only the classical toxins were reported and the involvement of BECs was not considered. A lack of information on the presence/absence of BECs in experimental strains is likely the cause of contrasting results in the literature that render impossible a distinction between PSTs and BECs effects. We review the knowledge on Alexandrium BEC, (i.e., producing species, target cells, physiological effects, detection methods and molecular candidates). Overall, we highlight the need to identify the nature of Alexandrium BECs and urge further research on the chemical interactions according to their ecological importance in the planktonic chemical warfare and due to their potential collateral damage to a wide range of organisms.
Collapse
Affiliation(s)
- Marc Long
- IFREMER, Centre de Brest, DYNECO Pelagos, 29280 Plouzané, France;
| | - Bernd Krock
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| | - Justine Castrec
- University Brest, CNRS, IRD, Ifremer, LEMAR, 29280 Plouzané, France;
- Station de Recherches Sous-Marines et Océanographiques (STARESO), Punta Revellata, BP33, 20260 Calvi, France
| | - Urban Tillmann
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| |
Collapse
|
10
|
Anestis K, Kohli GS, Wohlrab S, Varga E, Larsen TO, Hansen PJ, John U. Polyketide synthase genes and molecular trade-offs in the ichthyotoxic species Prymnesium parvum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148878. [PMID: 34252778 DOI: 10.1016/j.scitotenv.2021.148878] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Prymnesium parvum is a bloom forming haptophyte that has been responsible for numerous fish kill events across the world. The toxicity of P. parvum has been attributed to the production of large polyketide compounds, collectively called prymnesins, which based on their structure can be divided into A-, B- and C-type. The polyketide chemical nature of prymnesins indicates the potential involvement of polyketide synthases (PKSs) in their biosynthesis. However, little is known about the presence of PKSs in P. parvum as well as the potential molecular trade-offs of toxin biosynthesis. In the current study, we generated and analyzed the transcriptomes of nine P. parvum strains that produce different toxin types and have various cellular toxin contents. Numerous type I PKSs, ranging from 37 to 109, were found among the strains. Larger modular type I PKSs were mainly retrieved from strains with high cellular toxin levels and eight consensus transcripts were present in all nine strains. Gene expression variance analysis revealed potential molecular trade-offs associated with cellular toxin quantity, showing that basic metabolic processes seem to correlate negatively with cellular toxin content. These findings point towards the presence of metabolic costs for maintaining high cellular toxin quantity. The detailed analysis of PKSs in P. parvum is the first step towards better understanding the molecular basis of the biosynthesis of prymnesins and contributes to the development of molecular tools for efficient monitoring of future blooms.
Collapse
Affiliation(s)
- Konstantinos Anestis
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - Gurjeet Singh Kohli
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - Sylke Wohlrab
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany.
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 40, 1090 Vienna, Austria.
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kongens Lyngby, Denmark.
| | - Per Juel Hansen
- Marine Biology Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| | - Uwe John
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany.
| |
Collapse
|
11
|
Taylor RB, Hill BN, Langan LM, Chambliss CK, Brooks BW. Sunlight concurrently reduces Prymnesium parvum elicited acute toxicity to fish and prymnesins. CHEMOSPHERE 2021; 263:127927. [PMID: 32814137 PMCID: PMC8117398 DOI: 10.1016/j.chemosphere.2020.127927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/09/2020] [Accepted: 08/04/2020] [Indexed: 05/05/2023]
Abstract
Prymnesium parvum continues to spread globally, producing harmful algal blooms that release toxins known to cause fish kills. While previous work has identified possible P. parvum toxin(s) (e.g., prymnesins, fatty acids, fatty acid amides) and investigated treatment strategies targeted at minimizing cell abundance, studies examining efficacy of treatment approaches to remove toxins are lacking. To understand influences of sunlight on toxins stability and toxicity to fish, acutely toxic P. parvum cultures were exposed to three light scenarios (lab dark control, field dark, and field light) and then evaluated for acute toxicity to fish and prymnesins abundance. Previous work showed acute toxicity to fathead minnow larvae was ameliorated after 2 h of sunlight exposure, and results observed herein found an identical trend. Acute toxicity disappeared in light exposed filtrate, but filtrate exposed to 35 °C without sunlight remained acutely toxic to fish. Additionally, six prymnesins were identified through high-resolution mass spectrometry and abundance corresponded to acute toxicity levels. Prymnesins were present at the highest level in filtrate that was acutely toxic but diminished in filtrate that was exposed to light and correspondingly ameliorated acute toxicity to fish. These findings suggest prymnesins are responsible for measured acute toxicity and are photo-labile, which represents an important implication for treatment strategies.
Collapse
Affiliation(s)
- Raegyn B Taylor
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX, 76798, USA
| | - Bridgett N Hill
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX, 76798, USA
| | - Laura M Langan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX, 76798, USA
| | - C Kevin Chambliss
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX, 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX, 76798, USA; Institute of Biomedical Studies, Baylor University, One Bear Place #97224, Waco, TX, 76798, USA.
| |
Collapse
|
12
|
Eckford-Soper LK, Canfield DE. The global explosion of eukaryotic algae: The potential role of phosphorus? PLoS One 2020; 15:e0234372. [PMID: 33091058 PMCID: PMC7580907 DOI: 10.1371/journal.pone.0234372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/04/2020] [Indexed: 11/24/2022] Open
Abstract
There arose one of the most important ecological transitions in Earth's history approximately 750 million years ago during the middle Neoproterozoic Era (1000 to 541 million years ago, Ma). Biomarker evidence suggests that around this time there was a rapid shift from a predominantly bacterial-dominated world to more complex ecosystems governed by eukaryotic primary productivity. The resulting 'Rise of the algae' led to dramatically altered food webs that were much more efficient in terms of nutrient and energy transfer. Yet, what triggered this ecological shift? In this study we examined the theory that it was the alleviation of phosphorus (P) deficiency that gave eukaryotic alga the prime opportunity to flourish. We performed laboratory experiments on the cyanobacterium Synechocystis salina and the eukaryotic algae Tetraselmis suecica and examined their ability to compete for phosphorus. Both these organisms co-occur in modern European coastal waters and are not known to have any allelopathic capabilities. The strains were cultured in mono and mixed cultures in chemostats across a range of dissolved inorganic phosphorus (DIP) concentrations to reflect modern and ancient oceanic conditions of 2 μM P and 0.2 μM P, respectively. Our results show that the cyanobacteria outcompete the algae at the low input (0.2 μM P) treatment, yet the eukaryotic algae were not completely excluded and remained a constant background component in the mixed-culture experiments. Also, despite their relatively large cell size, the algae T. suecica had a high affinity for DIP. With DIP input concentrations resembling modern-day levels (2 μM), the eukaryotic algae could effectively compete against the cyanobacteria in terms of total biomass production. These results suggest that the availability of phosphorus could have influenced the global expansion of eukaryotic algae. However, P limitation does not seem to explain the complete absence of eukaryotic algae in the biomarker record before ca. 750 Ma.
Collapse
Affiliation(s)
| | - Donald E. Canfield
- Nordcee, Department of Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
13
|
Wang R, Wu J, Zhou S, Cao R, Chan LL. A preliminary study on the allelopathy and toxicity of the dinoflagellate Karlodinium veneficum. MARINE POLLUTION BULLETIN 2020; 158:111400. [PMID: 32753185 DOI: 10.1016/j.marpolbul.2020.111400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The dinoflagellate Karlodinium veneficum has worldwide distribution and is associated with harmful algal blooms through the production of karlotoxins. We investigated the allelopathy and toxicity to explore the potential ecological implications. Prorocentrum donghaiense was inhibited significantly when grown either in co-cultures or in culture filtrate of K. veneficum. In addition, the effect of the co-occurring microalga species (P. donghaiense) on the hemolytic activity of K. veneficum was also evaluated. P. donghaiense did not inhibit the growth of K. veneficum but increased the hemolytic activity. The culture of K. veneficum was loaded onto an RP-C18 column and eluted with different percentages of aqueous methanol solution. 80% methanol fraction not only inhibited the growth of P. donghaiense by allelopathy but also exhibited strong hemolytic activity, indicating that the allelochemicals and toxins of K. veneficum might be the same components. Furthermore, KmTx 3 (C68H124O24) was identified using HPLC-HRMS from this fraction.
Collapse
Affiliation(s)
- Rui Wang
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jiajun Wu
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; The State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Shiwen Zhou
- The State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Ruobing Cao
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Leo Lai Chan
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; The State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, SAR 999077, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, SAR 999077, China.
| |
Collapse
|
14
|
Taylor RB, Hill BN, Bobbitt JM, Hering AS, Brooks BW, Chambliss CK. Suspect and non-target screening of acutely toxic Prymnesium parvum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136835. [PMID: 32007880 PMCID: PMC8080972 DOI: 10.1016/j.scitotenv.2020.136835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 05/20/2023]
Abstract
Harmful algal blooms (HABs) are increasing in frequency, magnitude, and duration around the world. Prymnesium parvum is a HAB species known to cause massive fish kills, but the toxin(s) it produces contributing to this acute toxicity to fish have not been confirmed. In the present study, a 2 × 2 factorial design was employed to examine influences of salinity (2.4 or 5 ppt) and nutrient limitation (f/2 or f/8) on P. parvum acute toxicity to fish and produced molecules. Acute toxicity (LC50) of these cultures, following a 48-h mortality assay, ranged from 10,213 to 96,816 cells mL-1. Non-targeted analysis was performed using liquid chromatography high-resolution mass spectrometry (LC-HRMS) to investigate compounds contributing to the differential toxicological responses. When P. parvum elicited toxicity to fish, suspect screening confirmed the presence of several prymnesins, and the peak area of PRM-A (3 Cl; prymnesin2aglycone) was significantly (p < 0.05) and positively related to acute toxicity. In addition, a non-targeted approach to highlighting peaks that differ between two chemical fingerprints was developed, termed a relative difference plot, and used to search for peaks co-varying with P. parvum induced acute toxicity to fish. Several peaks were highlighted along with the prymnesins identified through suspect screening when acute toxicity to fish was observed.
Collapse
Affiliation(s)
- Raegyn B Taylor
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA
| | - Bridgett N Hill
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA
| | - Jonathan M Bobbitt
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA
| | - Amanda S Hering
- Department of Statistical Science, Baylor University, One Bear Place #97140, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA
| | - C Kevin Chambliss
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA.
| |
Collapse
|
15
|
Hill BN, Saari GN, Steele WB, Corrales J, Brooks BW. Nutrients and salinity influence Prymnesium parvum (UTEX LB 2797) elicited sublethal toxicity in Pimephales promelas and Danio rerio. HARMFUL ALGAE 2020; 93:101795. [PMID: 32307075 PMCID: PMC8166212 DOI: 10.1016/j.hal.2020.101795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 05/04/2023]
Abstract
The magnitude, frequency, and duration of harmful algal blooms (HABs) are increasing worldwide, primarily due to climate change and anthropogenic activities. Prymnesium parvum is a euryhaline and eurythermal HAB forming species that has expanded throughout North America, resulting in massive fish kills. Previous aquatic ecology and toxicology efforts supported an understanding of conditions resulting in P. parvum HABs and fish kills; however, the primary endpoint selected for these studies was acute mortality. Whether adverse sublethal responses to P. parvum occur in fish are largely unknown. To begin to address this question, molecular and biochemical oxidative stress (OS) biomarker responses and photomotor behavioral alterations were investigated in two common fish models, the fathead minnow (Pimephales promelas) and zebrafish (Danio rerio). Varying nutrient and salinity conditions influenced P. parvum related OS biomarkers and fish behavioral responses in zebrafish and fathead minnows, which were heightened by nonoptimal conditions for P. parvum growth. Such sublethal observations present important considerations for future aquatic assessments and management of P. parvum HABs.
Collapse
Affiliation(s)
- Bridgett N Hill
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, United States
| | - Gavin N Saari
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, United States
| | - W Baylor Steele
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, United States; Institute of Biomedical Studies, Baylor University, Waco, TX 76798, United States
| | - Jone Corrales
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, United States
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, United States; Institute of Biomedical Studies, Baylor University, Waco, TX 76798, United States.
| |
Collapse
|
16
|
Franco ME, Hill BN, Brooks BW, Lavado R. Prymnesium parvum differentially triggers sublethal fish antioxidant responses in vitro among salinity and nutrient conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105214. [PMID: 31185429 DOI: 10.1016/j.aquatox.2019.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 05/11/2023]
Abstract
Significant fish kills have been attributed to Prymnesium parvum in coastal and inland waters around the world. However, specific mechanisms responsible for adverse outcomes resulting from this harmful algal bloom (HAB) species remain unclear, though the gill has previously been identified as an important target organ. In the present study, an in vitro approach was used to examine cytotoxicity and antioxidant responses in fish liver (Hepa-E1 and PLHC-1) and gill (G1B and RTgill-W1) cell lines, following exposure to P. parvum grown at different salinities and nutrient concentrations, which can influence the magnitude of acute toxicity. Cultures from high salinity compromised survival of hepatic cell lines exposed to high dilutions, whereas no significant cytotoxicity was observed for gill cell lines. With respect to control groups, catalase showed significant activity in both gill cell lines, especially RTgill-W1, following exposure to high salinity cultures. High levels of superoxide dismutase were measured in Hepa-E1 cells exposed to all experimental treatment combinations and in RTgill-W1 cells following exposure to high salinity conditions, with respect to non-exposed cells Glutathione peroxidase activity was also detected at significant levels in Hepa-E1 cells after exposure to cultures from high salinity and the low salinity X low nutrients. Slight GPx increases were only observed in PLHC-1 and G1B exposed to P. parvum grown at high salinity. These results suggest that: 1. specific combinations of salinity and nutrient levels may contribute to production and potency of P. parvum toxins resulting in sub-lethal effects, and 2. sub-lethal responses are more prominent than cytotoxicity, and that oxidative stress may be a significant adverse effect of toxins produced by P. parvum.
Collapse
Affiliation(s)
- Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Bridgett N Hill
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
17
|
Svenssen DK, Binzer SB, Medić N, Hansen PJ, Larsen TO, Varga E. Development of an Indirect Quantitation Method to Assess Ichthyotoxic B-Type Prymnesins from Prymnesium parvum. Toxins (Basel) 2019; 11:toxins11050251. [PMID: 31060245 PMCID: PMC6563205 DOI: 10.3390/toxins11050251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022] Open
Abstract
Harmful algal blooms of Prymnesium parvum have recurrently been associated with the killing of fish. The causative ichthyotoxic agents of this haptophyte are believed to be prymnesins, a group of supersized ladder-frame polyether compounds currently divided into three types. Here, the development of a quantitative method to assess the molar sum of prymnesins in water samples and in algal biomass is reported. The method is based on the derivatization of the primary amine group and subsequent fluorescence detection using external calibrants. The presence of prymnesins in the underivatized sample should be confirmed by liquid chromatography mass spectrometry. The method is currently only partly applicable to water samples due to the low amounts that are present. The growth and cellular toxin content of two B-type producing strains were monitored in batch cultures eventually limited by an elevated pH. The cellular toxin contents varied by a factor of ~2.5 throughout the growth cycle, with the highest amounts found in the exponential growth phase and the lowest in the stationary growth/death phases. The strain K-0081 contained ~5 times more toxin than K-0374. Further investigations showed that the majority of prymnesins were associated with the biomass (89% ± 7%). This study provides the basis for further investigations into the toxicity and production of prymnesins.
Collapse
Affiliation(s)
- Daniel Killerup Svenssen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark.
| | - Sofie Bjørnholt Binzer
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| | - Nikola Medić
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark.
| | - Elisabeth Varga
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark.
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 40, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Long M, Tallec K, Soudant P, Lambert C, Le Grand F, Sarthou G, Jolley D, Hégaret H. A rapid quantitative fluorescence-based bioassay to study allelochemical interactions from Alexandrium minutum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1598-1605. [PMID: 30072219 DOI: 10.1016/j.envpol.2018.07.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/22/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Harmful microalgal blooms are a threat to aquatic organisms, ecosystems and human health. Toxic dinoflagellates of the genus Alexandrium are known to produce paralytic shellfish toxins and to release bioactive extracellular compounds (BECs) with potent cytotoxic, hemolytic, ichtyotoxic and allelopathic activity. Negative allelochemical interactions refer to the chemicals that are released by the genus Alexandrium and that induce adverse effects on the physiology of co-occurring protists and predators. Releasing BECs gives the donor a competitive advantage that may help to form dense toxic blooms of phytoplankton. However BECs released by Alexandrium minutum are uncharacterized and it is impossible to quantify them using classical chemical methods. Allelochemical interactions are usually quantified through population growth inhibition or lytic-activity based bioassays using a secondary target organism. However these bioassays require time (for growth or microalgal counts) and/or are based on lethal effects. The use of pulse amplitude modulation (PAM) fluorometry has been widely used to assess the impact of environmental stressors on phytoplankton but rarely for allelochemical interactions. Here we evaluated the use of PAM and propose a rapid chlorophyll fluorescence based bioassay to quantify allelochemical BECs released from Alexandrium minutum. We used the ubiquitous diatom Chaetoceros muelleri as a target species. The bioassay, based on sub-lethal effects, quantifies allelochemical activity from different samples (filtrates, extracts in seawater) within a short period of time (2 h). This rapid bioassay will help investigate the role of allelochemical interactions in Alexandrium bloom establishment. It will also further our understanding of the potential relationship between allelochemical activities and other cytotoxic activities from BECs. While this bioassay was developed for the species A. minutum, it may be applicable to other species producing allelochemicals and may provide further insights into the role and impact of allelochemical interactions in forming dense algal blooms and structuring marine ecosystems.
Collapse
Affiliation(s)
- Marc Long
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France; School of Chemistry, University of Wollongong, NSW, 2522, Australia.
| | - Kévin Tallec
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 UBO/CNRS/IRD/Ifremer, 29280 Plouzané, France
| | - Philippe Soudant
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Christophe Lambert
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Fabienne Le Grand
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Géraldine Sarthou
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Dianne Jolley
- School of Chemistry, University of Wollongong, NSW, 2522, Australia
| | - Hélène Hégaret
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER -Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280, Plouzané, France
| |
Collapse
|
19
|
|
20
|
Wu Y, Tang J, Liu J, Graham B, Kerr PG, Chen H. Sustained High Nutrient Supply As an Allelopathic Trigger between Periphytic Biofilm and Microcystis aeruginosa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9614-9623. [PMID: 28738143 DOI: 10.1021/acs.est.7b01027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Allelopathy among aquatic organisms, especially microorganisms, has received growing attention in recent years for its role in shaping interactions with bloom-forming algae. Many studies have shown that allelopathy occurs and increases under nutrient limiting conditions. However, to date there is no reported direct evidence to indicate that allelopathy occurs under the condition of constant high nutrient supply. Here we report the allelopathic action of periphytic biofilm on bloom-forming cyanobacteria (Microcystis aeruginosa), which was triggered by the stress of high nutrient conditions, and continues while nutrients are maintained at high levels (trophic state index at 159 and 171). The experimental evidence indicates that the electron transport from photosystem II (PS II) to photosystem I (PS I) in M. aeruginosa is interrupted by the identified allelochemicals, (9Z)-Octadec-9-enoic acid and (9Z)-Hexadec-9-enoic acid, leading to the failure of photosynthesis and the subsequent death of M. aeruginosa. Our findings indicate that the nutrient stress of constant high nutrient supply may be a newly recognized trigger causing allelopathy between microbial competitors, and therefore opening a new direction for the better management of ecological processes in cyanobacteria-dominated and hyper-eutrophic waters.
Collapse
Affiliation(s)
- Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences No.71 , East Beijing Road, Nanjing 210008, China
| | - Jun Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences No.71 , East Beijing Road, Nanjing 210008, China
- College of Resource and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Junzhuo Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences No.71 , East Beijing Road, Nanjing 210008, China
| | - Bruce Graham
- School of Biomedical Sciences, Charles Sturt University , Boorooma St, Wagga Wagga, 2678, New South Wales, Australia
| | - Philip G Kerr
- School of Biomedical Sciences, Charles Sturt University , Boorooma St, Wagga Wagga, 2678, New South Wales, Australia
| | - Hong Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences No.71 , East Beijing Road, Nanjing 210008, China
- College of Resource and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
21
|
Rasmussen SA, Meier S, Andersen NG, Blossom HE, Duus JØ, Nielsen KF, Hansen PJ, Larsen TO. Chemodiversity of Ladder-Frame Prymnesin Polyethers in Prymnesium parvum. JOURNAL OF NATURAL PRODUCTS 2016; 79:2250-6. [PMID: 27550620 DOI: 10.1021/acs.jnatprod.6b00345] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Blooms of the microalga Prymnesium parvum cause devastating fish kills worldwide, which are suspected to be caused by the supersized ladder-frame polyether toxins prymnesin-1 and -2. These toxins have, however, only been detected from P. parvum in rare cases since they were originally described two decades ago. Here, we report the isolation and characterization of a novel B-type prymnesin, based on extensive analysis of 2D- and 3D-NMR data of natural as well as 90% (13)C enriched material. B-type prymnesins lack a complete 1,6-dioxadecalin core unit, which is replaced by a short acyclic C2 linkage compared to the structure of the original prymnesins. Comparison of the bioactivity of prymnesin-2 with prymnesin-B1 in an RTgill-W1 cell line assay identified both compounds as toxic in the low nanomolar range. Chemical investigations by liquid chromatography high-resolution mass spectrometry (LC-HRMS) of 10 strains of P. parvum collected worldwide showed that only one strain produced the original prymnesin-1 and -2, whereas four strains produced the novel B-type prymnesin. In total 13 further prymnesin analogues differing in their core backbone and chlorination and glycosylation patterns could be tentatively detected by LC-MS/HRMS, including a likely C-type prymnesin in five strains. Altogether, our work indicates that evolution of prymnesins has yielded a diverse family of fish-killing toxins that occurs around the globe and has significant ecological and economic impact.
Collapse
Affiliation(s)
- Silas Anselm Rasmussen
- Department of Biotechnology and Biomedicine, Technical University of Denmark , Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Nikolaj Gedsted Andersen
- Marine Biological Section, Department of Biology, Copenhagen University , Strandpromenaden 5, 2100 Helsingør, Denmark
| | - Hannah Eva Blossom
- Marine Biological Section, Department of Biology, Copenhagen University , Strandpromenaden 5, 2100 Helsingør, Denmark
| | - Jens Øllgaard Duus
- Department of Chemistry, Technical University of Denmark , Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Kristian Fog Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark , Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, Copenhagen University , Strandpromenaden 5, 2100 Helsingør, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark , Søltofts Plads 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
Abstract
Covering: January 2013 to online publication December 2014This review summarizes recent research in the chemical ecology of marine pelagic ecosystems, and aims to provide a comprehensive overview of advances in the field in the time period covered. In order to highlight the role of chemical cues and toxins in plankton ecology this review has been organized by ecological interaction types starting with intraspecific interactions, then interspecific interactions (including facilitation and mutualism, host-parasite, allelopathy, and predator-prey), and finally community and ecosystem-wide interactions.
Collapse
Affiliation(s)
- Emily R Schwartz
- School of Biology, Aquatic Chemical Ecology Center, Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | | | | | |
Collapse
|
23
|
Rasmussen SA, Andersen AJC, Andersen NG, Nielsen KF, Hansen PJ, Larsen TO. Chemical Diversity, Origin, and Analysis of Phycotoxins. JOURNAL OF NATURAL PRODUCTS 2016; 79:662-673. [PMID: 26901085 DOI: 10.1021/acs.jnatprod.5b01066] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microalgae, particularly those from the lineage Dinoflagellata, are very well-known for their ability to produce phycotoxins that may accumulate in the marine food chain and eventually cause poisoning in humans. This includes toxins accumulating in shellfish, such as saxitoxin, okadaic acid, yessotoxins, azaspiracids, brevetoxins, and pinnatoxins. Other toxins, such as ciguatoxins and maitotoxins, accumulate in fish, where, as is the case for the latter compounds, they can be metabolized to even more toxic metabolites. On the other hand, much less is known about the chemical nature of compounds that are toxic to fish, the so-called ichthyotoxins. Despite numerous reports of algal blooms causing massive fish kills worldwide, only a few types of compounds, such as the karlotoxins, have been proven to be true ichthyotoxins. This review will highlight marine microalgae as the source of some of the most complex natural compounds known to mankind, with chemical structures that show no resemblance to what has been characterized from plants, fungi, or bacteria. In addition, it will summarize algal species known to be related to fish-killing blooms, but from which ichthyotoxins are yet to be characterized.
Collapse
Affiliation(s)
- Silas Anselm Rasmussen
- Department of Systems Biology, Technical University of Denmark , Søltofts Plads 221, Kongens Lyngby, Denmark
| | | | - Nikolaj Gedsted Andersen
- Marine Biological Section, Department of Biology, Copenhagen University , Strandpromenaden 5, Helsingør, Denmark
| | - Kristian Fog Nielsen
- Department of Systems Biology, Technical University of Denmark , Søltofts Plads 221, Kongens Lyngby, Denmark
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, Copenhagen University , Strandpromenaden 5, Helsingør, Denmark
| | - Thomas Ostenfeld Larsen
- Department of Systems Biology, Technical University of Denmark , Søltofts Plads 221, Kongens Lyngby, Denmark
| |
Collapse
|
24
|
La Claire JW, Manning SR, Talarski AE. Semi-quantitative assay for polyketide prymnesins isolated from Prymnesium parvum (Haptophyta) cultures. Toxicon 2015; 102:74-80. [PMID: 26079952 DOI: 10.1016/j.toxicon.2015.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 11/27/2022]
Abstract
A fluorometric assay was developed to semi-quantify co-purified polyketide prymnesins-1 and -2 (PPs) from Prymnesium parvum cultures. Evaluations performed throughout the growth cycle of 5 practical salinity unit (PSU) cultures detected relatively 8-10 × more PPs in the culture medium (exotoxins) than in cells (endotoxins). The [exotoxin] remained stable and relatively low until post-log growth, when they increased significantly. However, on a per-cell basis, [exotoxin] declined throughout log phase and subsequently increased dramatically during late- and post-log phases. The [endotoxin] remained stable until late- and post-log phases, when it achieved its highest level before declining sharply. Shaking cultures of strains from Texas, South Carolina and the United Kingdom displayed dramatically different [exotoxin] during post-log decline. Cultures adapted to 30 PSU had significantly lower [exotoxin] over the course of cultivation than those grown at 5 PSU. Phosphate limitation enhanced [exotoxin] on a per-cell basis, especially in late- and post-log cultures. Media containing streptomycin exhibited a ∼20% increase in [exotoxin] in post-log cultures vs. control treatments, but it had only negligible effects on endotoxin levels. Brefeldin A had minimal effects on [exotoxin], suggesting that the presence of PPs in the medium may be largely derived from cell lysis or some other passive means.
Collapse
Affiliation(s)
- J W La Claire
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - S R Manning
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - A E Talarski
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|