1
|
Xiao W, Zhang Y, Chen X, Sha A, Xiong Z, Luo Y, Peng L, Zou L, Zhao C, Li Q. The Easily Overlooked Effect of Global Warming: Diffusion of Heavy Metals. TOXICS 2024; 12:400. [PMID: 38922080 PMCID: PMC11209588 DOI: 10.3390/toxics12060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Since industrialization, global temperatures have continued to rise. Human activities have resulted in heavy metals being freed from their original, fixed locations. Because of global warming, glaciers are melting, carbon dioxide concentrations are increasing, weather patterns are shifting, and various environmental forces are at play, resulting in the movement of heavy metals and alteration of their forms. In this general context, the impact of heavy metals on ecosystems and organisms has changed accordingly. For most ecosystems, the levels of heavy metals are on the rise, and this rise can have a negative impact on the ecosystem as a whole. Numerous studies have been conducted to analyze the combined impacts of climate change and heavy metals. However, the summary of the current studies is not perfect. Therefore, this review discusses how heavy metals affect ecosystems during the process of climate change from multiple perspectives, providing some references for addressing the impact of climate warming on environmental heavy metals.
Collapse
Affiliation(s)
- Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
2
|
Cunha M, Cruz I, Pinto J, Benito D, Ruiz P, Soares AMVM, Pereira E, Izagirre U, Freitas R. The influence of temperature on the effects of lead and lithium in Mytilus galloprovincialis through biochemical, cell and tissue levels: Comparison between mono and multi-element exposures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165786. [PMID: 37499837 DOI: 10.1016/j.scitotenv.2023.165786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Lead (Pb) and lithium (Li) are metals which have been detected in the environment and, at high concentrations, can induce toxic effects that disturb the growth, metabolism or reproduction of organisms along the entire trophic chain. The impacts of these metals have scarcely been investigated using marine bivalves, especially when acting as a mixture. The present study aimed to investigate the influence of temperature on the ecotoxicological effects caused by Pb and Li, acting alone and as a mixture, on the mussel species Mytilus galloprovincialis after 28 days of exposure. The impacts were evaluated under actual (17 °C) and projected (+4 °C) warming conditions, to understand the influence of temperature rise on the effects of the metals (both acting alone or as a mixture). The results obtained showed that the increased temperature did not influence the accumulation of metals. However, the biomarkers evaluated showed greater responses in mussels that are exposed to metals under increased temperature (21 °C). The IBR index showed that there is a comparable toxic effect of Li and Pb separately, while exposure to a mixture of both pollutants causes a significantly higher stress response. Overall, the results obtained revealed that temperature may cause extra stress on the mussels and exposure to the metal mixture caused the greatest impacts compared to each metal acting alone.
Collapse
Affiliation(s)
- Marta Cunha
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Iara Cruz
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Denis Benito
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena auzoa z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Pamela Ruiz
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena auzoa z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Urtzi Izagirre
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV-EHU), Sarriena auzoa z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, E-48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Tang Y, Zhang H, Wang Y, Fan C, Shen X. Combined Effects of Temperature and Toxic Algal Abundance on Paralytic Shellfish Toxic Accumulation, Tissue Distribution and Elimination Dynamics in Mussels Mytilus coruscus. Toxins (Basel) 2021; 13:toxins13060425. [PMID: 34204290 PMCID: PMC8235259 DOI: 10.3390/toxins13060425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
This study assessed the impact of increasing seawater surface temperature (SST) and toxic algal abundance (TAA) on the accumulation, tissue distribution and elimination dynamics of paralytic shellfish toxins (PSTs) in mussels. Mytilus coruscus were fed with the PSTs-producing dinoflagellate A. catenella under four simulated environment conditions. The maximum PSTs concentration was determined to be 3548 µg STX eq.kg−1, which was four times higher than the EU regulatory limit. The increasing SST caused a significant decline in PSTs levels in mussels with rapid elimination rates, whereas high TAA increased the PSTs concentration. As a result, the PSTs toxicity levels decreased under the combined condition. Additionally, toxin burdens were assessed within shellfish tissues, with the highest levels quantified in the hepatopancreas. It is noteworthy that the toxin burden shifted towards the mantle from gill, muscle and gonad at the 17th day. Moreover, variability of PSTs was measured, and was associated with changes in each environmental factor. Hence, this study primarily illustrates the combined effects of SST and TAA on PSTs toxicity, showing that increasing environmental temperature is of benefit to lower PSTs toxicity with rapid elimination rates.
Collapse
|
4
|
Martino C, Byrne M, Roccheri MC, Chiarelli R. Interactive effects of increased temperature and gadolinium pollution in Paracentrotus lividus sea urchin embryos: a climate change perspective. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105750. [PMID: 33529976 DOI: 10.1016/j.aquatox.2021.105750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Gradual ocean warming and marine heatwaves represent major threats for marine organisms already facing other anthropogenic-derived hazards, such as chemical contamination in coastal areas. In this study, the combined effects of thermal stress and exposure to gadolinium (Gd), a metal used as a contrasting agent in medical imaging which enters the aquatic environment, were investigated in the embryos and larvae of the sea urchin Paracentrotus lividus. Embryos were exposed to six treatments of three temperatures (18 °C, 21 °C, 24 °C) and two Gd concentrations (control: 0 μM; treated: 20 μM). With respect to developmental progression, increased temperature accelerated development and achievement of the larval stage, while Gd-exposed embryos at the control temperature (18 °C) showed a general delay in development at 24 h post-fertilization (hpf), and a stunting effect and impaired skeleton growth at 48 hpf. Elevated temperatures at near-future projections (+3 °C, 21 °C) reduced the negative effects of Gd on development with a lower percentage of abnormality and improved skeleton growth. Combined extreme warming at present-day marine heatwave conditions (+6 °C, 24 °C) and Gd treatment resulted in a lower proportion of embryos reaching the advanced larval stages compared to the 21 °C + Gd. At the molecular level, western blot analysis showed that Gd was the main driver for the induction of heat shock protein (HSP60, HSP70) expression. At 48 hpf, temperature increase was the main driver for activation of additional cellular stress response strategies such as autophagy and apoptosis. Combined treatments showed the induction of HSP60 at 24 hpf and autophagic and apoptotic processes at 48 hpf. Treatments having low levels of HSPs expression showed high levels of apoptosis, and vice versa, clearly demonstrating the antagonistic effects of HSPs expression and apoptosis. Detection of fragmented DNA in apoptotic nuclei showed selective apoptosis, likely in extremely damaged cells. Our results indicate that the negative effects of Gd-exposure on P. lividus larval development and biomineralization will be mitigated by a near-future ocean warming, up to a thermotolerance threshold when negative synergistic effects were evident. Our data highlight the use of biomarkers as sensitive tools to detect environmental impacts as well as the need for a better understanding of the interactions between the multiple stressors faced by marine species in coastal environments.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, Palermo, 90128, Italy.
| | - Maria Byrne
- School of Life and Environmental Science, University of Sydney, NSW, Australia
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, Palermo, 90128, Italy
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, Palermo, 90128, Italy
| |
Collapse
|
5
|
Giuliani ME, Filippini G, Nardi A. Season specific influence of projected ocean changes on the response to cadmium of stress-related genes in Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105091. [PMID: 32798697 DOI: 10.1016/j.marenvres.2020.105091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic inputs of carbon dioxide in the atmosphere are driving ocean warming and acidification. The potential threat represented by these changes for marine species could be amplified in coastal areas, characterized by higher levels of pollutants. In addition, temperate organisms may exhibit a different seasonal tolerance to stressors influenced by fluctuations of environmental and physiological factors. In this study, Mediterranean mussels Mytilus galloprovincialis collected both in summer and winter were exposed to combinations of two temperatures (SST, seasonal surface temperature and SST+5 °C) and two levels of pH (8.20 and 7.40) in clean or cadmium contaminated seawater (20 μg/L Cd). mRNA levels of genes related to metal-induced stress response were investigated, including metallothionein mt-20, heat-shock protein hsp70, superoxide dismutase Cu/Zn-sod, catalase cat, glutathione peroxidase gpx1 and glutathione S-transferase gst-pi. To further elucidate if tissues with different physiological roles could exhibit different responsiveness, such analyses were carried out in digestive gland and in gills of exposed mussels. mt-20 mRNA increase after Cd-exposure was higher in the digestive gland than in the gills, with few modulations by temperature or pH only in the latter. Acidification, alone or in combination with other stressors, increased hsp70 mRNA, with seasonal- and tissue-specificities (higher in summer and in digestive gland). Among antioxidants, gpx1 mRNA was affected by Cd in both tissues and seasons, with further modulations due to pH and temperature variation tissue- and season-specific; in winter the combination of Cd, warming and acidification affected Cu/Zn-sod both in digestive gland and gills and cat only in gills, while weak seasonal variations were observed for gst-pi transcripts only in digestive gland. The overall results highlighted the importance of considering seasonality and responsiveness of different tissues to predict the effects of sudden changes in environmental parameters on responsiveness to and toxicity of chemicals in marine coastal organisms.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Giulia Filippini
- Department of Environmental Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
6
|
Benito D, Ahvo A, Nuutinen J, Bilbao D, Saenz J, Etxebarria N, Lekube X, Izagirre U, Lehtonen KK, Marigómez I, Zaldibar B, Soto M. Influence of season-depending ecological variables on biomarker baseline levels in mussels (Mytilus trossulus) from two Baltic Sea subregions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:1087-1103. [PMID: 31466149 DOI: 10.1016/j.scitotenv.2019.06.412] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
For reliable mussel monitoring programmes based on biomarkers, regionally relevant reference values and their natural variability need to be known. The Baltic Sea exhibits high inter-regional and seasonal variability in physical factors such as salinity, temperature and primary production. The aim of this pilot study is to depict the effects of season-related environmental factors in a selected battery of biomarkers in two environmentally different subregions of the Baltic Sea to help establishing reference data for biochemical, cellular and tissue-level biomarkers. In order to achieve that, mussels were collected from reference sites in Kiel (Germany) and Tvärminne (Finland) during three seasons: summer and autumn 2016, and spring 2017. Finally, in order to characterize the ecological situation, analysis of the chemical tissue burden was performed and chlorophyll‑a and particulate organic carbon concentration and temperature changes were analyzed at each sampling locality using satellite remote sensing images. An integrated biomarker response index was performed to summarize the biomarker responses of each locality and season. The biochemical endpoints showed seasonal variability regulated by temperature, food supply and reproductive cycle, while among the cellular endpoints only lipofuscin accumulation and lysosomal structural changes showed slight seasonal variation. Seasonal changes in tissue level biomarkers were observed only at the northern Baltic Sea site Tvärminne, dictated by the demanding energetic trade-off caused by reproduction. In conclusion, the characterization of the ecological variables and physico-chemical conditions at each site, is crucial to perform a reliable assessment of the effects of a hypothetical pollution scenario in the Baltic Sea. Moreover, reference levels of biomarkers and their responses to natural environmental conditions must be established.
Collapse
Affiliation(s)
- Denis Benito
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Aino Ahvo
- Finnish Environment Institute, Marine Research Centre, Agnes Sjöbergin katu 2, FI-00790 Helsinki, Finland
| | - Jari Nuutinen
- Finnish Environment Institute, Laboratory Centre, Ultramariinikuja 4, FI-00430 Helsinki, Finland
| | - Dennis Bilbao
- IBEA Res Grp, Analytical Chemistry Dept. (Science and Technology Fac.), Univ Basque Country (UPV/EHU), PO Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Jon Saenz
- Department of Applied Physics II, University of the Basque Country (UPV/EHU), B. Sarriena s/n, Leioa 48940, Spain
| | - Nestor Etxebarria
- IBEA Res Grp, Analytical Chemistry Dept. (Science and Technology Fac.), Univ Basque Country (UPV/EHU), PO Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Xabier Lekube
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Urtzi Izagirre
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Kari K Lehtonen
- Finnish Environment Institute, Marine Research Centre, Agnes Sjöbergin katu 2, FI-00790 Helsinki, Finland
| | - Ionan Marigómez
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Beñat Zaldibar
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Manu Soto
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain.
| |
Collapse
|
7
|
Blanco-Rayón E, Ivanina AV, Sokolova IM, Marigómez I, Izagirre U. Food-type may jeopardize biomarker interpretation in mussels used in aquatic toxicological experimentation. PLoS One 2019; 14:e0220661. [PMID: 31381612 PMCID: PMC6681955 DOI: 10.1371/journal.pone.0220661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/20/2019] [Indexed: 12/26/2022] Open
Abstract
To assess the influence of food type on biomarkers, mussels (Mytilus galloprovincialis) were maintained under laboratory conditions and fed using 4 different microalgae diets ad libitum for 1 week: (a) Isochrysis galbana; (b) Tetraselmis chuii; (c) a mixture of I. galbana and T. chuii; and (d) a commercial food (Microalgae Composed Diet, Acuinuga). Different microalgae were shown to present different distribution and fate in the midgut. I. galbana (≈4 μm Ø) readily reached digestive cells to be intracellularly digested. T. chuii (≈10 μm Ø and hardly digestible) was retained in stomach and digestive ducts for long times and extracellularly digested. Based on these findings, it appeared likely that the presence of large amounts of microalgal enzymes and metabolites might interfere with biochemical determinations of mussel's biomarkers and/or that the diet-induced alterations of mussels' digestion could modulate lysosomal and tissue-level biomarkers. To test these hypotheses, a battery of common biochemical, cytological and tissue-level biomarkers were determined in the gills (including activities of pyruvate kinase, phosphoenolpyruvate carboxykinase and cytochrome c oxidase) and the digestive gland of the mussels (including protein, lipid, free glucose and glycogen total content, lysosomal structural changes and membrane stability, intracellular accumulation of neutral lipids and lipofuscins, changes in cell type composition and epithelial thinning, as well as altered tissue integrity). The type of food was concluded to be a major factor influencing biomarkers in short-term experiments though not all the microalgae affected biomarkers and their responsiveness in the same way. T. chuii seemed to alter the nutritional status, oxidative stress and digestion processes, thus interfering with a variety of biomarkers. On the other hand, the massive presence of I. galbana within digestive cells hampered the measurement of cytochemical biomarkers and rendered less reliable the results of biochemical biomarkers (as these could be attributed to both the mussel and the microalgae). Research to optimize dietary food type, composition, regime and rations for toxicological experimentation is urgently needed. Meanwhile, a detailed description of the food type and feeding conditions should be always provided when reporting aquatic toxicological experiments with mussels, as a necessary prerequisite to compare and interpret the biological responses elicited by pollutants.
Collapse
Affiliation(s)
- Esther Blanco-Rayón
- CBET Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia, Basque Country, Spain
| | - Anna V. Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Inna M. Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- Department of Marine Biology, Institute for Biosciences and Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Ionan Marigómez
- CBET Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia, Basque Country, Spain
- * E-mail:
| | - Urtzi Izagirre
- CBET Research Group, Department of Zoology and Animal Cell Biology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (Plentzia Marine Station; PiE-UPV/EHU), University of the Basque Country, Plentzia, Basque Country, Spain
| |
Collapse
|
8
|
Rouabhi YL, Grosjean P, Boutiba Z, Rouane Hacene O, Richir J. Reproductive cycle and follicle cleaning process of Mytilus galloprovincialis (Mollusca: Bivalvia) from a polluted coastal site in Algeria. INVERTEBR REPROD DEV 2019. [DOI: 10.1080/07924259.2019.1631221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yamina Leila Rouabhi
- Numerical Ecology of Aquatic Systems, Complexys Institute, University of Mons, Mons, Belgium
- Laboratory Network for Environmental Monitoring (LRSE), Department of Biology, University of Oran 1, Oran, Algeria
| | - Philippe Grosjean
- Numerical Ecology of Aquatic Systems, Complexys Institute, University of Mons, Mons, Belgium
| | - Zitouni Boutiba
- Laboratory Network for Environmental Monitoring (LRSE), Department of Biology, University of Oran 1, Oran, Algeria
| | - Omar Rouane Hacene
- Laboratory Network for Environmental Monitoring (LRSE), Department of Biology, University of Oran 1, Oran, Algeria
| | - Jonathan Richir
- Chemical Oceanography Unit, FOCUS UR, University of Liège, Liège, Belgium
- Laboratory of Oceanology, FOCUS UR, University of Liège, Liège, Belgium
| |
Collapse
|
9
|
Chiarelli R, Martino C, Roccheri MC. Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress Chaperones 2019; 24:675-687. [PMID: 31165437 PMCID: PMC6629738 DOI: 10.1007/s12192-019-01010-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/29/2019] [Accepted: 05/22/2019] [Indexed: 12/28/2022] Open
Abstract
In recent years, researches about the defense strategies induced by cadmium stress have greatly increased, invading several fields of scientific research. Mechanisms of cadmium-induced toxicity continue to be of interest for researchers given its ubiquitous nature and environmental distribution, where it often plays the role of pollutant for numerous organisms. The presence in the environment of this heavy metal has been constantly increasing because of its large employment in several industrial and agricultural activities. Cadmium does not have any biological role and, since it cannot be degraded by living organisms, it is irreversibly accumulated into cells, interacting with cellular components and molecular targets. Cadmium is one of the most studied heavy metal inductors of stress and a potent modulator of several processes such as apoptosis, autophagy, reactive oxygen species, protein kinase and phosphatase, mitochondrial function, metallothioneins, and heat-shock proteins. Sea urchins (adults, gametes, embryos, and larvae) offer an optimal opportunity to investigate the possible adaptive response of cells exposed to cadmium, since these cells are known to accumulate contaminants. In this review, we will examine several responses to stress induced by cadmium in different sea urchin species, with a focus on Paracentrotus lividus embryos. The sea urchin embryo represents a suitable system, as it is not subjected to legislation on animal welfare and can be easily used for toxicological studies and as a bioindicator of environmental pollution. Recently, it has been included into the guidelines for the use and interpretation of assays to monitor autophagy.
Collapse
Affiliation(s)
- Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| |
Collapse
|
10
|
Nardi A, Benedetti M, d'Errico G, Fattorini D, Regoli F. Effects of ocean warming and acidification on accumulation and cellular responsiveness to cadmium in mussels Mytilus galloprovincialis: Importance of the seasonal status. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 204:171-179. [PMID: 30278354 DOI: 10.1016/j.aquatox.2018.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/03/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Ocean warming and acidification could represent an additional threat to marine organisms already coping with other anthropogenic impacts, such as chemical contamination in coastal areas. In this study, interactions between such multiple stressors and their synergistic effects in terms of accumulation, detoxification and biological effects of metals were investigated in the Mediterranean mussel Mytilus galloprovincialis. Organisms sampled during the winter period were exposed for 28 days to different combinations of two temperatures (10 °C and 15 °C), two pH/pCO2 (8.20/∼400μatm and 7.4/∼3000μatm) and two cadmium concentrations (0 and 20 μg/L). Cadmium concentrations increased in digestive glands and gills of metal-exposed mussels and were further enhanced by co-exposure at higher temperature. Interactive effects of temperature and/or pH were observed on Cd-mediated metallothionein induction, responsiveness of antioxidant system and onset of oxidative damages in lipids, with tissue-specific effects. Immunological effects showed a generalized sensitivity of lysosomal membrane stability toward the investigated stressors with major effects in co-exposed organisms. Cadmium and temperature affected phagocytosis efficiency and composition of haemocyte populations probably influencing the micronucleus frequency through varied mitotic rate. Several differences were highlighted between these results and those previously obtained from mussels exposed in summer, supporting the importance of season when addressing the tolerance of temperate organisms to variations of environmental factors. The elaboration of the whole biomarker results through weighted criteria allowed to summarize specific hazard indices, highlighting tissue-specific sensitivity toward multiple stressors and the need of improving the knowledge on interactions between multiple stressors.
Collapse
Affiliation(s)
- Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy; CoNISMa, Consorzio Interuniversitario per le Scienze del Mare, Roma, Italy
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy; CoNISMa, Consorzio Interuniversitario per le Scienze del Mare, Roma, Italy.
| |
Collapse
|
11
|
Braga AC, Camacho C, Marques A, Gago-Martínez A, Pacheco M, Costa PR. Combined effects of warming and acidification on accumulation and elimination dynamics of paralytic shellfish toxins in mussels Mytilus galloprovincialis. ENVIRONMENTAL RESEARCH 2018; 164:647-654. [PMID: 29631223 DOI: 10.1016/j.envres.2018.03.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
Harmful algal blooms (HAB) have been increasing in frequency and intensity most likely due to changes on global conditions, which constitute a significant threat to wild shellfish and its commercial farming. This study evaluated the impact of increasing seawater temperature and acidification on the accumulation/elimination dynamics of HAB-toxins in shellfish. Mytilus galloprovincialis were acclimated to four environmental conditions simulating different climate change scenarios: i) current conditions, ii) warming, iii) acidification and iv) interaction of warming with acidification. Once acclimated, mussels were exposed to the paralytic shellfish toxins (PSTs) producing dinoflagellate Gymnodinium catenatum for 5 days and to non-toxic diet during the subsequent 10 days. High toxicity levels (1493 µg STX eq. kg-1) exceeding the safety limits were determined under current conditions at the end of the uptake period. Significantly lower PSP toxicity levels were registered for warming- and acidification-acclimated mussels (661 and 761 µg STX eq. kg-1). The combined effect of both warming and acidification resulted in PSP toxicity values slightly higher (856 μg STX eq. kg-1). A rapid decrease of toxicity was observed in mussels at the current conditions after shifting to a non-toxic diet, which was not noticed under the predicted climate change scenarios. Variability of each PST analogue, measured throughout the experiment, highlighted different mechanisms are associated with changes of each environmental factor, although both resulting in lower toxicity. Warming-acclimated mussels showed lower accumulation/elimination rates, while acidification-acclimated mussels showed higher capability to accumulate toxins, but also a higher elimination rate preventing high toxicity levels. As different mechanisms are triggered by warming and acidification, their combined effect not leads to a synergism of their individual effects. The present work is the first assessing the combined effect of climate change drivers on accumulation/elimination of PSTs, in mussels, indicating that warming and acidification may lead to lower toxicity values but longer toxic episodes. PSTs are responsible for the food poisoning syndrome, paralytic shellfish poisoning (PSP) in humans. This study can be considered as the first step to build models for predicting shellfish toxicity under climate change scenarios.
Collapse
Affiliation(s)
- Ana C Braga
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Carolina Camacho
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal
| | - António Marques
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal
| | - Ana Gago-Martínez
- Universidad de Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain
| | - Mário Pacheco
- Biology Department and CESAM, Aveiro University, 3810-193 Aveiro, Portugal
| | - Pedro R Costa
- IPMA - Portuguese Institute for the Sea and Atmosphere, Av. Brasília, 1449-006 Lisbon, Portugal; CCMAR - Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
12
|
Nardi A, Mincarelli LF, Benedetti M, Fattorini D, d'Errico G, Regoli F. Indirect effects of climate changes on cadmium bioavailability and biological effects in the Mediterranean mussel Mytilus galloprovincialis. CHEMOSPHERE 2017; 169:493-502. [PMID: 27894055 DOI: 10.1016/j.chemosphere.2016.11.093] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Despite the great interest in the consequences of climate change on the physiological functioning of marine organisms, indirect and interactive effects of rising temperature and pCO2 on bioaccumulation and responsiveness to environmental pollutants are still poorly explored, particularly in terms of cellular mechanisms. According to future projections of temperature and pH/pCO2, this study investigated the main cellular pathways involved in metal detoxification and oxidative homeostasis in Mediterranean mussels, Mytilus galloprovincialis, exposed for 4 weeks to various combinations of two levels of pH/pCO2 (8.2/∼400 μatm and 7.4/∼3000 μatm), temperature (20 and 25 °C), and cadmium addition (0 and 20 μg/L). Bioaccumulation was increased in metal exposed organisms but it was not further modulated by different temperature and pH/pCO2 combinations. However, interactions between temperature, pH and cadmium had significant effects on induction of metallothioneins, responses of the antioxidant system and the onset of oxidative damages, which was tissue dependent. Multiple stressors increased metallothioneins concentrations in the digestive gland revealing different oxidative effects: while temperature and cadmium enhanced glutathione-dependent antioxidant protection and capability to neutralize peroxyl radicals, the metal increased the accumulation of lipid peroxidation products under acidified conditions. Gills did not reveal specific effects for different combinations of factors, but a general stress condition was observed in this tissue after various treatments. Significant variations of immune system were mainly caused by increased temperature and low pH, while co-exposure to acidification and cadmium enhanced metal genotoxicity and the onset of permanent DNA damage in haemocytes. Elaboration of the whole biomarker data in a cellular hazard index, corroborated the synergistic effects of temperature and acidification which increased the toxicological effects of cadmium. The overall results confirmed that climate change could influence ecotoxicological effects of environmental contaminants, highlighting the importance of a better knowledge of cellular mechanisms to understand and predict responsiveness of marine organisms to such multiple stressors.
Collapse
Affiliation(s)
- Alessandro Nardi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Luana Fiorella Mincarelli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Maura Benedetti
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy; CoNISMa, Consorzio Interuniversitario per le Scienze del Mare, Roma, Italy
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Giuseppe d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy; CoNISMa, Consorzio Interuniversitario per le Scienze del Mare, Roma, Italy.
| |
Collapse
|
13
|
Franchi N, Ballin F, Ballarin L. Protection from Oxidative Stress in Immunocytes of the Colonial Ascidian Botryllus schlosseri: Transcript Characterization and Expression Studies. THE BIOLOGICAL BULLETIN 2017; 232:45-57. [PMID: 28445096 DOI: 10.1086/691694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Botryllus schlosseri is a cosmopolitan colonial ascidian that undergoes cyclical generation changes, or take-overs, during which adult zooids are resorbed and replaced by their buds. At take-over, adult tissues undergo diffuse apoptosis and effete cells are massively ingested by circulating phagocytes, with a consequent increase in oxygen consumption and in production of reactive oxygen species (ROS). The latter are responsible for the death of phagocytes involved in the clearance of apoptotic cells and corpses by phagocytosis-induced apoptosis. However, the majority of phagocytes and hemocytes do not die, even if they experience oxidative stress. This fact suggests the presence of detoxification mechanisms assuring their protection. To test this assumption, we searched for transcripts of genes involved in detoxification in the transcriptome of B. schlosseri. We identified and characterized transcripts for Cu/Zn superoxide dismutase (SOD), γ-glutamyl-cysteine ligase modulatory subunit (GCLM), glutathione synthase (GS), and two glutathione peroxidases (i.e., GPx3 and GPx5), all involved in protection from ROS. We also carried out a phylogenetic analysis of the putative amino acid sequences, confirming their similarity to their vertebrate counterparts, and studied the location of their mRNAs by in situ hybridization on hemocyte monolayers. We also analyzed gene transcription during the colonial blastogenetic cycle, which is the interval of time between one take-over and the next, by qRT-PCR. In addition, we investigated the effects of cadmium (Cd), an inducer of oxidative stress, on gene transcription. Our results indicated that i) antioxidant gene expression is modulated in the course of the blastogenetic cycle and upon exposure to Cd, and ii) hemocytes synthesize both enzymatic and nonenzymatic antioxidants, in line with the idea that they represent a major detoxification system for ascidians.
Collapse
Key Words
- AG, adenine guanine (splicing consensus signal)
- ATG, start signal
- CDS, coding sequences
- Cd, cadmium
- Cu/Zn SOD, Cu-Zn superoxide dismutase
- EST, expressed sequence tag
- FSW, filtered seawater
- GCL, γ-glutamyl-cysteine ligase
- GCLC, catalytic subunit of γ-glutamyl-cysteine ligase
- GCLM, modulatory subunit of γ-glutamyl-cysteine ligase
- GPx, glutathione peroxidase
- GS, glutathione synthase
- GSH, glutathione
- GSSG, oxidized glutathione
- GT, guanine timine (splicing consensus signal)
- ISH, in situ hybridization
- MC, mid-cycle
- ME, minimum evolution
- ML, maximum likelihood
- MP, maximum parsimony
- NADPH, nicotinamide adenine dinucleotide phosphate
- NJ, neighbor-joining
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PO, phenoloxidase
- RACE, rapid amplification of the cDNA ends
- ROS: reactive oxygen species
- SEC, selenocysteine
- SECIS, selenocysteine insertion sequence
- SOD, superoxide dismutase
- SODb, type B SOD
- TAG, stop codon
- TGA, thymine, guanine, and adenine nucleotides (stop codon)
- TO, take-over
- UPGMA, unweighted pair group with arithmetic mean
- UTR, untranslated region
Collapse
|