1
|
Do SD, Lee S, Lee DH, Choi M, Rhee JS. Acute and chronic detrimental effects induced by short-chain chlorinated paraffins in the marine mysid Neomysis awatschensis. CHEMOSPHERE 2025; 371:144069. [PMID: 39756709 DOI: 10.1016/j.chemosphere.2025.144069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
To determine the potentially detrimental impacts of short-chain chlorinated paraffins (SCCPs), we conducted assessments of acute effects on 96-h survival rate and biochemical markers, as well as chronic and multigenerational impacts on growth and reproduction over three generations in the marine mysid, Neomysis awatschensis. Dose-dependent increase of mortality was measured in both juvenile and adult mysids for 96 h. Exposure to the LC10 value (derived from the 96-h acute toxicity value) significantly reduced feeding activity in juveniles, accompanied by a significant elevation in oxidative stress and a reduction in acetylcholinesterase activity. When juvenile and adult mysids were exposed to 1/10 of the NOEC and NOEC values for four weeks, mortality significantly increased in juveniles. Furthermore, mysids subjected to constant exposure to 1/10 of the NOEC and NOEC values across three generations, F0-F2, displayed more pronounced growth retardation, an extended intermolt duration, and a reduced rate of reproduction. These results collectively indicate that even sublethal concentrations of SCCPs can have harmful effects on the health status of mysid populations when they are consistently exposed.
Collapse
Affiliation(s)
- Seong Duk Do
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Somyeong Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Do-Hee Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Minkyu Choi
- Department of Marine Environment Research, National Institute of Fisheries Science, Busan, 46083, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon, 22012, Republic of Korea; Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon, 22012, Republic of Korea; Yellow Sea Research Institute, Incheon, 22012, Republic of Korea.
| |
Collapse
|
2
|
Temiz Ö, Dayangaç A. Toxic Effects of Imidacloprid, Copper Sulfate, and Their Combinations on Biomolecular and Oxidative/Antioxidant Biomarkers in the Tissues of Oreochromis niloticus. Biol Trace Elem Res 2025; 203:454-466. [PMID: 39361120 DOI: 10.1007/s12011-024-04404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/29/2024] [Indexed: 01/07/2025]
Abstract
The wide-ranging use of heavy metals and pesticides worldwide and their irreversible accumulation in aquatic ecosystems is a major concern. As the range of household and agricultural chemicals increases, water pollution is trending from the toxic effects of a single agent to complex agent pollution that threatens aquatic ecosystems. The aim of this study was to investigate the effects of pesticides (imidacloprid, IMI) and metals (copper sulfate, CuSO4) on oxidative stress biomarkers, antioxidant enzymes, and biomolecular parameters. The present study on the individual and combined effects of Oreochromis niloticus copper sulfate (CuSO4; 1 ppm), imidacloprid (IMI; 10 and 50 ppm), and IMI + CuSO4 (IMI10 + CuSO4, IMI50 + CuSO4) groups for 14 days. In this context, oxidative stress/antioxidant markers (SOD, CAT, GST, and GSH) and biomolecular markers including HSP70, 8-OHdG, PC, and TBARS levels were examined in fish liver and kidney tissues, which are detoxification organs. The results indicated that IMI and CuSO4 toxicity alone and in combination altered oxidative stress/antioxidant markers and biomolecular parameters; moreover, 14 days of exposure to the combination of CuSO4 and imidacloprid in particular exhibited a synergistic effect and caused oxidative toxicity. These findings highlighted the importance of evaluating mixtures of pesticides and metals and that the results show a remarkably synergistic effect. It can be concluded that these biomarkers are important indicators of physiological changes in living organisms.
Collapse
Affiliation(s)
- Özge Temiz
- Vocational School of Health Services, Osmaniye Korkut Ata University, Osmaniye, Turkey.
| | - Alpaslan Dayangaç
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Osmaniye Korkut Ata University, Osmaniye, Turkey
| |
Collapse
|
3
|
Qiao K, Huang Q, Chen B, Xu M, Hao H, Su Y, Liu S, Pan N, Liu Z. The Molecular Characterization and Antioxidant Defense of a Novel Nrf2 from the Pacific Abalone Haliotis discus hannai Ino. Int J Mol Sci 2024; 25:12429. [PMID: 39596494 PMCID: PMC11594797 DOI: 10.3390/ijms252212429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
The Nrf2/ARE pathway is considered the most important endogenous antioxidant signaling pathway in mammals, playing a crucial role in defending against external damage. This study investigated the functional characteristics of Nrf2 in the abalone, Haliotis discus hannai. The full-length cDNA sequence of the HdhNrf2 gene was cloned using rapid amplification of cDNA ends (RACE) technology and consists of 4568 base pairs encoding a protein of 694 amino acids. The predicted theoretical molecular weight was 77 kDa, with an isoelectric point of 4.72. Multiple sequence alignment analysis revealed the relative conservation of the HdhNrf2 amino acid sequence in H. discus hannai. The tissue expression pattern of the HdhNrf2 gene was analyzed using real-time fluorescence quantitative PCR, which showed the highest expression in the gills, followed by hemocytes, with the lowest levels in the foot and mantle. The inducible expression of HdhNrf2 and antioxidant genes in abalone under H2O2 stress was investigated at various time points. Furthermore, an expression vector, pET-28a(+)-rHdhNrf2, was constructed, and the recombinant protein rHdhNrf2 was obtained through induced expression and purification. These findings indicated that HdhNrf2 plays a crucial role in the defense of abalones against oxidative stress.
Collapse
Affiliation(s)
- Kun Qiao
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (K.Q.); (B.C.); (M.X.); (Y.S.); (S.L.); (N.P.)
| | - Qiongmei Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Bei Chen
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (K.Q.); (B.C.); (M.X.); (Y.S.); (S.L.); (N.P.)
| | - Min Xu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (K.Q.); (B.C.); (M.X.); (Y.S.); (S.L.); (N.P.)
| | - Hua Hao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361013, China;
| | - Yongchang Su
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (K.Q.); (B.C.); (M.X.); (Y.S.); (S.L.); (N.P.)
| | - Shuji Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (K.Q.); (B.C.); (M.X.); (Y.S.); (S.L.); (N.P.)
| | - Nan Pan
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (K.Q.); (B.C.); (M.X.); (Y.S.); (S.L.); (N.P.)
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen 361013, China; (K.Q.); (B.C.); (M.X.); (Y.S.); (S.L.); (N.P.)
| |
Collapse
|
4
|
Chen J, Jiang WD, Feng L, Wu P, Liu Y, Jin XW, Ren HM, Tang JY, Zhang RN, Zhou XQ. Myo-inositol: A potential game-changer in preventing gill cell death and alleviating "gill rot" in grass carp (Ctenopharyngodon idellus). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109850. [PMID: 39179187 DOI: 10.1016/j.fsi.2024.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Increasing evidence shows the potential threat of gill rot in freshwater fish culture. F. columnare is wide-spread in aquatic environments, which can cause fish gill rot and result in high mortality and losses of fish. This study investigated the effects of myo-inositol (MI) on the proliferation, structural integrity, and different death modes of grass carp (Ctenopharyngodon idella) gill epithelial cells, as well as its possible mechanism. 30 mg/L MI up-regulated CCK8 OD value and the protein level of solute carrier family 5A 3 (SLC5A3), and down-regulated the reactive oxygen species (ROS) content in gill cells and lactate dehydrogenase (LDH) release in the culture medium (P < 0.05). MI up-regulated the protein level of Beclin1, the protein level and fluorescence expression of microtubule-associated protein light chain 3B (LC3B) and down-regulated the protein level of sequestosome-1 (SQSTM1, also called p62) (P < 0.05). MI down-regulated the protein levels of Cysteine aspartate protease-1 (caspase-1), Gasdermin E (GSDME) and Cleaved interleukin 1 beta (IL-1β) (P < 0.05). MI up-regulated the protein level of caspase-8 (P < 0.05), but had no effect on apoptosis (P > 0.05). MI down-regulated the mRNA expressions and protein levels of tumor necrosis factor α (tnfα), TNF receptor 1 (tnfr1), receptor interacting protein 1 (ripk1), receptor interacting protein 3 (ripk3) and mixed lineage kinase domain-like protein (mlkl), and reduce the ratio of p-MLKL/MLKL (P < 0.05). The addition of MI or necrosulfonamide (NSA) alone, or the addition of MI after induction of necroptosis, significantly up-regulated the cell activity and the protein level of SLC5A3 in gill cells, and significantly reduced the LDH release in the culture medium and the intracellular ROS content, the number of necroptosis cells, the protein expression of TNFα, TNFR1 and RIPK1, and the ratio of p-RIPK3/RIPK3 and p-MLKL/MLKL (P < 0.05). It indicated MI induce autophagy may relate to Beclin1/LC3/p62 signaling pathway, inhibits pyroptosis may attribute to Caspase-1/GSDMD/IL-1β signaling pathway, and inhibits necroptosis via MLKL signaling pathway. However, MI had no effect on apoptosis.
Collapse
Affiliation(s)
- Jie Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jia-Yong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui-Nan Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
5
|
Nafie EH, Abou-Gamra MM, Mossalem HS, Sarhan RM, Hammam OA, Nasr SM, Anwar MM. Evaluation of the prophylactic and therapeutic efficacies of mucus and tissue nucleoproteins extracted from Biomphalaria alexandrina snails on schistosomiasis mansoni. J Parasit Dis 2024; 48:551-569. [PMID: 39145357 PMCID: PMC11319553 DOI: 10.1007/s12639-024-01692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease with considerable morbidity. The lone effective drug, praziquantel (PZQ), is showing emergence of drug resistance hence, searching for new supportive treatment is crucial. This study aimed to evaluate the efficacy of mucus and nucleoproteins (NPs) extracted from Biomphalaria alexandrina (B. alexandrina) snails on miracidia, cercariae and Schistosoma mansoni (S. mansoni) adults in vitro and assess their experimental in vivo effect through parasitological, histopathological, and biochemical parameters. The in vivo study included 90 male Swiss albino mice. Mice were grouped into 9 groups; G1-G5 were infected and treated with; GI: PZQ, GII: mucus, GIII: combined PZQ and mucus, GIV: NPs, GV: combined PZQ and NPs. Control groups; C1: Non infected non treated (negative control), C2: Infected non treated (positive control), C3: Non infected mucus treated and C4: Non infected NPs treated. The in vitro study proved that the mucus had a better lethal effect on cercariae than miracidia, while NPs had better lethal effect on miracidia. The mucus lethal effect on adults surpassed the NPs as 100% and 60%, respectively. The in vivo study proved that the combined NPs or mucus with PZQ added to the effect of individual PZQ resulting in 100% total worm burden (TWB) reduction. As regard oxidative stress markers, the lowest level of nitric oxide (NO) was shown with combined PZQ and NPs. While, the highest glutathione (GSH) level was produced by individual PZQ. The study concluded that mucus and NPs of B. alexandrina had cercaricidal, miracidicidal and anti-schistosomal effect in vitro and that their combination could be considered a contribution to PZQ potentiality in vivo.
Collapse
Affiliation(s)
- Esraa H. Nafie
- Departments of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Ramsis St., Abbassia, Cairo, 11566 Egypt
| | - Maha M. Abou-Gamra
- Departments of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Ramsis St., Abbassia, Cairo, 11566 Egypt
| | - Hanan S. Mossalem
- Departments of Medical Malacology, Theodor Bilharz Research Institute, El-Nile St., Warrak El-Hader, P.O. BOX 30, Imbaba, Giza, Egypt
| | - Rania M. Sarhan
- Departments of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Ramsis St., Abbassia, Cairo, 11566 Egypt
| | - Olfat A. Hammam
- Departments of Pathology, Theodor Bilharz Research Institute, El-Nile St., Warrak El-Hader, P.O. BOX 30, Imbaba, Giza, Egypt
| | - Sami M. Nasr
- Departments of Biochemistry, Theodor Bilharz Research Institute, El-Nile St., Warrak El-Hader, P.O. BOX 30, Imbaba, Giza, Egypt
| | - Mona M. Anwar
- Departments of Medical Parasitology Department, Faculty of Medicine, Ain Shams University, Ramsis St., Abbassia, Cairo, 11566 Egypt
| |
Collapse
|
6
|
Zhao P, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Feng L, Zhou XQ. Dietary curcumin alleviates intestinal damage induced by ochratoxin A in juvenile grass carp ( Ctenopharyngodon idella): Necroptosis and inflammatory responses. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:119-132. [PMID: 39263441 PMCID: PMC11388201 DOI: 10.1016/j.aninu.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/24/2023] [Accepted: 04/11/2024] [Indexed: 09/13/2024]
Abstract
Ochratoxin A (OTA) is one of the most common pollutants in aquatic feed. As a first line of defense, intestinal barriers could be utilized against OTA in order to prevent disorders. Natural product supplementation is one of the most popular strategies to alleviate toxicity induced by mycotoxins, but there is a lack of knowledge about how it functions in the teleost intestine. In this study, 720 juvenile grass carp of about 11 g were selected and four treatment groups (control group, OTA group, curcumin [Cur] group, and OTA + Cur group) were set up to conduct a 60-day growth test. After the test, the growth performance and intestinal health related indexes of grass carp were investigated. The addition of dietary Cur could have the following main results: (1) inhibit absorption and promote efflux transporters mRNA expression, reducing the residuals of OTA, (2) decrease oxidative stress by reducing oxidative damage and enhancing the expression of antioxidant enzymes, (3) promote mitochondrial fusion proteins to inhibit the expression of mitotic proteins and mitochondrial autophagy proteins and enhance mitochondrial function, (4) reduce necroptosis-related gene expression through inhibiting the tumor necrotic factor receptor-interacting protein kinase/mixed lineage kinase domain-like pathway, (5) reduce the expression of pro-inflammatory factors by inhibiting the Toll-like receptor 4/nuclear factor-κB signaling pathway to alleviate the intestinal inflammatory response. In summary, the results suggested that Cur could alleviate OTA-induced intestinal damage by enhancing antioxidant capacity and mitochondrial function as well as reducing necroptosis and inflammation in the grass carp intestine. This study provided a theoretical basis and production implications for dietary Cur that could improve growth performance and alleviate the intestinal damage induced by OTA in fish.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| |
Collapse
|
7
|
Shi Y, Zhong L, Liu Y, Xu S, Dai J, Zhang Y, Hu Y. Dietary sanguinarine supplementation recovers the decrease in muscle quality and nutrient composition induced by high-fat diets of grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:208-219. [PMID: 38800733 PMCID: PMC11126770 DOI: 10.1016/j.aninu.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/13/2024] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
The intake of high-fat diets (HFD) has been shown to diminish the muscle quality of aquatic animals. Sanguinarine, as an excellent additive, exhibits the capability to reduce fat deposition and alleviate inflammation. However, its role in the muscle quality reduction caused by HFD remains unclear. An eight-week trial was conducted to investigate the impacts of dietary supplementation of sanguinarine at 1200 μg/kg (HFDS; crude fat = 10%) on the muscle quality of grass carp (Ctenopharyngodon idellus) in comparison to a basic diet (CON, crude fat = 5%). Each group had 3 replicates, with 40 fish per replicate. This experiment employed one-way ANOVA and Duncan's multiple comparisons of the means. The results showed that the HFD exhibited lower growth performance, reduced protein deposition, myofiber diameter, and muscle hardness, coupled with higher levels of fat deposition and inflammation when compared with the CON. However, HFDS improved growth performance (P < 0.05), fat metabolism (ppar-α ( P = 0.001), lpl (P < 0.001), atgl (P < 0.001), and cpt1 (P = 0.001) expression exhibited a significant elevation), protein deposition (the protein and mRNA levels of AKT (P = 0.004), PI3K (P = 0.027), TOR (P = 0.005), and P70S6K (P = 0.007) demonstrated a marked increase), myofiber diameter, muscle hardness, and the total content of eicosapentaenoic acid and docosahexaenoic acid. Furthermore, the HFDS reduced oxidative damage caused by fat deposition by significantly downregulating nf-κb (P < 0.001), il-1β (P < 0.001), il-6 (P < 0.001), il-8 (P = 0.003), and tnf-α (P < 0.001) expression and markedly upregulated nrf2 (P < 0.001), gpx4 (P < 0.001), cat (P < 0.001), sod (P < 0.001), and gr (P = 0.003) expression. The findings from this study suggest that sanguinarine has the potential to alleviate the adverse effects of HFD on growth and muscle quality, providing a theoretical foundation for its practical implementation.
Collapse
Affiliation(s)
- Yong Shi
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Zhong
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yuanxiang Liu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Shude Xu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Jihong Dai
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yaozhengtai Zhang
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Hu
- Fisheries College, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Research Center for Utilization of Characteristics of Aquatic Resources, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
8
|
Huang KJ, Feng L, Wu P, Liu Y, Zhang L, Mi HF, Zhou XQ, Jiang WD. Hypoxia leads to gill endoplasmic reticulum stress and disruption of mitochondrial homeostasis in grass carp (Ctenopharyngodon idella): Mitigation effect of thiamine. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134005. [PMID: 38484660 DOI: 10.1016/j.jhazmat.2024.134005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
Hypoxia in water environment is one of the important problems faced by intensive aquaculture. Under hypoxia stress, the effects of dietary thiamine were investigated on grass carp gill tissue damage and their mechanisms. Six thiamine diets with different thiamine levels (0.22, 0.43, 0.73, 1.03, 1.33 and 1.63 mg/kg) were fed grass carp (Ctenopharyngodon idella) for 63 days. Then, 96-hour hypoxia stress test was conducted. This study described that thiamine enhanced the growth performance of adult grass carp and ameliorated nutritional status of thiamine (pyruvic acid, glucose, lactic acid and transketolase). Additionally, thiamine alleviated the deterioration of blood parameters [glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), glucose, cortisol, lactic dehydrogenase (LDH), erythrocyte fragility, and red blood cell count (RBC count)] caused by hypoxia stress, and reduced reactive oxygen species (ROS) content and oxidative damage to the gills. In addition, thiamine alleviated endoplasmic reticulum stress in the gills, which may be related to its inhibition of RNA-dependent protein kinase-like ER kinase (PERK)/eukaryotic translation initiation factor-2α (eIF2α)/activating transcription factor4 (ATF4), inositol-requiring enzyme 1 (IRE1)/X-Box binding protein 1 (XBP1) and activating transcription factor 6 (ATF6) pathways. Furthermore, thiamine maintaining mitochondrial dynamics balance was probably related to promoting mitochondrial fusion and inhibiting mitochondrial fission, and inhibiting mitophagy may involve PTEN induced putative kinase 1 (PINK1)/Parkin-dependent pathway and hypoxia-inducible factor (HIF)-Bcl-2 adenovirus E1B 19 kDa interacting protein 3 (BNIP3) pathway. In summary, thiamine alleviated hypoxia stress in fish gills, which may be related to reducing endoplasmic reticulum stress, regulating mitochondrial dynamics balance and reducing mitophagy. The thiamine requirement for optimum growth [percent weight gain (PWG)] of adult grass carp was estimated to be 0.81 mg/kg diet. Based on the index of anti-hypoxia stress (ROS content in gill), the thiamine requirement for adult grass carp was estimated to be 1.32 mg/kg diet.
Collapse
Affiliation(s)
- Ke-Jing Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China
| | - Lu Zhang
- Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture, Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, Sichuan 610041, China
| | - Hai-Feng Mi
- Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture, Key Laboratory of Sichuan Province, Tongwei Co., Ltd., Chengdu, Sichuan 610041, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan 611130, China.
| |
Collapse
|
9
|
Kumar M, Singh S, Jain A, Yadav S, Dubey A, Trivedi SP. A review on heavy metal-induced toxicity in fishes: Bioaccumulation, antioxidant defense system, histopathological manifestations, and transcriptional profiling of genes. J Trace Elem Med Biol 2024; 83:127377. [PMID: 38183919 DOI: 10.1016/j.jtemb.2023.127377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
AIM This review provides information about heavy metal occurrence in the environment, destructive mechanisms, and lethal effects on fish. SUMMARY Heavy metals (HMs) are one of the major causes of environmental contamination globally. The advancement of industries has led to the emanation of toxic substances into the environment. HMs are stable, imperishable compounds and can accumulate in different fish organs when they reach the aquatic regimes. The most ubiquitous HMs are chromium, arsenic, mercury, cadmium, lead, copper, and nickel which can pollute the environment and affect the physiology of fishes. Accumulation of metals in the fish organs causes structural lesions and functional disturbances. Contamination of heavy metals induces oxidative stress, histopathological manifestations, and altered transcriptional gene regulation in the exposed fishes. CONCLUSION Heavy metal bioaccumulation leads to different anomalies in the non-target species. Metal toxicity may cause aquatic organisms to exhibit cellular dysfunction and disturb ecological equilibrium.
Collapse
Affiliation(s)
- Manoj Kumar
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, India.
| | - Shefalee Singh
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Anamika Jain
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Seema Yadav
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Aastha Dubey
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Sunil P Trivedi
- Environmental Toxicology and Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
10
|
Yin G, Sun Z, Wang Z, Xia Y, Cheng L, Qin G, Aschalew ND, Liu H, Zhang X, Wu Q, Zhang W, Zhao W, Wang T, Zhen Y. Mechanistic insights into inositol-mediated rumen function promotion and metabolic alteration using in vitro and in vivo models. Front Vet Sci 2024; 11:1359234. [PMID: 38435365 PMCID: PMC10904589 DOI: 10.3389/fvets.2024.1359234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Inositol is a bioactive factor that is widely found in nature; however, there are few studies on its use in ruminant nutrition. This study investigated the effects of different inositol doses and fermentation times on rumen fermentation and microbial diversity, as well as the levels of rumen and blood metabolites in sheep. Rumen fermentation parameters, microbial diversity, and metabolites after different inositol doses were determined in vitro. According to the in vitro results, six small-tailed Han sheep fitted with permanent rumen fistulas were used in a 3 × 3 Latin square feeding experiment where inositol was injected into the rumen twice a day and rumen fluid and blood samples were collected. The in vitro results showed that inositol could increase in vitro dry matter digestibility, in vitro crude protein digestibility, NH3-N, acetic acid, propionic acid, and rumen microbial diversity and affect rumen metabolic pathways (p < 0.05). The feeding experiment results showed that inositol increased the blood concentration of high-density lipoprotein and IgG, IgM, and IL-4 levels. The rumen microbial composition was significantly affected (p < 0.05). Differential metabolites in the rumen were mainly involved in ABC transporters, biotin metabolism, and phenylalanine metabolism, whereas those in the blood were mainly involved in arginine biosynthesis and glutathione and tyrosine metabolism. In conclusion, inositol improves rumen function, affects rumen microorganisms and rumen and blood metabolites and may reduce inflammation, improving animal health.
Collapse
Affiliation(s)
- Guopei Yin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhe Sun
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Zhanqing Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuanhong Xia
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Long Cheng
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guixin Qin
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Natnael D. Aschalew
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- College of Agriculture and Environmental Science, Dilla University, Dila, Ethiopia
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xuefeng Zhang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qilu Wu
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Weigang Zhang
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Wei Zhao
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Tao Wang
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| | - Yuguo Zhen
- Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Key Laboratory of Animal Production Product Quality and Security Ministry of Education, JLAU-Borui Dairy Science and Technology R&D Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science and Technology Co., Ltd., Changchun, China
| |
Collapse
|
11
|
Guo XC, Chu ZP, Song RQ, Wang ZL, Li RJ, Xiong DM, Zhang MZ, Jiang HB, Shao J. Toxicity of common biocides used in aquaculture to embryos and larvae of Brachymystax tsinlingensis Li. JOURNAL OF FISH BIOLOGY 2024; 104:463-472. [PMID: 36808734 DOI: 10.1111/jfb.15353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Brachymystax tsinlingensis Li is a threatened fish species endemic to China. With the problems of environmental factors and seeding breeding diseases, it is important to further improve the efficiency of seeding breeding and the basis of resource protection. This study investigated the acute toxicity of copper, zinc and methylene blue (MB) on hatching, survival, morphology, heart rate (HR) and stress behaviour of B. tsinlingensis. Eggs (diameter: 3.86 ± 0.07 mm, weight: 0.032 ± 0.004 g) of B. tsinlingensis were selected randomly from artificial propagation and developed from eye-pigmentation-stage embryos to yolk-sac stage larvae (length: 12.40 ± 0.02 mm, weight: 0.03 ± 0.001 g) and exposed to different concentrations of Cu, Zn and MB for 144 h in a series of semi-static toxicity tests. The acute toxicity tests indicated that the 96-h median lethal concentration (LC50 ) values of the embryos and larvae were 1.71 and 0.22 mg l-1 for copper and 2.57 and 2.72 mg l-1 for zinc, respectively, whereas the MB LC50 after 144-h exposure for embryos and larvae were 67.88 and 17.81 mg l-1 , respectively. The safe concentrations of copper, zinc and MB were 0.17, 0.77 and 6.79 mg l-1 for embryos and 0.03, 0.03 and 1.78 mg l-1 for larvae, respectively. Copper, zinc and MB treatments with concentrations greater than 1.60, 2.00 and 60.00 mg l-1 , respectively, led to a significantly low hatching rate and significantly high embryo mortality (P < 0.05), and copper and MB treatments with concentrations greater than 0.2 and 20 mg l-1 led to significantly high larvae mortality (P < 0.05). Exposure to copper, zinc and MB resulted in developmental defects, including spinal curvature, tail deformity, vascular system anomalies and discolouration. Moreover, copper exposure significantly reduced the HR of larvae (P < 0.05). The embryos exhibited an obvious change in behaviour, converting from the normal behaviour of emerging from the membrane head first to emerging tail first, with probabilities of 34.82%, 14.81% and 49.07% under copper, zinc and MB treatments, respectively. The results demonstrated that the sensitivity of yolk-sac larvae to copper and MB was significantly higher than that of embryos (P < 0.05) and that B. tsinlingensis embryos or larvae might be more resistant to copper, zinc and MB than other members of the Salmonidae family, which benefits their resource protection and restoration.
Collapse
Affiliation(s)
- Xing-Chen Guo
- Department of Fisheries Science, College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Zhi-Peng Chu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Rong-Qun Song
- Department of Fisheries Science, College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Zhen-Lu Wang
- Department of Fisheries Science, College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Rui-Jiao Li
- Laboratory of Fisheries Genetic Resource and Seeding, Yellow River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Xi'an, China
| | - Dong-Mei Xiong
- Department of Fisheries Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Mu-Zi Zhang
- Department of Fisheries Science, College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Hai-Bo Jiang
- Department of Fisheries Science, College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| | - Jian Shao
- Department of Fisheries Science, College of Animal Science, Guizhou University, The Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, China
| |
Collapse
|
12
|
Wang C, Wang L, Yang L, Gao C, Wang B, Shu Y, Wang H, Yan Y. Protective effects of berberine in chronic copper-induced liver and gill injury in freshwater grouper (Acrossocheilus fasciatus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115672. [PMID: 37951092 DOI: 10.1016/j.ecoenv.2023.115672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
This experiment aimed to investigate the protective effects of berberine on copper-induced liver and gill toxicities in freshwater grouper (Acrossocheilus fasciatus). Fish (initial weight 1.56 ± 0.10 g) were randomly distributed into 12 tanks (80 L, 20 fish per tank) and divided into four experimental groups: The control group, exposed to 0.02 mg/L Cu2+ (Cu group), exposed to 0.02 mg/L Cu2+ and fed 100 mg/kg berberine (BBR100 group), and exposed to 0.02 mg/L Cu2+ and fed 400 mg/kg berberine (BBR400 group). After a 30-day experiment, the results showed that berberine significantly increased the activities of catalase and glutathione peroxidase in the liver, gills, and serum inhibited by Cu2+ exposure (P < 0.05). Berberine inclusion significantly decreased the activities of lysozyme and acid phosphatase, as well as the content of immunoglobulin M compared to the Cu group (P < 0.05). Berberine significantly suppressed the expression of the proinflammatory cytokines interleukin-1β, interleukin-6 signaling transducer, and NLR family pyrin domain containing 3 in the liver and gills induced by Cu2+ exposure while downregulating the expression of the anti-inflammatory cytokine transforming growth factor β1. Additionally, berberine significantly reduced the activities of the liver injury markers alanine transaminase and aspartate transaminase, the levels of total cholesterol and triglyceride in serum, as well as alleviated the histopathological damage in the liver and gills caused by Cu2+ exposure. In summary, berberine enhanced antioxidant capacity, mitigated inflammation, and exerted significant protective effects on liver and gill damage in freshwater grouper under Cu2+ exposure.
Collapse
Affiliation(s)
- Chenyang Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lei Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu 241002, China.
| | - Leqi Yang
- College of Life Sciences, Anhui Normal University, Wuhu 241002, China
| | - Chang Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Bin Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yilin Shu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu 241002, China
| | - Heng Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Yunzhi Yan
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu 241002, China.
| |
Collapse
|
13
|
Hou Z, Mo F, Zhou Q. Elucidating response mechanisms at the metabolic scale of Eisenia fetida in typical oil pollution sites: A native driver in influencing carbon flow. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122545. [PMID: 37716696 DOI: 10.1016/j.envpol.2023.122545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Previous investigations on the stress response patterns of earthworms (Eisenia fetida) in practical petroleum hydrocarbon (PH) contamination systems were less focused. Therefore, this study investigated the ecotoxicological effect of PH contamination on earthworms based on metabonomics and histological observation, followed by correlation analysis between the earthworm metabolism, PH types and concentrations, soil physicochemical characteristics, and the microbial community structures (i.e., diversity and abundance) and functions. The results showed that due to the abundant PH organics, the cell metabolism of earthworms shifts under PH contamination conditions, leading them to use organic acids as alternative energy sources (i.e., gluconeogenesis pathway). Simultaneously, biomarker metabolites related to cellular uptake, stress response, and membrane disturbance were identified. In addition, when compared to the controls, considerable epicuticle and cuticle layer disruption was observed, along with PH internalization. It was demonstrated that PH pollution preferentially influences the physiological homeostasis of earthworms through indirect (i.e., microbial metabolism regulation) than direct (i.e., direct interaction with earthworms) mechanisms. Moreover, the varied CO2 releasement was verified, which highlights the potential role of earthworms in influencing carbon transformation and corresponds with the considerably enriched energy metabolism-related pathway. This study indicated that PH contamination can induce a strong stress response in earthworms through both direct and indirect mechanisms, which in turn, substantially influences carbon transformation in PH contamination sites.
Collapse
Affiliation(s)
- Zelin Hou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fan Mo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
14
|
Zhao P, Liu X, Feng L, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Yang J, Zhou XQ. New perspective on mechanism in muscle toxicity of ochratoxin A: Model of juvenile grass carp (Ctenopharyngodon idella). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106701. [PMID: 37776711 DOI: 10.1016/j.aquatox.2023.106701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Ochratoxin A (OTA) is a common fungal toxin that pollutes raw materials of aquatic feeds (such as corn, soybean meal, and wheat). This study explored the effects of OTA through diet on muscle toxicity in juvenile grass carp (Ctenopharyngodon idella). The following results were obtained for the muscle. (1) With an increase in dietary OTA, the residue of OTA in muscle increased, muscle fiber diameter and density decreased, and even muscle fiber breakage. (2) OTA caused oxidative stress by downregulating GPx1 (a, b) and Trx via inhibited the PGC1-α/Nrf2 signaling pathway. (3) OTA exacerbated endoplasmic reticulum stress in the muscle by causing endoplasmic reticulum expansion (results of transmission electron microscopy) and upregulating the expression of GRP78, eIF2α, ATF6, PERK, and CHOP. (4) OTA reduced muscle fiber diameter by inhibiting protein synthesis (AKT, TOR, and S6K1) and promoting the mRNA expression of protein degradation-related genes (MURF1, MAFBX, and FoxO3a), as well as by reducing AKT and promoting the immunofluorescence expression of FoxO3. (5) OTA inhibits collagen deposition by downregulating TGF-β1, TGF-βR1, Smad2, Smad3, Smad4, CTGF, TIMP, PHD, and LOX mRNA expressions as well as the CTGF immunofluorescence expression. Moreover, based on the GSH and collagen content contents, the upper safe dose for OTA-induced toxicity was 963.6 and 1129.6 μg/kg diet, respectively. Using the example of OTA, our research has provided new insights that raise concerns about the quality of aquatic products by exploring muscle toxicity caused by mycotoxins.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xin Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China
| | - Juan Yang
- Tongwei Co., Ltd., Chengdu, China, Healthy Aquaculture Key Laboratory of Sichuan Province, Sichuan 610041, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Key Laboratory of Sichuan Province, Ministry of Education, Ministry of Agriculture and Rural Affairs, Sichuan 611130, China.
| |
Collapse
|
15
|
Wang L, Wang B, Hu C, Wang C, Gao C, Jiang H, Yan Y. Influences of chronic copper exposure on intestinal histology, antioxidative and immune status, and transcriptomic response in freshwater grouper (Acrossocheilus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108861. [PMID: 37257568 DOI: 10.1016/j.fsi.2023.108861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Copper (Cu) contamination is commonly found in both natural water environments and fish farms, and it can cause severe damage to different fish organs, but Cu-induced intestinal damage has been rarely studied. This study subjected three groups of freshwater grouper (Acrossocheilus fasciatus) (initial weight: 1.56 ± 0.10 g) to 0 mg/L, 0.01 mg/L, and 0.04 mg/L Cu2+ for 30 days, named Con, Cu0.01, and Cu0.04 groups, respectively. The histological observation indicated that the Cu0.04 group caused a significant decrease in villus length, lamina propria width, and muscular thickness compared to the Con group (P < 0.05). Additionally, the Cu0.04 group significantly increased intestinal superoxide dismutase (SOD), glutathione peroxidase (GPx), lysozyme (LZM) activities, as well as malondialdehyde (MDA) content than the Con group (P < 0.05). Meanwhile, the Cu0.01 and Cu0.04 groups showed significantly increased immunoglobulin M (IgM), complement 3 (C3), and glutathione (GSH) contents than the Con group (P < 0.05). Transcriptomic analysis revealed a total of 101 differentially expressed genes (DEGs), including 47 up-regulated and 54 down-regulated DEGs, were identified between the Cu0.04 and Con groups. Notably, the DEGs were mainly related to intestinal structure construction, immune functions, apoptosis, and resistance to DNA damage and pathogen infection. The findings suggest that chronic Cu exposure caused intestinal histological alterations, activated the antioxidative and immune systems, and induced systematic adaptation to cope with the physical barrier injury, DNA damage, and potential pathogen growth.
Collapse
Affiliation(s)
- Lei Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| | - Bin Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Cong Hu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chenyang Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chang Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - He Jiang
- Fisheries Research Institution, Anhui Academy of Agricultural Sciences, Hefei, China.
| | - Yunzhi Yan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| |
Collapse
|
16
|
Wang L, Wang C, Huang C, Gao C, Wang B, He J, Yan Y. Dietary berberine against intestinal oxidative stress, inflammation response, and microbiota disturbance caused by chronic copper exposure in freshwater grouper (Acrossocheilus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2023:108910. [PMID: 37385463 DOI: 10.1016/j.fsi.2023.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Berberine (BBR) is known for its strong antioxidant, anti-inflammatory, and capacity to preserve intestinal microbiota balance in fish. This study aimed to investigate the protective effects of berberine against copper-induced toxicity in the intestine of freshwater grouper Acrossocheilus fasciatus. The experiment involved four groups: a control group, a Cu group exposed to 0.02 mg/L Cu2+, and two BBR groups fed with 100 or 400 mg/kg of berberine diets and exposed to the same Cu2+ concentration. Three replicates of healthy fish (initial weight 1.56 ± 0.10 g) were subjected to their respective treatments for 30 days. Results showed that none of the treatments significantly affected the survival rate, final weight, weight gain, and feed intake (P > 0.05). However, supplementation with 100 and 400 mg/kg of BBR significantly lowered the antioxidant activities, and glutathione peroxidase (gpx) and superoxide dismutase (sod) expression levels, as well as reduced malondialdehyde (MDA) content caused by Cu2+ exposure (P < 0.05). Berberine inclusion significantly downregulated proinflammatory factors NLR family pyrin domain containing 3 (nlrp3), interleukin 1 beta (il1β), interleukin 6 cytokine family signal transducer (il6st) but upregulated transforming growth factor beta 1 (tgfβ1) and heat shock 70kDa protein (hsp70) expression. Moreover, berberine at both levels maintained the intestinal structural integrity and significantly improved gap junction gamma-1 (gjc1) mRNA level compared to the Cu group (P < 0.05). Based on 16S rDNA sequencing, the richness and diversity of intestinal microbiota in different groups were not significantly influenced. Berberine reduced the Firmicutes/Bacteroidota ratio and stifled the growth of some specific pathogenic bacteria such as Pseudomonas, Citrobacter, and Acinetobacter, while boosting the richness of potential probiotic bacteria, including Roseomonas and Reyranella compared with the Cu group. In conclusion, berberine showed significant protective effects against Cu2+-induced intestinal oxidative stress, inflammation response, and microbiota disturbance in freshwater grouper.
Collapse
Affiliation(s)
- Lei Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| | - Chenyang Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chenchen Huang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chang Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Bin Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Jiang He
- Anhui Key Laboratory of Aquaculture and Stock Enhancement, Fisheries Research Institution, Anhui Academy of Agricultural Sciences, Hefei, China.
| | - Yunzhi Yan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| |
Collapse
|
17
|
Cheng C, Ma H, Liu G, Fan S, Deng Y, Jiang J, Feng J, Guo Z. The role of Nrf2 signaling pathway in the mud crab (Scylla paramamosain) in response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108729. [PMID: 37011739 DOI: 10.1016/j.fsi.2023.108729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/26/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The transcription factor Nrf2 plays vital roles in detoxification and antioxidant enzymes against oxidative stress. However, the function of Nrf2 in crustaceans is not well studied. In this study, a novel Nrf2 gene from the mud crab (Sp-Nrf2) was identified. It was encoded 245 amino acids. Sp-Nrf2 expression was ubiquitously expressed in all tested tissues, with the highest expression level in the gill. Sp-Nrf2 protein was mainly located in the nucleus. The expression levels of Sp-Nrf2, and antioxidant-related genes (HO-1 and NQO-1) were induced after Vibrio parahaemolyticus infection, indicating that Nrf2 signaling pathway was involved in the responses to bacterial infection. Over-expression of Sp-Nrf2 could improve cell viability after H2O2 exposure, indicating that Sp-Nrf2 might relieve oxidative stress. Silencing of Sp-Nrf2 in vivo decreased HO-1 and NQO-1 expression. Moreover, knocking down Sp-Nrf2 in vivo can increase malondialdehyde content and the mortality of mud crabs after V. parahaemolyticus infection. Our results indicated that Nrf2 signaling pathway played a significant role in immune response against bacterial infection.
Collapse
Affiliation(s)
- ChangHong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China.
| | - HongLing Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - GuangXin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - SiGang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - YiQin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - JianJun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China
| | - ZhiXun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, PR China.
| |
Collapse
|
18
|
Sukhovskaya IV, Lysenko LA, Fokina NN, Kantserova NP, Borvinskaya EV. Survival, Growth Performance, and Hepatic Antioxidant and Lipid Profiles in Infected Rainbow Trout ( Oncorhynchus mykiss) Fed a Diet Supplemented with Dihydroquercetin and Arabinogalactan. Animals (Basel) 2023; 13:ani13081345. [PMID: 37106908 PMCID: PMC10135201 DOI: 10.3390/ani13081345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Natural feed supplements have been shown to improve fish viability, health, and growth, and the ability to withstand multiple stressors related to intensive cultivation. We assumed that a dietary mix of plant-origin substances, such as dihydroquercetin, a flavonoid with antioxidative, anti-inflammatory, and antimicrobial properties, and arabinogalactan, a polysaccharide with immunomodulating activity, would promote fish stress resistance and expected it to have a protective effect against infectious diseases. Farmed rainbow trout fish, Oncorhynchus mykiss, received either a standard diet or a diet supplemented with 25 mg/kg of dihydroquercetin and 50 mg/kg of arabinogalactan during a feeding season, from June to November. The fish in the control and experimental groups were sampled twice a month (eight samplings in total) for growth variable estimations and tissue sampling. The hepatic antioxidant status was assessed via the quantification of molecular antioxidants, such as reduced glutathione and alpha-tocopherol rates, as well as the enzyme activity rates of peroxidase, catalase, and glutathione-S-transferase. The lipid and fatty acid compositions of the feed and fish liver were analyzed using thin-layer and high-performance liquid chromatography. The viability, size, and biochemical indices of the fish responded to the growth physiology, environmental variables such as the dissolved oxygen content and water temperature, and sporadic factors. Due to an outbreak of a natural bacterial infection in the fish stock followed by antibiotic treatment, a higher mortality rate was observed in the fish that received a standard diet compared to those fed supplemented feed. In the postinfection period, reduced dietary 18:2n-6 and 18:3n-3 fatty acid assimilation contents were detected in the fish that received the standard diet in contrast to the supplemented diet. By the end of the feeding season, an impaired antioxidant response, including reduced glutathione S-transferase activity and glutathione content, and a shift in the composition of membrane lipids, such as sterols, 18:1n-7 fatty acid, and phospholipids, were also revealed in fish fed the standard diet. Dietary supplementation with plant-origin substances, such as dihydroquercetin and arabinogalactan, decreases lethality in fish stocks, presumably though the stimulation of natural resistance in farmed fish, thereby increasing the economic efficacy during fish production. From the sustainable aquaculture perspective, natural additives also diminish the anthropogenic transformation of aquaculture-bearing water bodies and their ecosystems.
Collapse
Affiliation(s)
- Irina V Sukhovskaya
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Liudmila A Lysenko
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Natalia N Fokina
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Nadezhda P Kantserova
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | | |
Collapse
|
19
|
Wu J, Liu W, Hou S, Wang Y, Fang H, Luo S, Yang L, Wen C. Identification of Nrf2/Keap1 pathway and its transcriptional regulation of antioxidant genes after exposure to microcystins in freshwater mussel Cristaria plicata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104629. [PMID: 36587710 DOI: 10.1016/j.dci.2022.104629] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Microcystins (MC) are one of the most abundant and widely distributed cyanotoxins in aquatic systems. MC inhibits the functions of protein phosphatase 1 and 2A (PP1/2A), which can seriously affect ecosystem integrity. The NF-E2-related nuclear factor 2 (Nrf2)/Kelch-like epichlorohydrin-related protein-1 (Keap1) signaling pathway protects against oxidative damage by activating phase II detoxification/antioxidant enzymes. Our previous study revealed that MC upregulates the expression and enhances the activities of the antioxidant enzymes by stimulating the CpNrf2 signaling pathway. In the current study, to further clarify the regulatory role of Keap1 in response to MC-induced oxidative stress in shellfish, we cloned the full-length cDNA of Keap1a and Keap1b from Cristaria plicata (designated CpKeap1a and CpKeap1b), which are 2952 and 3710 bp peptides, respectively. The amino acid sequence of CpKeap1a and CpKeap1b contained Tram-track and Bric-a-brac (BTB), Intervening region (IVR), and Double glycine repeat (DGR) domain. Additionally, CpKeap1a contained two cysteine residues analogous to Cys-273 and -288 in zebrafish, but CpKeap1b did not. Moreover, CpKeap1a and -1b formed a homodimer and heterodimer, respectively, and also formed a heterodimer with CpNrf2. In the hepatopancreas, the expression levels of CpKeap1a and -1b were the highest, but MC treatment down-regulated the expression of these proteins. Moreover, the transcription of antioxidant enzymes with antioxidant response element (ARE-driven enzymes), including CpMnSOD, CpCu/ZnSOD, CpTRX, CpPrx, CpSe-GPx, and Cpsigma-GST was upregulated by CpNrf2 in the hepatopancreas. Compared with the MC-induced group, CpKeap1a-siRNA1117 injection significantly increased the transcription of mRNAs for ARE-driven enzymes and Nrf2. CpKeap1a-siRNA1117 also enhanced the activities of antioxidation enzymes. These findings demonstrated that Keap1a negatively regulated the expression of Nrf2 protein and MC-induced oxidative stress response in C. plicata. Therefore, we speculated that CpKeap1a promoted CpNrf2 by recognizing and binding MC. These events then protected molluscs from MC-induced oxidative damage.
Collapse
Affiliation(s)
- Jielian Wu
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Wenxiu Liu
- Nanchang University, Nanchang, 330031, China
| | - Shumin Hou
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Yanrui Wang
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Haihong Fang
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Shanshan Luo
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Lang Yang
- Science & Technology Normal University of Jiangxi, Nanchang, 330013, China
| | - Chungen Wen
- Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
20
|
Liu Q, Wang H, Ge J, Li L, Luo J, He K, Yan H, Zhang X, Tahir R, Luo W, Chen S, Cheng Z, Zhao L, Yang S. Chronic hypoxia and Cu 2+ exposure induce gill remodeling of largemouth bass through endoplasmic reticulum stress, mitochondrial damage and apoptosis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 255:106373. [PMID: 36630844 DOI: 10.1016/j.aquatox.2022.106373] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Hypoxia and Cu2+ pollution often occur simultaneously in aquatic ecosystems and jointly affect physiology of fish. As the respiratory and ion exchange tissue of fish, how gill responds to the stress induced by these two abiotic environmental factors is still unclear. We have conducted a study by exposing largemouth bass (Micropterus salmoides) to hypoxia (2.0 mg·L-1) and/or Cu2+ (0.5 mg·L-1) for 28 days to answer this question. We subsequently studied respiratory rate, Cu2+ transport, endoplasmic reticulum (ER) stress, mitochondrial damage, and morphology in gill tissue on day 7, 14, 21 and 28. We found that hypoxia exposure increased the respiratory rate of largemouth bass, reflecting the response of largemouth bass to cope with hypoxia. Of note, Cu2+ entered gill by specifically binding to CTR1 and its accumulation dramatically in gill disrupted the response of largemouth bass to hypoxia. Hypoxia and/or Cu2+ exposure led to ER stress and mitochondrial damage in gills of largemouth bass. ER stress and mitochondrial damage induced apoptosis by activating caspase-8 and caspase-9 signaling pathways, respectively. Apoptosis induced by hypoxia and Cu2+ exposure had a positive and synergistic effect on gill remodeling by reducing interlamellar cell masses. In addition, Cu2+ exposure induced hypoxia-like remodeling to gill morphology through mechanisms similar to hypoxia exposure. Most of gene expression changed mainly within 21 days and recovered to the control level on day 28, reflecting the acclimation of largemouth bass to hypoxia and/or Cu2+ exposure at gene expression level. Overall, our research suggests that chronic hypoxia and Cu2+ exposure could induce gill remodeling of largemouth bass through ER stress, mitochondrial damage and apoptosis. The outcomes could provide an insight for fish environmental adaptation and environmental toxicology.
Collapse
Affiliation(s)
- Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hong Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jiayu Ge
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lisen Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haoxiao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shiyi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
21
|
Yang Z, Lian W, Waiho K, Zhu L, Chen A, Cheng Y, Wang Y. Effects of copper exposure on lipid metabolism and SREBP pathway in the Chinese mitten crab Eriocheir sinensis. CHEMOSPHERE 2022; 308:136556. [PMID: 36155024 DOI: 10.1016/j.chemosphere.2022.136556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu) is not only a common metal pollutant in the aquatic environment but also an essential trace element for aquatic organisms such as the Chinese mitten crab (Eriocheir sinensis). Cu is known to regulate lipid metabolism yet exert toxic effects if ingested in excess. However, the molecular regulatory roles of Cu in the lipid metabolism of crabs remains unclear. Thus, this study investigated the potential regulatory mechanism of Cu onto lipid metabolism of E. sinensis following acute Cu exposure. Crabs were exposed to environmental concentration of Cu (50 μg/L) for 96 h, and the expression of sterol regulatory element binding protein (SREBP) was knocked down by RNA interference (RNAi) to test its effect on Cu exposure. The results showed that RNAi significantly attenuated the Cu exposure-induced increase in lipid synthesis and triglycerides (TG) hydrolysis, while significantly inhibited the Cu exposure-induced decrease in fatty acid β-oxidation, suggesting that SREBP is involved in Cu-induced lipid metabolism. Subsequent analyses of the transcriptome results further revealed potential responsive genes of SREBP that were linked to lipid metabolism and immune regulation. Moreover, Cu may affect lipid metabolism through the TOR-SREBP pathway in E. sinensis. This work provides a reference for exploring the effects of Cu on lipid metabolism disorders in crustaceans.
Collapse
Affiliation(s)
- Zhigang Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Wan Lian
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Liangliang Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Aqin Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Yongxu Cheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition (CREEFFN) of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
22
|
Kou H, Hu J, Liu X, Zhao L, Zhang K, Pan X, Wang A, Miao Y, Lin L. Dietary protein improves flesh quality by enhancing antioxidant ability via the NF-E2-related factor 2/Kelch-like ECH-associated protein 1 signaling pathway in softshell turtle ( Pelodiscus sinensis). Front Nutr 2022; 9:1030583. [PMID: 36438722 PMCID: PMC9685656 DOI: 10.3389/fnut.2022.1030583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 08/13/2023] Open
Abstract
An 8-week feeding trial was performed to assess the influence of a gradient of protein levels (14.38-45.23%) on flesh quality, skin color, amino acid profile, collagen, antioxidant capability, and antioxidant-related signaling molecule expression of the softshell turtle (Pelodiscus sinensis). Hardness, gumminess, chewiness, and yellowness values in the plastron and carapace, along with collagen, superoxide dismutase, catalase, total antioxidant capacity, and glutathione peroxidase, all improved with elevating dietary protein up to 26.19%, after which they leveled off. Additionally, total amino acids, flavor amino acids, essential amino acids, and non-essential amino acids in the muscle, as well as the expression of copper/zinc superoxide dismutase, glutathione peroxidase, catalase, manganese superoxide dismutase, NF-E2-related factor 2 were all enhanced by increasing the dietary protein level but not changed by higher protein levels. When dietary protein levels were less than 26.19%, the mRNA expression of Kelch-like ECH-associated protein 1, malondialdehyde, and redness values in the carapace and plastron were reduced, as was the lightness values of the carapace, all of which plateaued at higher protein levels. Using catalase activity and malondialdehyde as the indicators and applying a broken-line analysis, the optimal dietary protein level for P. sinensis was inferred to be 26.07 and 26.06% protein, respectively. In summary, an optimal protein input improved turtle flesh quality by strengthening antioxidant capacity in muscle tissue and by regulating the expression of antioxidant-related enzymes via the Nrf2/keap1 signaling pathway.
Collapse
Affiliation(s)
- Hongyan Kou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Junru Hu
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xueting Liu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Kai Zhang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xunbin Pan
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
| | - Anli Wang
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
| | - Yutao Miao
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, China
- Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
23
|
Dietary supplementation of kaempferol improved the growth, lipid metabolism and flesh quality of juvenile grass carp (Ctenopharyngodon idellus) based on metabolomics. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Husain N, Ali SN, Arif H, Khan AA, Mahmood R. Oral Administration of Copper Chloride Damages DNA, Lowers Antioxidant Defense, Alters Metabolic Status, and Inhibits Membrane Bound Enzymes in Rat Kidney. Biol Trace Elem Res 2022; 201:3367-3380. [PMID: 36068418 DOI: 10.1007/s12011-022-03406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
Abstract
Copper (Cu) is a heavy metal that is widely used in industries and is also an essential micronutrient for living beings. However, excess Cu is toxic and human exposure to high levels of this metal results in numerous adverse health effects. We have investigated the effect of oral administration of copper chloride (CuCl2), a Cu(II) compound, on various parameters of oxidative stress, cellular metabolism, and DNA integrity in the rat kidney. This was done to delineate the molecular mechanism of Cu(II) toxicity. Adult male rats were randomly divided into five groups. Animals in four CuCl2-treated groups were separately administered single acute oral dose of CuCl2 at 5, 15, 30, and 40 mg/kg body weight. Animals in the fifth group were not given CuCl2 and served as the control. All rats were sacrificed 24 h after the dose of CuCl2 and their kidneys removed. CuCl2 administration led to significant alterations in enzymatic and non-enzymatic parameters of oxidative stress. It changed the activities of metabolic and membrane bound enzymes and also decreased the activities of brush border membrane enzymes. CuCl2 treatment dose-dependently enhanced DNA damage and DNA-protein crosslinking in renal cells, when compared to the control group. The administration of CuCl2 also resulted in marked morphological changes in the kidney, with more prominent alterations at higher doses of CuCl2. These results clearly show that CuCl2 impairs the antioxidant defense system resulting in oxidative damage to the kidney.
Collapse
Affiliation(s)
- Nazim Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, U.P, Aligarh, 202002, India
| | - Shaikh Nisar Ali
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, U.P, Aligarh, 202002, India
| | - Hussain Arif
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, U.P, Aligarh, 202002, India
| | - Aijaz Ahmed Khan
- Department of Anatomy, J.N. Medical College, Aligarh Muslim University, U.P, Aligarh, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, U.P, Aligarh, 202002, India.
| |
Collapse
|
25
|
Mechanisms Underlying the Protective Effect of Maternal Zinc (ZnSO4 or Zn-Gly) against Heat Stress-Induced Oxidative Stress in Chicken Embryo. Antioxidants (Basel) 2022; 11:antiox11091699. [PMID: 36139773 PMCID: PMC9495990 DOI: 10.3390/antiox11091699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental factors such as high temperature can cause oxidative stress and negatively affect the physiological status and meat quality of broiler chickens. The study was conducted to evaluate the effects of dietary maternal Zn-Gly or ZnSO4 supplementation on embryo mortality, hepatocellular mitochondrial morphology, liver antioxidant capacity and the expression of related genes involved in liver oxidative mechanisms in heat-stressed broilers. A total of 300 36-week-old Lingnan Yellow broiler breeders were randomly divided into three treatments: (1) control (basal diet, 24 mg zinc/kg); (2) inorganic ZnSO4 group (basal diet +80 mg ZnSO4/kg); (3) organic Zn-Gly group (basal diet +80 mg Zn-Gly/kg). The results show that maternal zinc alleviated heat stress-induced chicken embryo hepatocytes’ oxidative stress by decreasing the content of ROS, MDA, PC, 8-OHdG, and levels of HSP70, while enhancing T-SOD, T-AOC, CuZn-SOD, GSH-Px, CTA activities and the content of MT. Maternal zinc alleviated oxidative stress-induced mitochondrial damage in chick embryo hepatocytes by increasing mitochondrial membrane potential and UCP gene expression; and Caspase-3-mediated apoptosis was alleviated by increasing CuZn-SOD and MT gene expression and decreasing Bax gene expression and reducing the activity of caspase 3. Furthermore, maternal zinc treatment significantly increased Nrf2 gene expression. The results above suggest that maternal zinc can activate the Nrf2 signaling pathway in developing chick embryos, enhance its antioxidant function and reduce the apoptosis-effecting enzyme caspase-3 activities, thereby slowing oxidative stress injury and tissue cell apoptosis.
Collapse
|
26
|
Chen S, Liu Y, Xie S, Guo Y, Yang H, Wei Y, Xu Q, Ye T, Meng B, Huang R, Liu Y, Tian L, Gan L. Role of myo-inositol supplementation against toxicity of excessive dietary copper in Pacific white shrimp Litopenaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113712. [PMID: 35660379 DOI: 10.1016/j.ecoenv.2022.113712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Raw materials for making dried shrimp (a type of foodstuff) are mostly from farmed shrimp and preliminary findings indicated that head copper (Cu) concentrations in some commercial dried shrimp products exceeded the safe limit specified in pollution-free aquatic products (50 mg/kg), which may influence food safety. Therefore, a 63-day feeding trial was conducted to explore effects of dietary Cu concentrations on accumulation of Cu in tissues, growth performance, immune response and antioxidant status of Pacific white shrimp (Litopenaeus vannamei). Moderating effect of myo-inositol (MI, adding 200 mg/kg diet) on the adverse impacts caused by excessive dietary Cu was also investigated. 600 shrimp (initial weight: 0.89 ± 0.00 g) were divided into five groups: 37.08 mg Cu/kg diet group (control group), 62.57 mg Cu/kg diet group, 125.99 mg Cu/kg diet group, 63.41 mg Cu/kg diet group (supplemented with MI) and 119.19 mg Cu/kg diet group (supplemented with MI). The results showed that dietary Cu concentrations increased from 37.08 to over 62.57 mg/kg, hepatopancreas Cu concentrations raised from 29.04 to 233.43-263.65 mg/kg, and muscle Cu concentrations only increased from 6.22 to 6.99-8.39 mg/kg. Report to control group, excessive Cu concentration (125.99 mg/kg) didn't significantly affect growth performance, but it notably reduced whole body lipid content and immune response, induced oxidative stress and damaged the hepatopancreas structure, which was ameliorated by MI supplementation. The results suggested that consuming shrimp head and its processed products weren't recommended. Cu concentrations of commercial feeds for Pacific white shrimp should be controlled below 62.57 mg/kg. Additionally, MI supplementation mitigated the negative impacts induced by excessive dietary Cu.
Collapse
Affiliation(s)
- Shijun Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, PR China.
| | - Yantao Liu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Yingchi Guo
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, PR China.
| | - Yanru Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China.
| | - Qing Xu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China.
| | - Tao Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China.
| | - Bangsong Meng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China.
| | - Runbin Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China.
| | - Yongjian Liu
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Lixia Tian
- Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals, Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Lian Gan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, PR China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, PR China.
| |
Collapse
|
27
|
Chen Y, Cheng B, Liu Y, Bai Y, Yang X, Xu S. Metabolic responses of golden trout (Oncorhynchus mykiss aguabonita) after acute exposure to waterborne copper. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106236. [PMID: 35842982 DOI: 10.1016/j.aquatox.2022.106236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Despite the broad knowledge of copper-induced stress and toxicity, data on the physiological responses to acute copper exposure and the correlation of those activities to a generalized stress response are still limited. The present study aimed to assess the physiological responses of golden trout to overcome copper stress at concentrations of 60 µg/L and 120 µg/L after 96 h, respectively. The activities of glucose-6-phosphate dehydrogenase (G6PD) phosphoenolpyruvate carboxykinase (PEPCK) and NADPH/NADP+ ratio were significantly increased, and metabolites including glucose 6-phosphate, fructose 1-phosphate and fatty acids significantly accumulated in fish liver, indicating that gluconeogenesis, the pentose-phosphate pathway, as well as alteration of the membrane fatty acid composition were activated to serve as a defense mechanism against 60 µg/L of copper after 96 h. After exposure to 120 µg/L of copper for 96 h, the NAD+ and ATP contents, the activities of enzymes in the glycolytic pathway (phosphofructokinase, PFK and pyruvate kinase, PK) and mitochondrial respiratory chain complex I decreased significantly in fish liver. In addition, carbohydrates and MDA accumulated in golden trout after 120 µg/L copper treatment. These results indicated that 120 µg/L of copper exposure may induce a metabolic stress in golden trout after 96 h. The multi-marker approach allows us to reach a greater understanding of the effects of copper on physiological responses of golden trout.
Collapse
Affiliation(s)
- Yan Chen
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Bo Cheng
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, PR China
| | - Yang Liu
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, PR China
| | - Yucen Bai
- China Rural Technology Development Center, No.54 Sanlihe Road, Xicheng District, Beijing 100045, PR China.
| | - Xiaofei Yang
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Shaogang Xu
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| |
Collapse
|
28
|
Zhu C, Liu G, Gu X, Yin J, Xia A, Han M, Zhang T, Jiang Q. Effect of quercetin on muscle growth and antioxidant status of the dark sleeper Odontobutis potamophila. Front Genet 2022; 13:938526. [PMID: 35957695 PMCID: PMC9358148 DOI: 10.3389/fgene.2022.938526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Quercetin is a flavanol beneficial in reducing fat, promoting muscle growth, and Anti-oxidation. To study its effects in freshwater fish, the full-length cDNA of the follistatin (FST) and myostatin (MSTN) genes of the dark sleeper Odontobutis potamophila were cloned for the first time. Juvenile individual O. potamophila was exposed to quercetin at one of four concentrations (0, 2.5, 5, and 10 mg/L) for 21 days. The expression level of MSTN which inhibits muscle growth in the quercetin solution was lower than in the unexposed control group. The genes that promote muscle growth are in TGF-β superfamily like FST, TGF-β1 (transforming growth factor-beta 1), and Myogenic regulatory factors (MRFs) like Myf5 (myogenic factor 5), MyoD (myogenic differentiation), MyoG (myogenin), were higher than in the control group. Apolipoprotein and growth hormone receptor transcription levels in the quercetin-treated fish were significantly lower than in the control group. The concentrations of triglyceride, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in the muscle tissue decreased, and the lipid-lowering function of quercetin was also demonstrated at the biochemical level. In this study, we analyzed the mRNA levels of AKT, Keap1 (kelch-like ECH-associated protein 1), Nrf2 (NF-E2-related factor 2) oxidation-related genes in the Nrf2/ARE antioxidant pathway, and Malondialdehyde (MDA), catalase (CAT) activity and glutathione (GSH) content in the hepatopancreas of O. potamophila after quercetin treatment, the mRNA expression of AKT, Nrf2 and CAT activity and GSH content are higher than in the control group. Quercetin enhances antioxidant properties and positively affects muscle growth. The results showed that quercetin has no significant effects on the growth performance of O. potamophila, but is effective in increasing muscle growth rate and lowering muscle fat content.
Collapse
Affiliation(s)
- Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Guoxing Liu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiankun Gu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
| | - Jiawen Yin
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
| | - Aijun Xia
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
| | - Mingming Han
- Biology Program, School of Distance Education, Universiti Sains Malaysia, Minden, Malaysia
| | - Tongqing Zhang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- The Lowtemperature Germplasm Bank of Important Economic Fish of Jiangsu Provincial Science and TechnologyResources (Agricultural Germplasm Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of JiangsuProvince, NanjingChina
- *Correspondence: Qichen Jiang,
| |
Collapse
|
29
|
Pan S, Yan X, Dong X, Li T, Suo X, Tan B, Zhang S, Li Z, Yang Y, Zhang H. The positive effects of dietary inositol on juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) fed high-lipid diets: Growthperformance, antioxidant capacity and immunity. FISH & SHELLFISH IMMUNOLOGY 2022; 126:84-95. [PMID: 35577318 DOI: 10.1016/j.fsi.2022.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The objective of the present research was to assess the influence of inositol supplementation on growth performance, histological morphology of liver, immunity and expression of immune-related genes in juvenile hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu). Hybrid grouper (initial weight 6.76 ± 0.34 g) were fed isonitrogenous and isolipidic diets (16%) with various inositol levels of 0.17 g/kg (J1, the control group), 0.62 g/kg (J2), 1.03 g/kg (J3), 1.78 g/kg (J4), 3.43 g/kg (J5), 6.59 g/kg (J6), respectively. The growth experiment lasted for 8 weeks. The results indicated that dietary inositol had a significant promoting effect on final mean body weight of the J5 and J6 groups and specific growth rate (SGR) of the J3, J4, J5 and J6 groups (P < 0.05). In the serum, superoxide dismutase (SOD) of the J4 group became significantly active compared with that of the control group (P < 0.05), while aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phosphatase (AKP) activities in the inositol-treated groups showed distinctly decreased compared with those of the control group (P < 0.05). In the liver, dietary inositol could significantly increase the activities of SOD, catalase (CAT), lysozyme (LYZ) and the contents of total antioxidative capacity (T-AOC) and immunoglobulin M (IgM) (P < 0.05), and distinctly reduce the content of malondialdehyde (MDA) as well as reactive oxygen species (ROS) (P < 0.05). Compared with the control group, the damaged histological morphology of the liver was relieved and even returned to normal after an inositol increase (0.4-3.2 g/kg). In the liver, the remarkable up-regulation of SOD, CAT, glutathione peroxidase (GPX), heat shock protein70 (HSP70) and heat shock protein90 (HSP90) expression levels were stimulated by supply of inositol, while interleukin 6 (IL6), interleukin 8 (IL8) and transforming growth factor β (TGF-β) expression levels were down-regulated by supply of inositol. In head kidney, the mRNA of toll-like receptor 22 (TLR22), myeloid differentiation factor 88 (MyD88) and interleukin 1β (IL1β) expression levels were significantly down-regulated (P < 0.05), which could further lead to remarkable down-regulation of IL6 and tumor necrosis factor α (TNF-α) expression (P < 0.05). These results indicated that high-lipid diets with supply of inositol promoted growth, increased the antioxidant capacity, and suppressed the inflammation of the liver and head kidney by inhibiting the expression of pro-inflammation factors (IL6, IL8, TGF-β and TNF-α). In conclusion, these results indicated that dietary inositol promoted growth, improved antioxidant capacity and immunity of hybrid grouper fed high-lipid diets. Based on SGR, broken-line regression analysis showed that 1.66 g/kg inositol supply was recommended in high-lipid diets of juvenile grouper.
Collapse
Affiliation(s)
- Simiao Pan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiaobo Yan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China.
| | - Tao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Xiangxiang Suo
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Shuang Zhang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| | - Zhihao Li
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, Guangdong, 524088, China
| | - Yuanzhi Yang
- Laboratory of Aquatic Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, Guangdong, 524000, China
| |
Collapse
|
30
|
Effects of dietary tryptophan on muscle growth, protein synthesis and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Br J Nutr 2022; 127:1761-1773. [PMID: 34321122 DOI: 10.1017/s0007114521002828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study evaluated effects of dietary supplementation with tryptophan (Trp) on muscle growth, protein synthesis and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Fish were fed six different diets containing 2·6 (control), 3·1, 3·7, 4·2, 4·7 and 5·6 g Trp/kg diet for 56 d, respectively. Results showed that dietary Trp significantly (1) improved muscle protein content, fibre density and frequency of fibre diameter; (2) up-regulated the mRNA levels of PCNA, myf5, MyoD1, MyoG, MRF4, IGF-I, IGF-II, IGF-IR, PIK3Ca, TOR, 4EBP1 and S6K1; (3) increased phosphorylation levels of AKT, TOR and S6K1; (4) decreased contents of MDA and PC, and increased activities of CAT, GST, GR, ASA and AHR; (5) up-regulated mRNA levels of CuZnSOD, CAT, GST, GPx, GCLC and Nrf2, and decreased Keap1 mRNA level; (6) increased nuclear Nrf2 protein level and the intranuclear antioxidant response element-binding ability, and reduced Keap1 protein level. These results indicated that dietary Trp improved muscle growth, protein synthesis as well as antioxidant capacity, which might be partly related to myogenic regulatory factors, IGF/PIK3Ca/AKT/TOR and Keap1/Nrf2 signalling pathways. Finally, based on the quadratic regression analysis of muscle protein and MDA contents, the optimal Trp requirements of hybrid catfish (21·82-39·64 g) were estimated to be 3·94 and 3·93 g Trp/kg diet (9·57 and 9·54 g/kg of dietary protein), respectively.
Collapse
|
31
|
Mechanism of Cadmium Exposure Induced Hepatotoxicity in the Mud Crab (Scylla paramamosain): Activation of Oxidative Stress and Nrf2 Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11050978. [PMID: 35624842 PMCID: PMC9137997 DOI: 10.3390/antiox11050978] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Cadmium, one of the most toxic heavy metals, can cause severe oxidative damage to aquatic animals. However, the mechanism whereby the mud crabs respond to cadmium exposure remains unclear. This study investigated the effects of cadmium exposure on oxidative stress and histopathology changes and evaluated the role of the Nrf2 signaling pathway in regulating responses to cadmium-induced hepatotoxicity were investigated in mud crabs. Mud crabs were exposed to 0, 0.01, 0.05, and 0.125 mg/L cadmium for 21 d. The present results indicated that cadmium exposure increased hydrogen peroxide (H2O2) production, lipid peroxidation and tissue damage, but decreased the activity of superoxide dismutase (SOD) and catalase (CAT), and caused lipid peroxidation and tissue damage. The results of an integrated biomarker index analysis suggested that the toxicity of cadmium was positively related to cadmium concentration. The expression levels of the Nrf2 signaling pathway (Nrf2, metallothionein, and cytochrome P450 enzymes) were up-regulated after cadmium exposure. Silencing of Nrf2 in vivo decreased antioxidant gene (SOD, CAT, and glutathione S-transferase) expression, suggesting that Nrf2 can regulate antioxidant genes. Knocking down Nrf2 in vivo also significantly decreased the activity of SOD and CAT after cadmium exposure. Moreover, silencing of Nrf2 in vivo enhanced H2O2 production and the mortality rates of mud crabs after cadmium exposure. The present study indicated that cadmium exposure induced hepatotoxicity in the mud crab by increasing H2O2 content, which decreased the antioxidant capacity, leading to cell injury. In addition, the Nrf2 is activated to bound with antioxidant response element, initiating the expression of antioxidant enzyme genes during cadmium induced hepatotoxicity in the mud crabs.
Collapse
|
32
|
Dong YW, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Tang WN, Zhou XQ, Feng L. Novel Insight Into Nutritional Regulation in Enhancement of Immune Status and Mediation of Inflammation Dynamics Integrated Study In Vivo and In Vitro of Teleost Grass Carp ( Ctenopharyngodon idella): Administration of Threonine. Front Immunol 2022; 13:770969. [PMID: 35359991 PMCID: PMC8963965 DOI: 10.3389/fimmu.2022.770969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/09/2022] [Indexed: 12/02/2022] Open
Abstract
This study aims to investigate the effects of threonine (Thr) on immunoregulation in vivo and in vitro of teleost grass carp (Ctenopharyngodon idella). Juveniles (9.53 ± 0.02 g) were reared for 8 weeks with respective Thr diet (3.99, 7.70, 10.72, 14.10, 17.96, and 21.66 g/kg) and then challenged with Aeromonas hydrophila for in vivo study. Macrophages isolated from head kidney were treated in vitro for 48 h with L-Thr (0, 0.5, 1.0, 2.0, 4.0, and 8.0 mM) after 6 h of lipopolysaccharide induction. The results showed that, compared with Thr deficiency (3.99 g/kg), the optimal dietary Thr (14.10g/kg) affected the immunocyte activation in the head kidney (HK) and spleen (SP) by downregulating the mRNA expressions of MHC-II and upregulating CD4 (not CD8), and it mediated the innate immune by enhancing the activities of lysozyme (LZ), acid phosphatase content of complement 3 (C3) and C4, increasing the mRNA abundances of hepcidin, liver expressed antimicrobial peptide-2A (LEAP-2A), LEAP-2B, β-defensin1, downregulating tumor necrosis factor α (TNF-α), IL-6, IL-1β, IL-12p35, IL-12p40, IL-17AF1, and IL-17D partly by attenuating RORγ1 transcriptional factor and nuclear factor kappa B p65 (NF-κBp65) signaling cascades [IKKβ/IκBα/NF-κBp65] and upregulating transforming growth factor β1 (TGF-β1), IL-4/13A, -4/13B, IL-10, and IL-22 partly by GATA-3. Besides these, the optimal dietary Thr regulated the adaptive immune by upregulating the mRNAs of immunoglobulin M (IgM) and IgZ (not IgD). Moreover, 2 mM Thr downregulated in vitro the mRNA abundances of colony stimulating factor-1, inducible nitric oxide synthase, mannose receptor 1, matrix metalloproteinase2 (MMP-2), and MMP-9 significantly (P < 0.05), indicating that Thr could attenuate the M1-type macrophages’ activation. Moreover, L-Thr downregulated the mRNA transcripts of TNF-α, IL-6, and IL-1β associated with impairing the SOCS1/STAT1 signaling and upregulated IL-10 and TGF-β1 partly by accentuating the SOCS3/STAT3 pathway. The above-mentioned observations suggested that Thr improved the immune status in the immune organs of fish by enhancing the immune defense and mediating the inflammation process. Finally, based on the immune indices of LZ activity in HK and C3 content in SP, the optimal Thr for immune enhancement in juvenile grass carp (9.53–53.43 g) was determined to be 15.70 g/kg diet (4.85 g/100 g protein) and 14.49 g/kg diet (4.47 g/100 g protein), respectively.
Collapse
Affiliation(s)
- Yu-Wen Dong
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
33
|
Bu X, Song Y, Huang Q, Liu S, Cai X, Wang X, Shi Q, Du Z, Qin JG, Chen L. Regulatory role of myo-inositol in vegetable oil-mediated lipid metabolism and health of Chinese mitten crab (Eriocheir sinensis). AQUACULTURE 2022; 552:738002. [DOI: 10.1016/j.aquaculture.2022.738002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
Jiang Z, Zhang M, Liu K, Xue Y, Li X, Dong C. Phylogeny of the HO family in cyprinus carpio and the response of the HO-1 gene to adding Bacillus coagulans in feed under Cd 2+ stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:117-131. [PMID: 35006528 DOI: 10.1007/s10695-021-01041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The heavy metal cadmium (Cd2+) is an environmental pollutant that poses serious health hazards. Due to the increasing contamination of aquatic systems with Cd2+, the increased accumulation of Cd2+ in fish has become a food safety and public health concern. Heme oxygenase (HO) is an important antioxidant enzyme that plays a key role in defending the body against oxidative damage, but little research has been done in common carp. In this study, 6 HO genes were identified in the common carp genome database. Comparative genomics analysis showed considerable expansion of the HO genes and verified the four-round whole genome duplication (WGD) event in common carp. Phylogenetic analysis revealed that all HO genes of common carp were clustered into orthologous groups, indicating high conservation during evolution. In addition, the tissue distribution results showed that most HO genes had extensive tissue distribution and showed tissue-specific expression patterns. Exposure to 0.5 mg/L Cd2+ significantly reduced the expression of TGF-β and IL-10 in common carp, which may indicate that Cd2+ exposure can destroy the physical barrier function of the intestine, inhibit intestinal immune defense and induce intestinal inflammation. To find a suitable concentration of Bacillus coagulans that could activate HO-1 genes and the immunity of the organism, we investigated the changes in HO-1 gene expression levels in the intestinal tract of common carp under Cd2+ stress at 30 days and 60 days by adding different concentrations of B. coagulans to the feed. Compared with the Cd2+ stress group without supplementation, the expression levels of the HO-1 gene in the gut of three different concentrations of B. coagulans were almost increased. And B. coagulans with L2 concentrations had better activation effect on the HO-1 gene. Similarly, compared to the Cd2+ stressed group, adding B. coagulans to the diet can almost cause the early upregulation of IL-10 and TGF-β genes. Therefore, the addition of appropriate concentrations of B. coagulans may be a good way to activate HO-1, IL-10, and TGF-β genes, reduce oxidative damage, and encourage the immune.
Collapse
Affiliation(s)
- Zhou Jiang
- School of law / College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Meng Zhang
- School of law / College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Kaiyue Liu
- School of law / College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yaguo Xue
- School of law / College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Xuejun Li
- School of law / College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Chuanju Dong
- School of law / College of Fishery, Henan Normal University, Xinxiang, Henan, 453007, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
35
|
Hoseini SM, Khosraviani K, Hosseinpour Delavar F, Arghideh M, Zavvar F, Hoseinifar SH, Van Doan H, Zabihi E, Reverter M. Hepatic transcriptomic and histopathological responses of common carp, Cyprinus carpio, to copper and microplastic exposure. MARINE POLLUTION BULLETIN 2022; 175:113401. [PMID: 35144215 DOI: 10.1016/j.marpolbul.2022.113401] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The combined effects of copper and polyvinyl chloride (PVC) microparticles were investigated on the metal accumulation, histopathological biomarkers, and targeted transcriptomics in Cyprinus carpio liver. The fish were exposed to 0.25 mg/L copper and/or 0.5 mg/L PVC microparticles over a 14-d period. The results showed that hepatic copper accumulation is facilitated by the PVC microparticles presence in water. All treatments induced significant hepatic stress and inflammation; however, the transcriptional responses involving in detoxification pathways and apoptotic mechanisms were mixed and often down-regulated in the fish exposed to copper and/or PVC microparticles. Exposure to copper and/or PVC microparticles induced hypermeia, leukocyte infiltration and increase in melanomacrophage centers number and area. Generally, the severity of the lesions was in the following order: PVC microparticles < copper < copper+ PVC microparticles. In conclusion, PVC MPs act as a copper vector, facilitating accumulation of copper in the fish liver and increasing the tissue damage.
Collapse
Affiliation(s)
- Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan, Iran
| | - Kave Khosraviani
- College of Marine Science, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Hosseinpour Delavar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Arghideh
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fatemeh Zavvar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai 50200, Thailand.
| | - Erfan Zabihi
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Miriam Reverter
- Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany; Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| |
Collapse
|
36
|
Liu Y, Lan Q, Sun S, Yang Q. Synergistic oxygen vacancy-rich CuO/visible light activation of peroxymonosulfate for degradation of rhodamine B: fast catalyst synthesis and degradation mechanism. RSC Adv 2022; 12:2928-2937. [PMID: 35425279 PMCID: PMC8979056 DOI: 10.1039/d1ra08177b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/02/2022] Open
Abstract
This work outlines the synthesis of copper oxide nanoparticles (CuO-SC) loaded with a number of oxygen vacancies by a fast sodium citrate assisted precipitation method with no need of calcination. X-ray diffraction, scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy, time-resolved fluorescence lifetime and electrochemical impedance spectra were used to characterize the as-synthesized nanocomposites. The results indicated that the CuO-SC nanoparticles had regular fusiform shape with high surface area, wide light harvesting window, fast charge transport and high carrier concentration. As a result, the catalytic activity of the CuO-SC/peroxymonosulfate (PMS)/visible light (Vis) system for the degradation of rhodamine B (RhB) was much higher than that of as-prepared CuO nano powder in the absence of sodium citrate. Almost 98.0% of the initial RhB dyes was decomposed in 20 min with 0.12 g L−1 PMS and 0.3 g L−1 catalyst. Meantime, it exhibited high catalytic stability with little deactivation after four runs and a wide application range of pH. Moreover, RhB can be readily degraded with backgrounds of Cl−, NO3−, SO42−, HCO3− and low concentration of humic acid in a CuO-SC/PMS/Vis system. Combined with the results of electron spin resonance paramagnetic spectroscopy, X-ray photoelectron spectroscopy and radical quenching experiments, holes, superoxide radicals and a small amount of sulfate radicals, hydroxyl radicals and singlet oxygen were involved in the CuO-SC/PMS/Vis system. Furthermore, a possible degradation mechanism based on the synergistic effect of radical reaction and non-radical reaction was proposed based on the above results. Oxygen vacancy-rich CuO nanoparticles synthesized via a sodium citrate strategy exhibit extremely excellent visible light-assisted catalytic behavior.![]()
Collapse
Affiliation(s)
- Yangqiao Liu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 China
| | - Qing Lan
- Shanghai Institute of Ceramics, Chinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 China
| | - Shengrui Sun
- Shanghai Institute of Ceramics, Chinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 China
| | - Qingfeng Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences 99 Haike Road Shanghai 201210 China
| |
Collapse
|
37
|
Zhang HY, Wang YL, Zhou XQ, Jiang WD, Wu P, Liu Y, Zhang L, Mi HF, Jiang J, Kuang SY, Tang L, Feng L. Zearalenone induces immuno-compromised status via TOR/NF/κB pathway and aggravates the spread of Aeromonas hydrophila to grass carp gut (Ctenopharyngodon idella). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112786. [PMID: 34555717 DOI: 10.1016/j.ecoenv.2021.112786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of immuno-compromised status in animals with zearalenone (ZEA) exposure may be a critical contributor to associated mucosal (gastrointestinal tract) diseases. However, it is difficult to assess the associated risks with limited reference data. This study comprehensively discussed the effects of ZEA on intestinal immune components, cytokines and molecular mechanism of juvenile grass carp infected with Aeromonas hydrophila. Specifically, the fish were fed six graded levels of dietary ZEA (0-2507 μg kg-1 diet) for 70 d. The results pointed out that the average residual amount of ZEA in the intestines increased with dose level after ZEA feeding. We further performed an infection assay using A. hydrophila. After 14 d, ZEA groups increased enteritis morbidity rate compared with controls. The acid phosphatase (ACP), lysozyme (LZ) activities and immunoglobulin M (IgM) content were significantly decreased in three intestinal segments. Furthermore, ZEA could reduce the transcription of β-defensin-1, Hepcidin, liver expressed antimicrobial peptide 2A/2B (LEAP-2A/2B) and Mucin-2. We next confirmed the loss of these immune components accompanied by the invasion of the intestinal barrier by bacteria, as indicated by activation of the nuclear factor κB (NF-κB) and the expression of downstream cytokines. Notably, the phosphorylated target of rapamycin (TOR) plays an important role in regulating these genes, thus indicating a possible target caused by ZEA. In summary, the extensive inhibition of immune components by ZEA promotes the spread of pathogens, which may increase the possibility of intestinal mucosa exposure and the risk of transforming disease.
Collapse
Affiliation(s)
- Hong-Yun Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya-Li Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Chengdu 611130, China; Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Lu Zhang
- Tongwei Research Institute, Chengdu 600438, China
| | - Hai-Feng Mi
- Tongwei Research Institute, Chengdu 600438, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China.
| |
Collapse
|
38
|
Li X, Ru S, Tian H, Zhang S, Lin Z, Gao M, Wang J. Combined exposure to environmentally relevant copper and 2,2'-dithiobis-pyridine induces significant reproductive toxicity in male guppy (Poecilia reticulata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149131. [PMID: 34346372 DOI: 10.1016/j.scitotenv.2021.149131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Metal pyrithiones (MePTs), the most widely used biocides in antifouling paints (AFs) coated on the hulls, are usually used in combination with Cu-containing substances. In the aquatic environment, 2,2'-dithiobis-pyridine ((PS)2), the main degradation product of MePTs, and Cu usually coexist. However, their combined impacts on aquatic organisms are unclear. This study exposed male guppy (Poecilia reticulata) to an environmentally realistic concentration of Cu (10 μg/L) alone or Cu (10 μg/L) combined with 20, 200, and 2000 ng/L (PS)2 to explore their combined reproductive toxicity. The results showed that co-exposure to Cu and (PS)2 increased Cu accumulation in the fish body in a dose-dependent manner and induced obvious spermatozoon apoptosis and necrosis, which was mediated by the peroxidation and caspase activation. Compared to Cu alone, co-exposure to Cu and 200, 2000 ng/L (PS)2 significantly decreased the testosterone level and collapsed spermatogenesis, and depressed male's sexual interest and mating behavior were observed in three co-exposure groups. Moreover, co-exposure to Cu and (PS)2 increased the disturbance on cyp19a and cyp19b transcription and suppressed the "display" reproductive behavior. Eventually, co-exposure to Cu and (PS)2 caused male reproductive failure. Therefore, the concurrence of Cu and (PS)2 induced significant reproductive toxicity in male guppies and would threaten the sustainability of fish populations. Considering the extensive usage of MePTs products in the AFs, their ecological risk warrants more evaluation.
Collapse
Affiliation(s)
- Xuefu Li
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Shaoguo Ru
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Hua Tian
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Suqiu Zhang
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Zhenxian Lin
- School of Biology and Brewing Engineering, Taishan University, 525 Dongyue Street, Tai'an 271000, Shandong Province, China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, China
| | - Jun Wang
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
39
|
Zabihi E, Arab-Bafrani Z, Hoseini SM, Mousavi E, Babaei A, Khalili M, Hashemi MM, Javid N. Fabrication of nano-decorated ZnO-fibrillar chitosan exhibiting a superior performance as a promising replacement for conventional ZnO. Carbohydr Polym 2021; 274:118639. [PMID: 34702461 DOI: 10.1016/j.carbpol.2021.118639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 09/01/2021] [Indexed: 12/27/2022]
Abstract
In this research, bioactive nano-hybrids based on the nano-fibrillar chitosan-ZnO (NF-CS-ZnO) were synthesized to diminish the toxicity of ZnO-NPs. The successful formation of nano-hybrids was confirmed by FT-IR, UV-Vis, and FE-SEM analyses, showing a uniform spherical ZnO-NPs with an average diameter of 20-30 nm, homogeneously dispersed on NF-CS. The obtained results demonstrated a remarkable antibacterial activity of NF-CS-ZnO-0.6 nano-hybrid against E. coli and S. aureus and, interestingly, no cytotoxic on normal cells (even at a high concentration of 100 μg/mL). Furthermore, NF-CS hybridization efficiently decreased the up-regulation in Cas3, Cas9, and Il6 of inspected fishes compared to the ZnO-NPs. Histopathological examination revealed hepatocyte necrosis in the fish exposed to ZnO-NPs and hyperemia exposed to NF-CS-ZnO-0.6 nano-hybrid. Finally, NF-CS efficiently improved the bio-safety and bactericidal activity of ZnO-NPs; therefore, NF-CS-ZnO nano-hybrid is prominently recommended as a talented low-toxicity antibacterial agent replacement of conventional ZnO-NPs for use in different applications.
Collapse
Affiliation(s)
- Erfan Zabihi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Zahra Arab-Bafrani
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran; Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan, Iran
| | - Elham Mousavi
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran.
| | - Mohsen Khalili
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Naeme Javid
- Department of Molecular Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
40
|
Lu Z, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Li SW, Liu XA, Zhong CB, Zhou XQ. Mannan Oligosaccharides Application: Multipath Restriction From Aeromonas hydrophila Infection in the Skin Barrier of Grass Carp ( Ctenopharyngodon idella). Front Immunol 2021; 12:742107. [PMID: 34733280 PMCID: PMC8559429 DOI: 10.3389/fimmu.2021.742107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the efficacy of dietary Mannan oligosaccharides (MOS) supplementation on skin barrier function and the mechanism of on-growing grass carp (Ctenopharyngodon idella). Five hundred forty grass carp were fed for 60 days from the growing stage with six different levels of MOS diets (0, 200, 400, 600, 800, and 1,000 mg kg-1). At the end of the growth trial, the 14-day Aeromonas hydrophila challenge experiment has proceeded. The obtained data indicate that MOS could (1) decline skin lesion morbidity after being challenged by the pathogenic bacteria; (2) maintain physical barrier function via improving antioxidant ability, inhibiting excessive apoptosis, and strengthening the tight junction between the epithelial cell and the related signaling pathway (Nrf2/Keap1, p38MAPK, and MLCK); and (3) regulate immune barrier function by modulating the production of antimicrobial compound and expression of involved cytokines and the related signaling pathway (TOR and NFκB). Finally, we concluded that MOS supplementation reinforced the disease resistance and protected the fish skin barrier function from Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Sheng-Yao Kuang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Ling Tang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Shu-Wei Li
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China.,Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Xiang-An Liu
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Cheng-Bo Zhong
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
41
|
Farag MR, Alagawany M, Khalil SR, Moustafa AA, Mahmoud HK, Abdel-Latif HMR. Astragalus membranaceus polysaccharides modulate growth, hemato-biochemical indices, hepatic antioxidants, and expression of HSP70 and apoptosis-related genes in Oreochromis niloticus exposed to sub-lethal thallium toxicity. FISH & SHELLFISH IMMUNOLOGY 2021; 118:251-260. [PMID: 34509627 DOI: 10.1016/j.fsi.2021.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
A 60-day experiment was performed to assess the efficacy of dietary Astragalus membranaceus polysaccharides (ASP) in attenuation of sub-lethal thallium (Tl) toxicity in Nile tilapia. Six experimental groups (in triplicates) were designed where a fish group was raised in clean water and fed basal diet and served as control (CONT), two groups were fed the basal diet supplemented with 0.15% and 0.30% ASP (ASPL and ASPH), Tl-intoxicated group exposed to 1/10 of 96-h LC50 (= 41.9 μg/L), and two other groups were fed 0.15% and 0.30% ASP and concomitantly exposed to 41.9 μg Tl/L (ASPL-Tl and ASPH-Tl). At the end of the experiment, fish behavioral responses, clinical signs, survivability, growth, whole-body composition, intestinal digestive enzymes, serum biochemical parameters, hepatic antioxidative biomarkers, and transcription of stress and apoptosis genes were assessed. Results showed that the whole-body composition, intestinal α-amylase and protease enzymes, serum AST and blood urea levels, and hepatic GSH were not significantly different among groups (P > 0.05). The Tl-intoxicated fish group was off food, had darkened skin, showed restlessness and hyperexcitability, and high mortalities. FBW, WG, SGR and FI were significantly decreased alongside increase FCR in the Tl-exposed group. Tl exposure caused significant increases (P < 0.05) in intestinal lipase enzyme and serum indices such as ALT, creatinine, total cholesterol, triglycerides, glucose, and cortisol levels. Moreover, a significant decreases in hepatic CAT and SOD enzyme activities and significant increases in hepatic MDA contents were also noticed (P < 0.05). Furthermore, Tl exposure induced significant upregulation of hepatic HSP70 and apoptosis-related genes (p53 and caspase 3). Interestingly, dietary supplementation with ASP in ASPL-Tl and ASPH-Tl groups modulated the parameters mentioned above but still not reached the CONT values. Altogether, this study suggests that ASP could be beneficial in the modulation of sub-lethal Tl toxicity effects in Nile tilapia. Additionally, we can conclude that using natural feed supplements such as ASP in aquafeed might be necessary for maintaining the overall health performances of Nile tilapia.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt
| | - Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Amr A Moustafa
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt
| | - Hemat K Mahmoud
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt.
| |
Collapse
|
42
|
Effects of dietary methionine on growth performance, muscle nutritive deposition, muscle fibre growth and type I collagen synthesis of on-growing grass carp ( Ctenopharyngodon idella). Br J Nutr 2021; 126:321-336. [PMID: 32718370 DOI: 10.1017/s0007114520002998] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the current research, a 60-d experiment was conducted with the purpose of exploring the impacts of methionine (Met) on growth performance, muscle nutritive deposition, muscle fibre growth and type I collagen synthesis as well as the related signalling pathway. Six diets (iso-nitrogenous) differing in Met concentrations (2·54, 4·85, 7·43, 10·12, 12·40 and 15·11 g/kg diets) were fed to 540 grass carp (178·47 (SD 0·36) g). Results showed (P < 0·05) that compared with Met deficiency, optimal level of dietary Met (1) increased feed intake, feed efficiency, specific growth rate and percentage weight gain (PWG); (2) increased fish muscle protein, lipid and free amino acid contents and improved fish muscle fatty acid profile as well as increased protein content in part associated with the target of rapamycin complex 1 (TORC1)/S6K1 signalling pathway; (3) increased the frequency distribution of muscle fibre with >50 µm of diameter; (4) increased type I collagen synthesis partly related to the transforming growth factor-β1/Smads and CK2/TORC1 signalling pathways. In conclusion, dietary Met improved muscle growth, which might be due to the regulation of muscle nutritive deposition, muscle fibre growth and type I collagen synthesis-related signal molecules. Finally, according to PWG and muscle collagen content, the Met requirements for on-growing grass carp (178-626 g) were estimated to be 9·56 g/kg diet (33·26 g/kg protein of diet) and 9·28 g/kg diet (32·29 g/kg of dietary protein), respectively.
Collapse
|
43
|
Husain N, Hasan S, Khan AA, Mahmood R. Copper chloride inhibits brush border membrane enzymes, alters antioxidant and metabolic status and damages DNA in rat intestine: a dose-dependent study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43711-43724. [PMID: 33837945 DOI: 10.1007/s11356-021-13804-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is an extensively used heavy metal and an indispensible micronutrient for living beings. However, Cu is also toxic and exerts multiple adverse health effects when humans are exposed to high levels of this metal. We have examined the effect of single acute oral dose of copper chloride (CuCl2) on parameters of oxidative stress, cellular metabolism, membrane and DNA damage in rat intestine. Adult male Wistar rats were divided into four groups and separately administered a single oral dose of 5, 15, 30 and 40 mg CuCl2/kg body weight. Rats not administered CuCl2 served as the control. Oral administration of CuCl2 led to significant alterations in the activities of metabolic and membrane-bound enzymes; brush border enzymes were inhibited by 45-75% relative to the control set. Inhibition of antioxidant enzymes diminished the metal-reducing and free radical quenching ability of the cells. Oxidative damage caused cellular oxidation of thiols, proteins and lipids. Diphenylamine and comet assays showed that CuCl2 treatment enhanced DNA damage while DNA-protein crosslinking was also increased in the intestinal cells. Examination of stained sections showed that CuCl2 treatment led to marked histological changes in the intestine. All the changes seen were in a CuCl2 dose-dependent manner with more prominent alterations at higher doses of CuCl2. These results clearly show that oral administration of CuCl2 results in oxidative damage to the intestine which can impair its digestive and absorptive functions.
Collapse
Affiliation(s)
- Nazim Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Samra Hasan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Aijaz Ahmed Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
44
|
Harikrishnan R, Devi G, Van Doan H, Balasundaram C, Thamizharasan S, Hoseinifar SH, Abdel-Tawwab M. Effect of diet enriched with Agaricus bisporus polysaccharides (ABPs) on antioxidant property, innate-adaptive immune response and pro-anti inflammatory genes expression in Ctenopharyngodon idella against Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2021; 114:238-252. [PMID: 33989765 DOI: 10.1016/j.fsi.2021.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The effect of Agaricus bisporus polysaccharides (ABPs) supplemented diet on growth rate, antioxidant capacity, innate-adaptive immune response, proinflammatory and antiinflammatory genes expression in Ctenopharyngodon idella against Aeromonas hydrophila is reported. In both normal and challenged groups fed with 1.0 and 1.5 mg kg-1 ABPs diets resulted in a significant weight gain and feed intake. The survival was 100% in normal fish fed without or with any ABPs diet; the challenged fish fed with 1.0 mg kg-1 ABPs diet had 98.6% survival. The RBC and WBC counts, Hb, and Hct levels were significant in both normal and challenged groups fed with 1.0 and 1.5 mg kg-1 ABPs diets. A significant increase in total protein and albumin level was observed in both groups fed with 1.0 and 1.5 mg kg-1 ABPs diets. Significant increase in GPx, ROS, GR, GSH, PC, and MnSOD activity was observed in HK of both groups fed with 1.0 and 1.5 mg kg-1 ABPs diets; similarly both groups when fed with the same ABPs diets showed significant Lz, C3, and C4 activity. However, both groups fed with 1.0 mg kg-1 ABPs diet showed significant β-defensin, LEAP-2A, IL-6, and NF-κB P65 mRNA expression. Similarly, IFN-γ2, IL-10, and TNFα mRNA expressions were significant in both groups fed with 1.0 mg kg-1 ABPs diet. The results indicate that both normal and challenged C. idella fed with a 1.0 mg kg-1 ABPs diet had better growth, antioxidant status, immune response, and pro-anti-inflammatory gene modulation against A. hydrophila.
Collapse
Affiliation(s)
- Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram 631 501, Tamil Nadu, India
| | - Gunapathy Devi
- Department of Zoology, Nehru Memorial College, Puthanampatti 621 007, Tamil Nadu, India
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai 50200, Thailand.
| | - Chellam Balasundaram
- Department of Herbal and Environmental Science, Tamil University, Thanjavur, 613 005, Tamil Nadu, India
| | - Subramanian Thamizharasan
- Department of Biotechnology, Bharath College of Science and Management, Thanjavur, 613-005, Tamil Nadu, India
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Abbassa, Abo-Hammad, Sharqia, Egypt
| |
Collapse
|
45
|
Hu Y, Feng L, Jiang W, Wu P, Liu Y, Kuang S, Tang L, Zhou X. Lysine deficiency impaired growth performance and immune response and aggravated inflammatory response of the skin, spleen and head kidney in grown-up grass carp ( Ctenopharyngodon idella). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:556-568. [PMID: 34258445 PMCID: PMC8245797 DOI: 10.1016/j.aninu.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/24/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This dissertation was primarily focused on the immune response, inflammatory response and molecular mechanisms in the skin, head kidney and spleen of grown-up grass carp (Ctenopharyngodon idella). Six iso-nitrogen diets differing in lysine concentrations (5.6, 8.5, 11.6, 14.4, 17.5 and 20.7 g/kg) were fed to 540 grass carp (164.85 ± 0.79 g) for 60 d. After that, grass carp were challenged by Aeromonas hydrophila for 6 d. This study revealed that lysine deficiency (1) suppressed the growth performance of the fish and decreased their ability to resist skin lesion morbidity, (2) impaired the immune organ's immune response by decreasing the gene expressions of mucin, liver-expressed antimicrobial peptide (LEAP)-2B, β-defensin-1 and LEAP-2A and the production of antibacterial compounds of grown-up grass carp, and (3) aggravated the inflammatory response of immune organs in the fish by increasing the gene expressions of pro-inflammatory cytokines (interferon γ2 [IFN-γ2], tumor necrosis factor α [TNF-α], interleukin [IL]-15, IL-17D, IL-12p40, IL-6 and IL-8) and down-regulating anti-inflammatory cytokines (IL-11, transforming growth factor β1 [TGF-β1], IL-10 and IL-4/13A), which were tightly correlated with signal transducer and activator of transcription (STAT)1 and STAT3 signaling pathway, respectively. The different phenomenon in the skin, spleen and head kidney of fish may be correlated with the difference in gene subtype. In addition, using quadratic regression analysis of percent weight gain (PWG), skin lesion morbidity, and the lysozyme activities in the spleen and head kidney, the dietary lysine requirements for grown-up grass carp were estimated to be 13.58, 13.51, 14.56 and 14.18 g/kg, respectively.
Collapse
Affiliation(s)
- Yangyang Hu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Shengyao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production, University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
- Corresponding author.
| |
Collapse
|
46
|
Myo-inositol improves growth performance and regulates lipid metabolism of juvenile Chinese mitten crab ( Eriocheir sinensis) fed different percentage of lipid. Br J Nutr 2021; 127:666-678. [PMID: 33910655 DOI: 10.1017/s0007114521001409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study evaluated the effects of dietary myo-inositol (MI) on growth performance, antioxidant status and lipid metabolism of juvenile Chinese mitten crab (Eriocheir sinensis) fed different percentage of lipid. Crabs (4·58 (sem 0·05) g) were fed four diets including a normal lipid diet (N, containing 7 % lipid and 0 mg/kg MI), N with MI supplementation (N + MI, containing 7 % lipid and 1600 mg/kg MI), a high lipid diet (H, containing 13 % lipid and 0 mg/kg MI) and H with MI supplementation (H + MI, containing 13 % lipid and 1600 mg/kg MI) for 8 weeks. The H + MI group showed higher weight gain and specific growth rate than those in the H group. The dietary MI could improve the lipid accumulations in the whole body, hepatopancreas and muscle as a result of feeding on the high dietary lipid (13 %) in crabs. Besides, the crabs fed the H + MI diets increased the activities of antioxidant enzymes but reduced the malondialdehyde content in hepatopancreas compared with those fed the H diets. Moreover, dietary MI enhanced the expression of genes involved in lipid oxidation and exportation, yet reduced lipid absorption and synthesis genes expression in the hepatopancreas of crabs fed the H diet, which might be related to the activation of inositol 1,4,5-trisphosphate receptor (IP3R)/calmodulin-dependent protein kinase kinase-β (CaMKKβ)/adenosine 5'-monophosphate-activated protein kinase (AMPK) signalling pathway. This study demonstrates that MI could increase lipid utilisation and reduce lipid deposition in the hepatopancreas of E. sinensis fed a high lipid diet through IP3R/CaMKKβ/AMPK activation. This work provides new insights into the function of MI in the diet of crustaceans.
Collapse
|
47
|
Luo J, Zhang Y, Zhou Q, Betancor MB, Tocher DR, Lu J, Yuan Y, Zhu T, Jiao L, Wang X, Zhao M, Hu X, Jin M. Dietary soybean oil aggravates the adverse effects of low salinity on intestinal health in juvenile mud crab Scylla paramamosain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112004. [PMID: 33581488 DOI: 10.1016/j.ecoenv.2021.112004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Salinity is one of the important factors affecting the physiological state of crustaceans in marine environments. Lipid plays major roles in energy supply and is main sources of essential fatty acids for membrane integrity, which is critical in adaptations to changes in salinity. Here we evaluated the effects of salinity (medium, 23 ppt and low, 4 ppt) and dietary lipid source (fish oil, FO and soybean oil, SO) on intestinal health of the marine crustacean mud crab Scylla paramamosain. The results indicated that low salinity and dietary SO (LSO group) significantly affected intestinal histomorphology, with a significant decrease of intestinal fold height and width as well as down-regulation of intestinal mRNA levels of tight junction genes compared to crab reared at medium salinity and fed FO diets (MFO group). Crabs reared at low salinity and fed SO showed an increased inflammatory response in intestine, which stimulated a physiological detoxification response together with apoptosis compared to crab in the MFO group. Low salinity and SO diets also could be responsible for multiply the pathogenic bacteria of Photobacterium and inhibit the beneficial bacteria of Firmicutes and Rhodobacteraceae in intestine, and act on a crucial impact on the development of intestinal microbial barrier disorders. The results of microbial function predictive analysis also support these inferences. The findings of the present study demonstrated that soybean oil as the main dietary lipid source could exacerbate the adverse effects of low salinity on intestinal health of mud crab, and provided evidence suggesting that dietary lipid source and fatty acid composition may play vital roles in intestinal health and the process of adaptation to environmental salinity in marine crustaceans.
Collapse
Affiliation(s)
- Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yingying Zhang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Jingjing Lu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ye Yuan
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xuexi Wang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Mingming Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaoying Hu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
48
|
Wang H, Pan L, Si L, Ji R, Cao Y. Effects of Nrf2-Keap1 signaling pathway on antioxidant defense system and oxidative damage in the clams Ruditapes philippinarum exposure to PAHs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-12906-w. [PMID: 33638075 DOI: 10.1007/s11356-021-12906-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
NF-E2-related factor 2 (Nrf2) is a master regulator of antioxidant defense system which can maintain the oxidation balance in the cell. In our previous study, we first cloned the Nrf2 gene in clams and preliminarily explored the role of the Nrf2 at the transcription level. In this study, RNA interference (RNAi) technology was used to interfere with the expression of Nrf2 after being exposed to benzo(a)pyrene (BaP) for 5 days to verify the role of Nrf2 in the antioxidant defense system. Besides, we examined the mRNA expression and enzyme activities of antioxidases and the oxidative damage. The positive correlations between the Nrf2 with the mRNA expression and the enzyme activities of antioxidases indicated that Nrf2 was required for the induction of these antioxidant genes. Additionally, the mRNA expression and the enzyme activities of the glutathione peroxidase (GPx) in the Nrf2-dsRNA group were significantly higher than those in the control groups on the fifth day, indicating that the GPx is more sensitive to oxidative stress. Moreover, the oxidative damage in the RpNrf2-dsRNA group was markedly increased than control groups, indicating that Nrf2 transcriptional regulation may play an essential role in defending against oxidative damage. This study provides a foundation for further research on the mechanism of detoxification and antioxidation of polycyclic aromatic hydrocarbons (PAHs) in the clams at the transcription level and the protein level.
Collapse
Affiliation(s)
- Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Rongwang Ji
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yunhao Cao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
49
|
Wang S, Meng F, Liu Y, Xia S, Wang R. Exogenous inositol ameliorates the effects of acute ammonia toxicity on intestinal oxidative status, immune response, apoptosis, and tight junction barriers of great blue-spotted mudskippers (Boleophthalmus pectinirostris). Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108911. [PMID: 33075492 DOI: 10.1016/j.cbpc.2020.108911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 01/12/2023]
Abstract
Ammonia toxicity can disrupt the intestinal health of aquatic animals. It is important to find substances that alleviate these adverse effects. The present study explored the possible protective role of myo-inositol (MI) in ammonia-induced toxicity in the fish intestine. Great blue-spotted mudskippers (Boleophthalmus pectinirostris) accumulated in artificial seawater (15‰ salinity, n = 600) were randomly selected and intraperitoneally injected with NaCl (0.68%) or MI (2.5 mg/g fish in 0.68% NaCl) then exposed to artificial seawater alone (NaCl and MI group) or seawater containing 57.025 mmol/L ammonium chloride (NH3 and NH3 + MI group). After a 24-h experiment, it showed that ammonia exposure down-regulated the mRNA expression levels of intestinal barrier function proteins (Zo-1, Ocln, Cldn-5, Cldn-12, and Cldn-15) and anti-inflammatory cytokines (Tgf-β and Il-10) while the acute ammonia stress up-regulated the apoptosis genes (p53, Bax, Caspase-3, and Caspase-9) and pro-inflammatory cytokines (Tnf-α and Il-1β). Furthermore, ammonia challenge also induced oxidative stress, as the malondialdehyde and the protein carbonyl contents were increased. In addition, ammonia stress down-regulated the antioxidant enzymes (Cu/Zn-Sod, Cat, Gpx, and Gst) activities as well as their gene transcription levels. The administration of the exogenous myo-inositol greatly ameliorated the ammonia-induced changes in redox capacity, immune response, apoptosis, inflammation, and tight junction barrier function to levels similar to those of the NaCl group. Furthermore, fish injected with MI alone showed no significant changes compared with the NaCl group. Taken together, pretreatment with myo-inositol had no obvious side-effects and effectively protected the mudskippers' intestine from the toxicity caused by acute ammonia stress.
Collapse
Affiliation(s)
- Shidong Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Yang Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Silei Xia
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
50
|
Zhao Y, Yan MY, Jiang Q, Yin L, Zhou XQ, Feng L, Liu Y, Jiang WD, Wu P, Zhao J, Jiang J. Isoleucine improved growth performance, and intestinal immunological and physical barrier function of hybrid catfish Pelteobagrus vachelli × Leiocassis longirostris. FISH & SHELLFISH IMMUNOLOGY 2021; 109:20-33. [PMID: 32991991 DOI: 10.1016/j.fsi.2020.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
This study was performed to determine effects of dietary isoleucine (Ile) on growth performance, and intestinal immunological and physical barrier function of hybrid catfish Pelteobagrus vachelli × Leiocassis longirostris. Six hundred and thirty fish (33.11 ± 0.09 g) were randomly divided into seven experimental groups with three replicates each, and respectively fed seven diets with 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0 g Ile kg-1 diets for 8 weeks. The results showed improvement of growth performance, feed intake, feed utilization, relative gut length (RGL), and intestinal fold height and width by dietary Ile (P < 0.05). Meanwhile, dietary Ile (12.5 g kg-1 diet) improved the activities of lysozyme (LZM), acid phosphatase, alkaline phosphatase and the contents of complement 3 (C3), C4, and immunoglobulin M (IgM) (P < 0.05). The c-type-lectin, c-LZM, g-LZM, and hepcidin mRNA expressions in the intestine were up-regulated in fish fed diets with 10.0-20.0 g Ile kg-1 diet (P < 0.05). Dietary Ile (10.0-12.5 g Ile kg-1 diet) increased intestinal β-defensin mRNA expression partially in association with Sirt1/ERK/90RSK signaling pathway. Dietary Ile (12.5-15.0 g Ile kg-1 diet) decreased oxidative damage and improved antioxidant ability by increasing activities and expressions of superoxide dismutase, glutathione peroxidase, and glutathione reductase, glutathione-S-transferase (P < 0.05). The occludin, ZO-1, ZO-2, claudin3, and claudin 7 mRNA expressions in the intestine were up-regulated in fish fed diets with 10.0 and 12.5 g Ile kg-1 diet (P < 0.05), whereas the myosin light chain kinase gene expression was decreased in fish fed diets with 7.5-17.5 g Ile kg-1 diet. Dietary Ile (10-12.5 g Ile kg-1 diet) decreased apoptotic responses by reducing the expression of caspase3 and caspase 9 via the AKT/TOR signaling pathway. Based on the quadratic regression analysis of PWG, the dietary Ile requirement of hybrid catfish was estimated to be 12.43 g Ile kg-1 diet, corresponding to 32.05 g Ile kg-1 dietary protein. Collectively, dietary Ile improved growth performance and immunological and physical barrier function of intestine in hybrid catfish.
Collapse
Affiliation(s)
- Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming-Yao Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qin Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Long Yin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|