1
|
Giannakou M, Akrani I, Tsoka A, Myrianthopoulos V, Mikros E, Vorgias C, Hatzinikolaou DG. Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF). Pharmaceuticals (Basel) 2024; 17:1286. [PMID: 39458929 PMCID: PMC11510448 DOI: 10.3390/ph17101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. METHODS The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. RESULTS AND CONCLUSIONS Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding.
Collapse
Affiliation(s)
- Maria Giannakou
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Ifigeneia Akrani
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Angeliki Tsoka
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Vassilios Myrianthopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Constantinos Vorgias
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| |
Collapse
|
2
|
Jiang J, Gong X, Li T, Huang J, Zhou N, Jia X. Immobilized Cellulase on NH 2-MIL-88(Fe) and Its Performance as a Biocatalyst. Appl Biochem Biotechnol 2024; 196:4745-4758. [PMID: 37950795 DOI: 10.1007/s12010-023-04759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
To broaden pH range and improve thermal stability, reusability, storage stability, and organic solvent tolerance of natural enzymes, a magnetic material (NH2-MIL-88(Fe)) was synthesized as a new material to immobilize cellulase. The results showed that the optimal temperature and pH of cellulase immobilized on NH2-MIL-88(Fe) showed a wider range compared to free cellulase, and 74% and 83% of the initial activity could be retained after 10 cycles and storage for 49 days, respectively. Moreover, the tolerance for organic solvents was improved compared with free enzyme. The reducing sugar yields from sodium carboxymethylcellulose (CMC) and corn cob hydrolyzed with cellulase immobilized on NH2-MIL-88(Fe) were higher than observed with the free enzyme, which demonstrated the better biocatalytic performance of cellulase immobilized on NH2-MIL-88(Fe).
Collapse
Affiliation(s)
- Jing Jiang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Xiaowu Gong
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Tiantian Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Jin Huang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Functional Manufacturing, and ''the Belt and Road (B&R)'' International Joint Research Laboratory of Sustainable Materials, Southwest University, Chongqing, China
| | - Na Zhou
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Xin Jia
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
3
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
4
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol Neurodegener 2022; 17:43. [PMID: 35715821 PMCID: PMC9204954 DOI: 10.1186/s13024-022-00548-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
A consequence of our progressively ageing global population is the increasing prevalence of worldwide age-related cognitive decline and dementia. In the absence of effective therapeutic interventions, identifying risk factors associated with cognitive decline becomes increasingly vital. Novel perspectives suggest that a dynamic bidirectional communication system between the gut, its microbiome, and the central nervous system, commonly referred to as the microbiota-gut-brain axis, may be a contributing factor for cognitive health and disease. However, the exact mechanisms remain undefined. Microbial-derived metabolites produced in the gut can cross the intestinal epithelial barrier, enter systemic circulation and trigger physiological responses both directly and indirectly affecting the central nervous system and its functions. Dysregulation of this system (i.e., dysbiosis) can modulate cytotoxic metabolite production, promote neuroinflammation and negatively impact cognition. In this review, we explore critical connections between microbial-derived metabolites (secondary bile acids, trimethylamine-N-oxide (TMAO), tryptophan derivatives and others) and their influence upon cognitive function and neurodegenerative disorders, with a particular interest in their less-explored role as risk factors of cognitive decline.
Collapse
|
6
|
Gong M, Zhang F, Miao Y, Niu J. Advances of Heat Shock Family in Ulcerative Colitis. Front Pharmacol 2022; 13:869930. [PMID: 35645809 PMCID: PMC9133716 DOI: 10.3389/fphar.2022.869930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Ulcerative Colitis (UC) is a non-specific and chronic inflammatory disease of colonic mucosa whose exact etiology and mechanisms remain unclear. The incidence rate of UC is increasing year by year worldwide. What followed is that the medical costs are also rising rapidly. Therefore, it is urgent to understand the pathogenesis and find promising therapeutic targets for UC. Intestinal mucosal homeostasis is essential for normal bowel function, and its imbalance may be an important pathogenesis of UC. Endogenous homeostatic regulators play roles in repairing intestinal mucosa injury after stress. Heat shock family proteins are essential endogenous homeostasis factors. They can inhibit inflammation, regulate intestinal epithelial cells’ survival and death, and promote mucosal healing. Thus, they play important roles in sustaining intestinal mucosal homeostasis and protecting against UC progression. However, the heat shock family may promote UC carcinogenesis. Here, we summarize the advances in the research of the functions of the heat shock family in UC. And this review is an attempt to light on the etiopathogenesis of UC, highlighting the endogenous protective mechanisms, hoping to provide a novel therapeutic target for UC treatment.
Collapse
Affiliation(s)
- Min Gong
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Fengrui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
- *Correspondence: Yinglei Miao, ; Junkun Niu,
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, China
- *Correspondence: Yinglei Miao, ; Junkun Niu,
| |
Collapse
|
7
|
Claesson K, Chew YL, Ecroyd H. Exploiting flow cytometry for the unbiased quantification of protein inclusions in Caenorhabditis elegans. J Neurochem 2022; 161:281-292. [PMID: 35170035 PMCID: PMC9541147 DOI: 10.1111/jnc.15591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 11/29/2022]
Abstract
The aggregation of proteins into inclusions or plaques is a prominent hallmark of a diverse range of pathologies including neurodegenerative diseases. The quantification of such inclusions in Caenorhabditis elegans models of aggregation is usually achieved by fluorescence microscopy or other techniques involving biochemical fractionation of worm lysates. Here, we describe a simple and rapid flow cytometry-based approach that allows fluorescently tagged inclusions to be enumerated in whole worm lysate in a quantitative and unbiased fashion. We demonstrate that this technique is applicable to multiple C. elegans models of aggregation and importantly, can be used to monitor the dynamics of inclusion formation in response to heat shock and during ageing. This includes the characterisation of physicochemical properties of inclusions, such as their apparent size, which may reveal how aggregate formation is distinct in different tissues or at different stages of pathology or ageing. This new method can be used as a powerful technique for the medium- to high-throughput quantification of inclusions in future studies of genetic or chemical modulators of aggregation in C. elegans.
Collapse
Affiliation(s)
- Kristian Claesson
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health & Medical Research InstituteWollongongNew South WalesAustralia
| | - Yee Lian Chew
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health & Medical Research InstituteWollongongNew South WalesAustralia
- Flinders Health and Medical Research Institute, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth AustraliaAustralia
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular BioscienceUniversity of WollongongWollongongNSWAustralia
- Illawarra Health & Medical Research InstituteWollongongNew South WalesAustralia
| |
Collapse
|
8
|
Quantitative Comparison of HSF1 Activators. Mol Biotechnol 2022; 64:873-887. [PMID: 35218516 PMCID: PMC9259536 DOI: 10.1007/s12033-022-00467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
The heat shock response (HSR) pathway is a highly conserved rescue mechanism, which protects the cells from harmful insults disturbing the cellular protein homeostasis via expression of chaperones. Furthermore, it was demonstrated to play crucial roles in various diseases like neurodegeneration and cancer. For neurodegenerative diseases, an overexpression of chaperones is a potential therapeutic approach to clear the cells from non-functional protein aggregates. Therefore, activators of the HSR pathway and its master regulator HSF1 are under close observation. There are numerous HSR activators published in the literature using different model systems, experimental designs, and readout assays. The aim of this work was to provide a quantitative comparison of a broad range of published activators using a newly developed HSF responsive dual-luciferase cell line. Contrary to natural target genes, which are regulated by multiple input pathways, the artificial reporter exclusively reacts to HSF activity. In addition, the results were compared to endogenous heat shock protein expression. As a result, great differences in the intensity of pathway activation were observed. In addition, a parallel viability assessment revealed high variability in the specificity of the drugs. Furthermore, the differences seen compared to published data indicate that some activators exhibit tissue-specific differences leading to interesting assumptions about the regulation of HSF1.
Collapse
|
9
|
Gouda NA, Elkamhawy A, Cho J. Emerging Therapeutic Strategies for Parkinson’s Disease and Future Prospects: A 2021 Update. Biomedicines 2022; 10:biomedicines10020371. [PMID: 35203580 PMCID: PMC8962417 DOI: 10.3390/biomedicines10020371] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder pathologically distinguished by degeneration of dopaminergic neurons in the substantia nigra pars compacta. Muscle rigidity, tremor, and bradykinesia are all clinical motor hallmarks of PD. Several pathways have been implicated in PD etiology, including mitochondrial dysfunction, impaired protein clearance, and neuroinflammation, but how these factors interact remains incompletely understood. Although many breakthroughs in PD therapy have been accomplished, there is currently no cure for PD, only trials to alleviate the related motor symptoms. To reduce or stop the clinical progression and mobility impairment, a disease-modifying approach that can directly target the etiology rather than offering symptomatic alleviation remains a major unmet clinical need in the management of PD. In this review, we briefly introduce current treatments and pathophysiology of PD. In addition, we address the novel innovative therapeutic targets for PD therapy, including α-synuclein, autophagy, neurodegeneration, neuroinflammation, and others. Several immunomodulatory approaches and stem cell research currently in clinical trials with PD patients are also discussed. Moreover, preclinical studies and clinical trials evaluating the efficacy of novel and repurposed therapeutic agents and their pragmatic applications with encouraging outcomes are summarized. Finally, molecular biomarkers under active investigation are presented as potentially valuable tools for early PD diagnosis.
Collapse
Affiliation(s)
- Noha A. Gouda
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (A.E.)
| | - Ahmed Elkamhawy
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (A.E.)
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Jungsook Cho
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Korea; (N.A.G.); (A.E.)
- Correspondence:
| |
Collapse
|
10
|
All Roads Lead to Rome: Different Molecular Players Converge to Common Toxic Pathways in Neurodegeneration. Cells 2021; 10:cells10092438. [PMID: 34572087 PMCID: PMC8468417 DOI: 10.3390/cells10092438] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple neurodegenerative diseases (NDDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington’s disease (HD) are being suggested to have common cellular and molecular pathological mechanisms, characterized mainly by protein misfolding and aggregation. These large inclusions, most likely, represent an end stage of a molecular cascade; however, the soluble misfolded proteins, which take part in earlier steps of this cascade, are the more toxic players. These pathological proteins, which characterize each specific disease, lead to the selective vulnerability of different neurons, likely resulting from a combination of different intracellular mechanisms, including mitochondrial dysfunction, ER stress, proteasome inhibition, excitotoxicity, oxidative damage, defects in nucleocytoplasmic transport, defective axonal transport and neuroinflammation. Damage within these neurons is enhanced by damage from the nonneuronal cells, via inflammatory processes that accelerate the progression of these diseases. In this review, while acknowledging the hallmark proteins which characterize the most common NDDs; we place specific focus on the common overlapping mechanisms leading to disease pathology despite these different molecular players and discuss how this convergence may occur, with the ultimate hope that therapies effective in one disease may successfully translate to another.
Collapse
|
11
|
Evaluation of the anti-stress effects of five Tunisian aromatic and medicinal plants in vitro. J Herb Med 2021. [DOI: 10.1016/j.hermed.2018.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
17-AAG-Induced Activation of the Autophagic Pathway in Leishmania Is Associated with Parasite Death. Microorganisms 2021; 9:microorganisms9051089. [PMID: 34069389 PMCID: PMC8158731 DOI: 10.3390/microorganisms9051089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is thought to be an excellent drug target against parasitic diseases. The leishmanicidal effect of an Hsp90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), was previously demonstrated in both in vitro and in vivo models of cutaneous leishmaniasis. Parasite death was shown to occur in association with severe ultrastructural alterations in Leishmania, suggestive of autophagic activation. We hypothesized that 17-AAG treatment results in the abnormal activation of the autophagic pathway, leading to parasite death. To elucidate this process, experiments were performed using transgenic parasites with GFP-ATG8-labelled autophagosomes. Mutant parasites treated with 17-AAG exhibited autophagosomes that did not entrap cargo, such as glycosomes, or fuse with lysosomes. ATG5-knockout (Δatg5) parasites, which are incapable of forming autophagosomes, demonstrated lower sensitivity to 17-AAG-induced cell death when compared to wild-type (WT) Leishmania, further supporting the role of autophagy in 17-AAG-induced cell death. In addition, Hsp90 inhibition resulted in greater accumulation of ubiquitylated proteins in both WT- and Δatg5-treated parasites compared to controls, in the absence of proteasome overload. In conjunction with previously described ultrastructural alterations, herein we present evidence that treatment with 17-AAG causes abnormal activation of the autophagic pathway, resulting in the formation of immature autophagosomes and, consequently, incidental parasite death.
Collapse
|
13
|
Gomez-Paredes C, Mason MA, Taxy BA, Papadopoulou AS, Paganetti P, Bates GP. The heat shock response, determined by QuantiGene multiplex, is impaired in HD mouse models and not caused by HSF1 reduction. Sci Rep 2021; 11:9117. [PMID: 33907289 PMCID: PMC8079691 DOI: 10.1038/s41598-021-88715-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is a devastating neurodegenerative disorder, caused by a CAG/polyglutamine repeat expansion, that results in the aggregation of the huntingtin protein, culminating in the deposition of inclusion bodies in HD patient brains. We have previously shown that the heat shock response becomes impaired with disease progression in mouse models of HD. The disruption of this inducible arm of the proteostasis network is likely to exacerbate the pathogenesis of this protein-folding disease. To allow a rapid and more comprehensive analysis of the heat shock response, we have developed, and validated, a 16-plex QuantiGene assay that allows the expression of Hsf1 and nine heat shock genes, to be measured directly, and simultaneously, from mouse tissue. We used this QuantiGene assay to show that, following pharmacological activation in vivo, the heat shock response impairment in tibialis anterior, brain hemispheres and striatum was comparable between zQ175 and R6/2 mice. In contrast, although a heat shock impairment could be detected in R6/2 cortex, this was not apparent in the cortex from zQ175 mice. Whilst the mechanism underlying this impairment remains unknown, our data indicated that it is not caused by a reduction in HSF1 levels, as had been reported.
Collapse
Affiliation(s)
- Casandra Gomez-Paredes
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Michael A Mason
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Bridget A Taxy
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Aikaterini S Papadopoulou
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Paolo Paganetti
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale and Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Gillian P Bates
- Huntington's Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| |
Collapse
|
14
|
Internalization of α-synuclein oligomers into SH-SY5Y cells. Biophys J 2021; 120:877-885. [PMID: 33515601 DOI: 10.1016/j.bpj.2020.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/09/2020] [Accepted: 12/30/2020] [Indexed: 11/20/2022] Open
Abstract
Aggregates of misfolded α-synuclein are a distinctive feature of Parkinson's disease. Small oligomers of α-synuclein are thought to be an important neurotoxic agent, and α-synuclein aggregates exhibit prion-like behavior, propagating misfolding between cells. α-Synuclein is internalized by both passive diffusion and active uptake mechanisms, but how uptake varies with the size of the oligomer is less clear. We explored how α-synuclein internalization into live SH-SY5Y cells varied with oligomer size by comparing the uptake of fluorescently labeled monomers to that of engineered tandem dimers and tetramers. We found that these α-synuclein constructs were internalized primarily through endocytosis. Oligomer size had little effect on their internalization pathway, whether they were added individually or together. Measurements of co-localization of the α-synuclein constructs with fluorescent markers for early endosomes and lysosomes showed that most of the α-synuclein entered endocytic compartments, in which they were probably degraded. Treatment of the cells with the Pitstop inhibitor suggested that most of the oligomers were internalized by the clathrin-mediated pathway.
Collapse
|
15
|
Pingale T, Gupta GL. Current and emerging therapeutic targets for Parkinson's disease. Metab Brain Dis 2021; 36:13-27. [PMID: 33090348 DOI: 10.1007/s11011-020-00636-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is characterized by gradual neurodegeneration and forfeiture of dopamine neurons in substantia nigra pars compacta which ultimately leads to depletion of dopamine levels. PD patients not only display motor features such as rigidity, tremor, and bradykinesia but also non-motor features such as depression, anxiety, etc. Various treatments are available for PD patients such as dopamine replacement are well established but it is only partially or transiently effective. As these therapies not able to restore dopaminergic neurons and delay the development of Parkinson's disease, therefore, the need for an effective therapeutic approach is crucial. The present review discusses a comprehensive overview of current novel targets for PD which includes molecular chaperone, neuroinflammation, mitochondrial dysfunction, neuromelanin, Ubiquitin-proteasome system, protein Abelson, Synaptic vesicle glycoprotein 2C, and Cocaine-amphetamine-regulated transcript, etc. These approaches will help to identify new targets for the treatment of disease and may provide a ray of hope for PD patient treatment. Graphical abstract.
Collapse
Affiliation(s)
- Tanvi Pingale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400 056, Maharashtra, India.
- Department of Pharmacology, School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur, 425 405, Maharashtra, India.
| |
Collapse
|
16
|
Lozano-Cruz T, Alcarraz-Vizán G, de la Mata FJ, de Pablo S, Ortega P, Duarte Y, Bravo-Moraga F, González-Nilo FD, Novials A, Gómez R. Cationic Carbosilane Dendritic Systems as Promising Anti-Amyloid Agents in Type 2 Diabetes. Chemistry 2020; 26:7609-7621. [PMID: 32259327 DOI: 10.1002/chem.202000091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/31/2020] [Indexed: 01/10/2023]
Abstract
The most common denominator of many of the neurodegenerative diseases is badly folded protein accumulation, which results in the formation of insoluble protein deposits located in different parts of the organism, causing cell death and tissue degeneration. Dendritic systems have turned out to be a promising new therapeutic approach for the treatment of these diseases due to their ability to modulate the folding of these proteins. With this perspective, and focused on type 2 diabetes (T2D), characterized by the presence of deposits containing the amyloidogenic islet amyloid polypeptide (IAPP), we demonstrate how different topologies of cationic carbosilane dendrimers inhibit the formation of insoluble protein deposits in pancreatic islets isolated from transgenic Tg-hIAPP mice. Also, the results obtained by the modification of dendritic carbosilane wedges with the chemical chaperone 4-phenylbutyric acid (4-PBA) at the focal point confirmed their potential as anti-amyloid agents with a concentration efficiency in their therapeutic action five orders of magnitude lower than that observed for free 4-PBA. Computational studies, which determined the main interaction between IAPP and dendrimers at the atomic level, support the experimental work.
Collapse
Affiliation(s)
- Tania Lozano-Cruz
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 028029, Madrid, Spain.,Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Colmenar Viejo Road, Km 9, 100, 28034, Madrid, Spain
| | - Gema Alcarraz-Vizán
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, 08028, Barcelona, Spain.,Spanish Biomedical Research Centre Diabetes and, Associated Metabolic Disorders (CIBERDEM), 08028, Barcelona, Spain
| | - F Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 028029, Madrid, Spain.,Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Colmenar Viejo Road, Km 9, 100, 28034, Madrid, Spain
| | - Sara de Pablo
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, 08028, Barcelona, Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 028029, Madrid, Spain.,Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Colmenar Viejo Road, Km 9, 100, 28034, Madrid, Spain
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias Biológicas, Universidad Andres Bello, 8370146, Santiago, Chile
| | - Felipe Bravo-Moraga
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias Biológicas, Universidad Andres Bello, 8370146, Santiago, Chile
| | - Fernando D González-Nilo
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias Biológicas, Universidad Andres Bello, 8370146, Santiago, Chile.,Interdisciplinary Center for Neuroscience of Valparaíso, Faculty of Science, University of Valparaíso, 2340000, Valparaíso, Chile
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Hospital Clínic de Barcelona, 08028, Barcelona, Spain.,Spanish Biomedical Research Centre Diabetes and, Associated Metabolic Disorders (CIBERDEM), 08028, Barcelona, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 028029, Madrid, Spain.,Ramón y Cajal Health Research Institute (IRYCIS), IRYCIS, Colmenar Viejo Road, Km 9, 100, 28034, Madrid, Spain
| |
Collapse
|
17
|
Sharma S, Saini R, Sharma P, Saini A, Nehru B. Maintenance of Amyloid-beta Homeostasis by Carbenoxolone Post Aβ-42 Oligomer Injection in Rat Brain. Neuroscience 2020; 431:86-102. [DOI: 10.1016/j.neuroscience.2020.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
|
18
|
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2019; 11:135-157. [PMID: 31368397 PMCID: PMC7053956 DOI: 10.1080/19490976.2019.1638722] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/22/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023] Open
Abstract
The human gastrointestinal (gut) microbiota comprises diverse and dynamic populations of bacteria, archaea, viruses, fungi, and protozoa, coexisting in a mutualistic relationship with the host. When intestinal homeostasis is perturbed, the function of the gastrointestinal tract and other organ systems, including the brain, can be compromised. The gut microbiota is proposed to contribute to blood-brain barrier disruption and the pathogenesis of neurodegenerative diseases. While progress is being made, a better understanding of interactions between gut microbes and host cells, and the impact these have on signaling from gut to brain is now required. In this review, we summarise current evidence of the impact gut microbes and their metabolites have on blood-brain barrier integrity and brain function, and the communication networks between the gastrointestinal tract and brain, which they may modulate. We also discuss the potential of microbiota modulation strategies as therapeutic tools for promoting and restoring brain health.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Sonia Fonseca
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
19
|
Chaari A. Molecular chaperones biochemistry and role in neurodegenerative diseases. Int J Biol Macromol 2019; 131:396-411. [DOI: 10.1016/j.ijbiomac.2019.02.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
|
20
|
Abstract
The most common neurodegenerative diseases are Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, frontotemporal lobar degeneration, and the motor neuron diseases, with AD affecting approximately 6% of people aged 65 years and older, and PD affecting approximately 1% of people aged over 60 years. Specific proteins are associated with these neurodegenerative diseases, as determined by both immunohistochemical studies on post-mortem tissue and genetic screening, where protein misfolding and aggregation are key hallmarks. Many of these proteins are shown to misfold and aggregate into soluble non-native oligomers and large insoluble protein deposits (fibrils and plaques), both of which may exert a toxic gain of function. Proteotoxicity has been examined intensively in cell culture and in in vivo models, and clinical trials of methods to attenuate proteotoxicity are relatively new. Therapies to enhance cellular protein quality control mechanisms such as upregulation of chaperones and clearance/degradation pathways, as well as immunotherapies against toxic protein conformations, are being actively pursued. In this article, we summarize the common pathophysiology of neurodegenerative disease, and review therapies in early-phase clinical trials that target the proteotoxic component of several neurodegenerative diseases.
Collapse
Affiliation(s)
- Luke McAlary
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Genome Sciences and Technology Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| | - Neil R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
21
|
Bell EW, Zheng EJ, Ryno LM. Identification of inhibitors of the E. coli chaperone SurA using in silico and in vitro techniques. Bioorg Med Chem Lett 2018; 28:3540-3548. [PMID: 30301675 DOI: 10.1016/j.bmcl.2018.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 11/15/2022]
Abstract
SurA is a gram-negative, periplasmic chaperone protein involved in the proper folding of outer membrane porins (OMPs), which protect bacteria against toxins in the extracellular environment by selectively regulating the passage of nutrients into the cell. Previous studies demonstrated that deletion of SurA renders bacteria more sensitive to toxins that compromise the integrity of the outer membrane. Inhibitors of SurA will perturb the folding of OMPs, leading to disruption of the outer membrane barrier and making the cell more vulnerable to toxic insults. The discovery of novel SurA inhibitors is therefore of great importance for developing alternative strategies to overcome antibiotic resistance. Our laboratory has screened over 10,000,000 compoundsin silicoby computationally docking these compounds onto the crystal structure of SurA. Through this screen and a screen of fragment compounds (molecular weight less than 250 g/mol), we found twelve commercially readily available candidate compounds that bind to the putative client binding site of SurA. We confirmed binding to SurA by developing and employing a competitive fluorescence anisotropy-based binding assay. Our results show that one of these compounds, Fmoc-β-(2-quinolyl)-d-alanine, binds the client binding site with high micromolar affinity. Using this compound as a lead, we also discovered that Fmoc-l-tryptophan and Fmoc-l-phenylalanine, but not Fmoc-l-tyrosine, bind SurA with similar micromolar affinity. To our knowledge, this is the first report of a competitive fluorescence anisotropy assay developed for the identification of inhibitors of the chaperone SurA, and the identification of three small molecules that bind SurA at its client binding site.
Collapse
Affiliation(s)
- Eric W Bell
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St. A263, Oberlin, OH 44074, United States
| | - Erica J Zheng
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St. A263, Oberlin, OH 44074, United States
| | - Lisa M Ryno
- Department of Chemistry and Biochemistry, Oberlin College, 119 Woodland St. A263, Oberlin, OH 44074, United States.
| |
Collapse
|
22
|
Melucci D, Locatelli M, Locatelli C, Zappi A, De Laurentiis F, Carradori S, Campestre C, Leporini L, Zengin G, Picot CMN, Menghini L, Mahomoodally MF. A Comparative Assessment of Biological Effects and Chemical Profile of Italian Asphodeline lutea Extracts. Molecules 2018; 23:molecules23020461. [PMID: 29463056 PMCID: PMC6017467 DOI: 10.3390/molecules23020461] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 12/14/2022] Open
Abstract
The present study aims to highlight the therapeutic potential of Asphodeline lutea (AL), a wild edible plant of the Mediterranean diet. Roots, aerial parts, and flowers of AL at two different phenological stages were collected from three locations in Italy. The inhibitory activities of extracts on strategic enzymes linked to human diseases were assessed. The antioxidant properties were evaluated in vitro, using six standard bioassays. The phenolic and anthraquinone profiles were also established using HPLC-PDA. Zinc, cadmium, lead, and copper contents were also determined. All the samples inhibited acetylcholinesterase (from 1.51 to 2.20 mg GALAEs/g extract), tyrosinase (from 7.50 to 25.3 mg KAEs/g extract), and α-amylase (from 0.37 to 0.51 mmol ACAEs/g extract). Aloe-emodin and physcion were present in all parts, while rhein was not detected. The phenolic profile and the heavy metals composition of specimens gathered from three different regions of Italy were different. It can be argued that samples collected near the street can contain higher concentrations of heavy metals. The experimental data confirm that the A. lutea species could be considered as a potential source of bioactive metabolites, and its consumption could play a positive and safe role in human health maintenance.
Collapse
Affiliation(s)
- Dora Melucci
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna 40126, Italy.
| | - Marcello Locatelli
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy.
- Interuniversity Consortium of Structural and Systems Biology, Rome 00136, Italy.
| | - Clinio Locatelli
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna 40126, Italy.
| | - Alessandro Zappi
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna 40126, Italy.
| | | | - Simone Carradori
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy.
| | - Cristina Campestre
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy.
| | - Lidia Leporini
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy.
| | - Gokhan Zengin
- Department of Biology, Selcuk University, Campus, 42250, Konya 42130, Turkey.
| | | | - Luigi Menghini
- Department of Pharmacy, University "G. D'Annunzio" of Chieti-Pescara, Chieti 66100, Italy.
| | | |
Collapse
|
23
|
Maurel C, Dangoumau A, Marouillat S, Brulard C, Chami A, Hergesheimer R, Corcia P, Blasco H, Andres CR, Vourc'h P. Causative Genes in Amyotrophic Lateral Sclerosis and Protein Degradation Pathways: a Link to Neurodegeneration. Mol Neurobiol 2018; 55:6480-6499. [PMID: 29322304 DOI: 10.1007/s12035-017-0856-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a disease caused by the degeneration of motor neurons (MNs) leading to progressive muscle weakness and atrophy. Several molecular pathways have been implicated, such as glutamate-mediated excitotoxicity, defects in cytoskeletal dynamics and axonal transport, disruption of RNA metabolism, and impairments in proteostasis. ALS is associated with protein accumulation in the cytoplasm of cells undergoing neurodegeneration, which is a hallmark of the disease. In this review, we focus on mechanisms of proteostasis, particularly protein degradation, and discuss how they are related to the genetics of ALS. Indeed, the genetic bases of the disease with the implication of more than 30 genes associated with familial ALS to date, together with the important increase in understanding of endoplasmic reticulum (ER) stress, proteasomal degradation, and autophagy, allow researchers to better understand the mechanisms underlying the selective death of motor neurons in ALS. It is clear that defects in proteostasis are involved in this type of cellular degeneration, but whether or not these mechanisms are primary causes or merely consequential remains to be clearly demonstrated. Novel cellular and animal models allowing chronic expression of mutant proteins, for example, are required. Further studies linking genetic discoveries in ALS to mechanisms of protein clearance will certainly be crucial in order to accelerate translational and clinical research towards new therapeutic targets and strategies.
Collapse
Affiliation(s)
- C Maurel
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - A Dangoumau
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - S Marouillat
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - C Brulard
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - A Chami
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - R Hergesheimer
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
| | - P Corcia
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Neurologie, CHRU de Tours, 37044, Tours, France
| | - H Blasco
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - C R Andres
- UMR INSERM U1253, Université de Tours, 37032, Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - P Vourc'h
- UMR INSERM U1253, Université de Tours, 37032, Tours, France.
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France.
| |
Collapse
|
24
|
Lin YL, Tsai HC, Liu PY, Benneyworth M, Wei LN. Receptor-interacting protein 140 as a co-repressor of Heat Shock Factor 1 regulates neuronal stress response. Cell Death Dis 2017; 8:3203. [PMID: 29233969 PMCID: PMC5870597 DOI: 10.1038/s41419-017-0008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/23/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022]
Abstract
Heat shock response (HSR) is a highly conserved transcriptional program that protects organisms against various stressful conditions. However, the molecular mechanisms modulating HSR, especially the suppression of HSR, is poorly understood. Here, we found that RIP140, a wide-spectrum cofactor of nuclear hormone receptors, acts as a co-repressor of heat shock factor 1 (HSF1) to suppress HSR in healthy neurons. When neurons are stressed such as by heat shock or sodium arsenite (As), cells engage specific proteosome-mediated degradation to reduce RIP140 level, thereby relieving the suppression and activating HSR. RIP140 degradation requires specific Tyr-phosphorylation by Syk that is activated in stressful conditions. Lowering RIP140 level protects hippocampal neurons from As stress, significantly it increases neuron survival and improves spine density. Reducing hippocampal RIP140 in the mouse rescues chronic As-induced spatial learning deficits. This is the first study elucidating RIP140-mediated suppression of HSF1-activated HSR in neurons and brain. Importantly, degradation of RIP140 in stressed neurons relieves this suppression, allowing neurons to efficiently and timely engage HSR programs and recover. Therefore, stimulating RIP140 degradation to activate anti-stress program provides a potential preventive or therapeutic strategy for neurodegeneration diseases.
Collapse
Affiliation(s)
- Yu-Lung Lin
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hong-Chieh Tsai
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan, ROC.,Department of Neurosurgery, Chang-Gung Memorial Hospital and University, Tao-Yuan, Taiwan, ROC
| | - Pei-Yao Liu
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael Benneyworth
- Departments of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
25
|
Affiliation(s)
- Esther Pilla
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Kim Schneider
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
26
|
San Gil R, Ooi L, Yerbury JJ, Ecroyd H. The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Mol Neurodegener 2017; 12:65. [PMID: 28923065 PMCID: PMC5604514 DOI: 10.1186/s13024-017-0208-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022] Open
Abstract
Protein inclusions are a predominant molecular pathology found in numerous neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington's disease. Protein inclusions form in discrete areas of the brain characteristic to the type of neurodegenerative disease, and coincide with the death of neurons in that region (e.g. spinal cord motor neurons in amyotrophic lateral sclerosis). This suggests that the process of protein misfolding leading to inclusion formation is neurotoxic, and that cell-autonomous and non-cell autonomous mechanisms that maintain protein homeostasis (proteostasis) can, at times, be insufficient to prevent protein inclusion formation in the central nervous system. The heat shock response is a pro-survival pathway induced under conditions of cellular stress that acts to maintain proteostasis through the up-regulation of heat shock proteins, a superfamily of molecular chaperones, other co-chaperones and mitotic regulators. The kinetics and magnitude of the heat shock response varies in a stress- and cell-type dependent manner. It remains to be determined if and/or how the heat shock response is activated in the different cell-types that comprise the central nervous system (e.g. neurons and astroglia) in response to protein misfolding events that precede cellular dysfunctions in neurodegenerative diseases. This is particularly relevant considering emerging evidence demonstrating the non-cell autonomous nature of amyotrophic lateral sclerosis and Huntington's disease (and other neurodegenerative diseases) and the destructive role of astroglia in disease progression. This review highlights the complexity of heat shock response activation and addresses whether neurons and glia sense and respond to protein misfolding and aggregation associated with neurodegenerative diseases, in particular Huntington's disease and amyotrophic lateral sclerosis, by inducing a pro-survival heat shock response.
Collapse
Affiliation(s)
- Rebecca San Gil
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| |
Collapse
|
27
|
Friesen EL, De Snoo ML, Rajendran L, Kalia LV, Kalia SK. Chaperone-Based Therapies for Disease Modification in Parkinson's Disease. PARKINSON'S DISEASE 2017; 2017:5015307. [PMID: 28913005 PMCID: PMC5585656 DOI: 10.1155/2017/5015307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and is characterized by the presence of pathological intracellular aggregates primarily composed of misfolded α-synuclein. This pathology implicates the molecular machinery responsible for maintaining protein homeostasis (proteostasis), including molecular chaperones, in the pathobiology of the disease. There is mounting evidence from preclinical and clinical studies that various molecular chaperones are downregulated, sequestered, depleted, or dysfunctional in PD. Current therapeutic interventions for PD are inadequate as they fail to modify disease progression by ameliorating the underlying pathology. Modulating the activity of molecular chaperones, cochaperones, and their associated pathways offers a new approach for disease modifying intervention. This review will summarize the potential of chaperone-based therapies that aim to enhance the neuroprotective activity of molecular chaperones or utilize small molecule chaperones to promote proteostasis.
Collapse
Affiliation(s)
- Erik L. Friesen
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Mitch L. De Snoo
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
| | - Luckshi Rajendran
- Faculty of Medicine, University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC, Canada
| | - Lorraine V. Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
- Morton and Gloria Shulman Movement Disorders Clinic and The Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada
- Division of Neurology, Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 190 Elizabeth Street, Toronto, ON, Canada
| | - Suneil K. Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, 149 College Street, Toronto, ON, Canada
| |
Collapse
|
28
|
Lazarev VF, Mikhaylova ER, Guzhova IV, Margulis BA. Possible Function of Molecular Chaperones in Diseases Caused by Propagating Amyloid Aggregates. Front Neurosci 2017; 11:277. [PMID: 28559794 PMCID: PMC5433261 DOI: 10.3389/fnins.2017.00277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/30/2017] [Indexed: 12/14/2022] Open
Abstract
The vast majority of neurodegenerative pathologies stem from the formation of toxic oligomers and aggregates composed of wrongly folded proteins. These protein complexes can be released from pathogenic cells and enthralled by other cells, causing the formation of new aggregates in a prion-like manner. By this mechanism, migrating complexes can transmit a disorder to distant regions of the brain and promote gradually transmitting degenerative processes. Molecular chaperones can counteract the toxicity of misfolded proteins. In this review, we discuss recent data on the possible cytoprotective functions of chaperones in horizontally transmitting neurological disorders.
Collapse
Affiliation(s)
- Vladimir F Lazarev
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
| | - Elena R Mikhaylova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
| | - Irina V Guzhova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
| | - Boris A Margulis
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of the Russian Academy of SciencesSt. Petersburg, Russia
| |
Collapse
|
29
|
RNA-binding proteins with prion-like domains in health and disease. Biochem J 2017; 474:1417-1438. [PMID: 28389532 DOI: 10.1042/bcj20160499] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.
Collapse
|
30
|
Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, McCampbell A, Leblanc G, Venkateswaran A, Nurmi A, Hodgson R. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 2017; 6:6. [PMID: 28293421 PMCID: PMC5348787 DOI: 10.1186/s40035-017-0077-5] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
A hallmark of neurodegenerative proteinopathies is the formation of misfolded protein aggregates that cause cellular toxicity and contribute to cellular proteostatic collapse. Therapeutic options are currently being explored that target different steps in the production and processing of proteins implicated in neurodegenerative disease, including synthesis, chaperone-assisted folding and trafficking, and degradation via the proteasome and autophagy pathways. Other therapies, like mTOR inhibitors and activators of the heat shock response, can rebalance the entire proteostatic network. However, there are major challenges that impact the development of novel therapies, including incomplete knowledge of druggable disease targets and their mechanism of action as well as a lack of biomarkers to monitor disease progression and therapeutic response. A notable development is the creation of collaborative ecosystems that include patients, clinicians, basic and translational researchers, foundations and regulatory agencies to promote scientific rigor and clinical data to accelerate the development of therapies that prevent, reverse or delay the progression of neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Patrick Sweeney
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
- Royal Veterinary College, University of London, London, UK
| | - Hyunsun Park
- Health & Life Science Consulting, Los Angeles, CA USA
| | - Marc Baumann
- Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - John Dunlop
- Neuroscience Innovation Medicines, Astra Zeneca, Cambridge, MA USA
| | | | | | | | | | | | - Antti Nurmi
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| | - Robert Hodgson
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| |
Collapse
|