1
|
Xiang ZR, Fan SR, Ren J, Ruan T, Chen Y, Zhang YW, Wang YT, Yu ZZ, Wang CF, Sun XL, Hao XJ, Chen DZ. Utilizing artificial intelligence for precision exploration of N protein targeting phenanthridine sars-cov-2 inhibitors: A novel approach. Eur J Med Chem 2024; 279:116885. [PMID: 39307103 DOI: 10.1016/j.ejmech.2024.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/28/2024]
Abstract
The persistent mutation of the novel coronavirus presents a continual threat of infections and associated illnesses. While considerable research efforts have concentrated on the functional proteins of SARS-CoV-2 in the development of anti-COVID-19 therapeutics, the structural proteins, particularly the N protein, have received comparatively less attention. This study focuses on the N protein, a critical structural component of the virus, and employs advanced deep learning models, including EMPIRE and DeepFrag, to optimize the structures of phenanthridine-based compounds. More than 10,000 small molecules, derived through deep learning, underwent high-throughput virtual screening, resulting in the synthesis of 44 compounds. Compound 38 showed a binding potential energy of -8.2 kcal/mol in molecular docking. Surface Plasmon Resonance (SPR) and Microscale Thermophoresis (MST) validation yielded dissociation constants of 353 nM and 726 nM, confirming strong binding to the N protein. Compound 38 demonstrated antiviral activity in vitro and exhibited anti-COVID-19 effects by interfering with the binding of N proteins to RNA. This research underscores the potential of targeting the SARS-CoV-2 N protein for therapeutic intervention and illustrates the efficacy of deep learning model in the design of lead compounds. The application of these deep learning models represents a promising approach for accelerating the discovery and development of antiviral agents.
Collapse
Affiliation(s)
- Zheng-Rui Xiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Shi-Rui Fan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Juan Ren
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ting Ruan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yun-Wu Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Yi-Ting Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ze-Zhou Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Chao-Fan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Xiao-Long Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming, Yunnan, 650091, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Duo-Zhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
2
|
Chaudhuri A, Das S, Chakrabarti S. Mutational and evolutionary dynamics of non-structural and spike proteins from variants of concern (VOC) of SARS-CoV-2 in India. Int J Biol Macromol 2024; 282:137154. [PMID: 39488303 DOI: 10.1016/j.ijbiomac.2024.137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
Monitoring the genetic diversity and emerging mutations in SARS-CoV-2 remains crucial for understanding its evolution, given the virus's persistence in India. This study analyzes lineage dynamics, mutation screening, structural analysis, and phylodynamics of SARS-CoV-2 variants of concern (VOC) in India from October 2020 to September 2023. The predominant variants identified were alpha, beta, delta, and omicron, with delta and omicron making up 76.05 % of sequenced genomes. The B.1.617.2 lineage of the delta variant was the major contributor to COVID-19 cases before the rise of omicron. Mutation screening of non-structural proteins (NSPs) and spike proteins revealed distinct profiles for each VOC. Co-mutation patterns were analyzed, showing structural and energetic alterations. Phylogenetic analysis indicated that nsp1, nsp3, nsp4, nsp13, and nsp14 were strongly associated with increased mutation load. The study also highlighted that nsp14 and spike have similar mutability patterns, underscoring nsp14's critical role in SARS-CoV-2 infectivity and persistence. This research provides a comprehensive view of SARS-CoV-2's evolution and persistence in India.
Collapse
Affiliation(s)
- Ankur Chaudhuri
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India.
| | - Subhrangshu Das
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Wang T, Zhang Y, Wu C, Huang Z, Liang X, Luo Z. Exploring the mechanism of comorbidity in patients with T1DM and COVID-19: Integrating bioinformatics and Mendelian randomization methods. Medicine (Baltimore) 2024; 103:e40128. [PMID: 39432633 PMCID: PMC11495797 DOI: 10.1097/md.0000000000040128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, the incidence of type 1 diabetes mellitus (T1DM) has increased. Additionally, evidence suggests that individuals with diabetes mellitus may have increased susceptibility to severe acute respiratory syndrome coronavirus 2 infection. However, the specific causal relationships and interaction mechanisms between T1DM and COVID-19 remain unclear. This study aims to investigate the causal relationship between T1DM and COVID-19, utilizing differential gene expression and Mendelian randomization analyses. Differentially expressed gene sets from datasets GSE156035 and GSE171110 were intersected to identify shared genes, analyzed for functional enrichment. Mendelian randomization models were employed to assess causal effects, revealing no direct causal link between T1DM and COVID-19 in the European population (P > .05). Notably, DNA replication and sister chromatid cohesion 1 (DSCC1) showed negative causal associations with both diseases (T1DM: OR = 0.943, 95% CI: 0.898-0.991, P = .020; COVID-19: OR = 0.919, 95% CI: 0.882-0.958, P < .001), suggesting a protective effect against their comorbidity. This genetic evidence highlights DSCC1 as a potential target for monitoring and managing the co-occurrence of T1DM and COVID-19.
Collapse
Affiliation(s)
- Tingliang Wang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Zhang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunjiao Wu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhenxing Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinghuan Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Rakhmetullina A, Zielenkiewicz P, Odolczyk N. Peptide-Based Inhibitors of Protein-Protein Interactions (PPIs): A Case Study on the Interaction Between SARS-CoV-2 Spike Protein and Human Angiotensin-Converting Enzyme 2 (hACE2). Biomedicines 2024; 12:2361. [PMID: 39457672 PMCID: PMC11504900 DOI: 10.3390/biomedicines12102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many critical biological processes and are crucial in mediating essential cellular functions across diverse organisms, including bacteria, parasites, and viruses. A notable example is the interaction between the SARS-CoV-2 spike (S) protein and the human angiotensin-converting enzyme 2 (hACE2), which initiates a series of events leading to viral replication. Interrupting this interaction offers a promising strategy for blocking or significantly reducing infection, highlighting its potential as a target for anti-SARS-CoV-2 therapies. This review focuses on the hACE2 and SARS-CoV-2 spike protein interaction, exemplifying the latest advancements in peptide-based strategies for developing PPI inhibitors. We discuss various approaches for creating peptide-based inhibitors that target this critical interaction, aiming to provide potential treatments for COVID-19.
Collapse
Affiliation(s)
- Aizhan Rakhmetullina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.R.); (P.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.R.); (P.Z.)
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Norbert Odolczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (A.R.); (P.Z.)
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
5
|
Duarte T, Omage FB, Rieder GS, Rocha JBT, Dalla Corte CL. Investigating SARS-CoV-2 virus-host interactions and mRNA expression: Insights using three models of D. melanogaster. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167324. [PMID: 38925484 DOI: 10.1016/j.bbadis.2024.167324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/22/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Responsible for COVID-19, SARS-CoV-2 is a coronavirus in which contagious variants continue to appear. Therefore, some population groups have demonstrated greater susceptibility to contagion and disease progression. For these reasons, several researchers have been studying the SARS-CoV-2/human interactome to understand the pathophysiology of COVID-19 and develop new pharmacological strategies. D. melanogaster is a versatile animal model with approximately 90 % human protein orthology related to SARS-CoV-2/human interactome and is widely used in metabolic studies. In this context, our work assessed the potential interaction between human proteins (ZNF10, NUP88, BCL2L1, UBC9, and RBX1) and their orthologous proteins in D. melanogaster (gl, Nup88, Buffy, ubc9, and Rbx1a) with proteins from SARS-CoV-2 (nsp3, nsp9, E, ORF7a, N, and ORF10) using computational approaches. Our results demonstrated that all the proteins have the potential to interact, and we compared the binding sites between humans and fruit flies. The stability and consistency in the structure of the gl_nsp3 complex, specifically, could be crucial for its specific biological functions. Lastly, to enhance the understanding of the influence of host factors on coronavirus infection, we also analyse the mRNA expression of the five genes (mbo, gl, lwr, Buffy, and Roc1a) responsible for encoding the fruit fly proteins. Briefly, we demonstrated that those genes were differentially regulated according to diets, sex, and age. Two groups showed higher positive gene regulation than others: females in the HSD group and males in the aging group, which could imply a higher virus-host susceptibility. Overall, while preliminary, our work contributes to the understanding of host defense mechanisms and potentially identifies candidate proteins and genes for in vivo viral studies against SARS-CoV-2.
Collapse
Affiliation(s)
- Tâmie Duarte
- Laboratory of Experimental Biochemistry and Toxicology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Folorunsho Bright Omage
- Biological Chemistry Laboratory, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil; Computational Biology Research Group, Embrapa Agricultural Informatics, Campinas, SP, Brazil
| | - Guilherme Schmitt Rieder
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - João B T Rocha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Lenz Dalla Corte
- Laboratory of Experimental Biochemistry and Toxicology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| |
Collapse
|
6
|
Patel DK, Kumar H, Sobhia ME. Exploring the binding dynamics of covalent inhibitors within active site of PL pro in SARS-CoV-2. Comput Biol Chem 2024; 112:108132. [PMID: 38959551 DOI: 10.1016/j.compbiolchem.2024.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
In the global fight against the COVID-19 pandemic caused by the highly transmissible SARS-CoV-2 virus, the search for potent medications is paramount. With a focused investigation on the SARS-CoV-2 papain-like protease (PLpro) as a promising therapeutic target due to its pivotal role in viral replication and immune modulation, the catalytic triad of PLpro comprising Cys111, His272, and Asp286, highlights Cys111 as an intriguing nucleophilic center for potential covalent bonds with ligands. The detailed analysis of the binding site unveils crucial interactions with both hydrophobic and polar residues, demonstrating the structural insights of the cavity and deepening our understanding of its molecular landscape. The sequence of PLpro among variants of concern (Alpha, Beta, Gamma, Delta and Omicron) and the recent variant of interest, JN.1, remains conserved with no mutations at the active site. Moreover, a thorough exploration of apo, non-covalently bound, and covalently bound PLpro conformations exposes significant conformational changes in loop regions, offering invaluable insights into the intricate dynamics of ligand-protein complex formation. Employing strategic in silico medication repurposing, this study swiftly identifies potential molecules for target inhibition. Within the domain of covalent docking studies and molecular dynamics, using reported inhibitors and clinically tested molecules elucidate the formation of stable covalent bonds with the cysteine residue, laying a robust foundation for potential therapeutic applications. These details not only deepen our comprehension of PLpro inhibition but also play a pivotal role in shaping the dynamic landscape of COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Deepesh Kumar Patel
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Harish Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
7
|
Nafian F, Soleymani G, Pourmanouchehri Z, Kiyanjam M, Nafian S, Mohammadi SM, Jeyroudi H, Berenji Jalaei S, Sabzpoushan F. In Silico Design of a Trans-Amplifying RNA-Based Vaccine against SARS-CoV-2 Structural Proteins. Adv Virol 2024; 2024:3418062. [PMID: 39380944 PMCID: PMC11459942 DOI: 10.1155/2024/3418062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
Nucleic acid-based vaccines allow scalable, rapid, and cell-free vaccine production in response to an emerging disease such as the current COVID-19 pandemic. Here, we objected to the design of a multiepitope mRNA vaccine against the structural proteins of SARS-CoV-2. Through an immunoinformatic approach, promising epitopes were predicted for the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Fragments rich in overlapping epitopes were selected based on binding affinities with HLA classes I and II for the specific presentation to B and T lymphocytes. Two constructs were designed by fusing the fragments in different arrangements via GG linkers. Construct 1 showed better structural properties and interactions with toll-like receptor 2 (TLR-2), TLR-3, and TLR-4 during molecular docking and dynamic simulation. A 50S ribosomal L7/L12 adjuvant was added to its N-terminus to improve stability and immunogenicity. The final RNA sequence was used to design a trans-amplifying RNA (taRNA) vaccine in a split-vector system. It consists of two molecules: a nonreplicating RNA encoding a trans-acting replicase to amplify the second one, a trans-replicon (TR) RNA encoding the vaccine protein. Overall, the immune response simulation detected that activated B and T lymphocytes and increased memory cell formation. Macrophages and dendritic cells proliferated continuously, and IFN-γ and cytokines like IL-2 were released highly.
Collapse
Affiliation(s)
- Fatemeh Nafian
- Department of Medical Laboratory SciencesFaculty of ParamedicsTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Ghazal Soleymani
- Department of Biological SciencesVirginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zahra Pourmanouchehri
- Department of BiologyTechnical University of Kaiserslautern, Kaiserslautern Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mahnaz Kiyanjam
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Simin Nafian
- Department of Stem Cell and Regenerative MedicineNational Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sayed Mohammad Mohammadi
- Department of BiotechnologyFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Hanie Jeyroudi
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Sharareh Berenji Jalaei
- Department of BiochemistryFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Fatemeh Sabzpoushan
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Roohparvar Basmenj E, Omidvar B, Kiumarsy A, Izadkhah H, Ghiabi S. Design of a multi-epitope-based peptide vaccine against the SARS-CoV-2 Omicron variant using bioinformatics approach. J Biomol Struct Dyn 2024; 42:7945-7956. [PMID: 37539837 DOI: 10.1080/07391102.2023.2241926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
SARS-CoV-2, a member of the coronavirus family, is an RNA virus characterized by a single-stranded genome and is responsible for the development of COVID-19. The emergence of the Omicron variant of SARS-CoV-2 in 2021 marked a significant variation recognized by the World Health Organization. The primary objective of this study is to investigate the spike glycoprotein of the Omicron variant of SARS-CoV-2 and identify potential immunogenic epitopes in order to design multi-epitope vaccine constructs. Among the other major structural proteins of the coronavirus, the spike glycoprotein stands out as the largest. Importantly, individuals who have recovered from SARS-CoV-2 and COVID-19 were found to possess antibodies that target the spike glycoprotein. This article asserts that the vaccine presented in this study has the potential to elicit immune responses against previous variants, including the Omicron variant, as well as future variations. This is attributed to the utilization of a Java-based tool, which facilitated the identification of conserved epitopes with high immunogenicity scores, ensuring their non-toxic and non-allergenic properties. Our analysis provides strong evidence for the conservation of these epitopes across all coronavirus sequences detected in various countries since the beginning of the pandemic. The vaccine was subsequently constructed by integrating the identified conserved epitopes with linkers and adjuvants. The vaccine was subsequently evaluated through computational tests to assess their efficacy and performance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Behnoosh Omidvar
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Armity Kiumarsy
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Habib Izadkhah
- Department of Computer Science, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran
| | - Shamim Ghiabi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Atemin A, Ivanova A, Peppel W, Stamatov R, Gallegos R, Durden H, Uzunova S, Vershinin MD, Saffarian S, Stoynov SS. Kinetic Landscape of Single Virus-like Particles Highlights the Efficacy of SARS-CoV-2 Internalization. Viruses 2024; 16:1341. [PMID: 39205315 PMCID: PMC11359012 DOI: 10.3390/v16081341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The efficiency of virus internalization into target cells is a major determinant of infectivity. SARS-CoV-2 internalization occurs via S-protein-mediated cell binding followed either by direct fusion with the plasma membrane or endocytosis and subsequent fusion with the endosomal membrane. Despite the crucial role of virus internalization, the precise kinetics of the processes involved remains elusive. We developed a pipeline, which combines live-cell microscopy and advanced image analysis, for measuring the rates of multiple internalization-associated molecular events of single SARS-CoV-2-virus-like particles (VLPs), including endosome ingression and pH change. Our live-cell imaging experiments demonstrate that only a few minutes after binding to the plasma membrane, VLPs ingress into RAP5-negative endosomes via dynamin-dependent scission. Less than two minutes later, VLP speed increases in parallel with a pH drop below 5, yet these two events are not interrelated. By co-imaging fluorescently labeled nucleocapsid proteins, we show that nucleocapsid release occurs with similar kinetics to VLP acidification. Neither Omicron mutations nor abrogation of the S protein polybasic cleavage site affected the rate of VLP internalization, indicating that they do not confer any significant advantages or disadvantages during this process. Finally, we observe that VLP internalization occurs two to three times faster in VeroE6 than in A549 cells, which may contribute to the greater susceptibility of the former cell line to SARS-CoV-2 infection. Taken together, our precise measurements of the kinetics of VLP internalization-associated processes shed light on their contribution to the effectiveness of SARS-CoV-2 propagation in cells.
Collapse
Affiliation(s)
- Aleksandar Atemin
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Aneliya Ivanova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Wiley Peppel
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Rumen Stamatov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Rodrigo Gallegos
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Haley Durden
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Sonya Uzunova
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| | - Michael D. Vershinin
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Saveez Saffarian
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA; (W.P.); (R.G.); (H.D.)
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Stoyno S. Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, 21, G. Bontchev Str., 1113 Sofia, Bulgaria; (A.A.); (A.I.); (R.S.); (S.U.)
| |
Collapse
|
10
|
Khan MA, Mutahir S, Jabar G, Wenwei Z, Tariq MA, Almehizia AA, Mustafa M. DFT, Molecular Docking, ADME, and Cardiotoxicity Studies of Persuasive Thiazoles as Potential Inhibitors of the Main Protease of SARS-CoV-2. Chem Biodivers 2024:e202401775. [PMID: 39161231 DOI: 10.1002/cbdv.202401775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
This study explores the capability of thiazoles as potent inhibitors of SARS-CoV-2 Mpro. Seventeen thiazoles (1-17) were screened for their linking affinity with the active site of SARS-CoV-2 Mpro and compared with the FDA-recommended antiviral drugs, Remdesivir and Baricitinib. Density Functional Theory (DFT) calculations provided electronic and energetic properties of these ligands, shedding light on their stability and reactivity. Molecular docking analysis revealed that thiazole derivatives exhibited favorable linking affinities with various functional sites of SARS-CoV-2 proteins, including spike receptor-linking zone, nucleocapsid protein N-terminal RNA linking zone, and Mpro. Notably, compounds 3, 10, and 12 displayed the best interaction with 6LZG as compared to FDA-approved antiviral drugs Remdesivir and Baricitinib, while compounds 1, 10, and 8 exhibited strong linking with 6 M3 M and also better than Remdesivir and Baricitinib. Additionally, compounds 3, 1, and 6 showed promising interactions with 6LU7 but only compound 3 performed better than Baricitinib. An ADME (Absorption, Distribution, Metabolism, and Excretion) study provided insights into the pharmacokinetics and drug-likeness of these compounds, with all ligands demonstrating good physicochemical characteristics, lipophilicity, water solubility, pharmacokinetics, drug-likeness, and medicinal chemistry attributes. The results suggest that these selected thiazole derivatives hold promise as potential candidates for further drug development.
Collapse
Affiliation(s)
- Muhammad Asim Khan
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Sadaf Mutahir
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Gauhar Jabar
- Department of Chemistry, University of Sialkot, Sialkot, 51300, Pakistan
| | - Zhao Wenwei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | | | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Muhammad Mustafa
- Department of Chemistry, University of Sialkot, Sialkot, 51300, Pakistan
| |
Collapse
|
11
|
Taylor A, Amporndanai K, Rietz TA, Zhao B, Thiruvaipati A, Wei Q, South TM, Crow MM, Apakama C, Sensintaffar JL, Phan J, Lee T, Fesik SW. Fragment-Based Screen of SARS-CoV-2 Papain-like Protease (PL pro). ACS Med Chem Lett 2024; 15:1351-1357. [PMID: 39140055 PMCID: PMC11318101 DOI: 10.1021/acsmedchemlett.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Coronaviruses have been responsible for numerous viral outbreaks in the past two decades due to the high transmission rate of this family of viruses. The deadliest outbreak is the recent Covid-19 pandemic, which resulted in over 7 million deaths worldwide. SARS-CoV-2 papain-like protease (PLPro) plays a key role in both viral replication and host immune suppression and is highly conserved across the coronavirus family, making it an ideal drug target. Herein we describe a fragment-based screen against PLPro using protein-observed NMR experiments, identifying 77 hit fragments. Analyses of NMR perturbation patterns and X-ray cocrystallized structures reveal fragments bind to two distinct regions of the protein. Importantly none of the fragments identified belong to the same chemical class as the few reported inhibitors, allowing for the discovery of a novel class of PLPro inhibitors.
Collapse
Affiliation(s)
- Ashley
J. Taylor
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Kangsa Amporndanai
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Tyson A. Rietz
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Bin Zhao
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Anusha Thiruvaipati
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Qiangqiang Wei
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Taylor M. South
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Mackenzie M. Crow
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Chideraa Apakama
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - John L. Sensintaffar
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Jason Phan
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Taekyu Lee
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Stephen W. Fesik
- Department
of Biochemistry, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-0146, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232-6600, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
12
|
Becker MA, Meiser N, Schmidt-Dengler M, Richter C, Wacker A, Schwalbe H, Hengesbach M. m 6A Methylation of Transcription Leader Sequence of SARS-CoV-2 Impacts Discontinuous Transcription of Subgenomic mRNAs. Chemistry 2024; 30:e202401897. [PMID: 38785102 DOI: 10.1002/chem.202401897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The SARS-CoV-2 genome has been shown to be m6A methylated at several positions in vivo. Strikingly, a DRACH motif, the recognition motif for adenosine methylation, resides in the core of the transcriptional regulatory leader sequence (TRS-L) at position A74, which is highly conserved and essential for viral discontinuous transcription. Methylation at position A74 correlates with viral pathogenicity. Discontinuous transcription produces a set of subgenomic mRNAs that function as templates for translation of all structural and accessory proteins. A74 is base-paired in the short stem-loop structure 5'SL3 that opens during discontinuous transcription to form long-range RNA-RNA interactions with nascent (-)-strand transcripts at complementary TRS-body sequences. A74 can be methylated by the human METTL3/METTL14 complex in vitro. Here, we investigate its impact on the structural stability of 5'SL3 and the long-range TRS-leader:TRS-body duplex formation necessary for synthesis of subgenomic mRNAs of all four viral structural proteins. Methylation uniformly destabilizes 5'SL3 and long-range duplexes and alters their relative equilibrium populations, suggesting that the m6A74 modification acts as a regulator for the abundance of viral structural proteins due to this destabilization.
Collapse
Affiliation(s)
- Matthias A Becker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Martina Schmidt-Dengler
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Martin Hengesbach
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
13
|
Nawaz T, Gu L, Gibbons J, Hu Z, Zhou R. Bridging Nature and Engineering: Protein-Derived Materials for Bio-Inspired Applications. Biomimetics (Basel) 2024; 9:373. [PMID: 38921253 PMCID: PMC11201842 DOI: 10.3390/biomimetics9060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
The sophisticated, elegant protein-polymers designed by nature can serve as inspiration to redesign and biomanufacture protein-based materials using synthetic biology. Historically, petro-based polymeric materials have dominated industrial activities, consequently transforming our way of living. While this benefits humans, the fabrication and disposal of these materials causes environmental sustainability challenges. Fortunately, protein-based biopolymers can compete with and potentially surpass the performance of petro-based polymers because they can be biologically produced and degraded in an environmentally friendly fashion. This paper reviews four groups of protein-based polymers, including fibrous proteins (collagen, silk fibroin, fibrillin, and keratin), elastomeric proteins (elastin, resilin, and wheat glutenin), adhesive/matrix proteins (spongin and conchiolin), and cyanophycin. We discuss the connection between protein sequence, structure, function, and biomimetic applications. Protein engineering techniques, such as directed evolution and rational design, can be used to improve the functionality of natural protein-based materials. For example, the inclusion of specific protein domains, particularly those observed in structural proteins, such as silk and collagen, enables the creation of novel biomimetic materials with exceptional mechanical properties and adaptability. This review also discusses recent advancements in the production and application of new protein-based materials through the approach of synthetic biology combined biomimetics, providing insight for future research and development of cutting-edge bio-inspired products. Protein-based polymers that utilize nature's designs as a base, then modified by advancements at the intersection of biology and engineering, may provide mankind with more sustainable products.
Collapse
Affiliation(s)
- Taufiq Nawaz
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| | - Liping Gu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| | | | - Zhong Hu
- Department of Mechanical Engineering, South Dakota State University, Brookings, SD 57007, USA;
| | - Ruanbao Zhou
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA;
| |
Collapse
|
14
|
Giacon N, Lo Cascio E, Pennacchietti V, De Maio F, Santarelli G, Sibilia D, Tiberio F, Sanguinetti M, Lattanzi W, Toto A, Arcovito A. PDZ2-conjugated-PLGA nanoparticles are tiny heroes in the battle against SARS-CoV-2. Sci Rep 2024; 14:13059. [PMID: 38844490 PMCID: PMC11156922 DOI: 10.1038/s41598-024-63239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has highlighted the urgent need for innovative antiviral strategies to fight viral infections. Although a substantial part of the overall effort has been directed at the Spike protein to create an effective global vaccination strategy, other proteins have also been examined and identified as possible therapeutic targets. Among them, although initially underestimated, there is the SARS-CoV-2 E-protein, which turned out to be a key factor in viral pathogenesis due to its role in virus budding, assembly and spreading. The C-terminus of E-protein contains a PDZ-binding motif (PBM) that plays a key role in SARS-CoV-2 virulence as it is recognized and bound by the PDZ2 domain of the human tight junction protein ZO-1. The binding between the PDZ2 domain of ZO-1 and the C-terminal portion of SARS-CoV-2 E-protein has been extensively characterized. Our results prompted us to develop a possible adjuvant therapeutic strategy aimed at slowing down or inhibiting virus-mediated pathogenesis. Such innovation consists in the design and synthesis of externally PDZ2-ZO1 functionalized PLGA-based nanoparticles to be used as intracellular decoy. Contrary to conventional strategies, this innovative approach aims to capitalize on the E protein-PDZ2 interaction to prevent virus assembly and replication. In fact, the conjugation of the PDZ2 domain to polymeric nanoparticles increases the affinity toward the E protein effectively creating a "molecular sponge" able to sequester E proteins within the intracellular environment of infected cells. Our in vitro studies on selected cellular models, show that these nanodevices significantly reduce SARS-CoV-2-mediated virulence, emphasizing the importance of exploiting viral-host interactions for therapeutic benefit.
Collapse
Affiliation(s)
- Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Ettore Lo Cascio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Flavio De Maio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Giulia Santarelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Diego Sibilia
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Federica Tiberio
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Wanda Lattanzi
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le A. Moro 5, 00185, Rome, Italy.
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy.
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Rome, Italy.
| |
Collapse
|
15
|
Wang R, Lu S, Deng F, Wu L, Yang G, Chong S, Liu Y. Enhancing the understanding of SARS-CoV-2 protein with structure and detection methods: An integrative review. Int J Biol Macromol 2024; 270:132237. [PMID: 38734351 DOI: 10.1016/j.ijbiomac.2024.132237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
As the rapid and accurate screening of infectious diseases can provide meaningful information for outbreak prevention and control, as well as owing to the existing limitations of the polymerase chain reaction (PCR), it is imperative to have new and validated detection techniques for SARS-CoV-2. Therefore, the rationale for outlining the techniques used to detect SARS-CoV-2 proteins and performing a comprehensive comparison to serve as a practical benchmark for future identification of similar viral proteins is clear. This review highlights the urgent need to strengthen pandemic preparedness by emphasizing the importance of integrated measures. These include improved tools for pathogen characterization, optimized societal precautions, the establishment of early warning systems, and the deployment of highly sensitive diagnostics for effective surveillance, triage, and resource management. Additionally, with an improved understanding of the virus' protein structure, considerable advances in targeted detection, treatment, and prevention strategies are expected to greatly improve our ability to respond to future outbreaks.
Collapse
Affiliation(s)
- Ruiqi Wang
- Shenyang University of Chemical Technology, Shenyang 110142, China; National Institute of Metrology, Beijing 100029, China
| | - Song Lu
- National Institute of Metrology, Beijing 100029, China
| | - Fanyu Deng
- National Institute of Metrology, Beijing 100029, China; North University of China, Taiyuan 030051, China
| | - Liqing Wu
- National Institute of Metrology, Beijing 100029, China
| | - Guowu Yang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518055, China
| | - Siying Chong
- Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yahui Liu
- National Institute of Metrology, Beijing 100029, China.
| |
Collapse
|
16
|
Zhang F, Chai C, Niu R, Diao Y, Zhou Y, Zhang J, Feng L, Yao C, Wu Y, Ma Y, Zan X, Wang W. Genetic characterization of bovine coronavirus strain isolated in Inner Mongolia of China. BMC Vet Res 2024; 20:209. [PMID: 38760785 PMCID: PMC11102244 DOI: 10.1186/s12917-024-04046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Bovine coronavirus (BCoV) is implicated in severe diarrhea in calves and contributes to the bovine respiratory disease complex; it shares a close relationship with human coronavirus. Similar to other coronaviruses, remarkable variability was found in the genome and biology of the BCoV. In 2022, samples of feces were collected from a cattle farm. A virus was isolated from 7-day-old newborn calves. In this study, we present the genetic characteristics of a new BCoV isolate. The complete genomic, spike protein, and nucleocapsid protein gene sequences of the BCoV strain, along with those of other coronaviruses, were obtained from the GenBank database. Genetic analysis was conducted using MEGA7.0 and the Neighbor-Joining (NJ) method. The reference strains' related genes were retrieved from GenBank for comparison and analysis using DNAMAN. RESULTS The phylogenetic tree and whole genome consistency analysis showed that it belonged to the GIIb subgroup, which is epidemic in Asia and America, and was quite similar to the Chinese strains in the same cluster. Significantly, the S gene was highly consistent with QH1 (MH810151.1) isolated from yak. This suggests that the strain may have originated from interspecies transmission involving mutations of wild strains. The N gene was conserved and showed high sequence identity with the epidemic strains in China and the USA. CONCLUSIONS Genetic characterization suggests that the isolated strain could be a new mutant from a wild-type lineage, which is in the same cluster as most Chinese epidemic strains but on a new branch.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, China
| | - Chunxia Chai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Rui Niu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Yun Diao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Yanyan Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Jinlong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Lin Feng
- Helinger County Bureau of Agriculture and Animal Husbandry, Hohhot, 011500, China
| | - Chunming Yao
- Helinger County Bureau of Agriculture and Animal Husbandry, Hohhot, 011500, China
| | - Youzhi Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Yanhua Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Xiaohui Zan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China
| | - Wei Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010030, China.
| |
Collapse
|
17
|
Kumawat P, Agarwal LK, Sharma K. An Overview of SARS-CoV-2 Potential Targets, Inhibitors, and Computational Insights to Enrich the Promising Treatment Strategies. Curr Microbiol 2024; 81:169. [PMID: 38733424 DOI: 10.1007/s00284-024-03671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/18/2024] [Indexed: 05/13/2024]
Abstract
The rapid spread of the SARS-CoV-2 virus has emphasized the urgent need for effective therapies to combat COVID-19. Investigating the potential targets, inhibitors, and in silico approaches pertinent to COVID-19 are of utmost need to develop novel therapeutic agents and reprofiling of existing FDA-approved drugs. This article reviews the viral enzymes and their counter receptors involved in the entry of SARS-CoV-2 into host cells, replication of genomic RNA, and controlling the host cell physiology. In addition, the study provides an overview of the computational techniques such as docking simulations, molecular dynamics, QSAR modeling, and homology modeling that have been used to find the FDA-approved drugs and other inhibitors against SARS-CoV-2. Furthermore, a comprehensive overview of virus-based and host-based druggable targets from a structural point of view, together with the reported therapeutic compounds against SARS-CoV-2 have also been presented. The current study offers future perspectives for research in the field of network pharmacology investigating the large unexplored molecular libraries. Overall, the present in-depth review aims to expedite the process of identifying and repurposing drugs for researchers involved in the field of COVID-19 drug discovery.
Collapse
Affiliation(s)
- Pooja Kumawat
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| |
Collapse
|
18
|
Zhao Z, Bashiri S, Ziora ZM, Toth I, Skwarczynski M. COVID-19 Variants and Vaccine Development. Viruses 2024; 16:757. [PMID: 38793638 PMCID: PMC11125726 DOI: 10.3390/v16050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), the global pandemic caused by severe acute respiratory syndrome 2 virus (SARS-CoV-2) infection, has caused millions of infections and fatalities worldwide. Extensive SARS-CoV-2 research has been conducted to develop therapeutic drugs and prophylactic vaccines, and even though some drugs have been approved to treat SARS-CoV-2 infection, treatment efficacy remains limited. Therefore, preventive vaccination has been implemented on a global scale and represents the primary approach to combat the COVID-19 pandemic. Approved vaccines vary in composition, although vaccine design has been based on either the key viral structural (spike) protein or viral components carrying this protein. Therefore, mutations of the virus, particularly mutations in the S protein, severely compromise the effectiveness of current vaccines and the ability to control COVID-19 infection. This review begins by describing the SARS-CoV-2 viral composition, the mechanism of infection, the role of angiotensin-converting enzyme 2, the host defence responses against infection and the most common vaccine designs. Next, this review summarizes the common mutations of SARS-CoV-2 and how these mutations change viral properties, confer immune escape and influence vaccine efficacy. Finally, this review discusses global strategies that have been employed to mitigate the decreases in vaccine efficacy encountered against new variants.
Collapse
Affiliation(s)
- Ziyao Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia;
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (Z.Z.); (S.B.); (I.T.)
| |
Collapse
|
19
|
Kumar A, Tripathi P, Kumar P, Shekhar R, Pathak R. From Detection to Protection: Antibodies and Their Crucial Role in Diagnosing and Combatting SARS-CoV-2. Vaccines (Basel) 2024; 12:459. [PMID: 38793710 PMCID: PMC11125746 DOI: 10.3390/vaccines12050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Understanding the antibody response to SARS-CoV-2, the virus responsible for COVID-19, is crucial to comprehending disease progression and the significance of vaccine and therapeutic development. The emergence of highly contagious variants poses a significant challenge to humoral immunity, underscoring the necessity of grasping the intricacies of specific antibodies. This review emphasizes the pivotal role of antibodies in shaping immune responses and their implications for diagnosing, preventing, and treating SARS-CoV-2 infection. It delves into the kinetics and characteristics of the antibody response to SARS-CoV-2 and explores current antibody-based diagnostics, discussing their strengths, clinical utility, and limitations. Furthermore, we underscore the therapeutic potential of SARS-CoV-2-specific antibodies, discussing various antibody-based therapies such as monoclonal antibodies, polyclonal antibodies, anti-cytokines, convalescent plasma, and hyperimmunoglobulin-based therapies. Moreover, we offer insights into antibody responses to SARS-CoV-2 vaccines, emphasizing the significance of neutralizing antibodies in order to confer immunity to SARS-CoV-2, along with emerging variants of concern (VOCs) and circulating Omicron subvariants. We also highlight challenges in the field, such as the risks of antibody-dependent enhancement (ADE) for SARS-CoV-2 antibodies, and shed light on the challenges associated with the original antigenic sin (OAS) effect and long COVID. Overall, this review intends to provide valuable insights, which are crucial to advancing sensitive diagnostic tools, identifying efficient antibody-based therapeutics, and developing effective vaccines to combat the evolving threat of SARS-CoV-2 variants on a global scale.
Collapse
Affiliation(s)
- Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, India
| | - Prajna Tripathi
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Prashant Kumar
- R. Ken Coit College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Ritu Shekhar
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
20
|
Ye Q, Wang H, Xu F, Zhang S, Zhang S, Yang Z, Zhang L. Co-Mutations and Possible Variation Tendency of the Spike RBD and Membrane Protein in SARS-CoV-2 by Machine Learning. Int J Mol Sci 2024; 25:4662. [PMID: 38731879 PMCID: PMC11083383 DOI: 10.3390/ijms25094662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, SARS-CoV-2 variants capable of breakthrough infections have attracted global attention. These variants have significant mutations in the receptor-binding domain (RBD) of the spike protein and the membrane (M) protein, which may imply an enhanced ability to evade immune responses. In this study, an examination of co-mutations within the spike RBD and their potential correlation with mutations in the M protein was conducted. The EVmutation method was utilized to analyze the distribution of the mutations to elucidate the relationship between the mutations in the spike RBD and the alterations in the M protein. Additionally, the Sequence-to-Sequence Transformer Model (S2STM) was employed to establish mapping between the amino acid sequences of the spike RBD and M proteins, offering a novel and efficient approach for streamlined sequence analysis and the exploration of their interrelationship. Certain mutations in the spike RBD, G339D-S373P-S375F and Q493R-Q498R-Y505, are associated with a heightened propensity for inducing mutations at specific sites within the M protein, especially sites 3 and 19/63. These results shed light on the concept of mutational synergy between the spike RBD and M proteins, illuminating a potential mechanism that could be driving the evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Qiushi Ye
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China; (Q.Y.)
| | - He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China; (Q.Y.)
| | - Fanding Xu
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Sijia Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China; (Q.Y.)
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China; (Q.Y.)
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China; (Q.Y.)
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China; (Q.Y.)
| |
Collapse
|
21
|
Shakinah S, Aini MH, Sekartini R, Soedjatmiko, Medise BE, Gunardi H, Yuniar I, Indawati W, Koesnoe S, Harimurti K, Maria S, Wirahmadi A, Sari RM, Setyaningsih L, Surachman F. Immunogenicity Assessment of the SARS-CoV-2 Protein Subunit Recombinant Vaccine (CoV2-IB 0322) in a Substudy of a Phase 3 Trial in Indonesia. Vaccines (Basel) 2024; 12:371. [PMID: 38675753 PMCID: PMC11053672 DOI: 10.3390/vaccines12040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND COVID-19 is one of the most devastating pandemics of the 21st century. Vaccination is one of the most effective prevention methods in combating COVID-19, and one type of vaccine being developed was the protein subunit recombinant vaccine. We evaluated the efficacy of the CoV2-IB 0322 vaccine in Depok, Indonesia. METHODS This study aimed to assess the humoral and cellular immune response of the CoV2-IB 0322 vaccine compared to an active control vaccine (COVOVAX™ Vaccine). A total of 120 subjects were enrolled and randomized into two groups, with 60 subjects in each group. Participants received either two doses of the CoV2-IB 0322 vaccine or two doses of the control vaccine with a 28-day interval between doses. Safety assessments were conducted through onsite monitoring and participant-reported adverse events. Immunogenicity was evaluated by measuring IgG anti-RBD SARS-CoV-2 and IgG-neutralizing antibodies. Cellular immunity was assessed by specific T-cell responses. Whole blood samples were collected at baseline, 14 days, 6 months, and 12 months after the second dose for cellular immunity evaluation. RESULTS Both vaccines showed high seropositive rates, with neutralizing antibody and IgG titers peaking 14 days after the second dose and declining by 12 months. The seroconversion rate of anti-S IgG was 100% in both groups, but the rate of neutralizing antibody seroconversion was lower in the CoV2-IB 0322 vaccine group at 14 days after the second dose (p = 0.004). The CoV2-IB 0322 vaccine showed higher IgG GMT levels 6 and 12 months after the second dose (p < 0.001 and p = 0.01). T-cell responses, evaluated by IFN-γ, IL-2, and IL-4 production by CD4+ and CD8+ T-cells, showed similar results without significant differences between both groups, except for %IL-2/CD4+ cells 6 months after the second dose (p = 0.038). CONCLUSION Both vaccines showed comparable B- and T-cell immunological response that diminish over time.
Collapse
Affiliation(s)
- Sharifah Shakinah
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Muhammad Hafiz Aini
- Department of Internal Medicine, Universitas Indonesia Hospital, Jl. Prof. DR. Bahder Djohan, Depok 16424, Indonesia
| | - Rini Sekartini
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Soedjatmiko
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Bernie Endyarni Medise
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Hartono Gunardi
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Irene Yuniar
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Wahyuni Indawati
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Sukamto Koesnoe
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Kuntjoro Harimurti
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Suzy Maria
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Angga Wirahmadi
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Rini Mulia Sari
- PT Bio Farma, Jalan Pasteur No. 28, Bandung 40161, Indonesia (L.S.); (F.S.)
| | - Lilis Setyaningsih
- PT Bio Farma, Jalan Pasteur No. 28, Bandung 40161, Indonesia (L.S.); (F.S.)
| | | |
Collapse
|
22
|
Grinstein-Koren O, Lusthaus M, Tabibian-Keissar H, Kaplan I, Buchner A, Ilatov R, Vered M, Zlotogorski-Hurvitz A. Pathological changes in oral epithelium and the expression of SARS-CoV-2 entry receptors, ACE2 and furin. PLoS One 2024; 19:e0300269. [PMID: 38489333 PMCID: PMC10942036 DOI: 10.1371/journal.pone.0300269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/24/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Expression of angiotensin-converting enzyme (ACE)-2 and co-factors like furin, play key-roles in entry of SARS-CoV-2 into host cells. Furin is also involved in oral carcinogenesis. We investigated their expression in oral pre-malignant/malignant epithelial pathologies to evaluate whether ACE2 and furin expression might increase susceptibility of patients with these lesions for SARS-CoV-2 infection. METHODS Study included normal oral mucosa (N = 14), epithelial hyperplasia-mild dysplasia (N = 27), moderate-to-severe dysplasia (N = 24), squamous cell carcinoma (SCC, N = 34) and oral lichen planus (N = 51). Evaluation of ACE2/furin membranous/membranous-cytoplasmic immunohistochemical expression was divided by epithelial thirds (basal/middle/upper), on a 5-tier scale (0, 1-weak, 1.5 -weak-to-moderate, 2-moderate, 3-strong). Total score per case was the sum of all epithelial thirds, and the mean staining score per group was calculated. Real time-polymerase chain reaction was performed for ACE2-RNA. Statistical differences were analyzed by One-way ANOVA, significance at p<0.05. RESULTS All oral mucosa samples were negative for ACE2 immuno-expression and its transcripts. Overall, furin expression was weakly present with total mean expression being higher in moderate-to-severe dysplasia and hyperplasia-mild dysplasia than in normal epithelium (p = 0.01, each) and SCC (p = 0.008, p = 0.009, respectively). CONCLUSIONS Oral mucosa, normal or with epithelial pathologies lacked ACE2 expression. Furin was weak and mainly expressed in dysplastic lesions. Thus, patients with epithelial pathologies do not seem to be at higher risk for SARS-CoV-2 infection. Overall, results show that oral mucosae do not seem to be a major site of SARS-CoV-2 entry and these were discussed vis-à-vis a comprehensive analysis of the literature.
Collapse
Affiliation(s)
- Osnat Grinstein-Koren
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Lusthaus
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Ilana Kaplan
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Pathology, Rabin Medical Center, Petach-Tikva, Israel
| | - Amos Buchner
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ron Ilatov
- Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Marilena Vered
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Ayelet Zlotogorski-Hurvitz
- Department of Oral Pathology, Oral Medicine and Maxillofacial Imaging, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Oral and Maxillofacial Surgery, Rabin Medical Center, Petach-Tikva, Israel
| |
Collapse
|
23
|
Lv X, Chen R, Liang T, Peng H, Fang Q, Xiao S, Liu S, Hu M, Yu F, Cao L, Zhang Y, Pan T, Xi Z, Ding Y, Feng L, Zeng T, Huang W, Zhang H, Ma X. NSP6 inhibits the production of ACE2-containing exosomes to promote SARS-CoV-2 infectivity. mBio 2024; 15:e0335823. [PMID: 38303107 PMCID: PMC10936183 DOI: 10.1128/mbio.03358-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global pandemic, which severely endangers public health. Our and others' works have shown that the angiotensin-converting enzyme 2 (ACE2)-containing exosomes (ACE2-exos) have superior antiviral efficacies, especially in response to emerging variants. However, the mechanisms of how the virus counteracts the host and regulates ACE2-exos remain unclear. Here, we identified that SARS-CoV-2 nonstructural protein 6 (NSP6) inhibits the production of ACE2-exos by affecting the protein level of ACE2 as well as tetraspanin-CD63 which is a key factor for exosome biogenesis. We further found that the protein stability of CD63 and ACE2 is maintained by the deubiquitination of proteasome 26S subunit, non-ATPase 12 (PSMD12). NSP6 interacts with PSMD12 and counteracts its function, consequently promoting the degradation of CD63 and ACE2. As a result, NSP6 diminishes the antiviral efficacy of ACE2-exos and facilitates the virus to infect healthy bystander cells. Overall, our study provides a valuable target for the discovery of promising drugs for the treatment of coronavirus disease 2019. IMPORTANCE The outbreak of coronavirus disease 2019 (COVID-19) severely endangers global public health. The efficacy of vaccines and antibodies declined with the rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants. Angiotensin-converting enzyme 2-containing exosomes (ACE2-exos) therapy exhibits a broad neutralizing activity, which could be used against various viral mutations. Our study here revealed that SARS-CoV-2 nonstructural protein 6 inhibited the production of ACE2-exos, thereby promoting viral infection to the adjacent bystander cells. The identification of a new target for blocking SARS-CoV-2 depends on fully understanding the virus-host interaction networks. Our study sheds light on the mechanism by which the virus resists the host exosome defenses, which would facilitate the study and design of ACE2-exos-based therapeutics for COVID-19.
Collapse
Affiliation(s)
- Xi Lv
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ran Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Taizhen Liang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Haojie Peng
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiannan Fang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shiqi Xiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Sen Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Meilin Hu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fei Yu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Lixue Cao
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhihui Xi
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Ding
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Linyuan Feng
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Zeng
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenjing Huang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiancai Ma
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Zhou J, Zhou Y, Wei XF, Fan L, Gao X, Li Y, Wu Y, Feng W, Shen X, Liu L, Xu G, Zhang Z. TRIM6 facilitates SARS-CoV-2 proliferation by catalyzing the K29-typed ubiquitination of NP to enhance the ability to bind viral genomes. J Med Virol 2024; 96:e29531. [PMID: 38515377 DOI: 10.1002/jmv.29531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
The Nucleocapsid Protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not only the core structural protein required for viral packaging, but also participates in the regulation of viral replication, and its post-translational modifications such as phosphorylation have been shown to be an important strategy for regulating virus proliferation. Our previous work identified NP could be ubiquitinated, as confirmed by two independent studies. But the function of NP ubiquitination is currently unknown. In this study, we first pinpointed TRIM6 as the E3 ubiquitin ligase responsible for NP ubiquitination, binding to NP's CTD via its RING and B-box-CCD domains. TRIM6 promotes the K29-typed polyubiquitination of NP at K102, K347, and K361 residues, increasing its binding to viral genomic RNA. Consistently, functional experiments such as the use of the reverse genetic tool trVLP model and gene knockout of TRIM6 further confirmed that blocking the ubiquitination of NP by TRIM6 significantly inhibited the proliferation of SARS-CoV-2. Notably, the NP of coronavirus is relatively conserved, and the NP of SARS-CoV can also be ubiquitinated by TRIM6, indicating that NP could be a broad-spectrum anti-coronavirus target. These findings shed light on the intricate interaction between SARS-CoV-2 and the host, potentially opening new opportunities for COVID-19 therapeutic development.
Collapse
Affiliation(s)
- Jian Zhou
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yuzheng Zhou
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xia-Fei Wei
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Lujie Fan
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xiang Gao
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yunfei Li
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yezi Wu
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wei Feng
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - XiaoTong Shen
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Lei Liu
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Gang Xu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zheng Zhang
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
25
|
Gerashchenko GV, Hryshchenko NV, Melnichuk NS, Marchyshak TV, Chernushyn SY, Demchyshina IV, Chernenko LM, Kuzin IV, Tkachuk ZY, Kashuba VI, Tukalo MA. Genetic characteristics of SARS-CoV-2 virus variants observed upon three waves of the COVID-19 pandemic in Ukraine between February 2021-January 2022. Heliyon 2024; 10:e25618. [PMID: 38380034 PMCID: PMC10877268 DOI: 10.1016/j.heliyon.2024.e25618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The aim of our study was to identify and characterize the SARS-CoV-2 variants in COVID-19 patients' samples collected from different regions of Ukraine to determine the relationship between SARS-CoV-2 phylogenetics and COVID-19 epidemiology. Patients and methods Samples were collected from COVID-19 patients during 2021 and the beginning of 2022 (401 patients). The SARS-CoV-2 genotyping was performed by parallel whole genome sequencing. Results The obtained SARS-CoV-2 genotypes showed that three waves of the COVID-19 pandemic in Ukraine were represented by three main variants of concern (VOC), named Alpha, Delta and Omicron; each VOC successfully replaced the earlier variant. The VOC Alpha strain was presented by one B.1.1.7 lineage, while VOC Delta showed a spectrum of 25 lineages that had different prevalence in 19 investigated regions of Ukraine. The VOC Omicron in the first half of the pandemic was represented by 13 lines that belonged to two different clades representing B.1 and B.2 Omicron strains. Each of the three epidemic waves (VOC Alpha, Delta, and Omicron) demonstrated their own course of disease, associated with genetic changes in the SARS-CoV-2 genome. The observed epidemiological features are associated with the genetic characteristics of the different VOCs, such as point mutations, deletions and insertions in the viral genome. A phylogenetic and transmission analysis showed the different mutation rates; there were multiple virus sources with a limited distribution between regions. Conclusions The evolution of SARS-CoV-2 virus and high levels of morbidity due to COVID-19 are still registered in the world. Observed multiple virus sourses with the limited distribution between regions indicates the high efficiency of the anti-epidemic policy pursued by the Ministry of Health of Ukraine to prevent the spread of the epidemic, despite the low level of vaccination of the Ukrainian population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zenovii Yu Tkachuk
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kyiv, Ukraine
| | - Vladimir I. Kashuba
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kyiv, Ukraine
| | - Mykhailo A. Tukalo
- Institute of Molecular Biology and Genetics of NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
26
|
Ayyubova G, Gychka SG, Nikolaienko SI, Alghenaim FA, Teramoto T, Shults NV, Suzuki YJ. The Role of Furin in the Pathogenesis of COVID-19-Associated Neurological Disorders. Life (Basel) 2024; 14:279. [PMID: 38398788 PMCID: PMC10890058 DOI: 10.3390/life14020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Neurological disorders have been reported in a large number of coronavirus disease 2019 (COVID-19) patients, suggesting that this disease may have long-term adverse neurological consequences. COVID-19 occurs from infection by a positive-sense single-stranded RNA virus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The membrane fusion protein of SARS-CoV-2, the spike protein, binds to its human host receptor, angiotensin-converting enzyme 2 (ACE2), to initiate membrane fusion between the virus and host cell. The spike protein of SARS-CoV-2 contains the furin protease recognition site and its cleavage enhances the infectivity of this virus. The binding of SARS-CoV-2 to the ACE2 receptor has been shown to downregulate ACE2, thereby increasing the levels of pathogenic angiotensin II (Ang II). The furin protease cleaves between the S1 subunit of the spike protein with the binding domain toward ACE2 and the S2 subunit with the transmembrane domain that anchors to the viral membrane, and this activity releases the S1 subunit into the blood circulation. The released S1 subunit of the spike protein also binds to and downregulates ACE2, in turn increasing the level of Ang II. Considering that a viral particle contains many spike protein molecules, furin-dependent cleavage would release many free S1 protein molecules, each of which can downregulate ACE2, while infection with a viral particle only affects one ACE2 molecule. Therefore, the furin-dependent release of S1 protein would dramatically amplify the ability to downregulate ACE2 and produce Ang II. We hypothesize that this amplification mechanism that the virus possesses, but not the infection per se, is the major driving force behind COVID-19-associated neurological disorders.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku AZ1022, Azerbaijan
| | - Sergiy G Gychka
- Department of Pathological Anatomy, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Sofia I Nikolaienko
- Department of Pathological Anatomy, Bogomolets National Medical University, 01601 Kyiv, Ukraine
| | - Fada A Alghenaim
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Tadahisa Teramoto
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Nataliia V Shults
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
27
|
Kim Y, Maltseva N, Tesar C, Jedrzejczak R, Endres M, Ma H, Dugan HL, Stamper CT, Chang C, Li L, Changrob S, Zheng NY, Huang M, Ramanathan A, Wilson P, Michalska K, Joachimiak A. Epitopes recognition of SARS-CoV-2 nucleocapsid RNA binding domain by human monoclonal antibodies. iScience 2024; 27:108976. [PMID: 38327783 PMCID: PMC10847736 DOI: 10.1016/j.isci.2024.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/02/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Coronavirus nucleocapsid protein (NP) of SARS-CoV-2 plays a central role in many functions important for virus proliferation including packaging and protecting genomic RNA. The protein shares sequence, structure, and architecture with nucleocapsid proteins from betacoronaviruses. The N-terminal domain (NPRBD) binds RNA and the C-terminal domain is responsible for dimerization. After infection, NP is highly expressed and triggers robust host immune response. The anti-NP antibodies are not protective and not neutralizing but can effectively detect viral proliferation soon after infection. Two structures of SARS-CoV-2 NPRBD were determined providing a continuous model from residue 48 to 173, including RNA binding region and key epitopes. Five structures of NPRBD complexes with human mAbs were isolated using an antigen-bait sorting. Complexes revealed a distinct complement-determining regions and unique sets of epitope recognition. This may assist in the early detection of pathogens and designing peptide-based vaccines. Mutations that significantly increase viral load were mapped on developed, full length NP model, likely impacting interactions with host proteins and viral RNA.
Collapse
Affiliation(s)
- Youngchang Kim
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Natalia Maltseva
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Christine Tesar
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Robert Jedrzejczak
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael Endres
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Heng Ma
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Haley L. Dugan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| | - Christopher T. Stamper
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| | - Changsoo Chang
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Lei Li
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| | - Siriruk Changrob
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| | - Nai-Ying Zheng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| | - Min Huang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| | - Arvind Ramanathan
- Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Patrick Wilson
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY 10021, USA
| | - Karolina Michalska
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Biology of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
28
|
Alavi-Dana SMM, Gholami Y, Meghdadi M, Fadaei MS, Askari VR. Mesenchymal stem cell therapy for COVID-19 infection. Inflammopharmacology 2024; 32:319-334. [PMID: 38117433 DOI: 10.1007/s10787-023-01394-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
COVID-19 emerged in December 2019 in Wuhan, China, spread worldwide rapidly, and caused millions of deaths in a short time. Many preclinical and clinical studies were performed to discover the most efficient therapy to reduce the mortality of COVID-19 patients. Among various approaches for preventing and treating COVID-19, mesenchymal stem cell (MSC) therapy can be regarded as a novel and efficient treatment for managing COVID-19 patients. In this review, we explain the pathogenesis of COVID-19 infection in humans and discuss the role of MSCs in suppressing the inflammation and cytokine storm produced by COVID-19. Then, we reviewed the clinical trial and systematic review studies that investigated the safety and efficacy of MSC therapy in the treatment of COVID-19 infection.
Collapse
Affiliation(s)
| | - Yazdan Gholami
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Meghdadi
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Saleh Fadaei
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Azadi Sq, Vakil Abad Highway, Mashhad, 9177948564, Iran.
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Kaur G, Kaur R, Sumanpreet, Kaur M. Association of COVID with Mycosis in General. Infect Disord Drug Targets 2024; 24:e190124225866. [PMID: 38251692 DOI: 10.2174/0118715265266815231130063931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND The COVID-19 pandemic caused by SARS-CoV-2 is a respiratory disease which created havoc worldwide, was accompanied by another peculiar, otherwise rare, secondary fungal infection Mucormycosis which was observed at exceptionally high incidence in India during the second wave of COVID-19. The article explores possible links between the two infectious diseases to understand a higher-than-normal occurrence of Mucormycosis in COVID-19 patients. Coronavirus enters the patients through ACE-2 and many other receptors like- NRP-1, TfR, CD-126, and CD-26. Virus bind to cells possessing these receptors and affect their proper functioning, disturbing homeostatic metabolism and resulting in conditions like hyperglycemia, Diabetic Ketoacidosis (DKA), low serum pH, iron overload, anemia, hypoxia, and immunosuppression as explained in the article. All these outcomes provide a very supportive environment for the attack and spread of Mucormycosis fungi. The major receptor for Mucormycosis in humans is the GRP-78. Its expression is upregulated by coronavirus entry and by hyperferritinemia, hyperglycemia, and acidic conditions prevalent in COVID patients, thus providing an easy entry for the fungal species. Upregulation of GRP-78 furthermore damages pancreatic β-cells and intensifies hyperglycemia, showing quite a synergic relationship. Inordinate rise of Mucormycosis cases in India might be explained by facts like- India possessing a large proportion of diabetic patients, emergence of a very deadly strain of coronavirus- Delta strain, higher doses of steroids and antibodies used to treat patients against this strain, overburdened health care services, sudden much higher need of oxygen supply and use of industrial oxygen could explain the Mucormycosis outbreak observed in India during the second wave of COVID-19. OBJECTIVE The present review discusses the functional interdependence between COVID-19 and Mucormycosis and summarizes the possible synergic links between COVID and Mucormycosis. CONCLUSION The receptors and metabolic pathways affected by COVID-19 result in severe physiological conditions- hyperglycemia, DKA, anemia, iron overload, immunosuppression, and hypoxia. All these conditions not only increase the expression of GRP-78, the major receptor for entry of fungi but also play a crucial role in providing quality media for Mucormycosis fungus to establish and grow. Hence explains the fungal epidemic observed in India during the second wave of COVID-19 in India.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Human Genetics, Punjabi University, Patiala, 147002, India
| | - Rajinder Kaur
- Department of Human Genetics, Punjabi University, Patiala, 147002, India
| | - Sumanpreet
- Department of Human Genetics, Punjabi University, Patiala, 147002, India
| | - Manpreet Kaur
- Department of Human Genetics, Punjabi University, Patiala, 147002, India
| |
Collapse
|
30
|
Akdeniz M, Al-Shaebi Z, Altunbek M, Bayraktar C, Kayabolen A, Bagci-Onder T, Aydin O. Characterization and discrimination of spike protein in SARS-CoV-2 virus-like particles via surface-enhanced Raman spectroscopy. Biotechnol J 2024; 19:e2300191. [PMID: 37750467 DOI: 10.1002/biot.202300191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Non-infectious virus-like particles (VLPs) are excellent structures for development of many biomedical applications such as drug delivery systems, vaccine production platforms, and detection techniques for infectious diseases including SARS-CoV-2 VLPs. The characterization of biochemical and biophysical properties of purified VLPs is crucial for development of detection methods and therapeutics. The presence of spike (S) protein in their structure is especially important since S protein induces immunological response. In this study, development of a rapid, low-cost, and easy-to-use technique for both characterization and detection of S protein in the two VLPs, which are SARS-CoV-2 VLPs and HIV-based VLPs was achieved using surface-enhanced Raman spectroscopy (SERS). To analyze and classify datasets of SERS spectra obtained from the VLP groups, machine learning classification techniques including support vector machine (SVM), k-nearest neighbors (kNN), and random forest (RF) were utilized. Among them, the SVM classification algorithm demonstrated the best classification performance for SARS-CoV-2 VLPs and HIV-based VLPs groups with 87.5% and 92.5% accuracy, respectively. This study could be valuable for the rapid characterization of VLPs for the development of novel therapeutics or detection of structural proteins of viruses leading to a variety of infectious diseases.
Collapse
Affiliation(s)
- Munevver Akdeniz
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Zakarya Al-Shaebi
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Mine Altunbek
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts, USA
| | - Canan Bayraktar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tugba Bagci-Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Omer Aydin
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- Nanothera Lab, Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
- Clinical Engineering Research and Implementation Center (ERKAM), Erciyes University, Kayseri, Turkey
- Nanotechnology Research and Application Center (ERNAM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
31
|
Salehi T, Raeisi Estabragh MA, Salarpour S, Ohadi M, Dehghannoudeh G. Absorption enhancer approach for protein delivery by various routes of administration: a rapid review. J Drug Target 2023; 31:950-961. [PMID: 37842966 DOI: 10.1080/1061186x.2023.2271680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
As bioactive molecules, peptides and proteins are essential in living organisms, including animals and humans. Defects in their function lead to various diseases in humans. Therefore, the use of proteins in treating multiple diseases, such as cancers and hepatitis, is increasing. There are different routes to administer proteins, which have limitations due to their large and hydrophilic structure. Another limitation is the presence of biological and lipophilic membranes that do not allow proteins to pass quickly. There are different strategies to increase the absorption of proteins from these biological membranes. One of these strategies is to use compounds as absorption enhancers. Absorption enhancers are compounds such as surfactants, phospholipids and cyclodextrins that increase protein passage through the biological membrane and their absorption by different mechanisms. This review focuses on using other absorption enhancers and their mechanism in protein administration routes.
Collapse
Affiliation(s)
- Toktam Salehi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Raeisi Estabragh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
32
|
Afiadenyo M, Adams L, Agoni C, Moane S, Mckeon-Bennett M, Obiri-Yeboah D, Singh J. Computational Screening of Neuropilin-1 Unveils Novel Potential Anti-SARS-CoV-2 Therapeutics. Chem Biodivers 2023; 20:e202301227. [PMID: 37878727 DOI: 10.1002/cbdv.202301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Neuropilin 1 (NRP-1) inhibition has shown promise in reducing the infectivity of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and preventing the virus entry into nerve tissues, thereby mitigating neurological symptoms in COVID-19 patients. In this study, we employed virtual screening, including molecular docking, Molecular Dynamics (MD) simulation, and Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculations, to identify potential NRP-1 inhibitors. From a compendium of 1930 drug-like natural compounds, we identified five potential leads: CNP0435132, CNP0435311, CNP0424372, CNP0429647, and CNP0427474, displaying robust binding energies of -8.2, -8.1, -10.7, -8.2, and -8.2 kcal/mol, respectively. These compounds demonstrated interactions with critical residues Tyr297, Trp301, Thr316, Asp320, Ser346, Thr349, and Tyr353 located within the b1 subdomain of NRP-1. Furthermore, MD simulations and MM-PBSA calculations affirmed the stability of the complexes formed, with average root mean square deviation, radius of gyration, and solvent accessible surface area values of 0.118 nm, 1.516 nm, and 88.667 nm2 , respectively. Notably, these lead compounds were estimated to penetrate the blood-brain barrier and displayed antiviral properties, with Pa values ranging from 0.414 to 0.779. The antagonistic effects of these lead compounds merit further investigation, as they hold the potential to serve as foundational scaffolds for the development of innovative therapeutics aimed at reducing the neuroinfectivity of SARS-CoV-2.
Collapse
Affiliation(s)
- Michael Afiadenyo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Latif Adams
- Technological University of Shannon: Midlands Midwest Midlands Campus, Athlone, Ireland
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Clement Agoni
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield D04, V1 W8, Ireland
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- West African Centre for Computational Research and Innovation, Ghana
| | - Siobhan Moane
- Technological University of Shannon: Midlands Midwest Midlands Campus, Athlone, Ireland
| | | | - Dorcas Obiri-Yeboah
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, Delhi, India
| |
Collapse
|
33
|
Jamil Al-Obaidi MM, Desa MNM. A review of the mechanisms of blood-brain barrier disruption during COVID-19 infection. J Neurosci Res 2023; 101:1687-1698. [PMID: 37462109 DOI: 10.1002/jnr.25232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 09/10/2023]
Abstract
Coronaviruses are prevalent in mammals and birds, including humans and bats, and they often spread through airborne droplets. In humans, these droplets then interact with angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), which are the main receptors for the SARS-CoV-2 virus. It can infect several organs, including the brain. The blood-brain barrier (BBB) is designed to maintain the homeostatic neural microenvironment of the brain, which is necessary for healthy neuronal activity, function, and stability. It prevents viruses from entering the brain parenchyma and does not easily allow chemicals to pass into the brain while assisting numerous compounds in exiting the brain. The purpose of this review was to examine how COVID-19 influences the BBB along with the mechanisms that indicate the BBB's deterioration. In addition, the cellular mechanism through which SARS-CoV-2 causes BBB destruction by binding to ACE2 was evaluated and addressed. The mechanisms of the immunological reaction that occurs during COVID-19 infection that may contribute to the breakdown of the BBB were also reviewed. It was discovered that the integrity of the tight junction (TJs), basement membrane, and adhesion molecules was damaged during COVID-19 infection, which led to the breakdown of the BBB. Therefore, understanding how the BBB is disrupted by COVID-19 infection will provide an indication of how the SARS-CoV-2 virus is able to reach the central nervous system (CNS). The findings of this research may help in the identification of treatment options for COVID-19 that can control and manage the infection.
Collapse
Affiliation(s)
- Mazen M Jamil Al-Obaidi
- Biology Unit, Science Department, Rustaq College of Education, University of Technology and Applied Sciences, Al-Rustaq, Oman
| | - Mohd Nasir Mohd Desa
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
34
|
Sobhani K, Cheng S, Binder RA, Mantis NJ, Crawford JM, Okoye N, Braun JG, Joung S, Wang M, Lozanski G, King CL, Roback JD, Granger DA, Boppana SB, Karger AB. Clinical Utility of SARS-CoV-2 Serological Testing and Defining a Correlate of Protection. Vaccines (Basel) 2023; 11:1644. [PMID: 38005976 PMCID: PMC10674881 DOI: 10.3390/vaccines11111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Herein, we review established clinical use cases for SARS-CoV-2 antibody measures, which include diagnosis of recent prior infection, isolating high titer convalescent plasma, diagnosing multisystem inflammatory syndrome in children (MIS-C), and booster dosing in the immunosuppressed and other populations. We then address whether an antibody correlate of protection (CoP) for SARS-CoV-2 has been successfully defined with the following considerations: Antibody responses in the immunocompetent, vaccine type, variants, use of binding antibody tests vs. neutralization tests, and endpoint measures. In the transition from the COVID-19 pandemic to endemic, there has been much interest in defining an antibody CoP. Due to the high mutability of respiratory viruses and our current knowledge of SARS-CoV-2 variants defining a CoP for prevention of infection is unrealistic. However, a CoP may be defined for prevention of severe disease requiring hospitalization and/or death. Most SARS-CoV-2 CoP research has focused on neutralization measurements. However, there can be significant differences in neutralization test methods, and disparate responses to new variants depending on format. Furthermore, neutralization assays are often impractical for high throughput applications (e.g., assessing humoral immune response in populations or large cohorts). Nevertheless, CoP studies using neutralization measures are reviewed to determine where there is consensus. Alternatively, binding antibody tests could be used to define a CoP. Binding antibody assays tend to be highly automatable, high throughput, and therefore practical for large population applications. Again, we review studies for consensus on binding antibody responses to vaccines, focusing on standardized results. Binding antibodies directed against the S1 receptor binding domain (S1-RBD) of the viral spike protein can provide a practical, indirect measure of neutralization. Initially, a response for S1-RBD antibodies may be selected that reflects the peak response in immunocompetent populations and may serve as a target for booster dosing in the immunocompromised. From existing studies reporting peak S1-RBD responses in standardized units, an approximate range of 1372-2744 BAU/mL for mRNA and recombinant protein vaccines was extracted that could serve as an initial CoP target. This target would need to be confirmed and potentially adjusted for updated vaccines, and almost certainly for other vaccine formats (i.e., viral vector). Alternatively, a threshold or response could be defined based on outcomes over time (i.e., prevention of severe disease). We also discuss the precedent for clinical measurement of antibodies for vaccine-preventable diseases (e.g., hepatitis B). Lastly, cellular immunity is briefly addressed for its importance in the nature and durability of protection.
Collapse
Affiliation(s)
- Kimia Sobhani
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.C.)
| | - Raquel A. Binder
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Nicholas J. Mantis
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12222, USA
| | - James M. Crawford
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Nkemakonam Okoye
- Department of Pathology and Laboratory Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Jonathan G. Braun
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- F. Widjaja Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandy Joung
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.C.)
| | - Minhao Wang
- Department of Cardiology, Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.C.)
| | - Gerard Lozanski
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Christopher L. King
- Department of Pathology, Case Western Reserve University and Veterans Affairs Research Service, Cleveland, OH 44106, USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Douglas A. Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA 92697, USA
| | - Suresh B. Boppana
- Department of Pediatrics and Department of Microbiology, Heersink School of Medicine, UAB, Birmingham, AL 35233, USA
| | - Amy B. Karger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
35
|
Kumar KM, Karthik Y, Ramakrishna D, Balaji S, Skariyachan S, Murthy TPK, Sakthivel KM, Alotaibi BS, Shukry M, Sayed SM, Mushtaq M. Immunoinformatic exploration of a multi-epitope-based peptide vaccine candidate targeting emerging variants of SARS-CoV-2. Front Microbiol 2023; 14:1251716. [PMID: 37915849 PMCID: PMC10616776 DOI: 10.3389/fmicb.2023.1251716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
Many countries around the world are facing severe challenges due to the recently emerging variants of SARS-CoV-2. Over the last few months, scientists have been developing treatments, drugs, and vaccines to subdue the virus and prevent its transmission. In this context, a peptide-based vaccine construct containing pathogenic proteins of the virus known to elicit an immune response was constructed. An analysis of the spike protein-based epitopes allowed us to design an "epitope-based subunit vaccine" against coronavirus using the approaches of "reverse vaccinology" and "immunoinformatics." Computational experimentation and a systematic, comprehensive protocol were followed with an aim to develop and design a multi-epitope-based peptide (MEBP) vaccine candidate. Our study attempted to predict an MEBP vaccine by introducing mutations of SARS-CoV-2 (Delta, Lambda, Iota, Omicron, and Kappa) in Spike glycoprotein and predicting dual-purpose epitopes (B-cell and T-cell). This was followed by screening the selected epitopes based on antigenicity, allergenicity, and population coverage and constructing them into a vaccine by using linkers and adjuvants. The vaccine construct was analyzed for its physicochemical properties and secondary structure prediction, and a 3D structure was built, refined, and validated. Furthermore, the peptide-protein interaction of the vaccine construct with Toll-like receptor (TLR) molecules was performed. Immune profiling was performed to check the immune response. Codon optimization of the vaccine construct was performed to obtain the GC content before cloning it into the E. coli genome, facilitating its progression it into a vector. Finally, an in-silico simulation of the vaccine-protein complex was performed to comprehend its stability and conformational behavior.
Collapse
Affiliation(s)
- K. M. Kumar
- Department of Bioinformatics, Pondicherry University, Pondicherry, India
| | - Yalpi Karthik
- Department of Studies and Research in Microbiology, Mangalore University, Chikka Aluvara, Kodagu, Karnataka, India
| | - D. Ramakrishna
- Biotechnology Department, Dayananda Sagar College of Engineering, Dr. C.D Sagar Centre for Life Sciences, Dayananda Sagar Institutions, Bengaluru, India
| | - S. Balaji
- Centre for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology, Bengaluru, Karnataka, India
| | - Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kerala, India
| | - T. P. Krishna Murthy
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | | | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samy M. Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza, Egypt
- Department of Science and Technology, University College-Ranyah, Taif University, Taif, Saudi Arabia
| | - Muntazir Mushtaq
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| |
Collapse
|
36
|
Bodakuntla S, Kuhn CC, Biertümpfel C, Mizuno N. Cryo-electron microscopy in the fight against COVID-19-mechanism of virus entry. Front Mol Biosci 2023; 10:1252529. [PMID: 37867557 PMCID: PMC10587472 DOI: 10.3389/fmolb.2023.1252529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Cryogenic electron microscopy (cryo-EM) and electron tomography (cryo-ET) have become a critical tool for studying viral particles. Cryo-EM has enhanced our understanding of viral assembly and replication processes at a molecular resolution. Meanwhile, in situ cryo-ET has been used to investigate how viruses attach to and invade host cells. These advances have significantly contributed to our knowledge of viral biology. Particularly, prompt elucidations of structures of the SARS-CoV-2 spike protein and its variants have directly impacted the development of vaccines and therapeutic measures. This review discusses the progress made by cryo-EM based technologies in comprehending the severe acute respiratory syndrome coronavirus-2 (SARS-Cov-2), the virus responsible for the devastating global COVID-19 pandemic in 2020 with focus on the SARS-CoV-2 spike protein and the mechanisms of the virus entry and replication.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Laboratory of Structural Cell Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christopher Cyrus Kuhn
- Laboratory of Structural Cell Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Naoko Mizuno
- Laboratory of Structural Cell Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Morimoto S. Fine structure of a partition in the spike glycoprotein encoded in the SARS-CoV-2 genome. Biosystems 2023; 232:104990. [PMID: 37611861 DOI: 10.1016/j.biosystems.2023.104990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/23/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
The gene encoding the spike glycoprotein of the SARS-CoV-2 virus that causes COVID-19 disease, was analyzed through two types of periodic tables (standard and cube) of the genetic code to discover the internal fine structure of the spike (S) protein. The analysis was performed on the Wuhan-Hu-1 SARS-CoV-2 sequence (GenBank accession number NC_045512.2). A partition was detected between codon numbers (three-letter code numbers) 47 and 48 that code amino acids in the S-protein. The population distribution of organized codes and amino acid replacements in the S-protein showed large differences between two regions of the cube-type periodic table. The genetic codes of codon numbers 48-63 (4th plane of the cube table) had a higher frequency than the genetic codes of each of the other three planes (1st-3rd planes). Planes-linkage structures involved in the partition were also analyzed and a simplified model for the S-protein gene was obtained where a planes-linkage of the 4th plane and another planes-linkage of the 1st-3rd planes were linked together in alternate shifts. Most of the code population in the 4th plane and their planes-linkage multiformity gave additional support to the partition between codon numbers 47 and 48 in the S-protein gene. Analysis of real lineages of the SARS-CoV-2 virus through the cube-type periodic table identified distinguishing features of the Omicron lineage that included not only a large code population within the receptor-binding domain of the S-protein, but also large percentage rises in the population of amino acid replacements in the 1st and 2nd planes.
Collapse
|
38
|
Pondé RADA. Physicochemical effects of emerging exchanges on the spike protein's RBM of the SARS-CoV-2 Omicron subvariants BA.1-BA.5 and its influence on the biological properties and attributes developed by these subvariants. Virology 2023; 587:109850. [PMID: 37562286 DOI: 10.1016/j.virol.2023.109850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Emerging in South Africa, SARS-CoV-2 Omicron variant was marked by the expression of an exaggerated number of mutations throughout its genome and by the emergence of subvariants, whose attributes developed by them have been associated with amino acid exchanges that occur mainly in the RBM region of the spike protein. The RBM comprises a region within the RBD and is directly involved in the SARS-CoV-2 spike protein interaction with the host cell ACE2 receptor, during the infection mechanism and viral transmission. Defined as the region from aa 437 to aa 508, there are several residues in certain positions that interact directly with the human ACE-2 receptor during these processes. The occurrence of amino acid exchanges in these positions causes physicochemical alterations in the SARS-CoV-2 spike protein, which confer additional advantages and attributes to the agent. In addition, these exchanges serve as a basis for the characterization of new variants and subvariants of SARS-CoV-2. In this review, the amino acid exchanges that have occurred in the RBM of the subvariants BA.1 to BA.5 of SARS-CoV-2 that emerged from the Omicron are described. The physicochemical effects caused by them on spike protein are also described, as well as their influence on the biological properties and attributes developed by the subvariants BA.1, BA.2, BA.3, BA.4 and BA.5.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde -SES/Superintendência de Vigilância em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil; Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
39
|
Mishra KP, Singh M, Saraswat D, Singh S. Development of ELISA-Based Assay for Detection of SARS-CoV-2 Neutralizing Antibody. Viral Immunol 2023; 36:495-502. [PMID: 37643285 DOI: 10.1089/vim.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulates the plasma B cells to secrete specific antibodies against the viral antigen. However, not all antibodies can prevent the virus from entering the cells. The subpopulation of antibodies which blocks the entry of the virus into host cells is termed neutralizing antibodies (NAbs). The gold standard test for the detection of NAbs is the viral plaque reduction and neutralization test; however, various other methods can also be utilized to detect NAbs. In this study, we have developed an Enzyme Linked Immunosobent Assay (ELISA)-based protocol for rapid detection of SARS CoV-2 NAb by inhibiting the binding of the spike protein receptor-binding domain to angiotensin converting enzyme 2 and compared it with cPASS neutralizing antibody kit, which was approved by the Food and Drug Administration (FDA). The results obtained suggest that the in-house ELISA developed for the detection of NAbs against SARS-CoV-2 is rapid and reliable. Compared to FDA-approved GenScript's cPass assay, the specificity and the sensitivity of the in-house-developed ELISA kit were 100% (95% confidence intervals of 69.15-100.00) and 96% (95% confidence intervals of 86.29-99.51), respectively. Thus, the ELISA protocol developed to test the neutralizing activities of antibodies is rapid, which requires a BSL-2 infrastructure facility and can be easily performed. It has very high potential applications in the rapid screening of NAb against SARS-CoV-2.
Collapse
Affiliation(s)
- K P Mishra
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Mrinalini Singh
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Deepika Saraswat
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Somnath Singh
- Immunomodulation Laboratory, Defence Institute of Physiology and Allied Sciences, Delhi, India
| |
Collapse
|
40
|
Dou X, Zhang Z, Liu B, Li C, Du Y, Tian F. Highly sensitive digital detection of SARS-CoV-2 nucleocapsid protein through single-molecule counting. Anal Bioanal Chem 2023; 415:6155-6164. [PMID: 37596347 DOI: 10.1007/s00216-023-04886-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Nucleocapsid protein (NP) is one of the structural proteins of SARS-CoV-2 which is stable, well-conserved, highly immunogenic, and abundantly expressed due to the host's adaptive immune response, making it a promising antigenic biomarker for the early and rapid identification and diagnosis of SARS-CoV-2. Traditional antigen analytical methods with NP as the detection marker often have insufficient sensitivity. To achieve rapid and highly sensitive detection of NP, we constructed a novel single-molecule (digital) fluorescence-linked immunosorbent assay (FLISA) based on streptavidin-modified transparent 96-well microplates. Streptavidin was immobilized on the microplate under optimized conditions with a 15 mM carbonate buffer solution (pH 9.6) as the coating solution, biotinylated antibodies conjugated with streptavidin as capture probes, and carboxylated fluorescent microsphere-conjugated monoclonal antibodies (FMs-mAbs) as fluorescent probes. Individual sandwich immunolabeled complexes of the SARS-CoV-2 diagnostic marker NP were detected and counted though wide-field inverted fluorescence microscopy (1.1 × 1.4 mm2). FLISA had a linear detection range of 0.2 pg/mL to 200 ng/mL and a limit of detection (LOD) of 0.73 fg/mL and 8 fg/mL for NP in phosphate buffer saline and spiked nasal swab samples, respectively. The sensitivity was much higher than commercial antigen detection kits, providing wide detection prospects in future clinical diagnosis, environmental monitoring, and other fields.
Collapse
Affiliation(s)
- Xuechen Dou
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 30161, China
| | - Zhiwei Zhang
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 30161, China
| | - Bo Liu
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 30161, China
| | - Chao Li
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 30161, China
- National Bio-Protection Engineering Center, Tianjin, 300161, China
| | - Yaohua Du
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 30161, China.
- National Bio-Protection Engineering Center, Tianjin, 300161, China.
| | - Feng Tian
- Medical Support Technology Research Department, Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin, 30161, China.
| |
Collapse
|
41
|
Hasan A, Rahim R, Nakayama EE, Uno K, Hasan N, Rahman M, Shioda T. Enhancement of IL-6 Production Induced by SARS-CoV-2 Nucleocapsid Protein and Bangladeshi COVID-19 Patients' Sera. Viruses 2023; 15:2018. [PMID: 37896795 PMCID: PMC10611338 DOI: 10.3390/v15102018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory tract infection caused by severe acute respiratory syndrome coronavirus 2 that can have detrimental effects on multiple organs and accelerate patient mortality. This study, which encompassed 130 confirmed COVID-19 patients who were assessed at three different time points (i.e., 3, 7, and 12 days) after the onset of symptoms, investigated interleukin-6 (IL-6) enhancement induced by a viral nucleocapsid (N) protein from a myeloid cell line. Disease severity was categorized as mild, moderate, or severe. The severe cases were characterized as having significant elevations in serum IL-6, C-reactive protein, D-dimer, ferritin, creatinine, leukocytes, and neutrophil-to-lymphocyte ratio and decreased hemoglobin, hematocrit, and albumin levels compared with mild and moderate cases. To evaluate IL-6-inducing activity, heat-inactivated sera from these patients were incubated with and without the N protein. The findings showed a progressive increase in IL-6 production in severe cases upon N protein stimulation. There was a strong correlation between anti-N antibodies and levels of IL-6 secreted by myeloid cells in the presence of N protein and sera, indicating the crucial role that the anti-N antibody plays in inducing IL-6 production. Uncontrolled IL-6 production played a pivotal role in disease pathogenesis, exacerbating both disease severity and mortality. Efficiently targeting the N protein could potentially be employed as a therapeutic strategy for regulating the immune response and alleviating inflammation in severe cases.
Collapse
Affiliation(s)
- Abu Hasan
- Evercare Hospital Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh; (A.H.); (R.R.); (N.H.)
| | - Rummana Rahim
- Evercare Hospital Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh; (A.H.); (R.R.); (N.H.)
| | - Emi E. Nakayama
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0781, Japan;
| | - Kazuko Uno
- IFN & Host-Defense Research Laboratory, Louis Pasteur Center for Medical Research, Kyoto 606-8225, Japan;
| | - Nazmul Hasan
- Evercare Hospital Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh; (A.H.); (R.R.); (N.H.)
| | - Mizanur Rahman
- Evercare Hospital Dhaka, Plot-81, Block-E, Bashundhara R/A, Dhaka 1229, Bangladesh; (A.H.); (R.R.); (N.H.)
| | - Tatsuo Shioda
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0781, Japan;
| |
Collapse
|
42
|
Shafiq N, Mehroze A, Sarwar W, Arshad U, Parveen S, Rashid M, Farooq A, Rafiq N, Wondmie GF, Bin Jardan YA, Brogi S, Bourhia M. Exploration of phenolic acid derivatives as inhibitors of SARS-CoV-2 main protease and receptor binding domain: potential candidates for anti-SARS-CoV-2 therapy. Front Chem 2023; 11:1251529. [PMID: 37822772 PMCID: PMC10562575 DOI: 10.3389/fchem.2023.1251529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
Severe acute respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) is the etiological virus of Coronavirus Disease 2019 (COVID-19) which has been a public health concern due to its high morbidity and high mortality. Hence, the search for drugs that incapacitate the virus via inhibition of vital proteins in its life cycle is ongoing due to the paucity of drugs in clinical use against the virus. Consequently, this study was aimed at evaluating the potentials of natural phenolics against the Main protease (Mpro) and the receptor binding domain (RBD) using molecular modeling techniques including molecular docking, molecular dynamics (MD) simulation, and density functional theory (DFT) calculations. To this end, thirty-five naturally occurring phenolics were identified and subjected to molecular docking simulation against the proteins. The results showed the compounds including rosmarinic acid, cynarine, and chlorogenic acid among many others possessed high binding affinities for both proteins as evident from their docking scores, with some possessing lower docking scores compared to the standard compound (Remdesivir). Further subjection of the hit compounds to drug-likeness, pharmacokinetics, and toxicity profiling revealed chlorogenic acid, rosmarinic acid, and chicoric acid as the compounds with desirable profiles and toxicity properties, while the study of their electronic properties via density functional theory calculations revealed rosmarinic acid as the most reactive and least stable among the sets of lead compounds that were identified in the study. Molecular dynamics simulation of the complexes formed after docking revealed the stability of the complexes. Ultimately, further experimental procedures are needed to validate the findings of this study.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Aiman Mehroze
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Warda Sarwar
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Uzma Arshad
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Shagufta Parveen
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Maryam Rashid
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Ariba Farooq
- Department of Chemistry, University of Lahore, Lahore, Pakistan
| | - Naila Rafiq
- Department of Biochemistry, Government College Women University Faisalabad, Faisalabad, Pakistan
| | | | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Simone Brogi
- Department of Pharmacy, Pisa University, Pisa, Italy
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| |
Collapse
|
43
|
Takahashi T, Ai T, Saito K, Nojiri S, Takahashi M, Igawa G, Yamamoto T, Khasawneh A, Paran FJ, Takei S, Horiuchi Y, Kanno T, Tobiume M, Hiki M, Wakita M, Miida T, Okuzawa A, Suzuki T, Takahashi K, Naito T, Tabe Y. Assessment of antibody dynamics and neutralizing activity using serological assay after SARS-CoV-2 infection and vaccination. PLoS One 2023; 18:e0291670. [PMID: 37725623 PMCID: PMC10508622 DOI: 10.1371/journal.pone.0291670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
The COVID-19 antibody test was developed to investigate the humoral immune response to SARS-CoV-2 infection. In this study, we examined whether S antibody titers measured using the anti-SARS-CoV-2 IgG II Quant assay (S-IgG), a high-throughput test method, reflects the neutralizing capacity acquired after SARS-CoV-2 infection or vaccination. To assess the antibody dynamics and neutralizing potency, we utilized a total of 457 serum samples from 253 individuals: 325 samples from 128 COVID-19 patients including 136 samples from 29 severe/critical cases (Group S), 155 samples from 71 mild/moderate cases (Group M), and 132 samples from 132 health care workers (HCWs) who have received 2 doses of the BNT162b2 vaccinations. The authentic virus neutralization assay, the surrogate virus neutralizing antibody test (sVNT), and the Anti-N SARS-CoV-2 IgG assay (N-IgG) have been performed along with the S-IgG. The S-IgG correlated well with the neutralizing activity detected by the authentic virus neutralization assay (0.8904. of Spearman's rho value, p < 0.0001) and sVNT (0.9206. of Spearman's rho value, p < 0.0001). However, 4 samples (2.3%) of S-IgG and 8 samples (4.5%) of sVNT were inconsistent with negative results for neutralizing activity of the authentic virus neutralization assay. The kinetics of the SARS-CoV-2 neutralizing antibodies and anti-S IgG in severe cases were faster than the mild cases. All the HCWs elicited anti-S IgG titer after the second vaccination. However, the HCWs with history of COVID-19 or positive N-IgG elicited higher anti-S IgG titers than those who did not have it previously. Furthermore, it is difficult to predict the risk of breakthrough infection from anti-S IgG or sVNT antibody titers in HCWs after the second vaccination. Our data shows that the use of anti-S IgG titers as direct quantitative markers of neutralizing capacity is limited. Thus, antibody tests should be carefully interpreted when used as serological markers for diagnosis, treatment, and prophylaxis of COVID-19.
Collapse
Affiliation(s)
- Toshihiro Takahashi
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaori Saito
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shuko Nojiri
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
| | - Maika Takahashi
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Gene Igawa
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Takamasa Yamamoto
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Abdullah Khasawneh
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Faith Jessica Paran
- Department of Research Support Utilizing Bioresource Bank, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satomi Takei
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuki Horiuchi
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takayuki Kanno
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Hiki
- Department of Emergency Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
- Department of Cardiovascular Biology and Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Mitsuru Wakita
- Department of Clinical Laboratory, Juntendo University Hospital, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Okuzawa
- Department of Research Support Utilizing Bioresource Bank, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Coloproctological Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Research Support Utilizing Bioresource Bank, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshio Naito
- Department of Research Support Utilizing Bioresource Bank, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of General Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Research Support Utilizing Bioresource Bank, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
Bagheri M, Hallaj T, Ansari L, Pakdel FG. Detection of Coronavirus Disease 2019 (COVID-19) by TaqMan Real-Time PCR in Iran. MAEDICA 2023; 18:442-446. [PMID: 38023762 PMCID: PMC10674112 DOI: 10.26574/maedica.2023.18.3.442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known as a positivesense single-strand RNA virus and leads to Coronavirus disease 2019 (COVID-19). Coronaviruses significantly impact the human respiratory tract. Coronavirus disease is potentially fatal and transmissible in the world. In this study we evaluated the presence or absence of SARS-CoV-2 in 220 patients with un-explained pneumonia by TaqMan real-time PCR assay regarding open reading frame (ORF1ab) and nucleocapsid (N) protein genes. Materials and methods: Totally, 224 patients entered the study. Upper and lower respiratory tract secretion samples were obtained during 2020 from patients. Samples contained nose and throat swabs with viral transport medium. RNA was isolated from clinical samples with the GenePure Plus fully automatic Nucleic Acid Purification System, NPA-32+ (Hangzhou Bioer Technology Co. Ltd, Hangzhou, China). Outcomes: 72.32% of cases were positive for COVID-19. All positive cases had the most common symptoms of illness regarding fatigue, dry cough, dyspnea, headache, abdominal pain, nausa, vomiting and myalgia. Fever was observed in 50% of positive cases. Chest computed tomography (CT) scan of all tested patients indicated two-sided chest involvement. Conclusion:Detection of COVID-19 by TaqMan real-time PCR seems to be a powerful method for the screening and detection of novel corona virus infection.
Collapse
Affiliation(s)
- Morteza Bagheri
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Firouz Ghaderi Pakdel
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
45
|
Tapela K, Opurum PC, Nuokpem FY, Tetteh B, Siaw GK, Humbert MV, Tawiah-Eshun S, Barakisu AI, Asiedu K, Arhin SK, Manu AA, Appiedu-Addo SNA, Obbeng L, Quansah D, Languon S, Anyigba C, Dosoo D, Edu NKO, Oduro-Mensah D, Ampofo W, Tagoe E, Quaye O, Donkor IO, Akorli J, Aniweh Y, Christodoulides M, Mutungi J, Bediako Y, Rayner JC, Awandare GA, McCormick CJ, Quashie PK. Development of an Affordable ELISA Targeting the SARS-CoV-2 Nucleocapsid and Its Application to Samples from the Ongoing COVID-19 Epidemic in Ghana. Mol Diagn Ther 2023; 27:583-592. [PMID: 37462793 PMCID: PMC10435612 DOI: 10.1007/s40291-023-00655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION The true nature of the population spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in populations is often not fully known as most cases, particularly in Africa, are asymptomatic. Finding the true magnitude of SARS-CoV-2 spread is crucial to provide actionable data about the epidemiological progress of the disease for researchers and policymakers. This study developed and optimized an antibody enzyme-linked immunosorbent assay (ELISA) using recombinant nucleocapsid antigen expressed in-house using a simple bacterial expression system. METHODS Nucleocapsid protein from SARS-CoV-2 was expressed and purified from Escherichia coli. Plasma samples used for the assay development were obtained from Ghanaian SARS-CoV-2 seropositive individuals during the pandemic, while seronegative controls were plasma samples collected from blood donors before the coronavirus disease 2019 (COVID-19) pandemic. Another set of seronegative controls was collected during the COVID-19 pandemic. Antibody detection and levels within the samples were validated using commercial kits and Luminex. Analyses were performed using GraphPad Prism, and the sensitivity, specificity and background cut-off were calculated. RESULTS AND DISCUSSION This low-cost ELISA (£0.96/test) assay has a high prediction of 98.9%, and sensitivity and specificity of 97% and 99%, respectively. The assay was subsequently used to screen plasma from SARS-CoV-2 RT-PCR-positive Ghanaians. The assay showed no significant difference in nucleocapsid antibody levels between symptomatic and asymptomatic, with an increase of the levels over time. This is in line with our previous publication. CONCLUSION This study developed a low-cost and transferable assay that enables highly sensitive and specific detection of human anti-SARS-CoV-2 IgG antibodies. This assay can be modified to include additional antigens and used for continuous monitoring of sero-exposure to SARS-CoV-2 in West Africa.
Collapse
Affiliation(s)
- Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Precious C Opurum
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Franklin Y Nuokpem
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Becky Tetteh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Godfred K Siaw
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Maria V Humbert
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Sylvia Tawiah-Eshun
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Anna Ibrahim Barakisu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Kwame Asiedu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel Kojo Arhin
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Aaron A Manu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Sekyibea N A Appiedu-Addo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Louisa Obbeng
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Darius Quansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Sylvester Languon
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Claudia Anyigba
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Daniel Dosoo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Nelson K O Edu
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Daniel Oduro-Mensah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - William Ampofo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Emmanuel Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Irene Owusu Donkor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Jewelna Akorli
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Myron Christodoulides
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Joe Mutungi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Yaw Bediako
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Yemaachi Biotech Inc., 222 Swaniker St, Accra, Ghana
| | - Julian C Rayner
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Christopher J McCormick
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Peter Kojo Quashie
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana.
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK.
| |
Collapse
|
46
|
Yoosefian M, Dashti R, Mahani M, Montazer L, Mir A. A suitable drug structure for interaction with SARS-CoV-2 main protease between boceprevir, masitinib and rupintrivir; a molecular dynamics study. ARAB J CHEM 2023; 16:105051. [PMID: 37323221 PMCID: PMC10246938 DOI: 10.1016/j.arabjc.2023.105051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
In recent years, more than 200 countries of the world have faced a health crisis due to the epidemiological disease of COVID-19 caused by the SARS-CoV-2 virus. It had a huge impact on the world economy and the global health sector. Researchers are studying the design and discovery of drugs that can inhibit SARS-CoV-2. The main protease of SARS-CoV-2 is an attractive target for the study of antiviral drugs against coronavirus diseases. According to the docking results, binding energy for boceprevir, masitinib and rupintrivir with CMP are -10.80, -9.39, and -9.51 kcal/mol respectively. Also, for all investigated systems, van der Waals and electrostatic interactions are quite favorable for binding the drugs to SARS-CoV-2 coronavirus main protease, indicating confirmation of the complex stability.
Collapse
Affiliation(s)
- Mehdi Yoosefian
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
- Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran
| | - Razieh Dashti
- Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohamad Mahani
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| | - Leila Montazer
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| | - Amirabbas Mir
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan P.O. Box 87317-51167, Iran
| |
Collapse
|
47
|
Rahman A, Roy KJ, Deb GK, Ha T, Rahman S, Aktar MK, Ali MI, Kafi MA, Choi JW. Nano-Enabled Antivirals for Overcoming Antibody Escaped Mutations Based SARS-CoV-2 Waves. Int J Mol Sci 2023; 24:13130. [PMID: 37685938 PMCID: PMC10488153 DOI: 10.3390/ijms241713130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
This review discusses receptor-binding domain (RBD) mutations related to the emergence of various SARS-CoV-2 variants, which have been highlighted as a major cause of repetitive clinical waves of COVID-19. Our perusal of the literature reveals that most variants were able to escape neutralizing antibodies developed after immunization or natural exposure, pointing to the need for a sustainable technological solution to overcome this crisis. This review, therefore, focuses on nanotechnology and the development of antiviral nanomaterials with physical antagonistic features of viral replication checkpoints as such a solution. Our detailed discussion of SARS-CoV-2 replication and pathogenesis highlights four distinct checkpoints, the S protein (ACE2 receptor coupling), the RBD motif (ACE2 receptor coupling), ACE2 coupling, and the S protein cleavage site, as targets for the development of nano-enabled solutions that, for example, prevent viral attachment and fusion with the host cell by either blocking viral RBD/spike proteins or cellular ACE2 receptors. As proof of this concept, we highlight applications of several nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanoparticles, carbon nanotubes, fullerene, carbon dots, quantum dots, polymeric nanoparticles, lipid-based, polymer-based, lipid-polymer hybrid-based, surface-modified nanoparticles that have already been employed to control viral infections. These nanoparticles were developed to inhibit receptor-mediated host-virus attachments and cell fusion, the uncoating of the virus, viral gene expression, protein synthesis, the assembly of progeny viral particles, and the release of the virion. Moreover, nanomaterials have been used as antiviral drug carriers and vaccines, and nano-enabled sensors have already been shown to enable fast, sensitive, and label-free real-time diagnosis of viral infections. Nano-biosensors could, therefore, also be useful in the remote testing and tracking of patients, while nanocarriers probed with target tissue could facilitate the targeted delivery of antiviral drugs to infected cells, tissues, organs, or systems while avoiding unwanted exposure of non-target tissues. Antiviral nanoparticles can also be applied to sanitizers, clothing, facemasks, and other personal protective equipment to minimize horizontal spread. We believe that the nanotechnology-enabled solutions described in this review will enable us to control repeated SAR-CoV-2 waves caused by antibody escape mutations.
Collapse
Affiliation(s)
- Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Kumar Jyotirmoy Roy
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Gautam Kumar Deb
- Department of Biotechnology, Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| | - Saifur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Mst. Khudishta Aktar
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Isahak Ali
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Md. Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.R.); (K.J.R.); (S.R.); (M.K.A.); (M.I.A.)
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea;
| |
Collapse
|
48
|
Ivanova EN, Shwetar J, Devlin JC, Buus TB, Gray-Gaillard S, Koide A, Cornelius A, Samanovic MI, Herrera A, Mimitou EP, Zhang C, Karmacharya T, Desvignes L, Ødum N, Smibert P, Ulrich RJ, Mulligan MJ, Koide S, Ruggles KV, Herati RS, Koralov SB. mRNA COVID-19 vaccine elicits potent adaptive immune response without the persistent inflammation seen in SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2021.04.20.21255677. [PMID: 33907755 PMCID: PMC8077568 DOI: 10.1101/2021.04.20.21255677] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell dataset of peripheral blood of patients with acute COVID-19 and of healthy volunteers before and after receiving the SARS-CoV-2 mRNA vaccine and booster. We compared host immune responses to the virus and vaccine using transcriptional profiling, coupled with B/T cell receptor repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. These findings were validated in an independent dataset. Analysis of B and T cell repertoires revealed that, while the majority of clonal lymphocytes in COVID-19 patients were effector cells, clonal expansion was more evident among circulating memory cells in vaccine recipients. Furthermore, while clonal αβ T cell responses were observed in both COVID-19 patients and vaccine recipients, dramatic expansion of clonal γδT cells was found only in infected individuals. Our dataset enables comparative analyses of immune responses to infection versus vaccination, including clonal B and T cell responses. Integrating our data with publicly available datasets allowed us to validate our findings in larger cohorts. To our knowledge, this is the first dataset to include comprehensive profiling of longitudinal samples from healthy volunteers pre/post SARS-CoV-2 vaccine and booster.
Collapse
|
49
|
Petrone-García VM, Castellanos-Huerta I, Tellez-Isaias G. Editorial: High-impact respiratory RNA virus diseases. Front Vet Sci 2023; 10:1273650. [PMID: 37675076 PMCID: PMC10478262 DOI: 10.3389/fvets.2023.1273650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
|
50
|
Eriksson C, Gunasekera S, Muhammad T, Zhang M, Laurén I, Mangsbo SM, Lord M, Göransson U. Epitopes Displayed in a Cyclic Peptide Scaffold Bind SARS-COV-2 Antibodies. Chembiochem 2023; 24:e202300103. [PMID: 37021633 DOI: 10.1002/cbic.202300103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/07/2023]
Abstract
The SARS-CoV-2 virus that causes COVID-19 is a global health issue. The spread of the virus has resulted in seven million deaths to date. The emergence of new viral strains highlights the importance of continuous surveillance of the SARS-CoV-2 virus by using timely and accurate diagnostic tools. Here, we used a stable cyclic peptide scaffolds to present antigenic sequences derived from the spike protein that are reactive to SARS-CoV-2 antibodies. Using peptide sequences from different domains of SARS-CoV-2 spike proteins, we grafted epitopes on the peptide scaffold sunflower trypsin inhibitor 1 (SFTI-1). These scaffold peptides were then used to develop an ELISA to detect SARS-CoV-2 antibodies in serum. We show that displaying epitopes on the scaffold improves reactivity overall. One of the scaffold peptides (S2_1146-1161_c) has reactivity equal to that of commercial assays, and shows diagnostic potential.
Collapse
Affiliation(s)
- Camilla Eriksson
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| | - Sunithi Gunasekera
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| | - Taj Muhammad
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| | - Mingshu Zhang
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| | - Ida Laurén
- Department of Pharmacy, Uppsala University Biomedical Centre, 75123, Uppsala, Sweden
| | - Sara M Mangsbo
- Department of Pharmacy, Uppsala University Biomedical Centre, 75123, Uppsala, Sweden
| | - Martin Lord
- Department of Pharmacy, Uppsala University Biomedical Centre, 75123, Uppsala, Sweden
| | - Ulf Göransson
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Centre, Box 591, 75123, Uppsala, Sweden
| |
Collapse
|