1
|
Harrison BR, Partida-Aguilar M, Marye A, Djukovic D, Kauffman M, Dunbar MD, Mariner BL, McCoy BM, Algavi YM, Muller E, Baum S, Bamberger T, Raftery D, Creevy KE, Avery A, Borenstein E, Snyder-Mackler N, Promislow DE. Protein catabolites as blood-based biomarkers of aging physiology: Findings from the Dog Aging Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618956. [PMID: 39484426 PMCID: PMC11526923 DOI: 10.1101/2024.10.17.618956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Our understanding of age-related physiology and metabolism has grown through the study of systems biology, including transcriptomics, single-cell analysis, proteomics and metabolomics. Studies in lab organisms in controlled environments, while powerful and complex, fall short of capturing the breadth of genetic and environmental variation in nature. Thus, there is now a major effort in geroscience to identify aging biomarkers and to develop aging interventions that might be applied across the diversity of humans and other free-living species. To meet this challenge, the Dog Aging Project (DAP) is designed to identify cross-sectional and longitudinal patterns of aging in complex systems, and how these are shaped by the diversity of genetic and environmental variation among companion dogs. Here we surveyed the plasma metabolome from the first year of sampling of the Precision Cohort of the DAP. By incorporating extensive metadata and whole genome sequencing information, we were able to overcome the limitations inherent in breed-based estimates of genetic and physiological effects, and to probe the physiological and dietary basis of the age-related metabolome. We identified a significant effect of age on approximately 40% of measured metabolites. Among other insights, we discovered a potentially novel biomarker of age in the post-translationally modified amino acids (ptmAAs). The ptmAAs, which can only be generated by protein hydrolysis, covaried both with age and with other biomarkers of amino acid metabolism, and in a way that was robust to diet. Clinical measures of kidney function mediated about half of the higher ptmAA levels in older dogs. This work identifies ptmAAs as robust indicators of age in dogs, and points to kidney function as a physiological mediator of age-associated variation in the plasma metabolome.
Collapse
Affiliation(s)
- Benjamin R. Harrison
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maria Partida-Aguilar
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Abbey Marye
- University of Utah, Department of Microbiology and Immunology, Salt Lake City, UT, USA
| | - Danijel Djukovic
- Center for Studies in Ecology and Demography, University of Washington, Seattle, WA, USA
| | - Mandy Kauffman
- Center for Studies in Ecology and Demography, University of Washington, Seattle, WA, USA
| | - Matthew D. Dunbar
- Center for Studies in Ecology and Demography, University of Washington, Seattle, WA, USA
| | | | - Brianah M. McCoy
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Yadid M. Algavi
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Muller
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Shiri Baum
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Tal Bamberger
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Dan Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Kate E. Creevy
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Anne Avery
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, CO, USA
| | - Elhanan Borenstein
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Daniel E. Promislow
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| |
Collapse
|
2
|
Wang D, Zhang G, Yu Y, Zhang Z. Imaging of Sarcopenia in Type 2 Diabetes Mellitus. Clin Interv Aging 2024; 19:141-151. [PMID: 38292460 PMCID: PMC10826713 DOI: 10.2147/cia.s443572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Sarcopenia is an age-related condition characterized by the loss of skeletal muscle mass, muscular strength, and muscle function. In older adults, type 2 diabetes mellitus (T2DM) constitutes a significant health burden. Skeletal muscle damage and deterioration have emerged as novel chronic complications in patients with diabetes, often linked to their increased longevity. Diabetic sarcopenia has been associated with increased rates of hospitalization, cardiovascular events, and mortality. Nevertheless, effectively managing metabolic disorders in patients with T2DM through appropriate therapeutic interventions could potentially mitigate the risk of sarcopenia. Utilizing imaging technologies holds substantial clinical significance in the early detection of skeletal muscle mass alterations associated with sarcopenia. Such detection is pivotal for arresting disease progression and preserving patients' quality of life. These imaging modalities offer reproducible and consistent patterns over time, as they all provide varying degrees of quantitative data. This review primarily delves into the application of dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging, and ultrasound for both qualitative and quantitative assessments of muscle mass in patients with T2DM. It also juxtaposes the merits and limitations of these four techniques. By understanding the nuances of each method, clinicians can discern how best to apply them in diverse clinical scenarios.
Collapse
Affiliation(s)
- Dingyue Wang
- Department of Ultrasound, the First Affiliated Hospital China Medical University, Shenyang City, Liaoning Province, 110001, People’s Republic of China
| | - Gaosen Zhang
- Department of Ultrasound, the First Affiliated Hospital China Medical University, Shenyang City, Liaoning Province, 110001, People’s Republic of China
| | - Yana Yu
- Department of Ultrasound, the First Affiliated Hospital China Medical University, Shenyang City, Liaoning Province, 110001, People’s Republic of China
| | - Zhen Zhang
- Department of Ultrasound, the First Affiliated Hospital China Medical University, Shenyang City, Liaoning Province, 110001, People’s Republic of China
| |
Collapse
|
3
|
Cosentino M, Forcina L, Zouhair M, Apa L, Genovese D, Boccia C, Rizzuto E, Musarò A. Modelling three-dimensional cancer-associated cachexia and therapy: The molecular basis and therapeutic potential of interleukin-6 transignalling blockade. J Cachexia Sarcopenia Muscle 2023; 14:2550-2568. [PMID: 37727078 PMCID: PMC10751446 DOI: 10.1002/jcsm.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/19/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Causes and mechanisms underlying cancer cachexia are not fully understood, and currently, no therapeutic approaches are available to completely reverse the cachectic phenotype. Interleukin-6 (IL-6) has been extensively described as a key factor in skeletal muscle physiopathology, exerting opposite roles through different signalling pathways. METHODS We employed a three-dimensional ex vivo muscle engineered tissue (X-MET) to model cancer-associated cachexia and to study the effectiveness of selective inhibition of IL-6 transignalling in counteracting the cachectic phenotype. Conditioned medium (CM) derived from C26 adenocarcinoma cells was used as a source of soluble factors contributing to the establishment of cancer cachexia in the X-MET model. A dose of 1.2 ng/mL of glycoprotein-130 fused chimaera (gp130Fc) was added to cachectic culture medium to neutralize IL-6 transignalling. RESULTS C26-conditioned medium induced a cachectic-like phenotype in the X-MET, leading to a decline of muscle mass (-60%; P < 0.001), a reduction in myosin expression (-92.4%; P < 0.005) and a reduction of the contraction frequency spectrum (-94%). C26-conditioned medium contains elevated amounts of IL-6 (8.61 ± 4.09 pg/mL) and IL6R (56.85 ± 10.96 pg/mL). These released factors activated the signal transducer and activator of transcription 3 (STAT3) signalling in the C26_CM X-MET system (phosphorylated STAT3/TOTAL +54.6%; P < 0.005), which in turn promote an enhancement of Il-6 (+69.2%; P < 0.05) and Il6r (+43%; P < 0.05) gene expression, suggesting the induction of a feed-forward loop. The selective neutralization of IL-6 transignalling, by gp130Fc, in C26_CM X-MET prevented the hyperactivation of STAT3 (-55.8%; P < 0.005), countered the reduction of cross-sectional area (+28.2%; P < 0.05) and reduced the expression of proteolytic factors including muscle ring finger-1 (-88%; P < 0.005) and ATROGIN1 (-92%; P < 0.05), thus preserving the robustness and increasing the contractile force (+20%) of the three-dimensional muscle system. Interestingly, the selective inhibition of IL-6 transignalling modulated gene regulatory networks involved in myogenesis and apoptosis, normalizing the expression of pro-apoptotic miRNAs, including miR-31 (-53.2%; P < 0.05) and miR-34c (-65%; P < 0.005), and resulting in the reduction of apoptotic pathways highlighted by the sensible reduction of cleaved caspase 3 (-92.5%; P < 0.005) in gp130Fc-treated C26_CM X-MET. CONCLUSIONS IL-6 transignalling appeared as a promising target to counter cancer cachexia-related alterations. The X-MET model has proven to be a reliable drug-screening tool to identify novel therapeutic approaches and to test them in preclinical studies, significantly reducing the use of animal models.
Collapse
Affiliation(s)
- Marianna Cosentino
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Laura Forcina
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Mariam Zouhair
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Ludovica Apa
- Department of Mechanical and Aerospace EngineeringSapienza University of RomeRomeItaly
| | - Desirèe Genovese
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Caterina Boccia
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
| | - Emanuele Rizzuto
- Department of Mechanical and Aerospace EngineeringSapienza University of RomeRomeItaly
| | - Antonio Musarò
- DAHFMO‐Unit of Histology and Medical EmbryologySapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci BolognettiRomeItaly
- Scuola Superiore di Studi Avanzati Sapienza (SSAS)Sapienza University of RomeRomeItaly
| |
Collapse
|
4
|
Muscle mass loss in breast cancer patients of reproductive age (≤ 45 years) undergoing neoadjuvant chemotherapy. LA RADIOLOGIA MEDICA 2023; 128:49-57. [PMID: 36536266 DOI: 10.1007/s11547-022-01574-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Loss of muscle mass is associated with negative clinical outcome in breast cancer (BC) patients. Therefore, the aim of the study is to evaluate if there is pectoralis muscle area (PMA) depletion, reflecting loss of muscle mass, in breast cancer patients of reproductive age (≤ 45 years) undergoing neoadjuvant chemotherapy (NAC) and to correlate PMA with clinical and histopathological data. MATERIAL AND METHODS This monocentric study, approved by our institutional review board, enrolled a total of 52 consecutive patients (mean age 37 ± 4.96 years) with histologically proven primary breast cancer between January 2019 and September 2021, treated with NAC and in whom tumor response and PMA were assessed with breast MRI. Two radiologists calculated PMA before and after NAC independently and blindly on axial 3D FLASH pre-contrast T1-weighted images. Wilcoxon-Mann-Whitney U test compared median values and percentage changes of pectoralis muscle area at the beginning and at the end of NAC (158 ± 25.5 days). Multivariate regression analysis on ΔPMA (difference between PMA pre-NAC and PMA post-NAC) was done according to clinical and histopathological data. Inter-reader and intra-reader agreement was estimated with K statistics. RESULTS Pre-NAC PMA mean value was larger than post-NAC PMA mean value (9.6 ± 2.6 cm2 vs. 8.7 ± 2.2 cm2, p < 0.001, delta value 1.41). According to the RECIST criteria, no significant differences between complete and partial response were found. Multivariate regression analysis did not show any significant relationships between ΔPMA and age, time between MRI examinations, estrogen and progesterone receptor status, human epidermal growth factor receptor 2 status, Ki-67 expression, lymph node involvement, RECIST criteria, histological type, and different regimes of NAC. Inter-reader (k = 0.74) and intra-reader agreement (0.67 and 0.73) in PMA assessment was good. CONCLUSIONS PMA variation in BC young patients, directly estimated on breast MRI, could be a potential tool to monitor body composition during NAC with potential implications in improving outcome.
Collapse
|
5
|
Osburn SC, Mesquita P, Neal FK, Rumbley M, Holmes MT, Ruple BA, Mobley CB, Brown MD, McCullough DJ, Kavazis AN, Roberts MD. Long-term voluntary wheel running effects on markers of Long Interspersed Nuclear Element-1 in skeletal muscle, liver, and brain tissue of female rats. Am J Physiol Cell Physiol 2022; 323:C907-C919. [PMID: 35938680 DOI: 10.1152/ajpcell.00234.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to determine the effects of long-term voluntary wheel running on markers of Long Interspersed Nuclear Element-1 (L1) in skeletal muscle, liver, and the hippocampus of female rats. Additionally, markers of the cGAS-STING DNA sensing pathway that results in inflammation were interrogated. Female Lewis rats (n=34) were separated into one of three groups including a 6-month-old group to serve as a young comparator group (CTL, n=10), a group that had access to a running wheel for voluntary wheel running (EX, n=12), and an age-matched group that did not (SED, n=12). Both SED and EX groups were carried out from 6 months to 15 months of age. There were no significant differences in L1 mRNA expression for any of the tissues between groups. Methylation of the L1 promoter in the soleus and hippocampus was significantly higher in SED and EX compared to CTL (p<0.05). ORF1p expression was higher in older SED and EX rats compared to CTL for every tissue (p<0.05). There were no differences between groups for L1 mRNA or cGAS-STING pathway markers. Our results suggest there is an increased ORF1 protein expression across tissues with aging that is not mitigated by voluntary wheel running. Additionally, while previous data imply that L1 methylation changes may play a role in acute exercise for L1 RNA expression, this does not seem to occur during extended periods of voluntary wheel running.
Collapse
Affiliation(s)
- Shelby C Osburn
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Paulo Mesquita
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Frances K Neal
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Melissa Rumbley
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Matthew T Holmes
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Bradley A Ruple
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - C Brooks Mobley
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Michael D Brown
- School of Public Health, University of Maryland, College Park, MD, United States
| | - Danielle J McCullough
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| | | | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States.,Edward Via College of Osteopathic Medicine, Auburn, AL, United States
| |
Collapse
|
6
|
Lee JY, Lee M, Lee DH, Lee YH, Lee BW, Kang ES, Cha BS. Protective Effect of Delta-Like 1 Homolog Against Muscular Atrophy in a Mouse Model. Endocrinol Metab (Seoul) 2022; 37:684-697. [PMID: 36065648 PMCID: PMC9449104 DOI: 10.3803/enm.2022.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGRUOUND Muscle atrophy is caused by an imbalance between muscle growth and wasting. Delta-like 1 homolog (DLK1), a protein that modulates adipogenesis and muscle development, is a crucial regulator of myogenic programming. Thus, we investigated the effect of exogenous DLK1 on muscular atrophy. METHODS We used muscular atrophy mouse model induced by dexamethasone (Dex). The mice were randomly divided into three groups: (1) control group, (2) Dex-induced muscle atrophy group, and (3) Dex-induced muscle atrophy group treated with DLK1. The effects of DLK1 were also investigated in an in vitro model using C2C12 myotubes. RESULTS Dex-induced muscular atrophy in mice was associated with increased expression of muscle atrophy markers and decreased expression of muscle differentiation markers, while DLK1 treatment attenuated these degenerative changes together with reduced expression of the muscle growth inhibitor, myostatin. In addition, electron microscopy revealed that DLK1 treatment improved mitochondrial dynamics in the Dex-induced atrophy model. In the in vitro model of muscle atrophy, normalized expression of muscle differentiation markers by DLK1 treatment was mitigated by myostatin knockdown, implying that DLK1 attenuates muscle atrophy through the myostatin pathway. CONCLUSION DLK1 treatment inhibited muscular atrophy by suppressing myostatin-driven signaling and improving mitochondrial biogenesis. Thus, DLK1 might be a promising candidate to treat sarcopenia, characterized by muscle atrophy and degeneration.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Molecular, Cellular and Cancer Biology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Minyoung Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | | | - Yong-ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Byung-Wan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Seok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Bong-Soo Cha
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Šoltys K, Lendvorský L, Hric I, Baranovičová E, Penesová A, Mikula I, Bohmer M, Budiš J, Vávrová S, Grones J, Grendar M, Kolísek M, Bielik V. Strenuous Physical Training, Physical Fitness, Body Composition and Bacteroides to Prevotella Ratio in the Gut of Elderly Athletes. Front Physiol 2021; 12:670989. [PMID: 34239449 PMCID: PMC8257935 DOI: 10.3389/fphys.2021.670989] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Regular physical activity seems to have a positive effect on the microbiota composition of the elderly, but little is known about the added possible benefits of strenuous endurance training. To gain insight into the physiology of the elderly and to identify biomarkers associated with endurance training, we combined different omics approaches. We aimed to investigate the gut microbiome, plasma composition, body composition, cardiorespiratory fitness, and muscle strength of lifetime elderly endurance athletes (LA) age 63.5 (95% CI 61.4, 65.7), height 177.2 (95% CI 174.4, 180.1) cm, weight 77.8 (95% CI 75.1, 80.5) kg, VO2max 42.4 (95% CI 39.8, 45.0) ml.kg–1.min–1 (n = 13) and healthy controls age 64.9 (95% CI 62.1, 67.7), height 174.9 (95% CI 171.2, 178.6) cm, weight 83.4 (95% CI 77.1, 89.7) kg, VO2max 28.9 (95% CI 23.9, 33.9), ml.kg–1.min–1 (n = 9). Microbiome analysis was performed on collected stool samples further subjected to 16S rRNA gene analysis. NMR-spectroscopic analysis was applied to determine and compare selected blood plasma metabolites mostly linked to energy metabolism. The machine learning (ML) analysis discriminated subjects from the LA and CTRL groups using the joint predictors Bacteroides 1.8E + 00 (95% CI 1.1, 2.5)%, 3.8E + 00 (95% CI 2.7, 4.8)% (p = 0.002); Prevotella 1.3 (95% CI 0.28, 2.4)%, 0.1 (95% CI 0.07, 0.3)% (p = 0.02); Intestinimonas 1.3E-02 (95% CI 9.3E-03, 1.7E-02)%, 5.9E-03 (95% CI 3.9E-03, 7.9E-03)% (p = 0.002), Subdoligranulum 7.9E-02 (95% CI 2.5E-02, 1.3E-02)%, 3.2E-02 (95% CI 1.8E-02, 4.6E-02)% (p = 0.02); and the ratio of Bacteroides to Prevotella 133 (95% CI -86.2, 352), 732 (95% CI 385, 1079.3) (p = 0.03), leading to an ROC curve with AUC of 0.94. Further, random forest ML analysis identified VO2max, BMI, and the Bacteroides to Prevotella ratio as appropriate, joint predictors for discriminating between subjects from the LA and CTRL groups. Although lifelong endurance training does not bring any significant benefit regarding overall gut microbiota diversity, strenuous athletic training is associated with higher cardiorespiratory fitness, lower body fat, and some favorable gut microbiota composition, all factors associated with slowing the rate of biological aging.
Collapse
Affiliation(s)
- Katarína Šoltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.,Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Leonard Lendvorský
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| | - Ivan Hric
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Matin, Comenius University in Bratislava, Martin, Slovakia
| | - Adela Penesová
- Institute of Clinical and Translational Research Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivan Mikula
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Miroslav Bohmer
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jaroslav Budiš
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| | - Silvia Vávrová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Jozef Grones
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Marian Grendar
- Biomedical Center Martin, Jessenius Faculty of Medicine in Matin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Kolísek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Matin, Comenius University in Bratislava, Martin, Slovakia
| | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
8
|
Effects of exercise on cellular and tissue aging. Aging (Albany NY) 2021; 13:14522-14543. [PMID: 34001677 PMCID: PMC8202894 DOI: 10.18632/aging.203051] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
The natural aging process is carried out by a progressive loss of homeostasis leading to a functional decline in cells and tissues. The accumulation of these changes stem from a multifactorial process on which both external (environmental and social) and internal (genetic and biological) risk factors contribute to the development of adult chronic diseases, including type 2 diabetes mellitus (T2D). Strategies that can slow cellular aging include changes in diet, lifestyle and drugs that modulate intracellular signaling. Exercise is a promising lifestyle intervention that has shown antiaging effects by extending lifespan and healthspan through decreasing the nine hallmarks of aging and age-associated inflammation. Herein, we review the effects of exercise to attenuate aging from a clinical to a cellular level, listing its effects upon various tissues and systems as well as its capacity to reverse many of the hallmarks of aging. Additionally, we suggest AMPK as a central regulator of the cellular effects of exercise due to its integrative effects in different tissues. These concepts are especially relevant in the setting of T2D, where cellular aging is accelerated and exercise can counteract these effects through the reviewed antiaging mechanisms.
Collapse
|
9
|
Fuertes-Alvarez S, Izeta A. Terminal Schwann Cell Aging: Implications for Age-Associated Neuromuscular Dysfunction. Aging Dis 2021; 12:494-514. [PMID: 33815879 PMCID: PMC7990373 DOI: 10.14336/ad.2020.0708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Action potential is transmitted to muscle fibers through specialized synaptic interfaces called neuromuscular junctions (NMJs). These structures are capped by terminal Schwann cells (tSCs), which play essential roles during formation and maintenance of the NMJ. tSCs are implicated in the correct communication between nerves and muscles, and in reinnervation upon injury. During aging, loss of muscle mass and strength (sarcopenia and dynapenia) are due, at least in part, to the progressive loss of contacts between muscle fibers and nerves. Despite the important role of tSCs in NMJ function, very little is known on their implication in the NMJ-aging process and in age-associated denervation. This review summarizes the current knowledge about the implication of tSCs in the age-associated degeneration of NMJs. We also speculate on the possible mechanisms underlying the observed phenotypes.
Collapse
Affiliation(s)
- Sandra Fuertes-Alvarez
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain
| | - Ander Izeta
- 1Biodonostia, Tissue Engineering Group, Paseo Dr. Begiristain, s/n, San Sebastian 20014, Spain.,2Tecnun-University of Navarra, School of Engineering, Department of Biomedical Engineering and Science, Paseo Mikeletegi, 48, San Sebastian 20009, Spain
| |
Collapse
|
10
|
Abstract
STUDY DESIGN Retrospective study. OBJECTIVE The preoperative parameters for predicting the loss of lordosis after cervical laminoplasty were investigated in the present study. SUMMARY OF BACKGROUND DATA Cervical laminoplasty is an effective surgical method to decompress the cervical spinal cord. Maintaining cervical lordosis after laminoplasty is an important factor to ensure the successful surgical treatment. To know the preoperative parameters for predicting loss of lordosis after cervical laminoplasty is important for better outcome after laminoplasty. METHODS In this retrospective study, 106 patients who underwent cervical laminoplasty from 2011 to 2015 were reviewed. The preoperative parameters; T1 slope (TS), Cobb lordotic angle (CLA) and sagittal vertical axis (SVA) at C2-C7, relative cross-sectional area (RCSA), and fatty degeneration of deep extensor muscles (DEMs) were measured. Visual analogue scale (VAS) and modified Japanese Orthopedic Association (mJOA) scores were used for clinical assessment. Correlation analysis was performed between the postoperative CLA change and preoperative parameters. The patients were divided into the decreased- or maintained-lordosis groups based on the difference between postoperative and preoperative CLA. All preoperative parameters were compared between groups. RESULTS Based on correlation analysis, preoperative TS (P = 0.001), TS-CLA (P = 0.046), RCSA at C7-T1 (P < 0.001), and fatty degeneration of DEMs (P < 0.001) were correlated with loss of lordosis. Among the 106 patients, 68 showed decreased-lordosis and 38 maintained-lordosis. Preoperative TS (P = 0.003), SVA (P = 0.014), TS-CLA (P = 0.015), and RCSA at C7-T1 (P = 0.005) were significantly different between groups. In both correlation and comparative analyses, higher TS and TS-CLA and less RCSA at C7-T1 were associated with loss of lordosis. Neck pain VAS (P < 0.001) and mJOA scores (P < 0.001) were significantly improved in the maintained-lordosis group. CONCLUSION Maintaining cervical lordosis is important for clinical outcomes after laminoplasty. Preoperative higher TS, TS-CLA, and less RCSA at C7-T1 were considered as predictors for loss of lordosis. These characteristics should be considered when choosing the surgical method to help maintain cervical lordosis. LEVEL OF EVIDENCE 3.
Collapse
|
11
|
Muscle Hypertrophy and Architectural Changes in Response to Eight-Week Neuromuscular Electrical Stimulation Training in Healthy Older People. Life (Basel) 2020; 10:life10090184. [PMID: 32911678 PMCID: PMC7554879 DOI: 10.3390/life10090184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/25/2022] Open
Abstract
Loss of muscle mass of the lower limbs and of the spine extensors markedly impairs locomotor ability and spine stability in old age. In this study, we investigated whether 8 w of neuromuscular electrical stimulation (NMES) improves size and architecture of the lumbar multifidus (LM) and vastus lateralis (VL) along with locomotor ability in healthy older individuals. Eight volunteers (aged 65 ≥ years) performed NMES 3 times/week. Eight sex- and age-matched individuals served as controls. Functional tests (Timed Up and Go test (TUG) and Five Times Sit-to-Stand Test (FTSST)), VL muscle architecture (muscle thickness (MT), pennation angle (PA), and fiber length (FL)), along with VL cross-sectional area (CSA) and both sides of LM were measured before and after by ultrasound. By the end of the training period, MT and CSA of VL increased by 8.6% and 11.4%, respectively. No significant increases were observed in FL and PA. LM CSA increased by 5.6% (left) and 7.1% (right). Interestingly, all VL architectural parameters significantly decreased in the control group. The combined NMES had a large significant effect on TUG (r = 0.50, p = 0.046). These results extend previous findings on the hypertrophic effects of NMES training, suggesting to be a useful mean for combating age-related sarcopenia.
Collapse
|
12
|
Muscle mass loss after neoadjuvant chemotherapy in breast cancer: estimation on breast magnetic resonance imaging using pectoralis muscle area. Eur Radiol 2020; 30:4234-4241. [PMID: 32232787 DOI: 10.1007/s00330-020-06799-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/21/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES The loss of skeletal muscle mass is widely considered a predictor of poor survival and toxicity in breast cancer patients. The aim of this study is to evaluate if there is pectoralis muscle area (PMA) variation, reflecting loss of skeletal muscle mass, on consecutive MRI examinations after neoadjuvant chemotherapy. METHODS The retrospective study protocol was approved by our institutional review board. A total of n = 110 consecutive patients (mean age 56 ± 11 years) who were treated with neoadjuvant chemotherapy (NAC) for histologically proven primary breast cancer between January 2017 and January 2019 and in whom tumor response was checked with standard breast MRI were included. Two radiologists calculated the pectoralis muscle cross-sectional area before and after NAC. RESULTS Time between the MRI examinations, before starting NAC and after completing NAC, was 166.8 ± 50 days. PMA calculated pre-NAC (8.14 cm2) was larger than PMA calculated post-NAC (7.03 cm2) (p < 0.001). According to the Response Evaluation Criteria in Solid Tumors (RECIST) criteria, there were no significant differences between responders (complete or partial response) and non-responders (p = 0.362). The multivariate regression analysis did not show any significant relationships between ΔPMA and age, time between MRI exams, estrogen and progesterone receptor status, human epidermal growth factor receptor status (HER-2), Ki-67 expression, lymph node status, RECIST criteria, histological type, average lesion size, molecular categories, and grade. Inter-reader (k = 0.72) and intra-reader agreement (0.69 and 0.71) in PMA assessment were good. CONCLUSIONS Pectoralis muscle mass varies in breast cancer patients undergoing NAC and this difference can be estimated directly on standard breast MRI. KEY POINTS • Pectoralis muscle area variation reflects loss of skeletal muscle mass. • Pectoralis muscle area on MRI is reduced after NAC. • Pectoralis muscle mass loss seems independent from other variables.
Collapse
|
13
|
Borzuola R, Giombini A, Torre G, Campi S, Albo E, Bravi M, Borrione P, Fossati C, Macaluso A. Central and Peripheral Neuromuscular Adaptations to Ageing. J Clin Med 2020; 9:jcm9030741. [PMID: 32182904 PMCID: PMC7141192 DOI: 10.3390/jcm9030741] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Ageing is accompanied by a severe muscle function decline presumably caused by structural and functional adaptations at the central and peripheral level. Although researchers have reported an extensive analysis of the alterations involving muscle intrinsic properties, only a limited number of studies have recognised the importance of the central nervous system, and its reorganisation, on neuromuscular decline. Neural changes, such as degeneration of the human cortex and function of spinal circuitry, as well as the remodelling of the neuromuscular junction and motor units, appear to play a fundamental role in muscle quality decay and culminate with considerable impairments in voluntary activation and motor performance. Modern diagnostic techniques have provided indisputable evidence of a structural and morphological rearrangement of the central nervous system during ageing. Nevertheless, there is no clear insight on how such structural reorganisation contributes to the age-related functional decline and whether it is a result of a neural malfunction or serves as a compensatory mechanism to preserve motor control and performance in the elderly population. Combining leading-edge techniques such as high-density surface electromyography (EMG) and improved diagnostic procedures such as functional magnetic resonance imaging (fMRI) or high-resolution electroencephalography (EEG) could be essential to address the unresolved controversies and achieve an extensive understanding of the relationship between neural adaptations and muscle decline.
Collapse
Affiliation(s)
- Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Arrigo Giombini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Guglielmo Torre
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
- Correspondence: ; Tel.: +6-225-418-825
| | - Stefano Campi
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
| | - Erika Albo
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
| | - Marco Bravi
- Department of Physical Medicine and Rehabilitation, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| |
Collapse
|
14
|
Öztürk ZA, Kul S, Türkbeyler İH, Sayıner ZA, Abiyev A. Is increased neutrophil lymphocyte ratio remarking the inflammation in sarcopenia? Exp Gerontol 2018; 110:223-229. [DOI: 10.1016/j.exger.2018.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
|
15
|
Abstract
STUDY DESIGN This was a prospective follow-up study. OBJECTIVE The main objective of this study was to evaluate the effects of sarcopenia on the sagittal alignment of the cervical spine after cervical laminoplasty in order to investigate the relationship between sarcopenia and spinal malalignment. SUMMARY OF BACKGROUND DATA Sarcopenia, a progressive and all over loss of skeletal muscle mass and strength associated with aging, has been reported to be related to spinal malalignment. The causes of poor surgical outcome after cervical laminoplasty have been examined in recent years, including the sagittal malalignment of the cervical spine. However, there are few reports about the impact of sarcopenia on the sagittal alignment of the cervical spine. MATERIALS AND METHODS A total of 171 patients who underwent cervical laminoplasty at our hospital between 2009 and 2015 were assigned to this study. The appendicular skeletal muscle mass [appendicular skeletal muscle index (SMI)] is commonly used to assess sarcopenia. Appendicular SMI (kg/m) was obtained from arm and leg muscle mass using dual-energy x-ray absorptiometry. Sanada and colleagues reference value for the Japanese appendicular SMI was used to diagnose sarcopenia. C2-C7 sagittal vertical axis (SVA), C2-C7 lordosis angle, and C2-C7 range of motion were measured for evaluation. The primary outcome was evaluated using the Japanese Orthopedic Association Score System for Cervical Myelopathy (JOA score) and the SF-36 Health Survey Physical Function (PF). RESULTS Of the 171 patients, 48 were diagnosed with sarcopenia. Preoperative (P=0.001), postoperative (P=0.011), and 1-year follow-up (P=0.007) C2-C7 SVA were greater in the sarcopenia group. Preoperative (P=0.009), postoperative (P=0.018), and 1-year follow-up (P=0.023) SF-36 scores were higher in the nonsarcopenia group. Preoperative (P<0.001), postoperative (P<0.001), and 1-year follow-up (P=0.002) JOA scores were higher in the nonsarcopenia group. C2-C7 SVA and JOA scores were negatively correlated at 1-year follow-up (R=-0.213, P=0.005). C2-C7 SVA and SF-36 scores were not correlated at 1-year follow-up (R=-0.167, P=0.070). CONCLUSIONS C2-C7 SVA was greater and postoperative outcome was worse after cervical laminoplasty in the sarcopenia group than in the nonsarcopenia group; thus, we believe it is necessary to evaluate sarcopenia before cervical laminoplasty, because sarcopenia may impact postoperative cervical alignment and postoperative outcome. LEVEL OF EVIDENCE Level III.
Collapse
|
16
|
Arnold P, Njemini R, Vantieghem S, Gorus E, Pool-Goudzwaard A, Buyl R, Bautmans I. Reaction time in healthy elderly is associated with chronic low-grade inflammation and advanced glycation end product. Exp Gerontol 2018; 108:118-124. [DOI: 10.1016/j.exger.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/21/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
|
17
|
Chang H, Jiang S, Ma X, Peng X, Zhang J, Wang Z, Xu S, Wang H, Gao Y. Proteomic analysis reveals the distinct energy and protein metabolism characteristics involved in myofiber type conversion and resistance of atrophy in the extensor digitorum longus muscle of hibernating Daurian ground squirrels. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 26:20-31. [PMID: 29482114 DOI: 10.1016/j.cbd.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 01/07/2023]
Abstract
Previous hibernation studies demonstrated that such a natural model of skeletal muscle disuse causes limited muscle atrophy and a significant fast-to-slow fiber type shift. However, the underlying mechanism as defined in a large-scale analysis remains unclarified. Isobaric tags for relative and absolute quantification (iTRAQ) based quantitative analysis were used to examine proteomic changes in the fast extensor digitorum longus muscles (EDL) of Daurian ground squirrels (Spermophilus dauricus). Although the wet weights and fiber cross-sectional area of the EDL muscle showed no significant decrease, the percentage of slow type fiber was 61% greater (P < 0.01) in the hibernation group. Proteomics analysis identified 264 proteins that were significantly changed (ratio < 0.83 or >1.2-fold and P < 0.05) in the hibernation group, of which 23 proteins were categorized into energy production and conversion and translation and 22 proteins were categorized into ribosomal structure and biogenesis. Along with the validation by western blot, MAPKAP kinase 2, ATP5D, ACADSB, calcineurin, CSTB and EIF2S were up-regulated in the hibernation group, whereas PDK4, COX II and EIF3C were down-regulated in the hibernation group. MAPKAP kinase 2 and PDK4 were associated with glycolysis, COX II and ATP5D were associated with oxidative phosphorylation, ACADSB was associated with fatty acid metabolism, calcineurin and CSTB were associated with catabolism, and EIF2S and EIF3C were associated with anabolism. Moreover, the total proteolysis rate of EDL in the hibernation group was significantly inhibited compared with that in the pre-hibernation group. These distinct energy and protein metabolism characteristics may be involved in myofiber type conversion and resistance to atrophy in the EDL of hibernating Daurian ground squirrels.
Collapse
Affiliation(s)
- Hui Chang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Shanfeng Jiang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China
| | - Xiufeng Ma
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, PR China
| | - Xin Peng
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, PR China
| | - Jie Zhang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, PR China
| | - Zhe Wang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, PR China
| | - Shenhui Xu
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, PR China
| | - Huiping Wang
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, PR China
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an 710069, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Ministry of Education, Xi'an 710069, PR China.
| |
Collapse
|
18
|
|
19
|
Arnold P, Njemini R, Vantieghem S, Duchateau J, Mets T, Beyer I, Bautmans I. Peripheral muscle fatigue in hospitalised geriatric patients is associated with circulating markers of inflammation. Exp Gerontol 2017; 95:128-135. [PMID: 28502777 DOI: 10.1016/j.exger.2017.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/06/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
Geriatric patients with acute infection show increased muscle weakness and fatigability but the relative contribution of central and peripheral factors is unclear. Hospitalised patients with acute infection (82±6years, N=10) and community-dwelling controls (76±6years, N=19) sustained a maximal voluntary isometric contraction of the M. Adductor Pollicis until strength dropped to 50% of its maximal value. Voluntary muscle activation (VA) was assessed before and at the end of the fatigue protocol using twitch interpolation method and muscle activity was monitored using surface electromyography. Twenty-five circulating inflammatory biomarkers were determined. At pre-fatigue, no significant difference in VA was found between groups. VA decreased to similar levels (~50%) at the end of the fatigue protocol with no association with inflammatory biomarkers. In geriatric patients, muscle activity decreased significantly (p<0.05) during the fatigue protocol, whereas it increased in the controls (time∗group interaction p<0.05). The decrease in muscle activity was significantly related to higher levels of inflammation. Although slower muscle contraction and relaxation were significantly related to higher levels of inflammation, no statistical differences were found between groups. Our results confirm that muscle activity is significantly altered in older patients with acute infection and that local processes are involved.
Collapse
Affiliation(s)
- Pauline Arnold
- Department of Geriatric Physiotherapy, SOMT University of Physiotherapy, Amersfoort, The Netherlands; Frailty in Ageing (FRIA) Research Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Rose Njemini
- Gerontology (GERO) Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Frailty in Ageing (FRIA) Research Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stijn Vantieghem
- Gerontology (GERO) Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Frailty in Ageing (FRIA) Research Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacques Duchateau
- Laboratory of Applied Biology & Neurophysiology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tony Mets
- Gerontology (GERO) Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Frailty in Ageing (FRIA) Research Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Geriatrics Department, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Ingo Beyer
- Gerontology (GERO) Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Frailty in Ageing (FRIA) Research Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Geriatrics Department, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Ivan Bautmans
- Department of Geriatric Physiotherapy, SOMT University of Physiotherapy, Amersfoort, The Netherlands; Gerontology (GERO) Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Frailty in Ageing (FRIA) Research Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Geriatrics Department, Universitair Ziekenhuis Brussel, Brussels, Belgium.
| |
Collapse
|
20
|
Fontes-Oliveira CC, Steinz M, Schneiderat P, Mulder H, Durbeej M. Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells. Sci Rep 2017; 7:45272. [PMID: 28367954 PMCID: PMC5377256 DOI: 10.1038/srep45272] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/23/2017] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle has high energy requirement and alterations in metabolism are associated with pathological conditions causing muscle wasting and impaired regeneration. Congenital muscular dystrophy type 1A (MDC1A) is a severe muscle disorder caused by mutations in the LAMA2 gene. Leigh syndrome (LS) is a neurometabolic disease caused by mutations in genes related to mitochondrial function. Skeletal muscle is severely affected in both diseases and a common feature is muscle weakness that leads to hypotonia and respiratory problems. Here, we have investigated the bioenergetic profile in myogenic cells from MDC1A and LS patients. We found dysregulated expression of genes related to energy production, apoptosis and proteasome in myoblasts and myotubes. Moreover, impaired mitochondrial function and a compensatory upregulation of glycolysis were observed when monitored in real-time. Also, alterations in cell cycle populations in myoblasts and enhanced caspase-3 activity in myotubes were observed. Thus, we have for the first time demonstrated an impairment of the bioenergetic status in human MDC1A and LS muscle cells, which could contribute to cell cycle disturbance and increased apoptosis. Our findings suggest that skeletal muscle metabolism might be a promising pharmacological target in order to improve muscle function, energy efficiency and tissue maintenance of MDC1A and LS patients.
Collapse
Affiliation(s)
- Cibely C Fontes-Oliveira
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Maarten Steinz
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Peter Schneiderat
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Hindrik Mulder
- Unit of Molecular Metabolism, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö University Hospital, Malmö, Sweden
| | - Madeleine Durbeej
- Unit of Muscle Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
21
|
The effect of two intensities resistance training on muscle growth regulatory myokines in sedentary young women. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.obmed.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Saini A, Sharples AP, Al-Shanti N, Stewart CE. Omega-3 fatty acid EPA improves regenerative capacity of mouse skeletal muscle cells exposed to saturated fat and inflammation. Biogerontology 2016; 18:109-129. [PMID: 27864687 PMCID: PMC5288450 DOI: 10.1007/s10522-016-9667-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/05/2016] [Indexed: 12/17/2022]
Abstract
Sarcopenic obesity is characterised by high fat mass, low muscle mass and an elevated inflammatory environmental milieu. We therefore investigated the effects of elevated inflammatory cytokine TNF-α (aging/obesity) and saturated fatty acid, palmitate (obesity) on skeletal muscle cells in the presence/absence of EPA, a-3 polyunsaturated fatty acid with proposed anti-inflammatory, anti-obesity activities. In the present study we show that palmitate was lipotoxic, inducing high levels of cell death and blocking myotube formation. Cell death under these conditions was associated with increased caspase activity, suppression of differentiation, reductions in both creatine kinase activity and gene expression of myogenic factors; IGF-II, IGFBP-5, MyoD and myogenin. However, inhibition of caspase activity via administration of Z-VDVAD-FMK (caspase-2), Z-DEVD-FMK (caspase-3) and ZIETD-KMK (caspase 8) was without effect on cell death. By contrast, lipotoxicity associated with elevated palmitate was reduced with the MEK inhibitor PD98059, indicating palmitate induced cell death was MAPK mediated. These lipotoxic conditions were further exacerbated in the presence of inflammation via TNF-α co-administration. Addition of EPA under cytotoxic stress (TNF-α) was shown to partially rescue differentiation with enhanced myotube formation being associated with increased MyoD, myogenin, IGF-II and IGFBP-5 expression. EPA had little impact on the cell death phenotype observed in lipotoxic conditions but did show benefit in restoring differentiation under lipotoxic plus cytotoxic conditions. Under these conditions Id3 (inhibitor of differentiation) gene expression was inversely linked with survival rates, potentially indicating a novel role of EPA and Id3 in the regulation of apoptosis in lipotoxic/cytotoxic conditions. Additionally, signalling studies indicated the combination of lipo- and cyto-toxic effects on the muscle cells acted through ceramide, JNK and MAPK pathways and blocking these pathways using PD98059 (MEK inhibitor) and Fumonisin B1 (ceramide inhibitor) significantly reduced levels of cell death. These findings highlight novel pathways associated with in vitro models of lipotoxicity (palmitate-mediated) and cytotoxicity (inflammatory cytokine mediated) in the potential targeting of molecular modulators of sarcopenic obesity.
Collapse
Affiliation(s)
- Amarjit Saini
- Department of Laboratory Medicine, Clinical Physiology, Karolinska Institutet, and Unit of Clinical Physiology, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Adam P Sharples
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport & Exercise Sciences, School of Sport and Exercise Sciences, Liverpool John Moores University, Life Science Building, Byrom Street Campus, Liverpool, L3 3AF, UK.
| | - Nasser Al-Shanti
- Neuromuscular and Skeletal Ageing Research Group, Healthcare Science Research Institute, Manchester Metropolitan University, Oxford Road, Manchester, M1 5GD, UK
| | - Claire E Stewart
- Stem Cells, Ageing and Molecular Physiology (SCAMP) Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport & Exercise Sciences, School of Sport and Exercise Sciences, Liverpool John Moores University, Life Science Building, Byrom Street Campus, Liverpool, L3 3AF, UK
| |
Collapse
|
23
|
Kim YJ, Tamadon A, Park HT, Kim H, Ku SY. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016; 2:140-155. [PMID: 30775480 PMCID: PMC6372754 DOI: 10.1016/j.afos.2016.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Sex steroids influence the maintenance and growth of muscles. Decline in androgens, estrogens and progesterone by aging leads to the loss of muscular function and mass, sarcopenia. These steroid hormones can interact with different signaling pathways through their receptors. To date, sex steroid hormone receptors and their exact roles are not completely defined in skeletal and smooth muscles. Although numerous studies focused on the effects of sex steroid hormones on different types of cells, still many unexplained molecular mechanisms in both skeletal and smooth muscle cells remain to be investigated. In this paper, many different molecular mechanisms that are activated or inhibited by sex steroids and those that influence the growth, proliferation, and differentiation of skeletal and smooth muscle cells are reviewed. Also, the similarities of cellular and molecular pathways of androgens, estrogens and progesterone in both skeletal and smooth muscle cells are highlighted. The reviewed signaling pathways and participating molecules can be targeted in the future development of novel therapeutics.
Collapse
Affiliation(s)
- Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun Tae Park
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
24
|
Sierra E, Espinosa de Los Monteros A, Fernández A, Díaz-Delgado J, Suárez-Santana C, Arbelo M, Sierra MA, Herráez P. Muscle Pathology in Free-Ranging Stranded Cetaceans. Vet Pathol 2016; 54:298-311. [PMID: 27538973 DOI: 10.1177/0300985816660747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite the profound impact that skeletal muscle disorders may pose for the daily activities of wild terrestrial and marine mammals, such conditions have been rarely described in cetaceans. In this study, the authors aimed to determine the nature and prevalence of skeletal muscle lesions in small and large odontocetes and mysticetes ( n = 153) from 19 different species. A macroscopic evaluation of the epaxial muscle mass and a histologic examination of the longissimus dorsi muscle were performed in all cases. The only macroscopically evident change was variable degrees of atrophy of the epaxial muscles ( longissimus dorsi, multifidus, spinalis) in emaciated specimens. The histopathological study revealed single or combined morphological changes in 91.5% of the cases. These changes included the following: degenerative lesions (75.2%), muscle atrophy (37.9%), chronic myopathic changes (25.5%), parasitic infestation (9.2%), and myositis (1.9%). The skeletal muscle is easily sampled during a necropsy and provides essential microscopic information that reflects both local and systemic conditions. Thus, skeletal muscle should be systematically sampled, processed, and examined in all stranded cetaceans.
Collapse
Affiliation(s)
- E Sierra
- 1 Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - A Espinosa de Los Monteros
- 1 Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - A Fernández
- 1 Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - J Díaz-Delgado
- 1 Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - C Suárez-Santana
- 1 Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - M Arbelo
- 1 Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - M A Sierra
- 2 Department of Anatomy and Comparative Pathology, Veterinary Faculty, University of Córdoba, Córdoba, Spain
| | - P Herráez
- 1 Department of Veterinary Pathology, Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| |
Collapse
|
25
|
Jing Y, Cai X, Xu Y, Zhu C, Wang L, Wang S, Zhu X, Gao P, Zhang Y, Jiang Q, Shu G. α-Lipoic Acids Promote the Protein Synthesis of C2C12 Myotubes by the TLR2/PI3K Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1720-1729. [PMID: 26855124 DOI: 10.1021/acs.jafc.5b05952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Skeletal muscle protein turnover is regulated by endocrine hormones, nutrients, and inflammation. α-Lipoic acid (ALA) plays an important role in energy homeostasis. Therefore, the aim of this study was to investigate the effects of ALA on protein synthesis in skeletal muscles and reveal the underlying mechanism. ALA (25 μM) significantly increased the protein synthesis and phosphorylation of Akt, mTOR, and S6 in C2C12 myotubes with attenuated phosphorylation of AMPK, Ikkα/β, and eIF2α. Intraperitoneal injection of 50 mg/kg ALA also produced the same results in mouse gastrocnemius. Both the PI3K (LY294002) and mTOR (rapamycin) inhibitors abolished the effects of ALA on protein synthesis in the C2C12 myotubes. However, AICAR (AMPK agonist) failed to block the activation of mTOR and S6 by ALA. ALA increased TLR2 and MyD88 mRNA expression in the C2C12 myotubes. TLR2 knockdown by siRNA almost eliminated the effects of ALA on protein synthesis and the Akt/mTOR pathway in the C2C12 myotubes. Immunoprecipitation data showed that ALA enhanced the p85 subunit of PI3K binding to MyD88. These findings indicate that ALA induces protein synthesis and the PI3K/Akt signaling pathway by TLR2.
Collapse
Affiliation(s)
- Yuanyuan Jing
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Xingcai Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Yaqiong Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Canjun Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Lina Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Songbo Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Xiaotong Zhu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Ping Gao
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Yongliang Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Qingyan Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| | - Gang Shu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University , Guangzhou 510640, Guangdong, China
| |
Collapse
|
26
|
Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Morán M, Emanuele E, Joyner MJ, Lucia A. Exercise attenuates the major hallmarks of aging. Rejuvenation Res 2016; 18:57-89. [PMID: 25431878 DOI: 10.1089/rej.2014.1623] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Regular exercise has multi-system anti-aging effects. Here we summarize how exercise impacts the major hallmarks of aging. We propose that, besides searching for novel pharmaceutical targets of the aging process, more research efforts should be devoted to gaining insights into the molecular mediators of the benefits of exercise and to implement effective exercise interventions for elderly people.
Collapse
Affiliation(s)
- Nuria Garatachea
- 1 Faculty of Health and Sport Science, University of Zaragoza , Huesca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Couch ME, Dittus K, Toth MJ, Willis MS, Guttridge DC, George JR, Chang EY, Gourin CG, Der-Torossian H. Cancer cachexia update in head and neck cancer: Pathophysiology and treatment. Head Neck 2015; 37:1057-72. [PMID: 24634283 DOI: 10.1002/hed.23696] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 01/10/2023] Open
Abstract
The pathophysiology of cancer cachexia remains complex. A comprehensive literature search was performed up to April 2013 using PubMed, the Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, and the Google search engine. In this review, we focus on the different mediators of impaired anabolism and upregulated catabolism that alter the skeletal muscle homeostasis resulting in the wasting of cancer cachexia. We present recent evidence of targeted treatment modalities from clinical trials along with their potential mechanisms of action. We also report on the most current evidence from randomized clinical trials using multimodal treatments in patients with cancer cachexia, but also the evidence from head and neck cancer-specific trials. A more complete understanding of the pathophysiology of the syndrome may lead to more effective targeted therapies and improved outcomes for patients.
Collapse
Affiliation(s)
- Marion E Couch
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Vermont Cancer Center, University of Vermont, College of Medicine, Burlington, Vermont
| | - Kim Dittus
- Division of Hematology-Oncology, Department of Medicine, Vermont Cancer Center, University of Vermont, College of Medicine, Burlington, Vermont
| | - Michael J Toth
- Department of Molecular Physiology and Biophysics, University of Vermont, College of Medicine, Burlington, Vermont
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Denis C Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, Ohio
| | - Jonathan R George
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, California
| | - Eric Y Chang
- University of Vermont, College of Medicine, Burlington, Vermont
| | - Christine G Gourin
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Hirak Der-Torossian
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Vermont Cancer Center, University of Vermont, College of Medicine, Burlington, Vermont
| |
Collapse
|
28
|
Barger JL, Anderson RM, Newton MA, da Silva C, Vann JA, Pugh TD, Someya S, Prolla TA, Weindruch R. A conserved transcriptional signature of delayed aging and reduced disease vulnerability is partially mediated by SIRT3. PLoS One 2015; 10:e0120738. [PMID: 25830335 PMCID: PMC4382298 DOI: 10.1371/journal.pone.0120738] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/06/2015] [Indexed: 12/25/2022] Open
Abstract
Aging is the most significant risk factor for a range of diseases, including many cancers, neurodegeneration, cardiovascular disease, and diabetes. Caloric restriction (CR) without malnutrition delays aging in diverse species, and therefore offers unique insights into age-related disease vulnerability. Previous studies suggest that there are shared mechanisms of disease resistance associated with delayed aging, however quantitative support is lacking. We therefore sought to identify a common response to CR in diverse tissues and species and determine whether this signature would reflect health status independent of aging. We analyzed gene expression datasets from eight tissues of mice subjected to CR and identified a common transcriptional signature that includes functional categories of mitochondrial energy metabolism, inflammation and ribosomal structure. This signature is detected in flies, rats, and rhesus monkeys on CR, indicating aspects of CR that are evolutionarily conserved. Detection of the signature in mouse genetic models of slowed aging indicates that it is not unique to CR but rather a common aspect of extended longevity. Mice lacking the NAD-dependent deacetylase SIRT3 fail to induce mitochondrial and anti-inflammatory elements of the signature in response to CR, suggesting a potential mechanism involving SIRT3. The inverse of this transcriptional signature is detected with consumption of a high fat diet, obesity and metabolic disease, and is reversed in response to interventions that decrease disease risk. We propose that this evolutionarily conserved, tissue-independent, transcriptional signature of delayed aging and reduced disease vulnerability is a promising target for developing therapies for age-related diseases.
Collapse
Affiliation(s)
- Jamie L. Barger
- LifeGen Technologies LLC, Madison, Wisconsin, United States of America
- * E-mail:
| | - Rozalyn M. Anderson
- Department of Medicine, SMPH, University of Wisconsin, Madison, Wisconsin, United States of America
- Geriatric Research, Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
| | - Michael A. Newton
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Cristina da Silva
- LifeGen Technologies LLC, Madison, Wisconsin, United States of America
| | - James A. Vann
- Departments of Genetics and Medical Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Thomas D. Pugh
- Department of Medicine, SMPH, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shinichi Someya
- Departments of Genetics and Medical Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Tomas A. Prolla
- LifeGen Technologies LLC, Madison, Wisconsin, United States of America
- Departments of Genetics and Medical Genetics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Richard Weindruch
- LifeGen Technologies LLC, Madison, Wisconsin, United States of America
- Department of Medicine, SMPH, University of Wisconsin, Madison, Wisconsin, United States of America
- Geriatric Research, Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
| |
Collapse
|
29
|
Tamaki T, Hirata M, Uchiyama Y. Qualitative alteration of peripheral motor system begins prior to appearance of typical sarcopenia syndrome in middle-aged rats. Front Aging Neurosci 2014; 6:296. [PMID: 25400579 PMCID: PMC4214197 DOI: 10.3389/fnagi.2014.00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/09/2014] [Indexed: 11/27/2022] Open
Abstract
Qualitative changes in the peripheral motor system were examined using young, adult, middle-aged, and old-aged rats in order to assess before and after the appearance of sarcopenia symptoms. Significant loss of muscle mass and strength, and slow-type fiber grouping with a loss of innervated nerve fibers were used as typical markers of sarcopenia. Dynamic twitch and tetanus tension and evoked electromyogram (EEMG) were measured via electrical stimulation through the sciatic nerve under anesthesia using our force-distance transducer system before and after sciatectomy. Digital and analog data sampling was performed and shortening and relaxing velocity of serial twitches was calculated with tension force. Muscle tenderness in passive stretching was also measured as stretch absorption ability, associated with histological quantitation of muscle connective tissues. The results indicated the validity of the present model, in which old-aged rats clearly showed the typical signs of sarcopenia, specifically in the fast-type plantaris muscles, while the slow-type soleus showed relatively mild syndromes. These observations suggest the following qualitative alterations as the pathophysiological mechanism of sarcopenia: (1) reduction of shortening and relaxing velocity of twitch; (2) decline of muscle tenderness following an increase in the connective tissue component; (3) impaired recruitment of motor units (MUs) (sudden depression of tetanic force and EEMG) in higher stimulation frequencies over 50–60 Hz; and (4) easy fatigability in the neuromuscular junctions. These findings are likely to be closely related to significant losses in fast-type MUs, muscle strength and contraction velocity, which could be a causative factor in falls in the elderly. Importantly, some of these symptoms began in middle-aged rats that showed no other signs of sarcopenia. Thus, prevention should be started in middle age that could be retained relatively higher movement ability.
Collapse
Affiliation(s)
- Tetsuro Tamaki
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine Isehara, Japan ; Division of Basic Clinical Science, Department of Regenerative Medicine, Tokai University School of Medicine Isehara, Japan
| | - Maki Hirata
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine Isehara, Japan ; Division of Basic Clinical Science, Department of Regenerative Medicine, Tokai University School of Medicine Isehara, Japan ; Division of Surgery, Department of Orthopedics, Tokai University School of Medicine Isehara, Japan
| | - Yoshiyasu Uchiyama
- Muscle Physiology and Cell Biology Unit, Tokai University School of Medicine Isehara, Japan ; Division of Surgery, Department of Orthopedics, Tokai University School of Medicine Isehara, Japan
| |
Collapse
|
30
|
Arnold P, Bautmans I. The influence of strength training on muscle activation in elderly persons: A systematic review and meta-analysis. Exp Gerontol 2014; 58:58-68. [DOI: 10.1016/j.exger.2014.07.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 06/23/2014] [Accepted: 07/23/2014] [Indexed: 01/21/2023]
|
31
|
Abstract
Interest in Vitamin D has risen considerably recently with many athletes now advised to take daily vitamin D supplements. The reason for this interest is partly not only attributed to the resurgence of the Vitamin D-deficient disease rickets but also due to the discovery of a Vitamin D receptor in many tissues suggesting a more global role for Vitamin D than previously considered. Unlike the other vitamins that are obtained through the diet, Vitamin D is unique since endogenous synthesis following ultraviolet B (UVB) exposure is the predominant route of entry into systemic circulation. Moreover, Vitamin D could be better classed as a seco-steroid, given that its structure is similar to that of a steroid, and its production is derived from a cholesterol precursor (7-dehydrocholesteol) in the skin. The classification of Vitamin D status is currently subject to considerable debate with many authors opposing governing body recommendations. Regardless of the suggested optimal concentration, there is now growing evidence to suggest that many athletes are in fact Vitamin D deficient, especially in the winter months largely as a consequence of inadequate sun exposure, combined with poor dietary practices, although the consequences of such deficiencies are still unclear in athletic populations. Impaired muscle function and reduced regenerative capacity, impaired immune function, poor bone health and even impaired cardiovascular function have all been associated with low Vitamin D in athletes, however, to date, the majority of studies on Vitamin D have described associations and much more research is now needed examining causation.
Collapse
Affiliation(s)
- Daniel J Owens
- a Research Institute for Sport and Exercise Sciences , Liverpool John Moores University , Liverpool , UK
| | | | | |
Collapse
|
32
|
Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L. The Neuromuscular Junction: Aging at the Crossroad between Nerves and Muscle. Front Aging Neurosci 2014; 6:208. [PMID: 25157231 PMCID: PMC4127816 DOI: 10.3389/fnagi.2014.00208] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/25/2014] [Indexed: 01/19/2023] Open
Abstract
Aging is associated with a progressive loss of muscle mass and strength and a decline in neurophysiological functions. Age-related neuromuscular junction (NMJ) plays a key role in musculoskeletal impairment that occurs with aging. However, whether changes in the NMJ precede or follow the decline of muscle mass and strength remains unresolved. Many factors such as mitochondrial dysfunction, oxidative stress, inflammation, changes in the innervation of muscle fibers, and mechanical properties of the motor units probably perform an important role in NMJ degeneration and muscle mass and strength decline in late life. This review addresses the primary events that might lead to NMJ dysfunction with aging, including studies on biomarkers, signaling pathways, and animal models. Interventions such as caloric restriction and exercise may positively affect the NMJ through this mechanism and attenuate the age-related progressive impairment in motor function.
Collapse
Affiliation(s)
- Marta Gonzalez-Freire
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA ; Longitudinal Studies Section, Baltimore Longitudinal Study of Aging, National Institute on Aging, National Institutes of Health , Baltimore, MD , USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA
| | - Stephanie A Studenski
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA ; Longitudinal Studies Section, Baltimore Longitudinal Study of Aging, National Institute on Aging, National Institutes of Health , Baltimore, MD , USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Intramural Research Program, National Institutes of Health , Baltimore, MD , USA ; Longitudinal Studies Section, Baltimore Longitudinal Study of Aging, National Institute on Aging, National Institutes of Health , Baltimore, MD , USA
| |
Collapse
|
33
|
Baylis D, Ntani G, Edwards MH, Syddall HE, Bartlett DB, Dennison EM, Martin-Ruiz C, von Zglinicki T, Kuh D, Lord JM, Aihie Sayer A, Cooper C. Inflammation, telomere length, and grip strength: a 10-year longitudinal study. Calcif Tissue Int 2014; 95:54-63. [PMID: 24858709 PMCID: PMC4098723 DOI: 10.1007/s00223-014-9862-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/17/2014] [Indexed: 12/25/2022]
Abstract
Telomere attrition has been associated with age-related diseases, although causality is unclear and controversial; low-grade systemic inflammation (inflammaging) has also been implicated in age-related pathogenesis. Unpicking the relationship between aging, telomere length (TL), and inflammaging is hence essential to the understanding of aging and management of age-related diseases. This longitudinal study explored whether telomere attrition is a cause or consequence of aging and whether inflammaging explains some of the associations between TL and one marker of aging, grip strength. We studied 253 Hertfordshire Ageing Study participants at baseline and 10-year follow-up (mean age at baseline 67.1 years). Participants completed a health questionnaire and had blood samples collected for immune-endocrine and telomere analysis at both time points. Physical aging was characterized at follow-up using grip strength. Faster telomere attrition was associated with lower grip strength at follow-up (β = 0.98, p = 0.035). This association was completely attenuated when adjusted for inflammaging burden (p = 0.86) over the same period. Similarly, greater inflammaging burden was associated with lower grip strength at follow-up (e.g., interleukin [IL]-1β: β = -2.18, p = 0.001). However, these associations were maintained when adjusted for telomere attrition (IL-1β, p = 0.006). We present evidence that inflammaging may be driving telomere attrition and in part explains the associations that have previously been reported between TL and grip strength. Thus, biomarkers of physical aging, such as inflammaging, may require greater exploration. Further work is now indicated.
Collapse
Affiliation(s)
- Daniel Baylis
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Human skeletal muscles are continually remodeled to match the function required of them. Diameter, strength, and vascular supply are altered when a muscle group experiences contraction and resistance. The purpose of this article is to describe selected muscle signaling pathways that contribute to muscle remodeling. Multiple factors affect the cellular and molecular remodeling of muscles and at least 2 of them-exercise and protein/calorie delivery-are under the direct care of intensive care unit (ICU) clinicians. Activating signaling pathways may promote preservation of muscle mass and function. Interventions to prevent muscle atrophy have potential to reduce ICU-acquired weakness and positively affect quality of life in survivors after ICU hospitalization. Exploring information generated by genomic and proteomic investigations about muscle signaling pathways can help the ICU clinician evaluate the benefits and risks of interventions to maintain muscle health early in critical illness.
Collapse
|
35
|
Saini A, Mastana S, Myers F, Lewis MP. 'From death, lead me to immortality' - mantra of ageing skeletal muscle. Curr Genomics 2013; 14:256-67. [PMID: 24294106 PMCID: PMC3731816 DOI: 10.2174/1389202911314040004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is a post-mitotic tissue maintained by repair and regeneration through a population of stem cell-like satellite cells. Following muscle injury, satellite cell proliferation is mediated by local signals ensuring sufficient progeny for tissue repair. Age–related changes in satellite cells as well as to the local and systemic environment potentially impact on the capacity of satellite cells to generate sufficient progeny in an ageing organism resulting in diminished regeneration. ‘Rejuvenation’ of satellite cell progeny and regenerative capacity by environmental stimuli effectors suggest that a subset of age-dependent satellite cell changes may be reversible. Epigenetic regulation of satellite stem cells that include DNA methylation and histone modifications which regulate gene expression are potential mechanisms for such reversible changes and have been shown to control organismal longevity. The area of health and ageing that is likely to benefit soonest from advances in the biology of adult stem cells is the emerging field of regenerative medicine. Further studies are needed to elucidate the mechanisms by which epigenetic modifications regulate satellite stem cell function and will require an increased understanding of stem-cell biology, the environment of the aged tissue and the interaction between the two.
Collapse
Affiliation(s)
- Amarjit Saini
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | | | | |
Collapse
|
36
|
Deane CS, Hughes DC, Sculthorpe N, Lewis MP, Stewart CE, Sharples AP. Impaired hypertrophy in myoblasts is improved with testosterone administration. J Steroid Biochem Mol Biol 2013; 138:152-61. [PMID: 23714396 DOI: 10.1016/j.jsbmb.2013.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 11/24/2022]
Abstract
We investigated the ability of testosterone (T) to restore differentiation in multiple population doubled (PD) murine myoblasts, previously shown to have a reduced differentiation in monolayer and bioengineered skeletal muscle cultures vs. their parental controls (CON) (Sharples et al., 2011, 2012 [7,26]). Cells were exposed to low serum conditions in the presence or absence of T (100nM)±PI3K inhibitor (LY294002) for 72h and 7 days (early and late muscle differentiation respectively). Morphological analyses were performed to determine myotube number, diameter (μm) and myonuclear accretion as indices of differentiation and myotube hypertrophy. Changes in gene expression for myogenin, mTOR and myostatin were also performed. Myotube diameter in CON and PD cells increased from 17.32±2.56μm to 21.02±1.89μm and 14.58±2.66μm to 18.29±3.08μm (P≤0.05) respectively after 72h of T exposure. The increase was comparable in both PD (+25%) and CON cells (+21%) suggesting a similar intrinsic ability to respond to exogenous T administration. T treatment also significantly increased myonuclear accretion (% of myotubes expressing 5+ nuclei) in both cell types after 7 days exposure (P≤0.05). Addition of PI3K inhibitor (LY294002) in the presence of T attenuated these effects in myotube morphology (in both cell types) suggesting a role for the PI3K pathway in T stimulated hypertrophy. Finally, PD myoblasts showed reduced responsiveness to T stimulated mRNA expression of mTOR vs. CON cells and T also reduced myostatin expression in PD myoblasts only. The present study demonstrates testosterone administration improves hypertrophy in myoblasts that basally display impaired differentiation and hypertrophic capacity vs. their parental controls, the action of testosterone in this model was mediated by PI3K/Akt pathway.
Collapse
Affiliation(s)
- Colleen S Deane
- Muscle Cellular and Molecular Physiology Research Group (MCMPRG), Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, UK; School of Health and Social Care, Bournemouth University, UK
| | | | | | | | | | | |
Collapse
|
37
|
Prado CM, Sawyer MB, Ghosh S, Lieffers JR, Esfandiari N, Antoun S, Baracos VE. Central tenet of cancer cachexia therapy: do patients with advanced cancer have exploitable anabolic potential? Am J Clin Nutr 2013; 98:1012-9. [PMID: 23966429 DOI: 10.3945/ajcn.113.060228] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Skeletal muscle wasting is considered the central feature of cachexia, but the potential for skeletal muscle anabolism in patients with advanced cancer is unproven. OBJECTIVE We investigated the clinical course of skeletal muscle wasting in advanced cancer and the window of possible muscle anabolism. DESIGN We conducted a quantitative analysis of computed tomography (CT) images for the loss and gain of muscle in population-based cohorts of advanced cancer patients (lung, colorectal, and pancreas cancer and cholangiocarcinoma) in a longitudinal observational study. RESULTS Advanced-cancer patients (n = 368; median survival: 196 d) had a total of 1279 CT images over the course of their disease. With consideration of all time points, muscle loss occurred in 39% of intervals between any 2 scans. However, the overall frequency of muscle gain was 15.4%, and muscle was stable in 45.6% of intervals between any 2 scans, which made the maintenance or gain of muscle the predominant behavior. Multinomial logistic regression revealed that being within 90 d (compared with >90 d) from death was the principal risk factor for muscle loss (OR: 2.67; 95% CI: 1.45, 4.94; P = 0.002), and muscle gain was correspondingly less likely (OR: 0.37; 95% CI: 0.20, 0.69; P = 0.002) at this time. Sex, age, BMI, and tumor group were not significant predictors of muscle loss or gain. CONCLUSIONS A window of anabolic potential exists at defined early phases of the disease trajectory (>90 d survival), creating an opportunity for nutritional intervention to stop or reverse cachexia. Cancer patients within 90 d of death have a low likelihood of anabolic potential.
Collapse
Affiliation(s)
- Carla M Prado
- Department of Nutrition, Food and Exercise Sciences, The Florida State University, Tallahassee, FL
| | | | | | | | | | | | | |
Collapse
|
38
|
Wasserman P, Segal-Maurer S, Rubin DS. High Prevalence of Low Skeletal Muscle Mass Associated with Male Gender in Midlife and Older HIV-Infected Persons Despite CD4 Cell Reconstitution and Viral Suppression. ACTA ACUST UNITED AC 2013; 13:145-52. [DOI: 10.1177/2325957413495919] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Therapeutic goals for HIV-infected patients receiving antiretroviral therapy include minimizing risk of future physical disability. Presarcopenia and sarcopenia precede age-associated physical disability. We investigated their prevalence and the predictive value of patient mid-upper arm circumference (MUAC) for them. Eighty community-dwelling patients ≥45 years old demonstrating durable viral suppression were evaluated. Sarcopenia was defined as low skeletal muscle index (SMI, skeletal muscle kg/height m2) and either low strength or poor performance by handgrip dynamometry and gait speed, respectively. Presarcopenia was defined as low SMI only. MUAC was interpreted according to National Health Statistics percentile. Prevalence of sarcopenia and presarcopenia was 5.0% and 20.0%, respectively. Male gender (odds ratio [OR] 10.72; P < .026), recreational psychoactive substance use (OR 5.13; P < .037), and intravenous drug use transmission category (OR 6.94; P <.0327) were associated with presarcopenia. Higher body mass index (OR 0.80; P < .0007), MUAC (OR 0.83; P < .024), and large skeletal frame (OR 0.09; P < .003) were negatively associated with presarcopenia. Finding that a participant did not have a MUAC <25th percentile on physical examination had a 90.4% negative predictive value for presarcopenia. Although sarcopenia was uncommon, presarcopenia was highly prevalent in midlife and older HIV-infected males. Determination of MUAC percentile may identify those least likely to demonstrate skeletal muscle deficit and improve patient selection for mass and function testing.
Collapse
Affiliation(s)
- Peter Wasserman
- Department of Medicine, Infectious Disease Division, New York Hospital Queens, Flushing, NY, USA
| | - Sorana Segal-Maurer
- Department of Medicine, Infectious Disease Division, New York Hospital Queens, Flushing, NY, USA
| | - David S. Rubin
- Department of Medicine, Infectious Disease Division, New York Hospital Queens, Flushing, NY, USA
| |
Collapse
|
39
|
Stewart CE. Immobility and diminished skeletal muscle recovery with age: the sedentary myoblast. J Physiol 2013; 591:3671-2. [PMID: 23908407 PMCID: PMC3752445 DOI: 10.1113/jphysiol.2013.260141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- C E Stewart
- Stem Cells, Ageing and Molecular Physiology Unit, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
40
|
Kwan P. Sarcopenia: the gliogenic perspective. Mech Ageing Dev 2013; 134:349-55. [PMID: 23831860 DOI: 10.1016/j.mad.2013.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/20/2013] [Accepted: 06/22/2013] [Indexed: 12/15/2022]
Abstract
It has been approximately 25 years since Dr. Rosenberg first brought attention to sarcopenia. To date, this aging-associated condition is recognized as a chronic loss of muscle mass and is usually accompanied by dynapenia. Despite its poly-etiological factors, sarcopenia has a strong neurogenic component underlying this chrono-degeneration of muscle mass, as shown in recent studies. As it seems plausible to explain the origin of sarcopenia through a motor neuron degeneration model, the focus of sarcopenia research should combine neuroscience with the study of the original myocyte and satellite cells. Although a complete mechanism underlying the development of sarcopenia has yet to be elucidated, we propose that the primary trigger of sarcopenia could be gliogenic in origin based on the close relationship between the glia, neurons and non-neural cells, for example, the motor unit and its associated glia in both the central nervous system (CNS) and the peripheral nervous system (PNS). In addition to muscle cells, both of the neural cells are affected by aging.
Collapse
Affiliation(s)
- Ping Kwan
- ST013a, Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
41
|
Fontes-Oliveira CC, Busquets S, Toledo M, Penna F, Paz Aylwin M, Sirisi S, Silva AP, Orpí M, García A, Sette A, Inês Genovese M, Olivan M, López-Soriano FJ, Argilés JM. Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: altered energetic efficiency? Biochim Biophys Acta Gen Subj 2013. [PMID: 23200745 DOI: 10.1016/j.bbagen.2012.11.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cachexia is a wasting condition that manifests in several types of cancer, and the main characteristic is the profound loss of muscle mass. METHODS The Yoshida AH-130 tumor model has been used and the samples have been analyzed using transmission electronic microscopy, real-time PCR and Western blot techniques. RESULTS Using in vivo cancer cachectic model in rats, here we show that skeletal muscle loss is accompanied by fiber morphologic alterations such as mitochondrial disruption, dilatation of sarcoplasmic reticulum and apoptotic nuclei. Analyzing the expression of some factors related to proteolytic and thermogenic processes, we observed in tumor-bearing animals an increased expression of genes involved in proteolysis such as ubiquitin ligases Muscle Ring Finger 1 (MuRF-1) and Muscle Atrophy F-box protein (MAFBx). Moreover, an overexpression of both sarco/endoplasmic Ca(2+)-ATPase (SERCA1) and adenine nucleotide translocator (ANT1), both factors related to cellular energetic efficiency, was observed. Tumor burden also leads to a marked decreased in muscle ATP content. CONCLUSIONS In addition to muscle proteolysis, other ATP-related pathways may have a key role in muscle wasting, both directly by increasing energetic inefficiency, and indirectly, by affecting the sarcoplasmic reticulum-mitochondrial assembly that is essential for muscle function and homeostasis. GENERAL SIGNIFICANCE The present study reports profound morphological changes in cancer cachectic muscle, which are visualized mainly in alterations in sarcoplasmic reticulum and mitochondria. These alterations are linked to pathways that can account for energy inefficiency associated with cancer cachexia.
Collapse
Affiliation(s)
- Cibely Cristine Fontes-Oliveira
- Cancer Research Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Diagonal 645 08028-Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Nonsteroidal anti-inflammatory drug (NSAID) use and sarcopenia in older people: results from the ilSIRENTE study. J Am Med Dir Assoc 2013; 14:626.e9-13. [PMID: 23747142 DOI: 10.1016/j.jamda.2013.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recently, a great deal of attention has been paid to the role of inflammatory processes in the pathophysiology of sarcopenia. The aim of the present study was to examine the relationship between NSAID use and sarcopenia in a large sample of community-dwelling elderly people aged 80 years or older. METHODS Data are from the baseline evaluation of 354 individuals enrolled in the ilSIRENTE Study. Following the recommendations of the European Working Group on Sarcopenia in Older People (EWGSOP), the diagnosis of sarcopenia was established on the basis of low muscle mass plus either low muscle strength or low physical performance. The relationship between NSAID use and sarcopenia was estimated by deriving odds ratios (ORs) from multiple logistic regression models considering sarcopenia as the dependent variable. RESULTS Nearly 12% (n = 44) of the study sample used NSAIDs. Using the EWGSOP-suggested algorithm, 103 individuals (29.1%) with sarcopenia were identified. Ninety-nine (31.9%) participants were affected by sarcopenia among non-NSAID users compared with 4 participants (9.1%) among NSAID users (P < .001). Compared with all nonusers, NSAID users had a nearly 80% lower risk of being affected by sarcopenia (OR 0.21, 95% CI 0.07-0.61). After adjusting for potential confounders, NSAID users had a lower risk of sarcopenia compared with nonusers (OR 0.26, 95% CI: 0.08-0.81). CONCLUSIONS The results are consistent with the hypothesis that long-term NSAID use might have a protective effect against the loss of muscle mass and function. Interventions able to reduce inflammation-related adverse outcomes at muscle level may be warranted.
Collapse
|
43
|
Baylis D, Bartlett DB, Patel HP, Roberts HC. Understanding how we age: insights into inflammaging. LONGEVITY & HEALTHSPAN 2013; 2:8. [PMID: 24472098 PMCID: PMC3922951 DOI: 10.1186/2046-2395-2-8] [Citation(s) in RCA: 279] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/05/2013] [Indexed: 04/16/2023]
Abstract
Inflammaging is characterized by the upregulation of the inflammatory response that occurs with advancing age; its roots are strongly embedded in evolutionary theory.Inflammaging is believed to be a consequence of a remodelling of the innate and acquired immune system, resulting in chronic inflammatory cytokine production.Complex interrelated genetic, environmental and age-related factors determine an individual's vulnerability or resilience to inflammaging. These factors include polymorphisms to the promoter regions of cytokines, cytokine receptors and antagonists, age-related decreases in autophagy and increased adiposity. Anti-inflammaging describes the upregulation of the hypothalamic-pituitary axis in response to inflammaging, leading to higher levels of cortisol, which in turn may be detrimental, contributing to less successful ageing and frailty. This may be countered by the adrenal steroid dehydroepiandrosterone, which itself declines with age, leaving certain individuals more vulnerable. Inflammaging and anti-inflammaging have both been linked with a number of age-related outcomes, including chronic morbidity, functional decline and mortality. This important area of research offers unique insights into the ageing process and the potential for screening and targeted interventions.
Collapse
Affiliation(s)
- Daniel Baylis
- Department of Medicine for Older People, University Hospital Southampton, Southampton, UK
- Academic Geriatric Medicine, University of Southampton, Southampton, UK
| | - David B Bartlett
- MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Harnish P Patel
- Department of Medicine for Older People, University Hospital Southampton, Southampton, UK
- Academic Geriatric Medicine, University of Southampton, Southampton, UK
| | - Helen C Roberts
- Department of Medicine for Older People, University Hospital Southampton, Southampton, UK
- Academic Geriatric Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
44
|
Portella FF, Rocha AW, Haddad DC, Fortes CB, Hugo FN, Padilha DM, Samuel SM. Oral hygiene caregivers’ educational programme improves oral health conditions in institutionalised independent and functional elderly. Gerodontology 2013; 32:28-34. [DOI: 10.1111/ger.12049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2013] [Indexed: 02/01/2023]
Affiliation(s)
- Fernando F. Portella
- Tutorial Education Program; School of Dentistry, Federal University of Rio Grande do Sul; Porto Alegre Brazil
- Dental Materials Laboratory; School of Dentistry, Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Aline W. Rocha
- Tutorial Education Program; School of Dentistry, Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Daniel C. Haddad
- Tutorial Education Program; School of Dentistry, Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Carmem B.B. Fortes
- Dental Materials Laboratory; School of Dentistry, Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Fernando N. Hugo
- Research Center in Social Dentistry, School of Dentistry; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Dalva M.P. Padilha
- Research Center in Social Dentistry, School of Dentistry; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Susana M.W. Samuel
- Tutorial Education Program; School of Dentistry, Federal University of Rio Grande do Sul; Porto Alegre Brazil
- Dental Materials Laboratory; School of Dentistry, Federal University of Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
45
|
Abstract
Sarcopenia is an aging-associated condition, which is currently characterized by the loss of muscle mass and muscle strength. However, there is no consensus regarding its characterization hitherto. As the world older adult population is on the rise, the impact of sarcopenia becomes greater. Due to the lack of effective treatments, sarcopenia is still a persisting problem among the global older adults and should not be overlooked. As a result, it is vital to investigate deeper into the mechanism underlying the pathogenesis of sarcopenia in order to develop more effective therapeutic interventions and to inscribe a more uniform characterization. The etiology of sarcopenia is currently found to be multifactorial, and most of the pharmacological researches are focused on the muscular factors in aging. Although the complete mechanism underlying the development of sarcopenia is still waiting to be elucidated, we propose in this article that the primary trigger of sarcopenia may be neurogenic in origin based on the intimate relationship between the nervous and muscular system, namely, the motor neuron and its underlying muscle fibers. Both of them are affected by the cellular environment and their physiological activity.
Collapse
|
46
|
Garatachea N, Lucía A. Genes and the ageing muscle: a review on genetic association studies. AGE (DORDRECHT, NETHERLANDS) 2013; 35:207-233. [PMID: 22037866 PMCID: PMC3543750 DOI: 10.1007/s11357-011-9327-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/15/2011] [Indexed: 05/31/2023]
Abstract
Western populations are living longer. Ageing decline in muscle mass and strength (i.e. sarcopenia) is becoming a growing public health problem, as it contributes to the decreased capacity for independent living. It is thus important to determine those genetic factors that interact with ageing and thus modulate functional capacity and skeletal muscle phenotypes in older people. It would be also clinically relevant to identify 'unfavourable' genotypes associated with accelerated sarcopenia. In this review, we summarized published information on the potential associations between some genetic polymorphisms and muscle phenotypes in older people. A special emphasis was placed on those candidate polymorphisms that have been more extensively studied, i.e. angiotensin-converting enzyme (ACE) gene I/D, α-actinin-3 (ACTN3) R577X, and myostatin (MSTN) K153R, among others. Although previous heritability studies have indicated that there is an important genetic contribution to individual variability in muscle phenotypes among old people, published data on specific gene variants are controversial. The ACTN3 R577X polymorphism could influence muscle function in old women, yet there is controversy with regards to which allele (R or X) might play a 'favourable' role. Though more research is needed, up-to-date MSTN genotype is possibly the strongest candidate to explain variance among muscle phenotypes in the elderly. Future studies should take into account the association between muscle phenotypes in this population and complex gene-gene and gene-environment interactions.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW ICU-acquired weakness (ICUAW) is now recognized as a major complication of critical illness. There is no doubt that ICUAW is prevalent - some might argue ubiquitous - after critical illness, but its true role, the interaction with preexisting nerve and muscle lesions as well as its contribution to long-term functional disability, remains to be elucidated. RECENT FINDINGS In this article, we review the current state-of-the-art of the basic pathophysiology of nerve and muscle weakness after critical illness and explore the current literature on ICUAW with a special emphasis on the most important mechanisms of weakness. SUMMARY Variable contributions of structural and functional changes likely contribute to both early and late myopathy and neuropathy, although the specifics of the temporality of both processes, and the influence patient comorbidities, age, and nature of the ICU insult have on them, remain to be determined.
Collapse
|
48
|
Garatachea N, Lucia A. Genes, physical fitness and ageing. Ageing Res Rev 2013; 12:90-102. [PMID: 23022740 DOI: 10.1016/j.arr.2012.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022]
Abstract
Persons aged 80 years and older are the fastest growing segment of the population. As more individuals live longer, we should try to understand the mechanisms involved in healthy ageing and preserving functional independence in later life. In elderly people, functional independence is directly dependent on physical fitness, and ageing is inevitably associated with the declining functions of systems and organs (heart, lungs, blood vessels, skeletal muscles) that determine physical fitness. Thus, age-related diminished physical fitness contributes to the development of sarcopenia, frailty or disability, all of which severely deteriorate independent living and thus quality of life. Ageing is a complex process involving many variables that interact with one another, including - besides lifestyle factors or chronic diseases - genetics. Thus, several studies have examined the contribution of genetic endowment to a decline in physical fitness and subsequent loss of independence in later life. In this review, we compile information, including data from heritability, candidate-gene association, linkage and genome-wide association studies, on genetic factors that could influence physical fitness in the elderly.
Collapse
Affiliation(s)
- Nuria Garatachea
- Faculty of Health and Sport Science, University of Zaragoza, Huesca, Spain.
| | | |
Collapse
|
49
|
Dillon EL, Basra G, Horstman AM, Casperson SL, Randolph KM, Durham WJ, Urban RJ, Diaz-Arrastia C, Levine L, Hatch SS, Willis M, Richardson G, Sheffield-Moore M. Cancer cachexia and anabolic interventions: a case report. J Cachexia Sarcopenia Muscle 2012; 3:253-63. [PMID: 22585408 PMCID: PMC3505578 DOI: 10.1007/s13539-012-0066-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/09/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Standard-of-care (SOC) cancer treatments are primarily aimed at reducing size and progression of a tumor. There is a need for successful supplemental anabolic therapies to combat cancer cachexia in addition to these SOC treatment modalities. Anabolic interventions, including testosterone and amino acid supplements, may be beneficial in reducing and/or reversing muscle wasting in these patient populations. METHODS A 48-year-old Caucasian female with recurrent cervical cancer was scheduled to receive three 21-day cycles of cisplatin and topetecan chemotherapy. She qualified, consented, and enrolled into a blinded interventional pilot study where she received daily whey protein (10 g, three times per day with meals) and a weekly injection of testosterone enanthate (100 mg intramuscular) before and during the SOC chemotherapy treatment period. Body composition, serum inflammatory markers, mixed muscle protein synthesis and breakdown rates, physical function, fatigue, and quality of life were assessed before and after the intervention period. RESULTS Body composition, as assessed by an increase in body weight and lean body mass and reduction in fat mass; physical function; fatigue; and quality of life each improved across the entire intervention period despite general increases in inflammatory markers and no improvements in muscle protein turnover towards the end of the intervention. CONCLUSIONS Concomitant treatment of oral amino acids and testosterone may be a viable therapeutic option for fighting cachexia and improving body composition and quality of life during chemotherapeutic treatment of recurrent cervical cancer. These positive outcomes may be attainable over time despite overall poor inflammatory status.
Collapse
Affiliation(s)
- Edgar L Dillon
- Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555-0569, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Andres-Mateos E, Brinkmeier H, Burks TN, Mejias R, Files DC, Steinberger M, Soleimani A, Marx R, Simmers JL, Lin B, Finanger Hedderick E, Marr TG, Lin BM, Hourdé C, Leinwand LA, Kuhl D, Föller M, Vogelsang S, Hernandez-Diaz I, Vaughan DK, Alvarez de la Rosa D, Lang F, Cohn RD. Activation of serum/glucocorticoid-induced kinase 1 (SGK1) is important to maintain skeletal muscle homeostasis and prevent atrophy. EMBO Mol Med 2012; 5:80-91. [PMID: 23161797 PMCID: PMC3569655 DOI: 10.1002/emmm.201201443] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 12/18/2022] Open
Abstract
Maintaining skeletal muscle mass is essential for general health and prevention of disease progression in various neuromuscular conditions. Currently, no treatments are available to prevent progressive loss of muscle mass in any of these conditions. Hibernating mammals are protected from muscle atrophy despite prolonged periods of immobilization and starvation. Here, we describe a mechanism underlying muscle preservation and translate it to non-hibernating mammals. Although Akt has an established role in skeletal muscle homeostasis, we find that serum- and glucocorticoid-inducible kinase 1 (SGK1) regulates muscle mass maintenance via downregulation of proteolysis and autophagy as well as increased protein synthesis during hibernation. We demonstrate that SGK1 is critical for the maintenance of skeletal muscle homeostasis and function in non-hibernating mammals in normal and atrophic conditions such as starvation and immobilization. Our results identify a novel therapeutic target to combat loss of skeletal muscle mass associated with muscle degeneration and atrophy.
Collapse
Affiliation(s)
- Eva Andres-Mateos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|