1
|
Song C, You L, Tang J, Wang S, Ji C, Zhan J, Su B, Li F, Wu H. Gene biomarkers in estuarine oysters indicate pollution profiles of metals, brominated flame retardants, and poly- and perfluoroalkyl substances in and near the Laizhou Bay. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136484. [PMID: 39536349 DOI: 10.1016/j.jhazmat.2024.136484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The Laizhou Bay (LZB) is of ecological and fishery importance. The discharge of effluents containing numerous pollutants into the LZB via rivers poses significant risks to ecosystem and human health. Estuarine biomonitoring is therefore crucial for assessing the contribution of rivers to coastal pollution and their impacts on species. Estuarine oyster Crassostrea gigas is a preferable bioindicator to pollution conditions. This study measured accumulation of contaminants and expression levels of gene biomarkers in the LZB and Northern Shandong Peninsula (NSP) oysters. The LZB oysters accumulated higher levels of brominated flame retardants (BFRs) and poly- and perfluoroalkyl substances (PFAS), while NSP oysters exhibited greater accumulation of heavy metals. Decabromodiphenyl ethane was the dominant BFR, while perfluorooctanoic acid and perfluoro-2-methoxyacetic acid were the dominant PFASs in oysters. The expression of gene biomarkers effectively distinguished the LZB and NSP oysters, with CYP2 subfamilies expression correlating with BFRs and PFASs and metallothionein expression indicating heavy metals. The reproductive endocrine and neuroendocrine-immune systems in oysters might be the targets of BFRs and heavy metal pollution, respectively. The negative correlation between contaminant accumulation and gene expression might be explained by adaptive evolution, emphasizing the need to consider genetic diversity in ecological risk assessments.
Collapse
Affiliation(s)
- Changlin Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping You
- Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resources and Environment Research Institute, No. 216 Changjiang Road, Yantai 264006, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Shuang Wang
- School of Ocean, Yantai University, Yantai 264005, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China.
| | - Junfei Zhan
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Bo Su
- Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resources and Environment Research Institute, No. 216 Changjiang Road, Yantai 264006, China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| |
Collapse
|
2
|
Bastolla CLV, Guerreiro FC, Saldaña-Serrano M, Gomes CHAM, Lima D, Rutkoski CF, Mattos JJ, Dias VHV, Righetti BPH, Ferreira CP, Martim J, Alves TC, Melo CMR, Marques MRF, Lüchmann KH, Almeida EA, Bainy ACD. Emerging and legacy contaminants on the Brazilian southern coast (Santa Catarina): A multi-biomarker approach in oysters Crassostrea gasar (Adanson, 1757). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171679. [PMID: 38494031 DOI: 10.1016/j.scitotenv.2024.171679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Coastal environments, such as those in the Santa Catarina State (SC, Brazil), are considered the primary receptors of anthropogenic pollutants. In this study, our objective was to evaluate the levels of emerging contaminants (ECs) and persistent organic pollutants (POPs) in indigenous Crassostrea gasar oysters from different regions of SC coast in the summer season (March 2022). Field collections were conducted in the São Francisco do Sul, Itajaí, Florianópolis and Laguna coastal zones. We analyzed the bioaccumulation levels of 75 compounds, including antibiotics (AB), endocrine disruptors (ED), non-steroidal anti-inflammatory drugs (NSAIDs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and pesticides. Furthermore, we assessed biomarker responses related to biotransformation, antioxidant defense, heat shock protection and oxidative damage in oysters' gills. Prevalence of ECs was observed in the central and southern regions, while the highest concentrations of POPs were detected in the central-northern regions of SC. Oysters exhibited an induction in biotransformation systems (cyp2au1 and cyp356a1, sult and GST activity) and antioxidant enzymes activities (SOD, CAT and GPx). Higher susceptibility to lipid peroxidation was observed in the animals from Florianópolis compared to other regions. Correlation analyses indicated possible associations between contaminants and environmental variables in the biomarker responses, serving as a warning related to climate change. Our results highlight the influence of anthropogenic activities on SC, serving as baseline of ECs and POPs levels in the coastal areas of Santa Catarina, indicating more critical zones for extensive monitoring, aiming to conserve coastal regions.
Collapse
Affiliation(s)
- Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Fernando C Guerreiro
- Department of Natural Sciences, Blumenau Regional University Foundation, FURB, Blumenau, Santa Catarina, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Carlos H A M Gomes
- Marine Mollusc Laboratory (LMM), Department of Aquaculture, Center for Agricultural Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Camila F Rutkoski
- Department of Natural Sciences, Blumenau Regional University Foundation, FURB, Blumenau, Santa Catarina, Brazil
| | - Jacó J Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Vera Helena V Dias
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Bárbara P H Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Clarissa P Ferreira
- Department of Fisheries Engineering and Biological Sciences, State University of Santa Catarina, UDESC, Laguna, Brazil
| | - Julia Martim
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Thiago C Alves
- Department of Natural Sciences, Blumenau Regional University Foundation, FURB, Blumenau, Santa Catarina, Brazil
| | - Claudio M R Melo
- Department of Fisheries Engineering and Biological Sciences, State University of Santa Catarina, UDESC, Laguna, Brazil
| | - Maria R F Marques
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Karim H Lüchmann
- Department of Fisheries Engineering and Biological Sciences, State University of Santa Catarina, UDESC, Laguna, Brazil
| | - Eduardo A Almeida
- Department of Natural Sciences, Blumenau Regional University Foundation, FURB, Blumenau, Santa Catarina, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center for Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
3
|
Mattos JJ, Siebert MN, Bainy ACD. Integrated biomarker responses: a further improvement of IBR and IBRv2 indexes to preserve data variability in statistical analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:871-881. [PMID: 38032530 DOI: 10.1007/s11356-023-31255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
In biomonitoring and laboratory studies, it is typical to measure a battery of molecular, biochemical, and cytogenetic biomarkers to evaluate the effects of xenobiotics in biota. However, summarizing the results of several biomarkers to inform laypersons and environmental agencies is still a challenge for researchers and environmental specialists. To address this issue, researchers have developed indexes such as the Integrated Biomarker Responses (IBR) and Integrated Biomarker Response version 2 (IBRv2) to summarize all biomarkers responses into a single value. Unfortunately, these indexes do not preserve the original biological variability, which hampers subsequent statistical analyses. In this study, we created new versions of IBR and IBRv2, which preserve individual data variability and can be used in typical statistical analyses. The new Integrated Biomarker Responses individual (IBRi), Integrated Biomarker Responses version 2 individual (IBRv2i) and Weighted Integrated Biomarker Responses version 2 individual (Weighted IBRv2i) indexes correlated with the original IBR and IBRv2 indexes and were able to detect differences among experimental groups in a simulated and case studies. Using the IBRi, IBRv2i, or Weighted IBRv2i indexes is advantageous because they maintain the data variability of the experimental groups and can be analyzed using hypothesis testing statistics like any other parameter. Additionally, this approach can help translate technical scientific terminology into a more accessible language suitable for environmental governmental agencies and decision-makers.
Collapse
Affiliation(s)
- Jacó Joaquim Mattos
- AQUOS, Department of Aquaculture, Center of Agrarian Sciences, Federal University of Santa Catarina, Servidão Caminho do Porto, Itacorubi, Florianópolis, Santa Catarina, 88.034-257, Brazil
| | - Marília Nardelli Siebert
- Department of Language, Technology, Education and Science - DALTEC, Federal Institute of Santa Catarina, Campus Florianópolis, Florianópolis, Santa Catarina, 88.020-300, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88.037-000, Brazil.
| |
Collapse
|
4
|
Zhou Y, Xu R, Gao Z, Miao J, Pan L. Insights into mechanism of DNA damage and repair-apoptosis in digestive gland of female scallop Chlamys farreri under benzo[a]pyrene exposure during reproductive stage. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109738. [PMID: 37661044 DOI: 10.1016/j.cbpc.2023.109738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
As one of the most carcinogenic persistent organic pollutants (POPs), benzo[a]pyrene (B [a]P) brings high toxicity to marine bivalves. Digestive gland is the most important metabolism-related organ of aquatic animals. This study conducted the digestive gland transcriptome of Chlamys farreri under B[a]P treatment at reproductive stages. And the reproductive-stage dependence metabolism-DNA repair-apoptosis process of scallops under 0, 0.04, 0.4 and 4 μg/L B[a]P was studied by qRT-PCR. The results demonstrated that the detoxification metabolism was disturbed after ovulation except for CYP3A4. In antioxidant system, antioxidant enzyme CAT and GPX, and GGT1 (one of the non-enzymatic antioxidants synthesis gene) continuously served the function of antioxidant defense. Three types of DNA repair were activated under B[a]P stress, however, DNA strand breaks were still serious. B[a]P exposure weakened death receptor pathway as well as enhanced mitochondrial pathway, surprisingly suppressing apoptosis in scallops. In addition, ten indicators were screened by Spearman correlation analysis. This study will provide sound theoretical basis for bivalve toxicology and contribute to the biomonitoring of marine POPs pollution.
Collapse
Affiliation(s)
- Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
5
|
Distribution and source assignments of polycyclic aromatic and aliphatic hydrocarbons in sediments and biota of the Lafayette River, VA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47527-47543. [PMID: 36740615 DOI: 10.1007/s11356-023-25563-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
The Lafayette River comprises a tidal sub-estuary constrained by an urban watershed that is bounded by residential areas at its upper reaches and port activity at its mouth. We determined the concentrations and distributions of polycyclic aromatic hydrocarbons (PAHs) and aliphatic n-alkanes across 19 sites from headwaters to river mouth in surface sediments (0-2 cm). Potential atmospheric sources were investigated through the analysis of wet and dry deposition samples and intact coals from a major export terminal nearby. The potential consequences for human consumption were examined through analysis of native oyster (Crassostrea virginica) and blue crab tissues (Callinectes sapidus). A suite of up to 66 parent and alkyl-substituted PAHs were detected in Lafayette sediments with total concentrations ranging from 0.75 to 39.00 µg g-1 dry wt. Concentrations of aliphatic n-alkanes (n-C16 - n-C31) ranged from 4.94 to 40.83 μg g-1 dry wt. Source assignment using diagnostic ratios and multivariate source analysis suggests multiple sources contribute to the hydrocarbon signature in this metropolitan system with automotive and atmospheric transport of coal dust as the major contributors. Oyster tissues showed similar trends as PAHs observed in sediments indicating similar sources to water column particles which ultimately accumulate in sediments with crabs showing altered distributions as a consequence of metabolism.
Collapse
|
6
|
Martins Dos Reis IM, Mattos JJ, Siebert MN, Zacchi FL, Velasquez Bastolla CL, Saldaña-Serrano M, Bícego MC, Taniguchi S, Araujo de Miranda Gomes CH, Rodrigues de Melo CM, Dias Bainy AC. Gender influences molecular and histological biomarkers in mature oysters Crassostrea gasar (Adanson, 1757) after pyrene exposure. CHEMOSPHERE 2023; 311:136985. [PMID: 36306960 DOI: 10.1016/j.chemosphere.2022.136985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Oysters are frequently used as sentinel organisms for monitoring effects of contaminants due to their sessile, filtering habits and bioaccumulation capacity. These animals can show elevated body burden of contaminants, such as pyrene (PYR). PYR can be toxic at a molecular level until the whole oyster, which can show reproductive and behavioral changes. Considering that biologic parameters, such as gender or reproductive stage can interfere in the toxic effects elicited by contaminants uptake, the aim of this study was to evaluate some molecular and histological responses in females and males of oyster Crassostrea gasar exposed to PYR (0.25 and 0.5 μM) for 24 h at the pre-spawning stage. PYR concentrations were analyzed in water and in tissues of female and male oysters. Gene transcripts related to biotransformation (CYP3475C, CYP2-like, CYP2AU1, CYP356A, GSTO-like, GSTM-like, SULT-like), stress (HSP70), and reproduction (Vitellogenin, Glycoprotein) were quantified in gills. In addition, histological analysis and histo-localization of CYP2AU1 mRNA transcripts in gills, mantle and digestive diverticulum were carried out. Females and males in pre-spawning stage bioconcentrated PYR in their tissues. Males were more sensitive to PYR exposure. CYP2AU1 transcripts were higher in males (p < 0.05), as well as tubular atrophy was observed only in males exposed to PYR (p < 0.05). As expected, vitellogenin transcripts were lower in males (p < 0.05). Given these results, it is suggested that levels of CYP2AU1 be a good biomarker of exposure to PYR in oyster C. gasar and that it is important to consider the gender for the interpretation of biomarker responses.
Collapse
Affiliation(s)
- Isis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAq, Federal University of Santa Catarina - UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Federal Institute of Education Science and Technology of Santa Catarina - IFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo - USP, São Paulo, SP, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo - USP, São Paulo, SP, Brazil
| | | | - Claudio Manoel Rodrigues de Melo
- Laboratory of Marine Mollusk, Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
7
|
Bastolla CLV, Saldaña-Serrano M, Lima D, Mattos JJ, Gomes CHAM, Cella H, Righetti BPH, Ferreira CP, Zacchi FL, Bícego MC, Taniguchi S, Bainy ACD. Molecular changes in oysters Crassostrea gigas (Thunberg, 1793) from aquaculture areas of Santa Catarina Island bays (Florianópolis, Brazil) reveal anthropogenic effects. CHEMOSPHERE 2022; 307:135735. [PMID: 35868530 DOI: 10.1016/j.chemosphere.2022.135735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic activities in coastal regions cause risks to the environmental and human health. Due to the carcinogenic and mutagenic potential, polycyclic aromatic hydrocarbons (PAH) are considered priority for monitoring. Most of the Brazilian production of Crassostrea gigas oysters are placed in the Bays of Santa Catarina Island. The aim of this study was to evaluate molecular responses (phase I and II of biotransformation and antioxidant defense) of C. gigas from six oyster farming areas potentially contaminated by sanitary sewage in Florianópolis Metropolitan (SC, Brazil): Santo Antônio de Lisboa, Sambaqui, Serraria, Caieira, Tapera, Imaruim. We evaluated the transcript levels of CYP1A1-like, CYP2-like, CYP2AU2-like, CYP356A1, GSTA1A-like, GSTO.4A-like, SULT-like, SOD-like and CAT-like by qRT-PCR. Only oysters from Caieira showed levels of thermotolerant coliforms allowed by the law. Chemicals analyses in soft tissues of oysters showed low to average levels of PAH in all monitored areas. Enhanced transcript levels of phase I (CYP1A1-like, CYP3564A1-like, CYP2-like and CYP2AU2-like) were observed in oysters from Serraria and Imaruí, suggesting higher biotransformation activity in these farming areas. Regarding phase II of biotransformation, GSTO.4A-like was up-regulated in oysters from Imaruí compared to Caieira and Santo Antônio de Lisboa. An upregulation of SOD-like and CAT-like were observed in oysters from Imaruí and Serraria, suggesting that oysters from these sites are facing higher prooxidant conditions compared to other areas. By integrating the biological and chemical data it is suggested that human-derived contaminants are affecting the oyster metabolism in some farming areas.
Collapse
Affiliation(s)
- Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center, NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Carlos H A M Gomes
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Herculano Cella
- Laboratory of Algae Cultivation, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Bárbara P H Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Clarissa P Ferreira
- Fishery Engineering and Biological Sciences Department, Santa Catarina State University, Laguna, 88790-000, Brazil
| | - Flávia L Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Márcia C Bícego
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Center of Biological Sciences, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
8
|
Guerreiro ADS, Guterres BDV, Costa PG, Bianchini A, Botelho SSDC, Sandrini JZ. Combined physiological and behavioral approaches as tools to evaluate environmental risk assessment of the water accommodated-fraction of diesel oil. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106230. [PMID: 35797851 DOI: 10.1016/j.aquatox.2022.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
There is an increasing concern related to the toxic effects of the soluble portion of diesel oil on aquatic ecosystems and the organisms living in them. In this context, the aim of this study was to analyze the effects of diesel water accommodated-fraction (WAF) on behavioral and biochemical responses of mussels Perna perna. Animals were exposed to 5 and 20% of WAF for 96 h. Prior to the beginning of the experiments, Hall effect sensors and magnets were attached to the valves of the mussels. Valve gaping behavior was continuously recorded for 12 h of exposure and tissues (gills and digestive gland) were separated after 96 h of exposure. Overall, both behavior and biochemical biomarkers were altered due to WAF exposure. Animals exposed to WAF reduced the average amplitude of the valves and the fraction of time opened, and presented greater transition frequency, demonstrating avoidance behavior over the 12 h period. Furthermore, the biochemical biomarkers (GSH, GST, SOD and CAT) were altered following the 96 h of exposure to WAF. Considering the results presented, this study demonstrates the toxic potential of WAF in both shorter and longer exposure periods.
Collapse
Affiliation(s)
- Amanda da Silveira Guerreiro
- Programa de Pós-Graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Bruna de Vargas Guterres
- Programa de Pós-Graduação em Engenharia de Computação. Centro de Ciências Computacionais, C3. Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Patricia Gomes Costa
- Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Silvia Silva da Costa Botelho
- Programa de Pós-Graduação em Engenharia de Computação. Centro de Ciências Computacionais, C3. Universidade Federal do Rio Grande - FURG, Rio Grande, RS 96203-900, Brazil
| | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, ICB. Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| |
Collapse
|
9
|
Luo Y, Zhang B, Geng N, Sun S, Song X, Chen J, Zhang H. Insights into the hepatotoxicity of pyrene and 1-chloropyrene using an integrated approach of metabolomics and transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154637. [PMID: 35307418 DOI: 10.1016/j.scitotenv.2022.154637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The toxicity of pyrene (Pyr) and its chlorinated species have not be comprehensively and clearly elucidated. In this study, an integrated approach of metabolomics and transcriptomics were applied to evaluate the hepatotoxicity of Pyr and 1-chloropyrene (1-Cl-Pyr) at human exposure level, using human L02 hepatocytes. After 24 h exposure to Pyr and 1-Cl-Pyr at 5-500 nM, cell viability was not significantly changed. Transcriptomics results showed that exposure to Pyr and 1-Cl-Pyr at 5 and 50 nM obviously altered the gene expression profiles, but did not significantly induce the expression of genes strongly related to the activation of aryl hydrocarbon receptor (AhR), such as CYP1A1, CYP1B1, AHR, ARNT. Pyr and 1-Cl-Pyr both induced a notable metabolic perturbation to L02 cells. Glycerophospholipid metabolism was found to be the most significantly perturbed pathway after exposure to Pyr and 1-Cl-Pyr, indicating their potential damage to the cell membrane. The other significantly perturbed pathways were identified to be oxidative phosphorylation (OXPHOS), glycolysis, and fatty acid β oxidation, all of which are related to energy production. Exposure to Pyr at 5 and 50 nM induced the up-regulation of fatty acid β oxidation and OXPHOS. The similar result was observed after exposure to 5 nM 1-Cl-Pyr. In contrast, exposure to 50 nM 1-Cl-Pyr induced the down-regulation of OXPHOS by inhibiting the activity of complex I. The obtained results suggested that the modes of action of Pyr and 1-Cl-Pyr on energy production remarkably varied not only with molecular structure change but also with exposure concentration.
Collapse
Affiliation(s)
- Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoqin Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuai Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyao Song
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
10
|
Wang X, Li P, He S, Xing S, Cao Z, Cao X, Liu B, Li ZH. Effects of tralopyril on histological, biochemical and molecular impacts in Pacific oyster, Crassostrea gigas. CHEMOSPHERE 2022; 289:133157. [PMID: 34871613 DOI: 10.1016/j.chemosphere.2021.133157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Recently, the toxic effects of tralopyril, as a new antifouling biocide, on aquatic organisms have aroused widespread attention about the potential toxicity. However, the mechanism of tralopyril on marine mollusks has not been elaborated clearly. In this study, the histological, biochemical and molecular impacts of tralopyril on adult Crassostrea gigas were investigated. The results indicated that the 96 h LC50 of tralopyril to adult Crassostrea gigas was 911 μg/L. After exposure to tralopyril (0, 40, 80 and 160 μg/L) for 6 days, the mantle mucus secretion coverage ratio of Crassostrea gigas was increased with a dose-dependent pattern. Catalase (CAT) activity was significantly increased, amylase (AMS) activity, acid phosphatase (ACP) activity and calcium ion (Ca2+) concentration significantly decreased. Meanwhile, integrated biomarker responses (IBR) index suggested that higher concentrations of tralopyril caused severer damage to Crassostrea gigas. In addition, the mRNA expression levels of biomineralization related genes in the mantle were significantly upregulated. Collectively, this study firstly revealed the histological, biochemical and molecular impacts of tralopyril exposure on adult Crassostrea gigas, which provided new insights for understanding the toxicity of tralopyril in marine mollusks.
Collapse
Affiliation(s)
- Xu Wang
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shuwen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shaoying Xing
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Xuqian Cao
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
11
|
Li Z, Cao Y, Qin H, Ma Y, Pan L, Sun J. Integration of chemical and biological methods: A case study of polycyclic aromatic hydrocarbons pollution monitoring in Shandong Peninsula, China. J Environ Sci (China) 2022; 111:24-37. [PMID: 34949353 DOI: 10.1016/j.jes.2021.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), as persistent toxic substances (PTS), have been widely monitored in coastal environment, including seawater and sediment. However, scientific monitoring methods, like ecological risk assessment and integrated biomarker response, still need massive researches to verify their availabilities. This study was performed in March, May, August and October of 2018 at eight sites, Yellow River estuary (S1), Guangli Port (S2), Xiaying (S3), Laizhou (S4), Inner Bay (S5), Outer Bay (S6), Hongdao (S7) and Hongshiya (S8) of Shandong Peninsula, China. The contents of 16 priority PAHs in local seawater and sediment were determined, by which ecological risk assessment risk quotient (RQ) for seawater and sediment quality guidelines (SQGs) were calculated to characterize the PAHs pollution. Meanwhile, multiple biomarkers in the digestive gland of clam Ruditapes philippinarum were measured to represent different biological endpoints, including ethoxyresorufin-O-deethylase (EROD), glutathione S-transferase (GST), sulfotransferase (SULT), superoxide dismutase (SOD) and lipid peroxidation (LPO), by which integrated biomarker response (IBR) was calculated to provide a comprehensive assessment of environmental quality. Taken together, these results revealed the heaviest pollution at S2 as both PAHs concentrations and biomarkers responses reflected, and supported the integrated biomarker response as a useful tool for marine environmental monitoring, through its integration with SQGs.
Collapse
Affiliation(s)
- Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yunhao Cao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Huawei Qin
- Shandong Marine Resources and Environment Research Institute, Yantai 264006, China
| | - Yuanqing Ma
- Shandong Marine Resources and Environment Research Institute, Yantai 264006, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Jiawei Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
12
|
Gan N, Martin L, Xu W. Impact of Polycyclic Aromatic Hydrocarbon Accumulation on Oyster Health. Front Physiol 2021; 12:734463. [PMID: 34566698 PMCID: PMC8461069 DOI: 10.3389/fphys.2021.734463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/03/2021] [Indexed: 01/17/2023] Open
Abstract
In the past decade, the Deepwater Horizon oil spill triggered a spike in investigatory effort on the effects of crude oil chemicals, most notably polycyclic aromatic hydrocarbons (PAHs), on marine organisms and ecosystems. Oysters, susceptible to both waterborne and sediment-bound contaminants due to their filter-feeding and sessile nature, have become of great interest among scientists as both a bioindicator and model organism for research on environmental stressors. It has been shown in many parts of the world that PAHs readily bioaccumulate in the soft tissues of oysters. Subsequent experiments have highlighted the negative effects associated with exposure to PAHs including the upregulation of antioxidant and detoxifying gene transcripts and enzyme activities such as Superoxide dismutase, Cytochrome P450 enzymes, and Glutathione S-transferase, reduction in DNA integrity, increased infection prevalence, and reduced and abnormal larval growth. Much of these effects could be attributed to either oxidative damage, or a reallocation of energy away from critical biological processes such as reproduction and calcification toward health maintenance. Additional abiotic stressors including increased temperature, reduced salinity, and reduced pH may change how the oyster responds to environmental contaminants and may compound the negative effects of PAH exposure. The negative effects of acidification and longer-term salinity changes appear to add onto that of PAH toxicity, while shorter-term salinity changes may induce mechanisms that reduce PAH exposure. Elevated temperatures, on the other hand, cause such large physiological effects on their own that additional PAH exposure either fails to cause any significant effects or that the effects have little discernable pattern. In this review, the oyster is recognized as a model organism for the study of negative anthropogenic impacts on the environment, and the effects of various environmental stressors on the oyster model are compared, while synergistic effects of these stressors to PAH exposure are considered. Lastly, the understudied effects of PAH photo-toxicity on oysters reveals drastic increases to the toxicity of PAHs via photooxidation and the formation of quinones. The consequences of the interaction between local and global environmental stressors thus provide a glimpse into the differential response to anthropogenic impacts across regions of the world.
Collapse
Affiliation(s)
- Nin Gan
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Leisha Martin
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| | - Wei Xu
- Department of Life Sciences, College of Science and Engineering, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States
| |
Collapse
|
13
|
Yuan X, Zhao H, Wang Y, Wang L, Li D, Zhang A, Yang X, Ma X, Yang D, Zhou Y. Expression profile of a novel glutathione S-transferase gene in the marine polychaete Perinereis aibuhitensis in short-term responses to phenanthrene, fluoranthene, and benzo[α]pyrene. MARINE POLLUTION BULLETIN 2021; 169:112552. [PMID: 34082356 DOI: 10.1016/j.marpolbul.2021.112552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Polychaete worms can eliminate polycyclic aromatic hydrocarbons (PAHs) in environments through a mechanism that increases their water solubility. This detoxification starts with cytochrome P450 enzymes (CYPs) and then with glutathione S-transferases (GSTs). Here, a novel GST gene was identified and characterized from the widespread polychaete Perinereis aibuhitensis. The full-length cDNA of GST is 1544 bp and encodes 256 amino acids, belonging to the omega class. Gene expression patterns in P. aibuhitensis showed that its transcriptional level was positively correlated with the concentration of benzo[α]pyrene (0.5, 2, 4, and 8 μg/L) exposure but was negatively correlated with a PAH benzene ring after it was exposed to the same mass concentrations of fluoranthene (3.2 μg/L), phenanthrene (2.9 μg/L), and benzo[α]pyrene (4.0 μg/L) during the 14-day experimentation. These findings indicate that omega GST may play an important role in the phase II detoxification of PAHs in polychaete worms, and the persistence and bioavailability of PAHs may depend on benzene rings.
Collapse
Affiliation(s)
- Xiutang Yuan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China.
| | - Huan Zhao
- Dalian Ocean University, Dalian 116023, China
| | - Yinan Wang
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China; Dalian Ocean University, Dalian 116023, China
| | - Lili Wang
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
| | - Dongmei Li
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
| | - Anguo Zhang
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
| | - Xiaolong Yang
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
| | - Xindong Ma
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
| | - Dazuo Yang
- Dalian Ocean University, Dalian 116023, China
| | - Yibing Zhou
- Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
14
|
Dos Reis IMM, Siebert MN, Zacchi FL, Mattos JJ, Flores-Nunes F, Toledo-Silva GD, Piazza CE, Bícego MC, Taniguchi S, Melo CMRD, Bainy ACD. Differential responses in the biotransformation systems of the oyster Crassostrea gigas (Thunberg, 1789) elicited by pyrene and fluorene: Molecular, biochemical and histological approach - Part II. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105565. [PMID: 32682195 DOI: 10.1016/j.aquatox.2020.105565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Pyrene (PYR) and fluorene (FLU) are among the sixteen priority Polycyclic Aromatic Hydrocarbons (PAH) of the United States Environmental Protection Agency and are both frequently detected in contaminated sites. Due to the importance of bivalve mollusks in biomonitoring programs and the scarce information on the biotransformation system in these organisms, the aim of this study was to investigate the effect of PYR and FLU at the transcriptional level and the enzymatic activities of some biotransformation systems in the Pacific oyster Crassostrea gigas, and to evaluate the histological effects in their soft tissues. Oysters C. gigas were exposed for 24 h and 96 h to PYR (0.25 and 0.5 μM) and FLU (0.6 and 1.2 μM). After exposure, transcript levels of cytochrome P450 coding genes (CYP1-like, CYP2-like, CYP2AU2, CYP356A1, CYP17α-like), glutathione S tranferase genes (omega GSTO-like and microsomal, MGST-like) and sulfotransferase gene (SULT-like), and the activity of ethoxyresorufin O-deethylase (EROD), Glutathione S-transferase (GST) and microssomal GST (MGST) were evaluated in gills. Histologic changes were also evaluated after the exposure period. PYR and FLU bioconcentrated in oyster soft tissues. The half-life time of PYR in water was lower than fluorene, which is in accordance to the higher lipophilicity and bioconcentration of the former. EROD activity was below the limit of detection in all oysters exposed for 96 h to PYR and FLU. The reproductive stage of the oysters exposed to PYR was post-spawn. Exposure to PYR caused tubular atrophy in digestive diverticula, but had no effect on transcript levels of biotransformation genes. However, the organisms exposed for 96 h to PYR 0.5 μM showed higher MGST activity, suggesting a protective role against oxidative stress in gills of oysters under higher levels of PYR in the tissues. Increased number of mucous cells in mantle were observed in oysters exposed to the higher FLU concentration, suggesting a defense mechanisms. Oysters exposed for 24 h to FLU 1.2 μM were in the ripe stage of gonadal development and showed higher transcript levels of CYP2AU2, GSTO-like and SULT-like genes, suggesting a role in the FLU biotransformation. In addition, after 96 h of exposure to FLU there was a significant increase of mucous cells in the mantle of oysters but no effect was observed on the EROD, total GST and MGST activities. These results suggest that PAH have different effects on transcript levels of biotransformation genes and enzyme activities, however these differences could also be related to the reproductive stage.
Collapse
Affiliation(s)
- Isis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Guilherme de Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Cláudio Manoel Rodrigues de Melo
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
15
|
Wang G, Zhang C, Huang B. Transcriptome analysis and histopathological observations of Geloina erosa gills upon Cr(VI) exposure. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108706. [PMID: 31927119 DOI: 10.1016/j.cbpc.2020.108706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 10/25/2022]
Abstract
The heavy metal contamination like Cr(VI) has been increased by human activities and that threats the ecosystem health of mangrove areas. Bioindicator is an emerging tool in the environmental contamination assessment. The objective of this study was to investigate the Geloina erosa response mechanisms and sensitivities of several biomarkers in the Cr(VI) exposure and identify the G. erosa capability of being used as heavy metals bioindicator. In this study, G. erosa was exposed to 100 μmol·L-1 Cr(VI) for 48 h. After transcriptome sequencing, a total of 134,817 unigenes were obtained, including 12,555 up-regulated and 18,829 down-regulated differentially expressed genes and were validated through quantitative real-time PCR. In addition, a total of 12,185 SSRs and 1,428,214 candidate SNPs were identified from all the G. erosa transcriptome libraries. Histopathology of the gill indicated the Cr(VI) exposure induced damage of the organ leading to its immunization, detoxification or apoptosis reactions. Among eight genes of the selected biomarkers, Calm, HSP70, CYP450, ATG5, TLR2, MYD88 and CASP8 were up-regulated, while TLR4 was down-regulated in response to the Cr(VI) exposure.
Collapse
Affiliation(s)
- Gongsi Wang
- College of Marine Sciences, Hainan University, Haikou, Hainan 570228,PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan 570228, PR China; Key Laboratory of Tropical Biological Resources in Hainan University, Haikou, Hainan 570228, PR China
| | - Chengkai Zhang
- College of Marine Sciences, Hainan University, Haikou, Hainan 570228,PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan 570228, PR China; Key Laboratory of Tropical Biological Resources in Hainan University, Haikou, Hainan 570228, PR China
| | - Bo Huang
- College of Marine Sciences, Hainan University, Haikou, Hainan 570228,PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan 570228, PR China; Key Laboratory of Tropical Biological Resources in Hainan University, Haikou, Hainan 570228, PR China.
| |
Collapse
|