1
|
Tan ML, Shen YJ, Chen QL, Wu FR, Liu ZH. Environmentally relevant estrogens impaired spermatogenesis and sexual behaviors in male and female zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107008. [PMID: 38941808 DOI: 10.1016/j.aquatox.2024.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Environmental estrogens (EEs) are found extensively in natural waters and negatively affect fish reproduction. Research on the reproductive toxicity of EEs mixtures in fish at environmentally relevant concentrations is scarce. In this study, adult male zebrafish were exposed for 60 days to EES (a mixture of EEs), EE2-low (5.55 ng/L, with an estrogenic potency equal to EES), and EE2-high (11.1 ng/L). After exposure, the expression levels of vtg1, vtg3, and esr1 in the livers in EES-treated fish remained unaltered, whereas they were significantly increased in EE2-treated fish. Both EE2-high and EES exposures notably reduced the gonad somatic index and sperm count. A disrupted spermatogenesis was also observed in the testes of EE2-high- and EES-exposed fish, along with an alteration in the expression of genes associated with spermatogonial proliferation (pcna, nanog), cell cycle transition (cyclinb1, cyclind1), and meiosis (aldh1a2, cyp26a1, sycp3). Both EE2 and EES significantly lowered plasma 11-ketotestosterone levels in males, likely by inhibiting the expression level of genes for its synthesis (scc, cyp17a1 and cyp11b2), and increased 17β-estradiol (E2) levels, possibly through upregulating the expression of cyp19a1a. A significant increase in tnfrsf1a expression and the tnfrsf1a/tnfrsf1b ratio in EE2-high and EES-treated males also suggests increased apoptosis via the extrinsic pathway. Further investigation showed that both EE2-high and EES diminished the sexual behavior of male fish, accompanied with reduced E2 levels in the brain and the expression of genes in the kisspeptin/gonadotropin-releasing hormone system. Interestingly, the sexual behavior of unexposed females paired with treated males was also reduced, indicating a synergistic effect. This study suggests that EES have a more severe impact on reproduction than EE2-low, and EEs could interfere not only with spermatogenesis in fish, but also with the sexual behaviors of both exposed males and their female partners, thereby leading to a more significant disruption in fish reproduction.
Collapse
Affiliation(s)
- Mei-Ling Tan
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China; Laboratory of Water Ecological Health and Environmental Safety, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China; Laboratory of Water Ecological Health and Environmental Safety, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China; Laboratory of Water Ecological Health and Environmental Safety, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Feng-Rui Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, 236037, China.
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China; Laboratory of Water Ecological Health and Environmental Safety, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
2
|
Delvadiya RS, Patel UD, Tank MR, Patel HB, Patel SS, Trangadia BJ. Long-term tributyltin exposure alters behavior, oocyte maturation, and histomorphology of the ovary due to oxidative stress in adult zebrafish. Reprod Toxicol 2024; 126:108600. [PMID: 38670349 DOI: 10.1016/j.reprotox.2024.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Tributyltin (TBT), an organotin endocrine-disrupting substance, is recognized as one of the important toxic environmental pollutants. The present study was carried out to investigate the toxic effects of TBT on behavior and the ovary of adult zebrafish with a focus on oxidative stress markers and oocyte maturation. Adult zebrafish were exposed to three different concentrations (125, 250, and 500 ng/L of water) of TBT for 28 days. TBT exposure produced a concentration-dependent negative effect on the body weight and behavior (anxiety-like symptoms) of adult zebrafish. Alterations in the activity of superoxide dismutase (SOD) and catalase (CAT), the total antioxidant capacity of ovarian tissue by the highest exposure level of TBT resulted in lipid peroxidation as indicated by increased malondialdehyde (MDA) level. The numbers of early-vitellogenic oocytes were significantly increased in zebrafish exposed to TBT as low as 125 ng/L. However, the numbers and size of fully-grown (mature) oocytes were significantly reduced in the highest exposure group only. Correlation between the MDA level and pre-vitellogenic oocytes in the 500 ng/L group indicated that lipid peroxidation prevented the maturation of pre-vitellogenic oocytes. TBT exposure produced significant histological changes in the ovary as evidenced by disturbed maturation of oocytes. In conclusion, TBT adversely affected the maturation of oocytes in zebrafish ovary through oxidative stress-mediated mechanisms.
Collapse
Affiliation(s)
- Rajkumar S Delvadiya
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| | - Urvesh D Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India.
| | - Mihir R Tank
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| | - Harshad B Patel
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| | - Swati S Patel
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| | - Bhavesh J Trangadia
- Department of Veterinary Pathology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, India
| |
Collapse
|
3
|
Jiang M, Zhang Z, Han Q, Peng R, Shi H, Jiang X. Embryonic exposure to environmentally relevant levels of tributyltin affects embryonic tributyltin bioaccumulation and the physiological responses of juveniles in cuttlefish (Sepia pharaonis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114894. [PMID: 37059015 DOI: 10.1016/j.ecoenv.2023.114894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Tributyltin (TBT) is a typical organic pollutant that persists in aquatic sediments due to its wide usage as an antifouling fungicide during the past few decades. Despite increased awareness of the serious negative consequences of TBT on aquatic species, studies on the effects of TBT exposure on cephalopod embryonic development and juvenile physiological performance are scarce. To investigate the lasting effects of TBT toxicity on Sepia pharaonis from embryo to hatchling, embryos (gastrula stage, 3-5 h post fertilization) were exposed to four levels of TBT until hatching: 0 (control), 30 (environmental level), 60, and 120 ng/L. Subsequently, juvenile growth performance endpoints and behavioral alterations were assessed over 15 days post-hatching. Egg hatchability was significantly reduced and embryonic development (i.e., premature hatching) was accelerated in response to 30 ng/L TBT exposure. Meanwhile, TBT-induced alterations in embryonic morphology primarily included yolk-sac lysis, embryonic malformations, and uneven pigment distributions. During the pre-middle stage of embryonic development, the eggshell serves as an effective barrier to safeguard the embryo from exposure to 30-60 ng/L TBT, according to patterns of TBT accumulation and distribution in the egg compartment. However, even environmental relevant levels of TBT (30 ng/L) exposure during embryonic development had a negative impact on juvenile behavior and growth, including slowing growth, shortening eating times, causing more irregular movements, and increasing inking times. These findings indicate that after TBT exposure, negative long-lasting effects on S. pharaonis development from embryo to hatchling persist, suggesting that long-lasting toxic effects endure from S. pharaonis embryos to hatchlings.
Collapse
Affiliation(s)
- Maowang Jiang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China
| | - Zihan Zhang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China
| | - Qingxi Han
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China
| | - Ruibing Peng
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China
| | - Huilai Shi
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan 316022, China
| | - Xiamin Jiang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315832, PR China.
| |
Collapse
|
4
|
Ganesan R, Sekaran S, Vimalraj S. Solid-state 1H NMR-based metabolomics assessment of tributylin effects in zebrafish bone. Life Sci 2022; 289:120233. [PMID: 34921865 DOI: 10.1016/j.lfs.2021.120233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Tributyltin (TBT), an endocrine disruptor is used globally in agribusiness and industries as biocides, heat stabilizers, and in chemical catalysis. It is known for its deleterious effects on bone by negatively impacting the functions of osteoblasts, osteoclasts and mesenchymal stem cells. However, the impact of TBT on the metabolomics profile in bone is not yet studied. Here, we demonstrate alterations in chemical metabolomics profiles measured by solid state 1H nuclear magnetic resonance (1H NMR) spectroscopy in zebrafish bone following tributyltin (TBT) treatment. TBT of 0, 100, 200, 300, 400 and 500 μg/L were exposed to zebrafish. From this, zebrafish bone has subjected for further metabolomics profiling. Samples were measured via one-dimensional (1D) solvent -suppressed and T2- filtered methods with in vivo zebrafish metabolites. A dose dependent alteration in the metabolomics profile was observed and results indicated a disturbed aminoacid metabolism, TCA cycle, and glycolysis. We found a significant alteration in the levels of glutamate, glutamine, glutathione, trimethylamine N-oxide (TMAO), and other metabolites. This investigation hints us the deleterious effects of TBT on zebrafish bone enabling a comprehensive understanding of metabolomics profile and is expected to play a crucial role in understanding the deleterious effects of various endocrine disruptor on bone.
Collapse
Affiliation(s)
- Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24253, Republic of Korea; Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.
| | - Saravanan Sekaran
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India.
| | | |
Collapse
|
5
|
Tang L, Zhang YH, Wang X, Zhang CC, Qin G, Lin Q. Effects of chronic exposure to environmental levels of tributyltin on the lined seahorse (Hippocampus erectus) liver: Analysis of bioaccumulation, antioxidant defense, and immune gene expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149646. [PMID: 34416608 DOI: 10.1016/j.scitotenv.2021.149646] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Tributyltin (TBT), an organotin compound frequently detected in the coastal environments, poses a threat to aquatic organisms. The lined seahorse (Hippocampus erectus) is a vulnerable species found in nearshore water habitats. The mechanisms by which this fish responds to TBT exposure are not yet fully understood. Histological, biochemical, and transcriptional analyses were conducted, and the results showed that 60 days of exposure to 50 and 500 ng/L TBT caused significant tin accumulation and liver damage to seahorses. Antioxidant defenses and immune responses to TBT exposure in the livers of seahorses were further investigated. The enzymatic activity of superoxide dismutase and malondialdehyde content increased, while catalase activity decreased. Transcriptomic analysis revealed that a series of genes involved in the antioxidant defense system were highly induced to protect the hepatic cells from oxidative damage. TBT exposure also resulted in the induction of genes associated with immune and inflammatory processes, representing a stress response to combat the adverse environmental conditions in the exposed seahorses. Furthermore, seahorses showed an increased health risk, according to the elevation of the expression of genes with tumor-promoting effects, when exposed to TBT. These findings contribute to our understanding of the adverse effects of TBT exposure on seahorses, and their potential defense mechanisms.
Collapse
Affiliation(s)
- Lu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yan-Hong Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Can-Chuan Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
6
|
Reyes F, Quintana L, Tassino B. Association of androgens and estrogens with agonistic behavior in the annual fish Austrolebias reicherti. Horm Behav 2021; 136:105064. [PMID: 34653914 DOI: 10.1016/j.yhbeh.2021.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Agonistic behavior governs the settlement of conflicts among conspecifics for limiting resources. Sex steroids play a critical role in the regulation of agonistic behavior which in turn may produce modulations in hormone titres. In this study we analyzed the association of androgens and estrogens with agonistic behavior in the annual fish Austrolebias reicherti. This native species inhabits temporary ponds that dry out completely during summer, having one of the shortest lifespans among vertebrates. They are highly sexually dimorphic and have a single breeding season during which they reproduce continuously. Here we measured plasma levels of 11-ketotestosterone (11KT) and 17β-estradiol (E2) in adult males after the resolution of a social conflict and assessed the role of the aromatase conversion of testosterone (T) to E2 in male aggression. Winners had higher levels of 11KT than losers yet; winner 11KT levels did not differ from those of males not exposed to a social challenge. E2 levels did not show differences among winners, losers or control males. However, fights under the aromatase inhibitor Fadrozole were overall less aggressive than control fights. Our results suggest an androgen response to losing a conflict and that the conversion of T to E2 is involved in the regulation of aggressive behavior. Annual fish extreme life history may give new insights on hormone-behavior interactions.
Collapse
Affiliation(s)
- Federico Reyes
- Sección Etología, Facultad de Ciencias, Universidad de la República, Uruguay; Bases Neurales de la Conducta, Departamento de Neurofisiología Molecular y Celular, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Laura Quintana
- Bases Neurales de la Conducta, Departamento de Neurofisiología Molecular y Celular, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Bettina Tassino
- Sección Etología, Facultad de Ciencias, Universidad de la República, Uruguay.
| |
Collapse
|
7
|
Zhang S, Tian H, Sun Y, Li X, Wang W, Ru S. Brightened body coloration in female guppies (Poecilia reticulata) serves as an in vivo biomarker for environmental androgens: The example of 17β-trenbolone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112698. [PMID: 34450427 DOI: 10.1016/j.ecoenv.2021.112698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In vivo testing systems for environmental androgens are scarce. The aim of this study was to evaluate the potential of male-specific brightened body coloration in female guppies (Poecilia reticulata) to serve as an in vivo biomarker of environmental androgens using 17β-trenbolone as an example. The high bioaccumulation of 17β-trenbolone in the skin of female guppies suggests that it is a potential target tissue of environmental androgens. The coloration index, pigment cell ultrastructure, pigment levels, sexual attractiveness, and reproductive capability of female guppies were analyzed following 28 days of exposure to 20 ng/L, 200 ng/L, and 2000 ng/L 17β-trenbolone. Increases in the coloration index caused by 17β-trenbolone exposure were attributable to increased pteridine and melanin levels. Decreases in the sexual attractiveness, number of offspring, and survival rate of offspring suggested that the changes in body coloration translated into adverse outcomes. Finally, mRNA sequencing indicated that 17β-trenbolone increased pteridine levels by activating genomic effects of androgen receptor on xanthine dehydrogenase and increased melanin levels by exerting non-genomic effects targeting microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 1 that were mediated by mitogen-activated protein kinase and calcium signaling pathways. We have derived a robust adverse outcome pathway of environmental androgens, and our findings suggest that indicators at different biological levels related to brightened body coloration in female guppies can serve as less-invasive or noninvasive in vivo biomarkers of short-term exposure to environmental androgens.
Collapse
Affiliation(s)
- Suqiu Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China.
| | - Yang Sun
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| |
Collapse
|
8
|
Tang L, Liu YL, Qin G, Lin Q, Zhang YH. Effects of tributyltin on gonad and brood pouch development of male pregnant lined seahorse (Hippocampus erectus) at environmentally relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124854. [PMID: 33370696 DOI: 10.1016/j.jhazmat.2020.124854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
The male pregnancy of seahorses is unique, but their reproductive response to environmental disturbances has not yet been clarified. Tributyltin (TBT) is known to have an endocrine disrupting effect on the reproductive system of coastal marine organisms. This study evaluated the potential effects of exposure to environmentally relevant concentrations of TBT on the development of gonads and brood pouch of the lined seahorse (Hippocampus erectus). Physiological, histological, and transcriptional analyses were conducted, and results showed that high levels of TBT bioaccumulation occurred in male and female seahorses. TBT led to ovarian follicular atresia and apoptosis with the elevation of androgen levels, accompanied by the induction of genes associated with lysosomes and autophagosomes. Comparative transcriptional analyses revealed the likely inhibition of spermatogenesis via the suppression of cyclic AMP and androgen synthesis. Notably, the transcriptional profiles showed that TBT potentially affects the immune system, angiogenesis, and embryo nourishment of the brood pouch, which indicates that it has negative effects on the male reproductive system of seahorses. In summary, this study reveals that environmental levels of TBT potentially affect the reproductive efficiency of seahorses, and may ultimately lead to a reduction in their populations in coastal environments.
Collapse
Affiliation(s)
- Lu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Ya-Li Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China.
| | - Yan-Hong Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China.
| |
Collapse
|
9
|
Counteracting effects of heavy metals and antioxidants on male fertility. Biometals 2021; 34:439-491. [PMID: 33761043 DOI: 10.1007/s10534-021-00297-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/04/2021] [Indexed: 01/06/2023]
Abstract
Infertility is regarded as a global health problem affecting 8-12% of couples. Male factors are regarded as the main cause of infertility in 40% of infertile couples and contribute to this condition in combination with female factors in another 20% of cases. Abnormal sperm parameters such as oligospermia, asthenospermia, and teratozoospermia result in male factor infertility. Several studies have shown the deteriorative impact of heavy metals on sperm parameters and fertility in human subjects or animal models. Other studies have pointed to the role of antioxidants in counteracting the detrimental effects of heavy metals. In the currents study, we summarize the main outcomes of studies that assessed the counteracting impacts of heavy metal and antioxidants on male fertility. Based on the provided data from animal studies, it seems rational to administrate appropriate antioxidants in persons who suffer from abnormal sperm parameters and infertility due to exposure to toxic elements. Yet, further human studies are needed to approve the beneficial effects of these antioxidants.
Collapse
|
10
|
Yuan GH, Zhang Z, Gao XS, Zhu J, Guo WH, Wang L, Ding P, Jiang P, Li L. Gut microbiota-mediated tributyltin-induced metabolic disorder in rats. RSC Adv 2020; 10:43619-43628. [PMID: 35519721 PMCID: PMC9058259 DOI: 10.1039/d0ra07502g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022] Open
Abstract
Tributyltin (TBT), an environmental pollutant widely used in antifouling coatings, can cause multiple-organ toxicity and gut microbiome dysbiosis in organisms, and can even cause changes in the host metabolomic profiles. However, little is known about the underlying effects and links of TBT-induced metabolic changes and gut microbiome dysbiosis. In this study, rats were exposed to TBT at a dose of 100 μg kg-1 body weight (BW) for 38 days, followed by multi-omics analysis, including microbiome, metabolomics, and metallomics. Results showed that TBT exposure reduced rat weight gain and decreased the serum triglyceride (TG) level. Metabolic analysis revealed that TBT fluctuated linoleic acid metabolism and glycerophospholipid metabolism in the liver; the tricarboxylic acid cycle (TCA cycle), nicotinate and nicotinamide metabolism, and arachidonic acid metabolism in serum; glycine, serine, and threonine metabolism, the one carbon pool by folate, nicotinate, and nicotinamide metabolism; and tryptophan metabolism in feces. Furthermore, TBT treatment dictated liver inflammation due to enhancing COX-2 expression by activating protein kinase R-like ER kinase (PERK) and C/EBP homologous protein (CHOP) to induce endoplasmic reticulum (ER) stress instead of stimulating arachidonic acid metabolism. Meanwhile, alteration of the intestinal flora [Acetivibrio]_ethanolgignens_group, Acetatifactor, Eisenbergiella, Lachnospiraceae_UCG-010, Enterococcus, Anaerovorax, and Bilophila under TBT exposure were found to be involved in further mediating liver inflammation, causing lipid metabolism abnormalities, such as TG, linoleic acid, and glycerophospholipids, and interfering with the energy supply process. Among these, [Acetivibrio]_ethanolgignens_group, Enterococcus, and Bilophila could be considered as potential biomarkers for TBT exposure based on receiver operator characteristic (ROC) curve analysis.
Collapse
Affiliation(s)
- Ge-Hui Yuan
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402
| | - Zhan Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Xing-Su Gao
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402
| | - Jun Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402
| | - Wen-Hui Guo
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Li Wang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University Changsha 410078 P. R. China
| | - Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 China +86-25-8686-8499 +86-25-8686-8402 +86-25-8686-8404 +86-25-8686-8402.,Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University 101 Longmian Avenue Nanjing 211166 P. R. China
| |
Collapse
|
11
|
Tu X, Li YW, Chen QL, Shen YJ, Liu ZH. Tributyltin enhanced anxiety of adult male zebrafish through elevating cortisol level and disruption in serotonin, dopamine and gamma-aminobutyric acid neurotransmitter pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111014. [PMID: 32888589 DOI: 10.1016/j.ecoenv.2020.111014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Tributyltin (TBT), a widely and persistently distributed organontin, has been well documented to disrupt reproduction and behaviors in animals due to its anti-aromatase activity. TBT has been also reported to enhance anxiety in several fish species, whereas the mechanism underlying remains largely unknown. To investigate the disruption of TBT on fish anxiety and the mechanisms possibly involved, adult male zebrafish (Danio rerio) were treated with TBT (100 and 500 ng/L) for 28 days and anxiety behavior was further investigated using a novel tank dive test. Result showed that TBT treatment significantly enhanced the total time of the fish spent in the lower half, delayed the onset time to the higher half of the tank and increased the total duration of freezing of the fish, indicating an enhanced anxiety in TBT-treated fish. Accordingly, TBT sharply elevated the cortisol levels in plasma in a concentration-dependent manner, suggesting that the elevated cortisol level might be involved in the enhanced anxiety. Although the expression of crha was significantly increased and crhbp was significantly decreased in the brain of TBT-treated fish which is consistent to the elevated cortisol level, the expressions of actha and acthb were sharply down-regulated. In contrast, the expressions of genes responsible for the synthesis and action of serotonin (5-HT) (pet1, thp2 and htr1aa), dopamine (DA) (th1, slc6a3, drd2a and drd2b) and gamma-aminobutyric acid (GABA) (gad2 and gabrg2) were all significantly inhibited. The down-regulation of these pivotal genes acting in 5-HT, DA and GABA neurotransmitter systems in response to TBT corresponded well with the TBT-enhanced anxiety in fish. It was thus strongly suggested that these neurotransmitters might be also involved in TBT-enhanced anxiety in adult male zebrafish. The present study extended our understanding of the neurotoxicity of TBT on the anxiety control and behavioral modulation in fish.
Collapse
Affiliation(s)
- Xin Tu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
12
|
Lan XR, Li YW, Chen QL, Shen YJ, Liu ZH. Tributyltin impaired spermatogenesis and reproductive behavior in male zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 224:105503. [PMID: 32438217 DOI: 10.1016/j.aquatox.2020.105503] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/22/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Tributyltin (TBT) was reported to affect sexual behavior and gametogenesis in fish. However, the modes of action involved are largely unclear. In order to elucidate the toxicological mechanisms of TBT in reproduction, zebrafish (Danio rerio) males were exposed to TBT at concentrations of 100 and 500 ng/L for 28 days. After exposure, the sperm count of the treated fish was sharply decreased though the testis weight and gonadosomatic index remained unchanged. Moreover, reduced number of spermatogonia and spermatozoa and increased spermatocytes were observed in TBT-treated fish by histological observation and PCNA-immunostaining. Increased number of apoptotic-positive spermatocytes was also present in TBT-treated fish, indicating an enhanced apoptosis in these cells. Consistent to decreased number of spermatogonia, down-regulated expressions of genes responsible for germ cell proliferation (cyclind1 and pcna) were observed in TBT-treated fish. In contrast, TBT elevated the expressions of genes involved in meiotic entry and maintenance (aldhla2, sycp3 and dmc1) while suppressed the mRNA level of gene responsible for terminus of meiotic entry (cyp26a1), in agreement with arrested meiosis and reduced sperm count. Furthermore, TBT significantly elevated the ratios of bax/bcl-2 and tnfrsf1a/tnfrsf1b in testis, which are markers for intrinsic- and extrinsic-apoptotic pathways, consistent with the enhanced TUNEL positive signals in spermatocytes. Moreover, TBT also significantly affected the parameter of reproductive behaviors in treated fish (reflected by decreased frequency of meeting, visits and time spent in spawning area). Consistently, the expressions of genes responsible for the modulation of reproductive behaviors in brain (such as cyp19a1b, kiss2, gnrh3 and ompb) were significantly down-regulated in treated-fish. Interestingly, disrupted reproductive behaviors of untreated female fish were also observed in the present study. The present study indicated that TBT might affect the reproduction of zebrafish male by disrupting the spermatogenesis and reproductive behavior of the fish.
Collapse
Affiliation(s)
- Xue-Rong Lan
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
13
|
Liu ZH, Li YW, Hu W, Chen QL, Shen YJ. Mechanisms involved in tributyltin-enhanced aggressive behaviors and fear responses in male zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105408. [PMID: 31935571 DOI: 10.1016/j.aquatox.2020.105408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Tributyltin (TBT), an aromatase inhibitor, has been found to disrupt gametogenesis and reproductive behavior in several fish species. However, whether TBT is capable of affecting other behaviors such as aggressive behavior and fear response in fish and the underlying mode(s) of action remain unclear. To study aggressive behavior, adult zebrafish (Danio rerio) males were continuously exposed to two nominal concentrations of TBT (TBT-low, 100 ng/L and TBT-high, 500 ng/L) for 28 days. To study the fear response, the fish were divided into four groups (Blank and Control, 0 ng/L TBT; TBT-low, 100 ng/L; and TBT-high, 500 ng/L). The fish were then treated with DW (Blank) or with alarm substance (AS) (Control, TBT-low and TBT-high). After exposure, the aggressive behavior of the fish was tested using the mirror test (mirror-biting frequency, approaches to the mirror and duration in approach zone).and fighting test (fish-biting frequency) The mirror-biting frequency, approaches to the mirror, duration in approach zone and fish-biting frequency of the TBT-exposed fish increased significantly compared to those of the control fish, indicating enhanced aggressive behavior. The fear response parameters tested using the novel tank dive test (onset time to the higher half, total duration in the lower half and the frequency of turning) of the TBT-exposed fish were also significantly increased after AS administration, suggesting an enhanced fear response. Further investigation revealed that TBT treatment elevated the plasma level of 11-ketotestosterone (11-KT) and decreased the plasma level of estradiol (E2) in a concentration-dependent manner. Moreover, TBT up-regulated the mRNA levels of ar, c-fos and bdnf1, and suppressed the expression of btg-2 in fish. In addition, exposure to AS increased the plasma level of cortisol and down-regulated the mRNA expression levels of genes involved in 5-HT synthesis (such as tph1b and pet1) in both control and TBT-treated fish. AS significantly suppressed the mRNA level of tph1b, tph2, pet1 and npy in the TBT-high group compared to the control fish. The present study demonstrates that TBT enhances aggressive behavior and fear responses in male zebrafish probably through altering plasma levels of 11-KT, E2 and cortisol and altering the expression of genes involved in the regulation of aggressive behavior (ar, c-fos, bdnf1 and btg-2) and fear responses (tph1b, tph2, pet1 and npy). The present study greatly extends our understanding of the behavioral toxicity of TBT to fish.
Collapse
Affiliation(s)
- Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Wei Hu
- Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
14
|
Wang W, Chen J, Fang Y, Wang B, Zou Q, Wang L, Zhang W, Huang X, Lv H, Zhang C, Wang K. Identification of gnrh2 and gnrh3 and their expression during brood pouch growth and short-term benzo(a)pyrene exposure in lined seahorse (Hippocampus erectus). Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108579. [PMID: 31386905 DOI: 10.1016/j.cbpc.2019.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022]
Abstract
Gonadotropin-releasing hormones (GnRH) regulate gonadal growth of teleosts. Benzo(a)pyrene (BaP) functions as a reproductive endocrine disruptor. Furthermore, endocrine regulation on brood pouch growth of Syngnathidaes is elusive. To better understand the role of GnRH in brood pouch growth and effects of BaP on reproductive endocrine in lined seahorse (Hippocampus erectus), gnrh2 and gnrh3 genes were identified. Results showed that lined seahorse GnRH2 and GnRH3 precursors included the conservative tripartite structure and their transcripts highly expressed in brain as other teleosts. Expression profiles of gnrh2 and gnrh3 transcripts were detected during brood pouch growth. Results indicated that brain gnrh2 transcripts remarkably increased at the middle-stage and late-stage of brood pouch growth, while brain gnrh3 transcripts significantly raised at the early-stage and middle-stage. These suggested that GnRH2 and GnRH3 regulated brood pouch growth at different stages. Short-term BaP exposure in lined seahorse was performed. Transcripts of gnrh2 and gnrh3 remarkably increased in females and males exposed to BaP. Besides, plasma 17-beta estradiol (E2) levels presented a reduced trend during female fish exposed to BaP. This revealed that BaP functioned as anti-estrogenic effects and it may result in high expression of gnrh mRNA. However, plasma 11-ketone testosterone (11-KT) levels showed an increased trend during male fish exposed to BaP. Taken together, these indicated interesting results of BaP on reproduction in each sex of seahorse. These observations contribute to provide novel information of regulation on brood pouch growth and effects of BaP on reproductive endocrine in Syngnathidaes.
Collapse
Affiliation(s)
- Wenqiang Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jun Chen
- School of Agriculture, Ludong University, Yantai 264025, China.
| | - Yan Fang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qiang Zou
- Yantai Branch of Shandong Technology Transfer Center, Chinese Academy of Sciences, Yantai 264003, China
| | - Lei Wang
- College of life sciences, Ludong University, Yantai 264025, China
| | - Wenwen Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xueying Huang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Haoyue Lv
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Chenxiao Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Kai Wang
- School of Agriculture, Ludong University, Yantai 264025, China.
| |
Collapse
|
15
|
Li X, Wang J, Yu M, Zhang X, Wang W, Tian H, Ru S. 2,2'-Dithiobis-pyridine induced reproductive toxicity in male guppy (Poecilia reticulata). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:778-785. [PMID: 30597776 DOI: 10.1016/j.ecoenv.2018.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/10/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Metal pyrithiones (MePTs) are frequently used antifouling biocides in marine coatings. Their main degradation product, 2,2'-dithiobis-pyridine ((PS)2), has been widely detected in seawater and may pose potential ecological risks. In the present study, sexually mature guppies (Poecilia reticulata) were exposed to (PS)2 at concentrations of 0, 20, 200, and 2000 ng/L for 28 days to investigate its reproductive toxicity. The results showed that (PS)2 significantly reduced testosterone (T) levels, spermatogenic cyst number and sperm motility, impeded spermatogenic cell differentiation in male guppies and delayed embryo development in females. These results indicated that (PS)2 could cause reproductive toxicity in guppies. We also examined mRNA expression of indices involved in the hypothalamic-pituitary-gonadal axis and reproductive behaviors. We found that 200 and 2000 ng/L (PS)2 decreased T synthesis by downregulating 17βHSD and CYP17 mRNA levels, and upregulating the mRNA level of CYP19a1a, which converted T to 17β-estradiol. (PS)2 also upregulated GnRH1, FSHβ, LHβ, and LHR mRNA levels, a positive feedback regulation due to the decrease of T levels in male guppies. Furthermore, (PS)2 significantly decreased CYP19a1b mRNA levels in all three exposure groups and thus reduced the display frequency of male guppies. This study was the first to report that (PS)2 could induce reproductive toxicity, which would provide a basis for future assessment of its ecological risk.
Collapse
Affiliation(s)
- Xuefu Li
- Colleges of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| | - Jun Wang
- Colleges of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| | - Miao Yu
- Colleges of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaona Zhang
- Colleges of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| | - Wei Wang
- Colleges of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China
| | - Hua Tian
- Colleges of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China.
| | - Shaoguo Ru
- Colleges of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
16
|
Zhang JL, Zhang CN, Li EC, Jin MM, Huang MX, Cui W, Lin YY, Shi YJ. Triphenyltin exposure affects mating behaviors and attractiveness to females during mating in male guppies (Poecilia reticulata). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:76-84. [PMID: 30423510 DOI: 10.1016/j.ecoenv.2018.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
The impacts of triphenyltin (TPT) on ecological health have been of great concern due to their widespread use and ubiquity in aquatic ecosystems. However, little is known about the effects of TPT on the reproductive behaviors of fishes. Therefore, the present study was conducted to investigate the effects of TPT at environmentally relevant concentrations (0, 1 and 10 ng Sn/L) on the mating behaviors and the attractiveness to females during mating in male guppies (Poecilia reticulata). The results showed that TPT exposure disturbed the mating behaviors; the TPT-exposed male fish performed more sneaking attempts, but no changes in sigmoid courtship were displayed. The increases in sneaking attempts might be related to increases in testosterone levels induced by TPT exposure. In the context of a competing male, the TPT-exposed males were less attractive to females during mating. The decreases in attractiveness might be related to decreases in carotenoid-based coloration, shown as decreases in caudal fin redness values and skin carotenoid contents. In addition, TPT-induced total antioxidant capacities, the activities of superoxide dismutase and catalase, and the contents of malondialdehyde in liver and intestinal tissues indicated increases in oxidative stress. Both oxidative stress and coloration are linked to carotenoids. Thus, we speculated that the TPT-exposed males might use carotenoids to cope with increases in oxidative stress at the expense of carotenoid-based coloration. The disruption of mating behaviors and the decrease in attractiveness to females in male fish could result in reproductive failure. The present study underscores the importance of using behavioral tests as a sensitive tool in assessing the impact of pollutants present in aquatic environments.
Collapse
Affiliation(s)
- Ji-Liang Zhang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Chun-Nuan Zhang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Er-Chao Li
- College of Ocean Sciences, Hainan University, Haikou, Hainan, China
| | - Miao-Miao Jin
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Mao-Xian Huang
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China; College of Ocean Sciences, Hainan University, Haikou, Hainan, China
| | - Wei Cui
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yang-Yang Lin
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ya-Jun Shi
- Laboratory of Aquatic Environment and Animal Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
17
|
Yamamoto FY, Diamante GD, Santana MS, Santos DR, Bombardeli R, Martins CC, Oliveira Ribeiro CA, Schlenk D. Alterations of cytochrome P450 and the occurrence of persistent organic pollutants in tilapia caged in the reservoirs of the Iguaçu River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:670-682. [PMID: 29775944 DOI: 10.1016/j.envpol.2018.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Environmental chemicals originating from human activities, such as persistent organic pollutants (POPs), may interfere with the endocrine system of aquatic organisms. The effect of these chemicals on biota and human populations is of high public concern but remains poorly understood, especially in aquatic environments of South America. The aim of this study was to investigate the bioavailability of POPs and the related effects in caged male tilapia (Oreochromis niloticus) in four cascading reservoirs of the Iguaçu River, Southern Brazil. POPs including organochlorine pesticides (OCPs), polychlorinated biphenyl (PCBs), and polybrominated diphenyl ethers (PBDEs) were determined in the reservoir water and tissue samples of tilapia after two months of exposure. The PCB levels in water (14.7 ng L-1) were 14 times higher than the limits permitted by the Brazilian legislation in the Salto Santiago (SS) reservoir. Similarly, concentrations of aldrin and its metabolites (6.05 ng L-1) detected in the water sample of the Salto Osório (SO) reservoir were also above the permitted limits. RT-qPCR analysis revealed different transcript levels of cytochrome P450 enzymes (CYP1A and CYP3A) in the liver among the four groups, with induced activity in tilapia from the SS reservoir. Quantification of the CYP3A mRNA expression and catalytic activity showed higher values for fish caged at the SS reservoir. The fish from this site also had a higher number of eosinophils observed in the testes. Although overt measurements of endocrine disruption were not observed in caged fish, alteration of CYP enzymes with co-occurrence of organochlorine contaminants in water may suggest bioavailability of contaminants from agricultural sources to biota. Additional studies with feral or caged animals for a longer duration may be necessary to evaluate the risks of the waterways to humans and wildlife.
Collapse
Affiliation(s)
- F Y Yamamoto
- Cell Biology Department, Federal University of Parana, Curitiba, Brazil.
| | - G D Diamante
- Department of Environmental Sciences, University of California Riverside, Riverside, United States
| | - M S Santana
- Cell Biology Department, Federal University of Parana, Curitiba, Brazil
| | - D R Santos
- Cell Biology Department, Federal University of Parana, Curitiba, Brazil
| | - R Bombardeli
- Research Center in Environmental Aquaculture, Western University of Parana, Toledo, Brazil
| | - C C Martins
- Center for Marine Studies, Federal University of Parana, Pontal do Parana, Brazil
| | | | - D Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, United States
| |
Collapse
|
18
|
Min BH, Kim BM, Kim M, Kang JH, Jung JH, Rhee JS. Plasma biomarkers in juvenile marine fish provide evidence for endocrine modulation potential of organotin compounds. Comp Biochem Physiol C Toxicol Pharmacol 2018; 210:35-43. [PMID: 29746996 DOI: 10.1016/j.cbpc.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022]
Abstract
Organotin compounds, such as tributyltin (TBT) and triphenyltin (TPT), have been widely used to control marine fouling. Here, we show that organotin stimulation reduces the hormone levels in the plasma of two economically important aquaculture fish. Blood plasma samples were collected from juvenile red seabream and black rockfish exposed to environmentally realistic concentrations of TBT and TPT for 14 days. The levels of two plasma biomarkers, namely the yolk protein precursor vitellogenin (VTG) and the sex steroid 17β-estradiol (E2), were measured to determine the endocrine disrupting potential of the organotin compounds. Both organotin compounds were dose-dependently accumulated in the blood of two fish. Exposure to waterborne TBT and TBT significantly decreased the plasma VTG levels in both the juvenile fish in a dose-dependent manner. In contrast, the treatment with E2, a well-known VTG inducer, significantly increased the plasma VTG levels in both the fish. In addition, the mRNA levels of vtg were also downregulated in the liver tissues of both the fish at 100 and/or 1000 ng L-1 of TBT or TPT exposure. The plasma E2 titers were significantly suppressed at 100 and/or 1000 ng L-1 of TBT or TPT exposure for 14 days compared to their titer in the control. Since estrogen directly regulates vtg gene expression and VTG synthesis, our results reveal the endocrine disrupting potential of organotin compounds, and subsequently the endocrine modulation at early stage of fish can trigger further fluctuations in sexual differentiation, maturation, sex ration or egg production. In addition, the results demonstrate their effects on non-target organisms, particularly on animals reared in aquaculture and fisheries.
Collapse
Affiliation(s)
- Byung Hwa Min
- Aquaculture Industry Research Division, East Sea Fisheries Research Institute, Gangneung 25435, South Korea
| | - Bo-Mi Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Moonkoo Kim
- South Sea Environment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, South Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, South Korea
| | - Jung-Hoon Kang
- South Sea Environment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, South Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, South Korea
| | - Jee-Hyun Jung
- South Sea Environment Research Center, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, South Korea; Department of Marine Environmental Science, Korea University of Science and Technology, Daejeon 34113, South Korea.
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea; Research Institute of Basic Sciences, Incheon National University, Incheon 22012, South Korea.
| |
Collapse
|
19
|
Xiao WY, Li YW, Chen QL, Liu ZH. Tributyltin impaired reproductive success in female zebrafish through disrupting oogenesis, reproductive behaviors and serotonin synthesis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:206-216. [PMID: 29775928 DOI: 10.1016/j.aquatox.2018.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Tributyltin (TBT), an organotin acting as aromatase (Cyp19a1) inhibitor, has been found to disrupt gametogenesis and reproductive behaviors in several fish species. However, few studies addressing the mechanisms underlying the impaired gametogenesis and reproduction have been reported. In this study, female adults of zebrafish (Danio rerio) were continuously exposed to two nominal concentrations of TBT (100 and 500 ng/L, actual concentrations: 90.8 ± 1.3 ng/L and 470.3 ± 2.7 ng/L, respectively) for 28 days. After exposures, TBT decreased the total egg number, reduced the hatchability and elevated the mortality of the larvae. Decreased gonadosomatic index (GSI) and altered percentages of follicles in different developmental stages (increased early-stage follicles and reduced mid/late-stage follicles) were also observed in the ovary of TBT-treated fish. TBT also lowered the plasma level of 17β-estradiol and suppressed the expressions of cyp19a1a in the ovary. In treated fish, up-regulated expressions of aldhla2, sycp3 and dmc1 were present in the ovary, indicating an enhanced level of meiosis. The mRNA level of vtg1 was dramatically suppressed in the liver of TBT-treated fish, suggesting an insufficient synthesis of Vtg protein, consistent with the decreased percentage of mid/late-stage follicles in the ovaries. Moreover, TBT significantly suppressed the reproductive behaviors of the female fish (duration of both sexes simultaneously in spawning area, the frequency of meeting and the visit in spawning area) and down-regulated the mRNA levels of genes involved in the regulation of reproductive behaviors (cyp19a1b, gnrh-3 and kiss 2) in the brain. In addition, TBT significantly suppressed the expressions of serotonin-related genes, such as tph2 (encoding serotonin synthase), pet1 (marker of serotonin neuron) and kiss 1 (the modulator of serotonin synthesis), suggesting that TBT might disrupt the non-reproductive behaviors of zebrafish. The present study demonstrated that TBT may impair the reproductive success of zebrafish females probably through disrupting oogenesis, disturbing reproductive behaviors and altering serotonin synthesis. The present study greatly extends our understanding on the reproductive toxicity of TBT on fish.
Collapse
Affiliation(s)
- Wei-Yang Xiao
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
20
|
Glória S, Marques J, Feiteiro J, Marcelino H, Verde I, Cairrão E. Tributyltin role on the serotonin and histamine receptors in human umbilical artery. Toxicol In Vitro 2018; 50:210-216. [PMID: 29580985 DOI: 10.1016/j.tiv.2018.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 12/26/2022]
Abstract
Some studies in animals suggest that TBT may constitute a risk factor for cardiovascular diseases. Hence, the main purpose of this study was to investigate in human umbilical artery (HUA) the effect of TBT on vascular reactivity, manly in serotonin (5-HT) and histamine receptors. Using standard organ bath techniques, rings of HUA without endothelium were contracted by 5-HT and histamine. We also investigated the effect of TBT on the expression of the receptors using Real-time PCR. The results show that TBT short term effects include concentration-dependent relaxation. Moreover, at long term exposures, the arteries treated with 100 μM of TBT do not have contraction capacity when 5-HT is added, and the gene expression of 5-HT2A receptor decrease. Regarding histamine, it was demonstrated that TBT induces a concentration-dependent relaxation and the H1 gene expression levels decrease. In conclusion TBT modifies the activity and expression of 5-HT and histamine receptors.
Collapse
Affiliation(s)
- Solange Glória
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - João Marques
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Joana Feiteiro
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Helena Marcelino
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Ignacio Verde
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrão
- CICS-UBI - Centro de Investigação em Ciências da Saúde, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
21
|
Ferraz da Silva I, Freitas-Lima LC, Graceli JB, Rodrigues LCDM. Organotins in Neuronal Damage, Brain Function, and Behavior: A Short Review. Front Endocrinol (Lausanne) 2018; 8:366. [PMID: 29358929 PMCID: PMC5766656 DOI: 10.3389/fendo.2017.00366] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023] Open
Abstract
The consequences of exposure to environmental contaminants have shown significant effects on brain function and behavior in different experimental models. The endocrine-disrupting chemicals (EDC) present various classes of pollutants with potential neurotoxic actions, such as organotins (OTs). OTs have received special attention due to their toxic effects on the central nervous system, leading to abnormal mammalian neuroendocrine axis function. OTs are organometallic pollutants with a tin atom bound to one or more carbon atoms. OT exposure may occur through the food chain and/or contaminated water, since they have multiple applications in industry and agriculture. In addition, OTs have been used with few legal restrictions in the last decades, despite being highly toxic. In addition to their action as EDC, OTs can also cross the blood-brain barrier and show relevant neurotoxic effects, as observed in several animal model studies specifically involving the development of neurodegenerative processes, neuroinflammation, and oxidative stress. Thus, the aim of this short review is to summarize the toxic effects of the most common OT compounds, such as trimethyltin, tributyltin, triethyltin, and triphenyltin, on the brain with a focus on neuronal damage as a result of oxidative stress and neuroinflammation. We also aim to present evidence for the disruption of behavioral functions, neurotransmitters, and neuroendocrine pathways caused by OTs.
Collapse
Affiliation(s)
- Igor Ferraz da Silva
- Laboratory of Neurotoxicology and Psychopharmacology, Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| | - Leandro Ceotto Freitas-Lima
- Laboratory of Endocrinology and Cellular Toxicology, Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| | - Jones Bernardes Graceli
- Laboratory of Endocrinology and Cellular Toxicology, Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| | - Lívia Carla de Melo Rodrigues
- Laboratory of Neurotoxicology and Psychopharmacology, Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
22
|
Lagadic L, Katsiadaki I, Biever R, Guiney PD, Karouna-Renier N, Schwarz T, Meador JP. Tributyltin: Advancing the Science on Assessing Endocrine Disruption with an Unconventional Endocrine-Disrupting Compound. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 245:65-127. [PMID: 29119384 DOI: 10.1007/398_2017_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated-interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions, showing that they are as sensitive as molluscs, and for some species, even more sensitive. Concentrations in the range of 1 ng/L for water exposure (10 ng/g for whole-body burden) have been shown to elicit endocrine-type responses, whereas mortality occurs at water concentrations ten times higher. Current screening and assessment methodologies as compiled in the OECD CFEDTA are able to identify TBT as a potent endocrine disruptor with a high environmental risk for the original use pattern. If those approaches had been available when TBT was introduced to the market, it is likely that its use would have been regulated sooner, thus avoiding the detrimental effects on marine gastropod populations and communities as documented over several decades.
Collapse
Affiliation(s)
- Laurent Lagadic
- Bayer AG, Research and Development, Crop Science Division, Environmental Safety, Alfred-Nobel-Straße 50, Monheim am Rhein, 40789, Germany.
| | - Ioanna Katsiadaki
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - Ron Biever
- Smithers Viscient, 790 Main Street, Wareham, MA, 02571, USA
| | - Patrick D Guiney
- University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705-2222, USA
| | - Natalie Karouna-Renier
- USGS Patuxent Wildlife Research Center, BARC East Bldg 308, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA
| | - Tamar Schwarz
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, Dorset, DT4 8UB, UK
| | - James P Meador
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| |
Collapse
|
23
|
Kitamura SI, Akizuki M, Song JY, Nakayama K. Tributyltin exposure increases mortality of nodavirus infected Japanese medaka Oryzias latipes larvae. MARINE POLLUTION BULLETIN 2017; 124:835-838. [PMID: 28222863 DOI: 10.1016/j.marpolbul.2017.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/29/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
We investigated the effect of combined exposure to nodavirus infection and TBT on medaka (Oryzias latipes). Medaka larvae were infected by immersion in medium containing nodavirus at titers of 102.5, 103.5, or 104.5 TCID50/mL. Infected fish then were exposed to TBT at 0, 0.17, 0.52, 1.6, or 4.7μg/L. Of the 12 groups exposed to both stressors, the mortalities of 6 (102.5 TCID50/mL+0.52, 1.6, or 4.7μg/L, 103.5 TCID50/mL+4.7μg/L and 104.5 TCID50/mL+1.6 or 4.7μg/L) were significantly higher than that of each TBT control. Specifically, mortality was 46±5.5% in the group exposed to both 102.5 TCID50/mL virus and 0.52μg/L TBT, which represent the lowest observed effective dose and concentration, respectively, among the 6 groups with increased mortalities. Our results suggest that combined exposure to both stressors suppresses antiviral mechanisms in the fish, thus increasing mortality.
Collapse
Affiliation(s)
- Shin-Ichi Kitamura
- Centre for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan.
| | - Masaki Akizuki
- Centre for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan
| | - Jun-Young Song
- Pathology Division, National Fisheries Research and Development Institute, Busan 619-902, Republic of Korea
| | - Kei Nakayama
- Centre for Marine Environmental Studies (CMES), Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
24
|
Monocrotophos pesticide affects synthesis and conversion of sex steroids through multiple targets in male goldfish (Carassius auratus). Sci Rep 2017; 7:2306. [PMID: 28536437 PMCID: PMC5442159 DOI: 10.1038/s41598-017-01935-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/05/2017] [Indexed: 12/22/2022] Open
Abstract
Monocrotophos (MCP) is an organophosphorus pesticide that is median-toxic to fish. MCP pesticide resulted in an increase of 17 beta estradiol following a decrease in testosterone in male goldfish (Carassius auratus). To fully understand the mechanism of MCP pesticide that causes the imbalance between male and female hormones, we determined the levels of plasma cholesterol, spermatic steroidogenic acute regulatory protein mRNA, steroidogenesis enzyme mRNA, plasma sex hormone synthesis intermediates, and effectual hormones in male goldfish exposed to MCP pesticide at nominal concentrations of 0.01, 0.10, and 1.00 mg/L for 21 days in a semi-static exposure system. The results indicated that MCP pesticide (a) led to decreased steroidogenic acute regulatory protein mRNA levels; (b) decreased mRNA levels of cholesterol side chain cleavage enzyme and cytochrome P450 17 alpha hydroxylase, which are steroidogenesis enzymes involved in androgen synthesis; and (c) increased cytochrome P450 aromatase mRNA levels, a steroidogenesis enzyme involved in the synthesis of effectual estrogen. The present study provides evidence that MCP pesticide affects synthesis and conversion of sex steroids through multiple targets in male goldfish.
Collapse
|
25
|
Li S, Li M, Gui W, Wang Q, Zhu G. Disrupting effects of azocyclotin to the hypothalamo-pituitary-gonadal axis and reproduction of Xenopus laevis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 185:121-128. [PMID: 28213302 DOI: 10.1016/j.aquatox.2017.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Over the past few decades, the hazards associated with the extensive use of organictin compounds have become an issue of extreme concern, while at present the effects of these substances on amphibians remain poorly understood. In the present study, we chose azocyclotin, one of common use acaricides in China. We focused on sexual development and steroidogenesis disrupting effects of azocyclotin in the Xenopus laevis. Tadpoles were exposed to azocyclotin (0.05 and 0.5μg/L) for long-term (4 months) study. Results showed that exposure to azocyclotin caused developmental toxicity, including decreased survival, body weight, body length, gonadosomatic index, hepatosomatic index and female phenotype. At the same time, statistical increase in mean age at completion of metamorphosis was observed in azocyclotin treatments in comparison with control group. Furthermore, hormone concentrations, and steroidogenesis genes expression of adult frog were further evaluated in 28 days exposure. Results demonstrated that the key regulating hormones, e.g. testosterone and pregnenolone, were significantly upregulated. The expression levels of selected steroidogenic genes were also significantly altered. Our study demonstrated that azocyclotin could delay the metamorphosis and disrupt the gonadal differentiation of X. laevis. Steroidogenesis and the expression of genes involved in the hypothalamus-pituitary-gonadal-liver axis in frogs were disrupted after azocyclotin exposure. Azocyclotin showed both androgenic and antiestrogenic activity for X. laevis. Those findings emphasized the influence of azocyclotin on non-target species in the context of ecotoxicological risk assessment.
Collapse
Affiliation(s)
- Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Meng Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
26
|
Kumar G, Denslow ND. Gene Expression Profiling in Fish Toxicology: A Review. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 241:1-38. [PMID: 27464848 DOI: 10.1007/398_2016_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this review, we present an overview of transcriptomic responses to chemical exposures in a variety of fish species. We have discussed the use of several molecular approaches such as northern blotting, differential display reverse transcription-polymerase chain reaction (DDRT-PCR), suppression subtractive hybridization (SSH), real time quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS) for measuring gene expression. These techniques have been mainly used to measure the toxic effects of single compounds or simple mixtures in laboratory conditions. In addition, only few studies have been conducted to examine the biological significance of differentially expressed gene sets following chemical exposure. Therefore, future studies should focus more under field conditions using a multidisciplinary approach (genomics, proteomics and metabolomics) to understand the synergetic effects of multiple environmental stressors and to determine the functional significance of differentially expressed genes. Nevertheless, recent developments in NGS technologies and decreasing costs of sequencing holds the promise to uncover the complexity of anthropogenic impacts and biological effects in wild fish populations.
Collapse
Affiliation(s)
- Girish Kumar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
27
|
Ma YN, Cao CY, Wang QW, Gui WJ, Zhu GN. Effects of azocyclotin on gene transcription and steroid metabolome of hypothalamic-pituitary-gonad axis, and their consequences on reproduction in zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:55-64. [PMID: 27571716 DOI: 10.1016/j.aquatox.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
The widely used organotins have the potential to disrupt the endocrine system, but little is known of underlying mechanisms of azocyclotin toxicity in fish. The objective of the present study was to investigate the impact of azocyclotin on reproduction in zebrafish. Adult zebrafish were exposed to 0.09 and 0.45μg/L azocyclotin for 21days, and effects on steroid hormones and mRNA expression of the genes belonging to the hypothalamic-pituitary-gonad (HPG) axis were investigated. Mass spectrometry methodology was developed to profile steroids within the metabolome of the gonads. They were disrupted as a result of azocyclotin exposure. Alterations in the expression of key genes associated with reproductive endocrine pathways in the pituitary (lhβ), gonad (cyp19a1a, cyp17a1 and 17β-hsd3), and liver (vtg1, vtg2, cyp1a1, comt, ugt1a and gstp1) were correlated with significant reductions in estrogen in both sexes and increased testosterone in females. Azocyclotin-induced down-regulation of cyp19a1a in males suggested a reduction in the rate of estrogen biosynthesis, while up-regulation of hepatic cyp1a1 and comt in both sexes suggested an increase in estrogen biotransformation and clearance. Azocyclotin also induced change in the expression of 17β-hsd3, suggesting increased bioavailability of 11-ketotestosterone (11-KT) in the blood. Furthermore, the down-regulation of lhβ expression in the brains of azocyclotin-exposed fish was associated with inhibition of oocyte maturation in females and retarded spermatogenesis in males. As a histological finding, retarded development of the ovaries was found to be an important cause for decreased fecundity, with down-regulation of vtg suspected to be a likely underlying mechanism. Additionally, relatively high concentrations of azocyclotin in the gonads may have directly caused toxicity, thereby impairing gametogenesis and reproduction. Embryonic or larval abnormalities occurred in the F1 generation along with accumulated burdens of azocyclotin in F1 eggs, following parental exposure. Overall, our results indicate that exposure to azocyclotin can impair reproduction in fish, and induce toxicity related abnormalities in non-exposed offspring.
Collapse
Affiliation(s)
- You-Ning Ma
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, PR China; China National Rice Research Institute, Hangzhou 310006, PR China
| | - Chu-Yan Cao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, PR China
| | - Qiang-Wei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, PR China
| | - Wen-Jun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, PR China
| | - Guo-Nian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310029, PR China.
| |
Collapse
|
28
|
Zhang J, Zhang C, Sun P, Shao X. Tributyltin affects shoaling and anxiety behavior in female rare minnow (Gobiocypris rarus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 178:80-87. [PMID: 27472783 DOI: 10.1016/j.aquatox.2016.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Effects of tributyltin (TBT) on reproduction are well established in many fish species. However, few studies report the effects of TBT on non-reproductive behaviors, which is a novel aspect of endocrine disruption in fish. Thus, the present study used rare minnow (Gobiocypris rarus) to investigate the effects of TBT, at environmental concentrations of 1, 10 and 100ng/L, on shoaling and anxiety behaviors. The results showed that fish exposed to TBT had less group cohesion during the course of the 10-min observation period as compared with the control fish. Further, TBT altered the shoaling in the Novel tank test, where shoaling is determined as the tendency to leave a shoal of littermates trapped behind a Plexiglas barrier at one end of the test tank. Fish exposed to TBT had shorter latency before leaving shoal mates and spent more time away from shoal than control fish. In addition, we also used Novel tanks to study the anxiety behavior as the tendency to stay at the bottom when introduced into an unfamiliar environment. The fish exposed to TBT showed increased anxiety, manifested as increased latency to enter the upper half and decreased time in upper half when compared with the control fish. TBT exposure increased the levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid, and decreased the levels of 5-hydroxytryptamine and its metabolite 5-hydroxy indole acetic acid in the brain. Thus, the hypofunction of the dopaminergic system or of the serotoninergic system or the combination of the two may underlie the observed behavioral change, which might affect the fitness of fish in their natural environment.
Collapse
Affiliation(s)
- Jiliang Zhang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China.
| | - Chunnuan Zhang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Ping Sun
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Xian Shao
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| |
Collapse
|
29
|
Göppert C, Harris RM, Theis A, Boila A, Hohl S, Rüegg A, Hofmann HA, Salzburger W, Böhne A. Inhibition of Aromatase Induces Partial Sex Change in a Cichlid Fish: Distinct Functions for Sex Steroids in Brains and Gonads. Sex Dev 2016; 10:97-110. [DOI: 10.1159/000445463] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
|