1
|
Zuo X, Ding X, Zhang Y, Kang YJ. Reversal of atherosclerosis by restoration of vascular copper homeostasis. Exp Biol Med (Maywood) 2024; 249:10185. [PMID: 38978540 PMCID: PMC11228934 DOI: 10.3389/ebm.2024.10185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Atherosclerosis has traditionally been considered as a disorder characterized by the accumulation of cholesterol and thrombotic materials within the arterial wall. However, it is now understood to be a complex inflammatory disease involving multiple factors. Central to the pathogenesis of atherosclerosis are the interactions among monocytes, macrophages, and neutrophils, which play pivotal roles in the initiation, progression, and destabilization of atherosclerotic lesions. Recent advances in our understanding of atherosclerosis pathogenesis, coupled with results obtained from experimental interventions, lead us to propose the hypothesis that atherosclerosis may be reversible. This paper outlines the evolution of this hypothesis and presents corroborating evidence that supports the potential for atherosclerosis regression through the restoration of vascular copper homeostasis. We posit that these insights may pave the way for innovative therapeutic approaches aimed at the reversal of atherosclerosis.
Collapse
Affiliation(s)
- Xiao Zuo
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
| | - Xueqin Ding
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaya Zhang
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
| | - Y James Kang
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Yan J, Li Z, Li Y, Zhang Y. Sepsis induced cardiotoxicity by promoting cardiomyocyte cuproptosis. Biochem Biophys Res Commun 2024; 690:149245. [PMID: 38006800 DOI: 10.1016/j.bbrc.2023.149245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/29/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Currently, sepsis induced cardiotoxicity is among the major causes of sepsis-related death. The specific molecular mechanisms of sepsis induced cardiotoxicity are currently unknown. Therefore, the purpose of this paper is to identify the key molecule mechanisms for sepsis induced cardiotoxicity. METHODS Original data of sepsis induced cardiotoxicity was derived from Gene Expression Omnibus (GEO; GSE63920; GSE44363; GSE159309) dataset. Functional enrichment analysis was used to analysis sepsis induced cardiotoxicity related signaling pathways. Our findings also have explored the relationship of cuproptosis and N6-Methyladenosine (m6A) in sepsis induced cardiotoxicity. Mice are randomly assigned to 3 groups: saline treatment control group, LPS group administered a single 5 mg/kg dose of LPS for 24 h, LPS + CD274 inhibitor group administered 10 mg/kg CD274 inhibitor for 24 h. RESULTS Overall, expression of cuproptosis-related genes (CRGs) CD274, Ceruloplasmin (CP), Vascular endothelial growth factor A (VEGFA), Copper chaperone for cytochrome c oxidase 11 (COX11), chemokine C-C motif ligand 8 (CCL8), Mitogen-activated protein kinase kinase 1(MAP2K1), Amine oxidase 3 (AOC3) were significantly altered in sepsis induced cardiotoxicity. The results of spearman correlation analysis was significant relationship between differentially regulated genes (DEGs) of CRGs and the expression level of m6A methylation genes. GO and KEGG showed that these genes were enriched in response to interferon-beta, MHC class I peptide loading complex, proteasome core complex, chemokine receptor binding, TAP binding, chemokine activity, cytokine activity and many more. These findings suggest that cuproptosis is strongly associated with sepsis induced cardiotoxicity. CONCLUSION In the present study, we found that cuproptosis were associated with sepsis induced cardiotoxicity. The CD274, CP, VEGFA, COX11, CCL8, MAP2K1, AOC3 genes are showing a significant difference expression in sepsis induced cardiotoxicity. Our studies have found significant correlations between CRGs and m6A methylation related genes in sepsis induced cardiotoxicity. These results provide insight into mechanism for sepsis induced cardiotoxicity.
Collapse
Affiliation(s)
- Jingru Yan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Zhangyi Li
- School of Engineering and Applied Science, The University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yilan Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China.
| | - Yao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
3
|
Siddiqi UR, Begum S, Shahjadi S, Afroz S, Mahruba SN, Parvin J, Rahman MM. Plasma zinc, copper and serum ceruloplasmin levels of autism spectrum disorder children in Bangladesh. Heliyon 2023; 9:e18624. [PMID: 37636453 PMCID: PMC10448426 DOI: 10.1016/j.heliyon.2023.e18624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Neural and cognitive processes require zinc and copper homeostasis and a normal zinc/copper ratio. Ceruloplasmin, an intrinsic antioxidant protein, maintains copper homeostasis, which might also influence autism spectrum disorder (ASD). ASD children are frequently reported with altered levels of these elements with wide geographical variations. This study evaluated any alteration in plasma zinc, copper, zinc/copper ratio and serum ceruloplasmin levels in Bangladeshi ASD children with respect to healthy controls. A cross-sectional study was conducted on 67 children aged 2 to 9 years of both sexes. Among them, 35 had ASD, while 32 were age, sex and body mass index (BMI) matched apparently healthy children. Plasma zinc and copper levels were estimated by the flame atomic absorption spectrophotometry method. Serum ceruloplasmin levels were estimated by the immunoturbidimetric method. Zinc and zinc/copper ratio in the 2-9 years old ASD children group were significantly lower (p=0.032 and p=0.002 respectively). On the other hand, copper (p=0.020) and ceruloplasmin (p = 0.045) levels were significantly higher than those of apparently healthy children. ASD was significantly associated with zinc deficiency (p=0.000) and copper toxicity (p=0.05). All children were again divided into 2-5 and 6-9 years age groups according to laboratory reference values for zinc and copper. Copper toxicity was significantly associated with ASD in the 2-5 years old age group (p=0.011), with a significant difference in plasma copper levels (p=0.009) and zinc/copper ratio (p=0.001) but not serum ceruloplasmin levels (p=0.110) compared to healthy controls. Serum ceruloplasmin was positively associated with plasma copper in ASD children of all age groups. This study shows that ASD in Bangladesh can be associated with low plasma zinc and high plasma copper and serum ceruloplasmin levels.
Collapse
Affiliation(s)
- Umme Raihan Siddiqi
- Department of Physiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - Shelina Begum
- Department of Physiology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Shorifa Shahjadi
- Department of Physiology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Sharmin Afroz
- Department of Physiology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | | | - Jobaida Parvin
- Department of Pediatric Neurology, National Institute of Neurosciences and Hospital, Sher-E-Bangla Nagar, Dhaka, Bangladesh
| | - Md Mahbubur Rahman
- Department of Computer Science and Engineering, Military Institute of Science and Technology, Mirpur Cantonment, Dhaka, Bangladesh
| |
Collapse
|
4
|
Hasan HM, Alkass SY, de Oliveira DSP. Impact of Long-Term Cyclamate and Saccharin Consumption on Biochemical Parameters in Healthy Individuals and Type 2 Diabetes Mellitus Patients. Medicina (B Aires) 2023; 59:medicina59040698. [PMID: 37109657 PMCID: PMC10146554 DOI: 10.3390/medicina59040698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Previous studies on saccharin and cyclamate were either limited to experimental animals or lacked evaluation of their long-term consumption effects in humans. Objectives: This study evaluated the effect of chronic consumption of saccharin and cyclamate on biochemical parameters in healthy individuals and patients with type 2 diabetes mellitus. Material and Methods: Healthy and diabetic individuals were classified into two groups based on whether they consumed sweeteners or not. The participants were classified according to the amount of sweetener consumed per day and duration of consumption. Serum catalase activity, peroxynitrite, ceruloplasmin, and malondialdehyde concentrations were determined. Glycated hemoglobin, fasting glucose, creatinine, alanine transaminase, and lipid profile were also evaluated. The results suggest that saccharin and cyclamate increased HbA1C (+11.16%), MDA (+52.38%), TG (+16.74%), LDL (+13.39%), and TC/HDL (+13.11%) in healthy volunteers. Diabetic patients consuming sweeteners showed increased FSG (+17.51%), ceruloplasmin (+13.17%), and MDA (+8.92%). Diabetic patients showed a positive correlation between the number of tablets consumed per day with FSG and serum creatinine. A positive correlation was found between the duration of sweetener consumption and FSG as well as TG. Conclusion: Consumption of saccharin and cyclamate affected biochemical parameters related to metabolic functions in a time and dose-dependent manner and appear to increase oxidative stress in healthy and diabetic type 2 patients.
Collapse
Affiliation(s)
- Husni Mohammed Hasan
- Department of Medicinal Chemistry, College of Pharmacy, University of Duhok, Duhok 1006, AJ, Iraq
| | - Suad Yousif Alkass
- Department of Medicinal Chemistry, College of Pharmacy, University of Duhok, Duhok 1006, AJ, Iraq
| | | |
Collapse
|
5
|
Wu Y, Terekhanova NV, Caravan W, Naser Al Deen N, Lal P, Chen S, Mo CK, Cao S, Li Y, Karpova A, Liu R, Zhao Y, Shinkle A, Strunilin I, Weimholt C, Sato K, Yao L, Serasanambati M, Yang X, Wyczalkowski M, Zhu H, Zhou DC, Jayasinghe RG, Mendez D, Wendl MC, Clark D, Newton C, Ruan Y, Reimers MA, Pachynski RK, Kinsinger C, Jewell S, Chan DW, Zhang H, Chaudhuri AA, Chheda MG, Humphreys BD, Mesri M, Rodriguez H, Hsieh JJ, Ding L, Chen F. Epigenetic and transcriptomic characterization reveals progression markers and essential pathways in clear cell renal cell carcinoma. Nat Commun 2023; 14:1681. [PMID: 36973268 PMCID: PMC10042888 DOI: 10.1038/s41467-023-37211-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Identifying tumor-cell-specific markers and elucidating their epigenetic regulation and spatial heterogeneity provides mechanistic insights into cancer etiology. Here, we perform snRNA-seq and snATAC-seq in 34 and 28 human clear cell renal cell carcinoma (ccRCC) specimens, respectively, with matched bulk proteogenomics data. By identifying 20 tumor-specific markers through a multi-omics tiered approach, we reveal an association between higher ceruloplasmin (CP) expression and reduced survival. CP knockdown, combined with spatial transcriptomics, suggests a role for CP in regulating hyalinized stroma and tumor-stroma interactions in ccRCC. Intratumoral heterogeneity analysis portrays tumor cell-intrinsic inflammation and epithelial-mesenchymal transition (EMT) as two distinguishing features of tumor subpopulations. Finally, BAP1 mutations are associated with widespread reduction of chromatin accessibility, while PBRM1 mutations generally increase accessibility, with the former affecting five times more accessible peaks than the latter. These integrated analyses reveal the cellular architecture of ccRCC, providing insights into key markers and pathways in ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Yige Wu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Nadezhda V Terekhanova
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Wagma Caravan
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Nataly Naser Al Deen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Preet Lal
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Siqi Chen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Chia-Kuei Mo
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Song Cao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yize Li
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Alla Karpova
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Ruiyang Liu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yanyan Zhao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Andrew Shinkle
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Ilya Strunilin
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Kazuhito Sato
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Lijun Yao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Mamatha Serasanambati
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Xiaolu Yang
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew Wyczalkowski
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Houxiang Zhu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Daniel Cui Zhou
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Reyka G Jayasinghe
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Daniel Mendez
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Michael C Wendl
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David Clark
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | | | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Melissa A Reimers
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Russell K Pachynski
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chris Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Scott Jewell
- Van Andel Institutes, Grand Rapids, MI, 49503, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Aadel A Chaudhuri
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Milan G Chheda
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin D Humphreys
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - James J Hsieh
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Li Ding
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Feng Chen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Zhuge Z, McCann Haworth S, Nihlén C, Carvalho LRR, Heuser SK, Kleschyov AL, Nasiell J, Cortese-Krott MM, Weitzberg E, Lundberg JO, Carlström M. Red blood cells from endothelial nitric oxide synthase-deficient mice induce vascular dysfunction involving oxidative stress and endothelial arginase I. Redox Biol 2023; 60:102612. [PMID: 36681048 PMCID: PMC9868875 DOI: 10.1016/j.redox.2023.102612] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND & AIMS Nitric oxide bioactivity (NO) from endothelial NO synthase (eNOS) importantly contributes to the maintenance of vascular homeostasis, and reduced eNOS activity has been associated with cardiovascular disease. Emerging evidence suggests interaction(s) between red blood cells (RBCs) and the endothelium in vascular control; however, the specific role of RBC eNOS is less clear. We aimed to investigate the hypothesis that a lack of RBC eNOS induces endothelial dysfunction. METHODS & RESULTS RBCs from global eNOS knockout (KO) and wildtype (WT) mice were co-incubated ex vivo overnight with healthy mouse aortic rings, followed by functional and mechanistic analyses of endothelium-dependent and independent relaxations. RBCs from eNOS KO mice induced endothelial dysfunction and vascular oxidative stress, whereas WT RBC did not. No differences were observed for endothelium-independent relaxations. This eNOS KO RBC-induced endothelial dysfunctional phenotype was prevented by concomitant co-incubation with reactive oxygen species scavenger (TEMPOL), arginase inhibitor (nor-NOHA), NO donor (detaNONOate) and NADPH oxidase 4 (NOX4) inhibitor. Moreover, vessels from endothelial cell-specific arginase 1 KO mice were resistant to eNOS KO-RBC-induced endothelial dysfunction. Finally, in mice aortae co-incubated with RBCs from women with preeclampsia, we observed a significant reduction in endothelial function compared to when using RBCs from healthy pregnant women or from women with uncomplicated gestational hypertension. CONCLUSIONS RBCs from mice lacking eNOS, and patients with preeclampsia, induce endothelial dysfunction in adjacent blood vessels. Thus, RBC-derived NO bioactivity acts to prevent induction of vascular oxidative stress occurring via RBC NOX4-derived ROS in a vascular arginase-dependent manner. Our data highlight the intrinsic protective role of RBC-derived NO bioactivity in preventing the damaging potential of RBCs. This provides novel insight into the functional relationship between RBCs and the vasculature in health and cardiovascular disease, including preeclampsia.
Collapse
Affiliation(s)
- Zhengbing Zhuge
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sarah McCann Haworth
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carina Nihlén
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | - Sophia K. Heuser
- Myocardial Infarction Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andrei L. Kleschyov
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Josefine Nasiell
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden,Department of Obstetrics and Gynecology, Danderyd Hospital, Stockholm, Sweden
| | - Miriam M. Cortese-Krott
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden,Myocardial Infarction Research Laboratory, Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden,Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Jon O. Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Effect of Copper on the Function of Isolated Porcine Kidneys Stored Using Simple Hypothermia. Int J Mol Sci 2022; 23:ijms232113031. [DOI: 10.3390/ijms232113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Renal ischemia in the peri-transplant period causes a number of changes that adversely affect the initiation of normal vital functions in grafts after transplantation. To minimise the extent of ischemic damage, organs are stored in preservation fluid. The components of the fluid are supposed to ensure stabilisation of the cell cytoskeleton, protect against oxygen free radicals, reduce cell swelling, and ensure endothelial cell integrity. The aim of this study was to analyse the protective effect of Cu2+, as a component of Biolasol preservative fluid, in the prevention of nephron damage occurring during the graft storage period. Analyses of the effectiveness of copper in the presence of prolactin added to Biolasol fluid were also carried out. Forty isolated pig slaughter kidneys were used in the study, avoiding the use of laboratory animals. The kidneys were stored using simple hypothermia. After 2 h and 48 h of graft storage, selected biochemical indicators of renal function were determined in the collected perfusates. The addition of Cu2+ at a dose of 1 µg/L to the composition of Biolasol fluid was found to affect the generation of ischemic damage in the isolated pig kidney. The intensity of the occurrence of these processes is exacerbated by the presence of prolactin at a dose of 0.1 µg/L.
Collapse
|
8
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
9
|
The Molecular Mechanisms of Defective Copper Metabolism in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5418376. [PMID: 36238639 PMCID: PMC9553361 DOI: 10.1155/2022/5418376] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Copper is an essential trace metal element that significantly affects human physiology and pathology by regulating various important biological processes, including mitochondrial oxidative phosphorylation, connective tissue crosslinking, and antioxidant defense. Copper level has been proved to be closely related to the morbidity and mortality of cardiovascular diseases such as atherosclerosis, heart failure, and diabetic cardiomyopathy (DCM). Copper deficiency can induce cardiac hypertrophy and aggravate cardiomyopathy, while copper excess can mediate various types of cell death, such as autophagy, apoptosis, cuproptosis, pyroptosis, and cardiac hypertrophy and fibrosis. Both copper excess and copper deficiency lead to redox imbalance, activate inflammatory response, and aggravate diabetic cardiomyopathy. This defective copper metabolism suggests a specific metabolic pattern of copper in diabetes and a specific role in the pathogenesis and progression of DCM. This review is aimed at providing a timely summary of the effects of defective copper homeostasis on DCM and discussing potential underlying molecular mechanisms.
Collapse
|
10
|
Liu Y, Miao J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients 2022; 14:nu14030700. [PMID: 35277059 PMCID: PMC8838622 DOI: 10.3390/nu14030700] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/02/2023] Open
Abstract
Copper is an essential trace metal element that significantly affects human physiology and pathology by regulating various important biological processes, including mitochondrial oxidative phosphorylation, iron mobilization, connective tissue crosslinking, antioxidant defense, melanin synthesis, blood clotting, and neuron peptide maturation. Increasing lines of evidence obtained from studies of cell culture, animals, and human genetics have demonstrated that dysregulation of copper metabolism causes heart disease, which is the leading cause of mortality in the US. Defects of copper homeostasis caused by perturbed regulation of copper chaperones or copper transporters or by copper deficiency resulted in various types of heart disease, including cardiac hypertrophy, heart failure, ischemic heart disease, and diabetes mellitus cardiomyopathy. This review aims to provide a timely summary of the effects of defective copper homeostasis on heart disease and discuss potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China;
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ji Miao
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
11
|
Liu Z, Wang M, Zhang C, Zhou S, Ji G. Molecular Functions of Ceruloplasmin in Metabolic Disease Pathology. Diabetes Metab Syndr Obes 2022; 15:695-711. [PMID: 35264864 PMCID: PMC8901420 DOI: 10.2147/dmso.s346648] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Ceruloplasmin (CP) is a multicopper oxidase and antioxidant that is mainly produced in the liver. CP not only plays a crucial role in the metabolic balance of copper and iron through its oxidase function but also exhibits antioxidant activity. In addition, CP is an acute-phase protein. In addition to being associated with aceruloplasminemia and neurodegenerative diseases such as Wilson's disease, Alzheimer's disease, and Parkinson's disease, CP also plays an important role in metabolic diseases, which are caused by metabolic disorders and vigorous metabolism, mainly including diabetes, obesity, hyperlipidemia, etc. Based on the physiological functions of CP, we provide an overview of the association of type 2 diabetes, obesity, hyperlipidemia, coronary heart disease, CP oxidative stress, inflammation, and metabolism of copper and iron. Studies have shown that metabolic diseases are closely related to systemic inflammation, oxidative stress, and disorders of copper and iron metabolism. Therefore, we conclude that CP, which can reduce the formation of free radicals in tissues, can be induced during inflammation and infection, and can correct the metabolic disorder of copper and iron, has protective and diagnostic effects on metabolic diseases.
Collapse
Affiliation(s)
- Zhidong Liu
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Miao Wang
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Shigao Zhou
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
- Correspondence: Guang Ji, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, People’s Republic of China, Tel +86 18156416071, Fax +86 21-64385700, Email
| |
Collapse
|
12
|
Meng JB, Hu MH, Zhang M, Hu GP, Zhang W, Hu SJ. The Correlation Between Whole Blood Copper (Cu), Zinc (Zn) Levels and Cu/Zn Ratio and Sepsis-Induced Left Ventricular Systolic Dysfunction (SILVSD) in Patients with Septic Shock: A Single-Center Prospective Observational Study. Int J Gen Med 2021; 14:7219-7234. [PMID: 34737617 PMCID: PMC8558506 DOI: 10.2147/ijgm.s335348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to explore relationships between whole blood copper (Cu), zinc (Zn) and Cu/Zn ratio and cardiac dysfunction in patients with septic shock. Subjects and Methods Between April 2018 and March 2020, septic shock patients with sepsis-induced left ventricular systolic dysfunction (SILVSD, left ventricular ejection fraction, LVEF<50%) and with no sepsis-induced myocardial dysfunction (non-SIMD, septic shock alone and LVEF>50%) and controls were prospectively enrolled. Whole blood Cu and Zn levels were measured using flame atomic absorption spectrophotometry. Results Eighty-six patients with septic shock including both 41 SILVSD and 45 non-SIMD and 25 controls were studied. Whole blood Cu levels and Cu/Zn ratio were significantly higher and Zn levels were lower in SILVSD compared with non-SIMD and controls (Cu, p=0.009, <0.001; Zn, p=0.029, <0.001; Cu/Zn ratio, p=0.003, <0.001). Both increased whole blood Cu and Cu/Zn ratio and reduced Zn were associated with lower LVEF (all p<0.001) and higher amino-terminal pro-B-type natriuretic peptide (NT-proBNP) (Cu, p=0.002; Zn, p<0.001; Cu/Zn ratio, p<0.001) and had predictive values for SILVSD (Cu, AUC=0.666, p=0.005; Zn, AUC=0.625, p=0.039; Cu/Zn ratio, AUC=0.674, p=0.029). Whole blood Cu levels and Cu/Zn ratio were increased but Zn levels were reduced in non-survivors compared with survivors (Cu, p<0.001; Zn, p<0.001; Cu/Zn ratio, p<0.001). Whole blood Cu and Zn displayed the value of predicting 28-day mortality (Cu, AUC = 0.802, p<0.001; Zn, AUC=0.869, p<0.001; Cu/Zn ratio, AUC=0.902, p<0.001). Conclusion Findings of the study suggest that whole blood Cu levels and Cu/Zn ratio are increased in SILVSD patients and positively correlated with cardiac dysfunction, while whole blood Zn levels are reduced and negatively associated with cardiac dysfunction. Moreover, both whole blood Cu, Zn and Cu/Zn ratio might distinguish between SILVSD and non-SIMD in septic shock patients and predict 28-day mortality. Trial Registration Registered at http://www.chictr.org.cn/ChiCTR1800015709.
Collapse
Affiliation(s)
- Jian-Biao Meng
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, People's Republic of China.,Intensive Care Unit, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China
| | - Ma-Hong Hu
- Intensive Care Unit, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China
| | - Ming Zhang
- Intensive Care Unit, Hangzhou Cancer Hospital, Hangzhou, Zhejiang Province, 310002, People's Republic of China
| | - Gong-Pai Hu
- Department of Ultrasonography, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China
| | - Wei Zhang
- Department of Cardiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, 310012, People's Republic of China
| | - Shen-Jiang Hu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| |
Collapse
|
13
|
Assessment of the Substance Antioxidative Profile by Hyaluronan, Cu(II) and Ascorbate. Pharmaceutics 2021; 13:pharmaceutics13111815. [PMID: 34834230 PMCID: PMC8617742 DOI: 10.3390/pharmaceutics13111815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
In the minireview presented here, the authors discuss the evaluation of inhibitory effect of substances in the phases of initiation and propagation of high-molar-mass hyaluronan oxidative degradation. The experimental approach should be considered as original since on using a simple experimental assay it is possible to prove both the so-called “preventive” and “chain-breaking” antioxidant activity of investigated water-soluble endo- or exogenous substances.
Collapse
|
14
|
Zanardi A, Barbariga M, Conti A, Vegliani F, Curnis F, Alessio M. Oxidized/deamidated-ceruloplasmin dysregulates choroid plexus epithelial cells functionality and barrier properties via RGD-recognizing integrin binding. Neurobiol Dis 2021; 158:105474. [PMID: 34384868 DOI: 10.1016/j.nbd.2021.105474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
Choroid plexus epithelial cells (CPEpiCs) determine the composition of cerebrospinal fluid (CSF) and constitute the blood-CSF barrier (BCSFB), functions that are altered in neurodegenerative diseases. In Parkinson's disease (PD) the pathological environment oxidizes and deamidates the ceruloplasmin, a CSF-resident ferroxidase, which undergoes a gain of RGD-recognizing integrin binding property, that may result in signal transduction. We investigated the effects that oxidized/deamidated ceruloplasmin (Cp-ox/de) may exert on CPEpiCs functions. Through RGD-recognizing integrins binding, Cp-ox/de mediates CPEpiCs adhesion and intracellular signaling, resulting in cell proliferation inhibition and alteration of the secretome profile in terms of proteins related to cell-extracellular matrix interaction. Oxidative conditions, comparable to those found in the CSF of PD patients, induced CPEpiCs barrier leakage, allowing Cp-ox/de to cross it, transducing integrins-mediated signal that further worsens BCSFB integrity. This mechanism might contribute to PD pathological processes altering CSF composition and aggravating the already compromised BCSFB function.
Collapse
Affiliation(s)
- Alan Zanardi
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| | - Marco Barbariga
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy
| | - Antonio Conti
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| | - Franco Vegliani
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy
| | - Flavio Curnis
- Tumor Biology and Vascular Targeting, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| | - Massimo Alessio
- Proteome Biochemistry, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
15
|
Zimpfer A, Glass Ä, Bastian M, Schuff-Werner P, Hakenberg OW, Maruschke M. Ceruloplasmin expression in renal cell carcinoma correlates with higher-grade and shortened survival. Biomark Med 2021; 15:841-850. [PMID: 34284640 DOI: 10.2217/bmm-2020-0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/26/2021] [Indexed: 12/24/2022] Open
Abstract
Aim: We aimed to explore ceruloplasmin (CP) expression in clear cell renal cell carcinoma (ccRCC). Materials & methods: CP was analyzed in biofluid samples of 63 ccRCC patients, divided into three grading groups, and immunohistochemically, in 308 ccRCC. Results: Significant differences of mean plasma and urine CP levels in different grading groups were found. CP immunoreactivity was significantly linked to high-grade disease. Log rank tests showed a significant shorter overall survival rate in CP-positive cases (all p < 0.05). Conclusion: CP protein levels in biofluid samples confirmed differential CP expressions, depending on nuclear grade in ccRCC as previously seen in RNA expression analysis. CP expression was linked to high-grade disease and reduced survival rate in RCC.
Collapse
Affiliation(s)
- Annette Zimpfer
- Institute of Pathology, University Medicine Rostock, Strempelstr 14, Rostock, 18055, Germany
| | - Änne Glass
- Institute for Biostatistics & Informatics in Medicine, University Medicine Rostock, Ernst-Heydemann-Str 8, Rostock, 18057, Germany
| | - Manuela Bastian
- Institute of Clinical Chemistry & Laboratory Medicine, University Medicine Rostock, Ernst-Heydemann-Straße 6, Rostock,18057, Germany
| | - Peter Schuff-Werner
- Institute of Clinical Chemistry & Laboratory Medicine, University Medicine Rostock, Ernst-Heydemann-Straße 6, Rostock,18057, Germany
| | - Oliver W Hakenberg
- Department of Urology, University Medicine Rostock, Ernst-Heydemann-Str 8, Rostock, 18057, Germany
| | - Matthias Maruschke
- Department of Urology, University Medicine Rostock, Ernst-Heydemann-Str 8, Rostock, 18057, Germany
- Department of Urology, HELIOS Hanseklinikum Stralsund, Große Parower Str 47-53, Stralsund, 18435, Germany
| |
Collapse
|
16
|
Investigating an increase in Florida manatee mortalities using a proteomic approach. Sci Rep 2021; 11:4282. [PMID: 33608577 PMCID: PMC7895937 DOI: 10.1038/s41598-021-83687-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Two large-scale Florida manatee (Trichechus manatus latirostris) mortality episodes were reported on separate coasts of Florida in 2013. The east coast mortality episode was associated with an unknown etiology in the Indian River Lagoon (IRL). The west coast mortality episode was attributed to a persistent Karenia brevis algal bloom or 'red tide' centered in Southwest Florida. Manatees from the IRL also had signs of cold stress. To investigate these two mortality episodes, two proteomic experiments were performed, using two-dimensional difference in gel electrophoresis (2D-DIGE) and isobaric tags for relative and absolute quantification (iTRAQ) LC-MS/MS. Manatees from the IRL displayed increased levels of several proteins in their serum samples compared to controls, including kininogen-1 isoform 1, alpha-1-microglobulin/bikunen precursor, histidine-rich glycoprotein, properdin, and complement C4-A isoform 1. In the red tide group, the following proteins were increased: ceruloplasmin, pyruvate kinase isozymes M1/M2 isoform 3, angiotensinogen, complement C4-A isoform 1, and complement C3. These proteins are associated with acute-phase response, amyloid formation and accumulation, copper and iron homeostasis, the complement cascade pathway, and other important cellular functions. The increased level of complement C4 protein observed in the red tide group was confirmed through the use of Western Blot.
Collapse
|
17
|
Chen T, Zhang H, Zhang Y, Yang M, Wu J, Yang M, Lin J, Gao W, Tang L, Xu B, Jiang J, Chen X. Association of Circulating and Aortic Zinc and Copper Levels with Clinical Abdominal Aortic Aneurysm: a Meta-analysis. Biol Trace Elem Res 2021; 199:513-526. [PMID: 32557106 DOI: 10.1007/s12011-020-02187-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/06/2020] [Indexed: 01/26/2023]
Abstract
It remains obscure whether circulating aortic zinc (Zn) and copper (Cu) levels are associated with the progress of human abdominal aortic aneurysms (AAA). Therefore, we conducted a meta-analysis to explore this relationship. A literature search on circulating and aortic zinc and copper levels and AAA patients was conducted using online databases including PubMed, Embase, and Cochrane up to March 20, 2019. To compare Zn and Cu concentrations in AAA patients with those in aortic occlusive disease (AOD) patients or healthy aorta donors or healthy blood donors, pooled weighted mean difference (WMD) and its 95% confidence interval (CI) were calculated. Subgroup analysis, sensitivity analysis, and meta-regression analysis were applied to explain the heterogeneity and evaluate the robustness of combined results. A total of 10 cross-sectional studies, including 252 cases and 304 controls, were used for meta-analysis. We found that circulating zinc and Zn/Cu ratio in AAA patients were significantly lower [WMD (95%CI): - 2.23 (- 4.10, - 0.36); - 0.18 (- 0.31, - 0.05), respectively] than those in non-AAA patients. Similarly, aneurysmal aorta had significantly lower zinc levels and Zn/Cu ratio [WMD (95%CI): - 9.22 (- 15.37, - 3.07); - 6.46 (- 10.14, - 2.77), respectively] than those in control group. No difference in circulating or aortic copper levels was noted between AAA patients and control group [WMD (95%CI): - 0.24 (- 2.09, 1.61); 0.30 (- 0.01, 0.61) , respectively]. Our meta-analysis suggests that zinc levels and Zn-Cu ratio, but not copper levels, may influence aneurysmal progress of AAA.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Cardiology, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
| | - Hongliang Zhang
- Department of Cardiology, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
| | - Yang Zhang
- Department of Cardiology, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
| | - Mengqi Yang
- Department of Cardiology, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
| | - Juntao Wu
- Department of Cardiology, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
| | - Minjun Yang
- Department of Cardiology, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
| | - Jiangbo Lin
- Department of Cardiology, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
| | - Weixu Gao
- Department of Endocrinology, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, 310013, Zhejiang Province, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
- Laboratory of Cardiovascular Disease, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China
| | - Xiaofeng Chen
- Department of Cardiology, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China.
- Laboratory of Cardiovascular Disease, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang Province, China.
| |
Collapse
|
18
|
Arenas de Larriva AP, Limia-Pérez L, Alcalá-Díaz JF, Alonso A, López-Miranda J, Delgado-Lista J. Ceruloplasmin and Coronary Heart Disease-A Systematic Review. Nutrients 2020; 12:nu12103219. [PMID: 33096845 PMCID: PMC7589051 DOI: 10.3390/nu12103219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 01/22/2023] Open
Abstract
Several studies indicate that oxidative stress might play a central role in the initiation and maintenance of cardiovascular diseases. It remains unclear whether ceruloplasmin acts as a passive marker of inflammation or as a causal mediator. To better understand the impact of ceruloplasmin blood levels on the risk of cardiovascular disease, and paying special attention to coronary heart disease, we conducted a search on the two most commonly used electronic databases (Medline via PubMed and EMBASE) to analyze current assessment using observational studies in the general adult population. Each study was quality rated using criteria developed by the US Preventive Services Task Force. Most of 18 eligible studies reviewed support a direct relationship between ceruloplasmin elevated levels and incidence of coronary heart disease. Our results highlight the importance of promoting clinical trials that determine the functions of ceruloplasmin as a mediator in the development of coronary heart disease and evaluate whether the treatment of elevated ceruloplasmin levels has a role in the prognosis or prevention of this condition.
Collapse
Affiliation(s)
- Antonio P. Arenas de Larriva
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n, 14004 Cordoba, Spain; (A.P.A.d.L.); (L.L.-P.); (J.L.-M.); (J.D.-L.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Laura Limia-Pérez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n, 14004 Cordoba, Spain; (A.P.A.d.L.); (L.L.-P.); (J.L.-M.); (J.D.-L.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Juan F. Alcalá-Díaz
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n, 14004 Cordoba, Spain; (A.P.A.d.L.); (L.L.-P.); (J.L.-M.); (J.D.-L.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence:
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
| | - José López-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n, 14004 Cordoba, Spain; (A.P.A.d.L.); (L.L.-P.); (J.L.-M.); (J.D.-L.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Av. Menendez Pidal s/n, 14004 Cordoba, Spain; (A.P.A.d.L.); (L.L.-P.); (J.L.-M.); (J.D.-L.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
19
|
Romuk E, Jacheć W, Zbrojkiewicz E, Mroczek A, Niedziela J, Gąsior M, Rozentryt P, Wojciechowska C. Ceruloplasmin, NT-proBNP, and Clinical Data as Risk Factors of Death or Heart Transplantation in a 1-Year Follow-Up of Heart Failure Patients. J Clin Med 2020; 9:jcm9010137. [PMID: 31947878 PMCID: PMC7019681 DOI: 10.3390/jcm9010137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 11/16/2022] Open
Abstract
We investigated whether the additional determination of ceruloplasmin (Cp) levels could improve the prognostic value of N-terminal pro-B-type natriuretic peptide (NT-proBNP) in heart failure (HF) patients in a 1-year follow-up. Cp and NT-proBNP levels and clinical and laboratory parameters were assessed simultaneously at baseline in 741 HF patients considered as possible heart transplant recipients. The primary endpoint (EP) was a composite of all-cause death (non-transplant patients) or heart transplantation during one year of follow-up. Using a cut-off value of 35.9 mg/dL for Cp and 3155 pg/mL for NT-proBNP (top interquartile range), a univariate Cox regression analysis showed that Cp (hazard ratio (HR) = 2.086; 95% confidence interval (95% CI, 1.462–2.975)), NT-proBNP (HR = 3.221; 95% CI (2.277–4.556)), and the top quartile of both Cp and NT-proBNP (HR = 4.253; 95% CI (2.795–6.471)) were all risk factors of the primary EP. The prognostic value of these biomarkers was demonstrated in a multivariate Cox regression model using the top Cp and NT-proBNP concentration quartiles combined (HR = 2.120; 95% CI (1.233–3.646)). Lower left ventricular ejection fraction, VO2max, lack of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker therapy, and nonimplantation of an implantable cardioverter-defibrillator were also independent risk factors of a poor outcome. The combined evaluation of Cp and NT-proBNP had advantages over separate NT-proBNP and Cp assessment in selecting a group with a high 1-year risk. Thus multi-biomarker assessment can improve risk stratification in HF patients.
Collapse
Affiliation(s)
- Ewa Romuk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
- Correspondence: ; Tel.: +48-322-722-318
| | - Wojciech Jacheć
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (W.J.); (C.W.)
| | - Ewa Zbrojkiewicz
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland; (E.Z.); (A.M.); (P.R.)
| | - Alina Mroczek
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland; (E.Z.); (A.M.); (P.R.)
| | - Jacek Niedziela
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Silesian Centre for Heart Disease, 41-800 Zabrze, Poland; (J.N.); (M.G.)
| | - Mariusz Gąsior
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Silesian Centre for Heart Disease, 41-800 Zabrze, Poland; (J.N.); (M.G.)
| | - Piotr Rozentryt
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia, 40-055 Katowice, Poland; (E.Z.); (A.M.); (P.R.)
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Silesian Centre for Heart Disease, 41-800 Zabrze, Poland; (J.N.); (M.G.)
| | - Celina Wojciechowska
- Second Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (W.J.); (C.W.)
| |
Collapse
|
20
|
Wang B, Wang XP. Does Ceruloplasmin Defend Against Neurodegenerative Diseases? Curr Neuropharmacol 2019; 17:539-549. [PMID: 29737252 PMCID: PMC6712297 DOI: 10.2174/1570159x16666180508113025] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 04/10/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022] Open
Abstract
Ceruloplasmin (CP) is the major copper transport protein in plasma, mainly produced by the liver. Glyco-sylphosphatidylinositol-linked CP (GPI-CP) is the predominant form expressed in astrocytes of the brain. A growing body of evidence has demonstrated that CP is an essential protein in the body with multiple functions such as regulating the home-ostasis of copper and iron ions, ferroxidase activity, oxidizing organic amines, and preventing the formation of free radicals. In addition, as an acute-phase protein, CP is induced during inflammation and infection. The fact that patients with genetic disorder aceruloplasminemia do not suffer from tissue copper deficiency, but rather from disruptions in iron metabolism shows essential roles of CP in iron metabolism rather than copper. Furthermore, abnormal metabolism of metal ions and ox-idative stress are found in other neurodegenerative diseases, such as Wilson’s disease, Alzheimer’s disease and Parkinson’s disease. Brain iron accumulation and decreased activity of CP have been shown to be associated with neurodegeneration. We hypothesize that CP may play a protective role in neurodegenerative diseases. However, whether iron accumulation is a cause or a result of neurodegeneration remains unclear. Further research on molecular mechanisms is required before a con-sensus can be reached regarding a neuroprotective role for CP in neurodegeneration. This review article summarizes
the main physiological functions of CP and the current knowledge of its role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Bo Wang
- Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China.,Department of Neurology Baoshan Branch, Shanghai General Hospital, Shanghai, 200940, China
| | - Xiao-Ping Wang
- Shanghai General Hospital of Nanjing Medical University, Shanghai, 200080, China.,Department of Neurology, Shanghai Tong- Ren Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
21
|
Darroudi S, Saberi-Karimian M, Tayefi M, Tayefi B, Khashyarmanesh Z, Fereydouni N, Haghighi HM, Mahmoudi AA, Kharazmi-Khorassani J, Gonoodi K, Esmaeili H, Mohammadpour AH, Ferns GA, Ghayour-Mobarhan M. Association Between Hypertension in Healthy Participants and Zinc and Copper Status: a Population-Based Study. Biol Trace Elem Res 2019; 190:38-44. [PMID: 30267309 DOI: 10.1007/s12011-018-1518-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/09/2018] [Indexed: 11/30/2022]
Abstract
The prevalence of hypertension (HTN) is increasing globally. It has been shown that there is an association between micronutrient deficiency and HTN. In the current study, we aimed to assess the association between HTN with serum copper and zinc concentrations in a large representative Iranian population. The participants were enrolled into the Mashhad stroke and heart atherosclerotic disorders study (MASHAD study), a cohort study that was initiated in 2010. Anthropometric indices were assessed using standard procedures. Systolic (SBP) and diastolic (DBP) blood pressures were measured using a standard mercury sphygmomanometer. Fasting blood glucose (FBG), lipid profile, uric acid and blood urea nitrogen (BUN), and hs-CRP were measured using routine methods. HTN defined as persons who had SBP ≥ 130 mmHg and/or DBP ≥ 85 mmHg and/or medication use. Flame atomic absorption (Varian AA240FS) was used to measure serum Zn and Cu concentrations. SPSS software was used for all statistical analyses. A total of 9588 participants were recruited into the MASHAD study project. Participants were divided into two groups; 5695 healthy (non-hypertensive) (mean age 45.85 ± 7.5 years) and 3893 hypertensive participants (mean age 51.18 ± 7.67 years). Systolic (p < 0.001) and diastolic blood pressure (p < 0.001) were significantly different for different serum copper quartiles. The participants with serum copper levels < 80 μg/dl had 1.33 times greater risk of an increased blood pressure than other participants. Participants with serum copper levels > 130 μg/dl had a 1.94-fold higher risk of raised blood pressure. Serum zinc was not associated with systolic blood pressure, but individuals in the first quartile level of serum zinc had a diastolic blood pressure that was significantly higher than other quartiles (p = 0.035). Serum copper is associated with blood pressure status in adults in a U-shaped relationship, with a range of serum copper between 80 and 130 μg/dl being associated with normal blood pressure.
Collapse
Affiliation(s)
- Susan Darroudi
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Saberi-Karimian
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Tayefi
- Department of Cardiovascular, Imam Reza Hospital, Mashhad University of Medical Science (MUMS), Mashhad, Iran
- University international Accreditation, International Office, Clinical Research Unit, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Batool Tayefi
- Preventive Medicine and Public Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Khashyarmanesh
- Department of Medicinal Chemistry, School of Pharmacology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Fereydouni
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Moalemzadeh Haghighi
- Department of Medicinal Chemistry, School of Pharmacology, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Jasmine Kharazmi-Khorassani
- Molecular Medicine Group, Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kayhan Gonoodi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habibolah Esmaeili
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Institute of Technology, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran.
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 99199-91766, Iran.
| |
Collapse
|
22
|
Yang H, Liu CN, Wolf RM, Ralle M, Dev S, Pierson H, Askin F, Steele KE, Magnuson TH, Schweitzer MA, Wong GW, Lutsenko S. Obesity is associated with copper elevation in serum and tissues. Metallomics 2019; 11:1363-1371. [PMID: 31249997 DOI: 10.1039/c9mt00148d] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Copper misbalance has been linked to fat accumulation in animals and experimental systems; however, information about copper homeostasis in human obesity is limited. In this study, the copper status of obese individuals was evaluated by measuring their levels of copper and cuproproteins in serum, adipose and hepatic tissues. The analysis of serum trace elements showed significant positive and element-specific correlation between copper and BMI after controlling for gender, age, and ethnicity. Serum copper also positively correlated with leptin, insulin, and the leptin/BMI ratio. When compared to lean controls, obese patients had elevated circulating cuproproteins, such as semucarbazide-sensitive amine oxidase (SSAO) and ceruloplasmin, and higher SSAO activity and copper levels in visceral fat. Although hepatic steatosis reduces copper levels in the liver, obese patients with no or mild steatosis have higher copper content in the liver compared to lean controls. In conclusion, obese patients evaluated in this study had altered copper status. Strong positive correlations of copper levels with BMI and leptin suggest that copper and/or cuproproteins may be functionally linked to fat accumulation.
Collapse
Affiliation(s)
- Haojun Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Chin-Nung Liu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Risa M Wolf
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martina Ralle
- Department of Genetics, Oregon Health & Science University, Portland, Oregon, USA
| | - Som Dev
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hannah Pierson
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Frederic Askin
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberley E Steele
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas H Magnuson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A Schweitzer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
23
|
Mayasari N, Trevisi E, Ferrari A, Kemp B, Parmentier HK, van Knegsel ATM. Relationship between inflammatory biomarkers and oxidative stress with uterine health in dairy cows with different dry period lengths. Transl Anim Sci 2019; 3:607-619. [PMID: 32704831 PMCID: PMC7200916 DOI: 10.1093/tas/txz040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/08/2019] [Indexed: 11/13/2022] Open
Abstract
Earlier studies indicated that the inflammatory status of dairy cows in early lactation could not be fully explained by the negative energy balance (NEB) at that moment. The objective of the present study was to determine relationships between inflammatory biomarkers and oxidative stress with uterine health in dairy cows after different dry period lengths. Holstein-Friesian dairy cows were assigned to one of three dry period lengths (0-, 30-, or 60-d) and one of two early lactation rations (glucogenic or lipogenic ration). Cows were fed either a glucogenic or lipogenic ration from 10-d before the expected calving date. Part of the cows which were planned for a 0-d dry period dried themselves off and were attributed to a new group (0 → 30-d dry period), which resulted in total in four dry period groups. Blood was collected (N = 110 cows) in weeks -3, -2, -1, 1, 2, and 4 relative to calving to determine biomarkers for inflammation, liver function, and oxidative stress. Uterine health status (UHS) was monitored by scoring vaginal discharge (VD) based on a 4-point scoring system (0, 1, 2, or 3) in weeks 2 and 3 after calving. Cows were classified as having a healthy uterine environment (HU, VD score = 0 or 1 in both weeks 2 and 3), nonrecovering uterine environment (NRU, VD score = 2 or 3 in week 3), or a recovering uterine environment (RU, VD score = 2 or 3 in week 2 and VD score= 0 or 1 in week 3). Independent of dry period length, cows with NRU had higher plasma haptoglobin (P = 0.05) and lower paraoxonase levels (P < 0.01) in the first 4 weeks after calving and lower liver functionality index (P < 0.01) compared with cows with HU. Cows with NRU had lower plasma albumin (P = 0.02) and creatinine (P = 0.02) compared with cows with a RU, but not compared with cows with HU. Independent of UHS, cows with a 0 → 30-d dry period had higher bilirubin levels compared with cows with 0-, 30-, or 60-d dry period (P < 0.01). Cows with RU and fed a lipogenic ration had higher levels of albumin in plasma compared with cows with NRU and fed a lipogenic ration (P < 0.01). In conclusion, uterine health was related to biomarkers for inflammation (haptoglobin and albumin) and paraoxonase in dairy cows in early lactation. Cows which were planned for a 0-d dry period, but dried themselves off (0 → 30-d dry period group) had higher bilirubin levels, which was possibly related to a more severe NEB in these cows. Inflammatory biomarkers in dairy cows in early lactation were related to uterine health in this period.
Collapse
Affiliation(s)
- Novi Mayasari
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands.,Faculty of Animal Husbandry, Universitas Padjadjaran, Bandung, Indonesia
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Annarita Ferrari
- Department of Animal Sciences, Food and Nutrition (DIANA), Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Bas Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Henk K Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Ariette T M van Knegsel
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
24
|
Bagheri Hosseinabadi M, Khanjani N, Münzel T, Daiber A, Yaghmorloo M. Chronic occupational noise exposure: Effects on DNA damage, blood pressure, and serum biochemistry. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 841:17-22. [PMID: 31138406 DOI: 10.1016/j.mrgentox.2019.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022]
Abstract
Noise levels experienced by industrial workers may cause both auditory and non-auditory harmful effects. We have studied the effects of chronic industrial noise exposure on DNA damage, blood pressure, and serum biochemistry in factory workers. Male workers (109 individuals) in three parts of a food factory in Shahroud, Iran were enrolled as the exposed group and male office workers (123 individuals) were the unexposed control group. Noise exposure was measured (dosimetry) and the comet assay was used to evaluate DNA damage in peripheral blood mononuclear cells. Glutathione peroxidase (GPx) and ceruloplasmin (Cp) levels were measured in serum samples. GPx levels, systolic and diastolic blood pressure, and DNA damage were significantly higher in the exposed group than in the control group. However, ceruloplasmin levels were not significantly different. Based on multivariate linear regression analysis, noise exposure was the most important predictor of GPx levels, systolic and diastolic blood pressure, and DNA damage.
Collapse
Affiliation(s)
| | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Thomas Münzel
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1,55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1,55131, Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1,55131, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1,55131, Mainz, Germany
| | | |
Collapse
|
25
|
Carrió-Seguí À, Ruiz-Rivero O, Villamayor-Belinchón L, Puig S, Perea-García A, Peñarrubia L. The Altered Expression of microRNA408 Influences the Arabidopsis Response to Iron Deficiency. FRONTIERS IN PLANT SCIENCE 2019; 10:324. [PMID: 31001291 PMCID: PMC6454987 DOI: 10.3389/fpls.2019.00324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/28/2019] [Indexed: 05/07/2023]
Abstract
MicroRNAs contribute to the adaptation of plants to varying environmental conditions by affecting systemic mineral nutrient homeostasis. Copper and iron deficiencies antagonistically control the expression of Arabidopsis thaliana microRNA408 (miR408), which post-transcriptionally regulates laccase-like multicopper oxidase family members LAC3, LAC12, and LAC13. In this work, we used miR408 T-DNA insertion mutants (408-KO1 and 408-KO2) and a previously characterized transgenic line overexpressing miR408 (35S:408-14) to explore how miR408 influences copper- and iron-dependent metabolism. We observed that the altered expression of miR408 diminished plant performance and the activation of the iron-regulated genes under iron-deficient conditions. Consistently with the low expression of the miR408-target laccases, we showed that the vascular bundle lignification of the 35S:408-14 plants diminished. The decrease in the phenoloxidase and ferroxidase activities exhibited by wild-type plants under iron deficiency did not occur in the 408-KO1 plants, probably due to the higher expression of laccases. Finally, we observed that the hydrogen peroxide levels under iron starvation were altered in both the 408-KO1 and 35S:408-14 lines. Taken together, these results suggest that Arabidopsis plants with modified miR408 levels undergo multiple deregulations under iron-deficient conditions.
Collapse
Affiliation(s)
- Àngela Carrió-Seguí
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologiaia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
| | - Omar Ruiz-Rivero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Laura Villamayor-Belinchón
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologiaia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ana Perea-García
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Lola Peñarrubia
- Departament de Bioquímica i Biologia Molecular, Estructura de Recerca Interdisciplinar en Biotecnologiaia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
- *Correspondence: Lola Peñarrubia, ;
| |
Collapse
|
26
|
Baysal SS, Koc S. Oxidant-Antioxidant balance in patients with coronary slow flow. Pak J Med Sci 2019; 35:786-792. [PMID: 31258595 PMCID: PMC6572956 DOI: 10.12669/pjms.35.3.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/06/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Recent studies have focused on the probable role of oxidative stress in cardiovascular diseases. We aimed to assess the oxidant/antioxidant biomarkers in coronary slow flow (CSF). METHODS The study included 51 subjects with CSF and age and sex matched 32 controls. Detailed anamnesis of the patients in the study was taken and routine physical examinations were performed. Routine biochemical blood tests were analyzed. Total oxidative status (TOS), oxidative stress index (OSI) and lipid hydroxyperoxide (LOOH) levels as oxidant biomarkers; paraoxonase (PON1), ceruloplasmin (CP), free sulphydryl (SH) groups, and total antioxidant capacity (TAS) levels as antioxidant biomarkers were studied. RESULTS Baseline demographic characteristics of the study population did not differ significantly between groups.TOS, OSI and LOOH concentrations were higher in study group than in control group. However, there was no significant difference detected in levels of TAS, PON1, SH and CP. Multivariate logistic regression analysis revealed that TOS, hsCRP and smoking were indepedent risk factors of CSF. CONCLUSIONS Although there was not any significant difference in antioxidant biomarkers (TAS, PON1, SH and CP) in CSF patients, we detected increased TOS, OSI and LOOH levels which have oxidant properties. These data supported the possible involvement of oxidative stress in pathogenesis of CSF as previous studies reported.
Collapse
Affiliation(s)
- Sadettin Selcuk Baysal
- Sadettin Selcuk Baysal, Department of Cardiology, Sanliurfa Mehmet Akif Inan Training and Research Hospital, 63300, Sanliurfa, Turkey
| | - Sahbender Koc
- Sahbender Koc, Cardiology Department, Kecioren Training and Research Hospital, 06300, Ankara, Turkey
| |
Collapse
|
27
|
Li SL, Feng JR, Zhou HH, Zhang CM, Lv GB, Tan YB, Ge ZB, Wang MY. Acidic pH promotes oxidation-induced dissociation of C-reactive protein. Mol Immunol 2018; 104:47-53. [PMID: 30408622 DOI: 10.1016/j.molimm.2018.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/04/2018] [Accepted: 09/29/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Circulating levels of the systemic inflammation marker C-reactive protein (CRP) have been associated with increased risk and poor outcomes of many diseases, such as cardiovascular events and cancer. Accumulating evidence has indicated that the conformational rearrangement of human pentameric CRP (pCRP) to monomeric CRP (mCRP) is a prerequisite for participation in the pathogenesis. Therefore, determining the mechanism of the dissociation of pCRP into pro-inflammatory mCRP under physiological/pathological circumstances has been intriguing. METHODS The effects of oxidative and acidic stress occurring in inflammation on pCRP were examined by electrophoresis, electron microscopy, protein fluorescence, neoepitope expression and endothelial cell responses. RESULTS Reactive oxygen species (ROS) generated by the copper-hydrogen peroxide system could rapidly induce the dissociation of CRP at mild acidic pH within four hours, but not at physiological pH of 7.4. Meanwhile, mannitol, a ROS scavenger, could not protect against dissociation, which implied that local ROS from accessible histidine residues may be crucially beneficial to the formation of mCRP in a redox-balanced microenvironment. Furthermore, mCRP generated by ROS could be reduced by DTT, which indicated the exposure of functional motif aa35-47, and showed potent proinflammatory actions on endothelial cells, comparable to mCRP generated by urea. CONCLUSION dissociation of pCRP to mCRP could be rapidly induced by ROS from copper- hydrogen peroxide system in dependence on mildly acidic stress regardless of a redox-balanced microenvironment.
Collapse
Affiliation(s)
- Shuo-Lei Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Jun-Rui Feng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | | | - Chun-Miao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Guang-Bo Lv
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yu-Bo Tan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zhong-Bo Ge
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Ming-Yu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
28
|
Das S, Sahoo PK. Ceruloplasmin, a moonlighting protein in fish. FISH & SHELLFISH IMMUNOLOGY 2018; 82:460-468. [PMID: 30144565 DOI: 10.1016/j.fsi.2018.08.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Ceruloplasmin is an ancient multicopper oxidase evolved to insure a safe handling of oxygen in some metabolic pathways of vertebrates. The current knowledge of its structure provides a glimpse of its plasticity, revealing a multitude of binding sites that point to an elaborate mechanism of multifunctional activity. Ceruloplasmin is highly conserved throughout the vertebrate evolution. Cupredoxin, a multi-cupper blue protein is believed to be the evolutionary precursor of ceruloplasmin with three trinuclear and three mononuclear copper binding sites. There are 20 copper-binding residues in ceruloplasmin gene out of which 16 residues are conserved in fish. This ceruloplasmin gene is being characterized in zebrafish (Danio rerio), rohu (Labeo rohita), Indian medaka (Oryzias melastigama), catfish (Ictalurus punctatus), icefish (Chionodraco rastrospinosus), goldfish (Carassius auratus) and yellow perch (Perca flaviscens). The complete coding sequence of fish ceruloplasmin gene is around 3.2 kb which codes for 1000 to 1100 amino acid residues. The size of ceruloplasmin gene sequence in fish ranges around 13 kb containing 20 exons and 19 introns. Liver is the major site of synthesis in fish. Increased expression of this gene during bacterial infection in channel catfish and rohu suggested its potential involvement in bacterial disease response in fish. It has been found to serve as an indirect marker for selection against Aeromonas hydrophila resistance in rohu carp. Ceruloplasmin expression is also evident during parasitic infection in few fish species. The role of this gene is well studied during inflammatory response to hormonal, drug and heavy metal mediated toxicity in fish. Overall, ceruloplasmin represents an example of a 'moonlighting' protein that overcomes the one gene-one structure-one function concept to follow the changes of the organism in its physiological and pathological conditions.
Collapse
Affiliation(s)
- Sweta Das
- Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, Kochi 682 018, India
| | - Pramoda Kumar Sahoo
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751 002, India.
| |
Collapse
|
29
|
TRAIL and Ceruloplasmin Inverse Correlation as a Representative Crosstalk between Inflammation and Oxidative Stress. Mediators Inflamm 2018; 2018:9629537. [PMID: 30147446 PMCID: PMC6083483 DOI: 10.1155/2018/9629537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/22/2018] [Accepted: 07/04/2018] [Indexed: 12/07/2022] Open
Abstract
Objective “Oxinflammation” is a recently coined term that defines the deleterious crosstalk between inflammatory and redox systemic processes, which underlie several diseases. Oxinflammation could be latently responsible for the predisposition of certain healthy individuals to disease development. The oxinflammatory pathway has been recently suggested to play a crucial role in regulating the activity of TNF-related apoptosis-inducing ligand (TRAIL), a TNF superfamily member that can mediate multiple signals in physiological and pathological processes. Therefore, we investigated the associations between TRAIL and key players of vascular redox homeostasis. Methods We measured circulating TRAIL levels relative to praoxonas-1, lipoprotein phospholipase-A2, and ceruloplasmin levels in a cohort of healthy subjects (n = 209). Results Multivariate analysis revealed that ceruloplasmin levels were significantly inversely associated with TRAIL levels (r = −0.431, p < 0.001). The observed association retained statistical significance after adjustment for additional confounding factors. After stratification for high-sensitivity C-reactive protein levels, the inverse association between TRAIL and ceruloplasmin levels remained strong and significant (r = −0.508, p < 0.001, R2 = 0.260) only in the presence of inflammation, confirming the role of inflammation as emerged in in vitro experiments where recombinant TRAIL decreased ceruloplasmin expression levels in TNF-treated PBMC cultures. Conclusion The results indicated that in an inflammatory milieu, TRAIL downregulates ceruloplasmin expression, highlighting a signaling axis involving TRAIL and ceruloplasmin that are linked via inflammation and providing important insights with potential clinical implications.
Collapse
|
30
|
Difference in the Vitreal Protein Profiles of Patients with Proliferative Diabetic Retinopathy with and without Intravitreal Conbercept Injection. J Ophthalmol 2018; 2018:7397610. [PMID: 29850212 PMCID: PMC5932980 DOI: 10.1155/2018/7397610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/25/2018] [Indexed: 11/22/2022] Open
Abstract
Purpose To examine the difference in the vitreal protein profiles of patients with proliferative diabetic retinopathy (PDR) with and without preoperative intravitreal conbercept (IVC) treatment. Methods Liquid chromatography-tandem mass spectrometry- (LC-MS/MS-) based proteomic methods were used to determine the protein profiles of the vitreous humor in patients with PDR treated with (IVC group; n = 9) and without (PDR group; n = 8) preoperative IVC. Gene ontology (GO) annotation and REACTOME pathway analysis were obtained to overview differentially expressed proteins between each group. Intravitreal levels of apolipoprotein A-II (APOA2) and ceruloplasmin (CP) were measured using enzyme-linked immunosorbent assays. Results 307 proteins were expressed differentially between PDR and IVC groups, including 218 proteins downregulated in response to IVC. The most notable GO annotations in level 3 and REACTOME pathways describing the differentially expressed proteins were “innate immune response” and “platelet degranulation.” The intravitreal levels of APOA2 and CP were lower in the IVC group than in the PDR group (p < 0.01). Conclusions In addition to decreasing the intravitreal vascular endothelial growth factor level, IVC may alter the vitreal protein profile in patients with PDR, with the differentially regulated proteins involved in the immune response, platelet degranulation, complement activation, and inflammation.
Collapse
|
31
|
Gonzalez-Calero L, Martínez PJ, Martin-Lorenzo M, Baldan-Martin M, Ruiz-Hurtado G, de la Cuesta F, Calvo E, Segura J, Lopez JA, Vázquez J, Barderas MG, Ruilope LM, Vivanco F, Alvarez-Llamas G. Urinary exosomes reveal protein signatures in hypertensive patients with albuminuria. Oncotarget 2018; 8:44217-44231. [PMID: 28562335 PMCID: PMC5546475 DOI: 10.18632/oncotarget.17787] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/20/2017] [Indexed: 01/05/2023] Open
Abstract
Albuminuria is an indicator of cardiovascular risk and renal damage in hypertensive individuals. Chronic renin-angiotensin system (RAS) suppression facilitates blood pressure control and prevents development of new-onset-albuminuria. A significant number of patients, however, develop albuminuria despite chronic RAS blockade, and the physiopathological mechanisms are underexplored. Urinary exosomes reflect pathological changes taking place in the kidney. The objective of this work was to examine exosomal protein alterations in hypertensive patients with albuminuria in the presence of chronic RAS suppression, to find novel clues underlying its development. Patients were followed-up for three years and were classified as: a) patients with persistent normoalbuminuria; b) patients developing de novo albuminuria; and c) patients with maintained albuminuria. Exosomal protein alterations between groups were identified by isobaric tag quantitation (iTRAQ). Confirmation was approached by target analysis (SRM). In total, 487 proteins were identified with high confidence. Specifically, 48 proteins showed an altered pattern in response to hypertension and/or albuminuria. Out of them, 21 proteins interact together in three main functional clusters: glycosaminoglycan degradation, coagulation and complement system, and oxidative stress. The identified proteins constitute potential targets for drug development and may help to define therapeutic strategies to evade albuminuria progression in hypertensive patients chronically treated.
Collapse
Affiliation(s)
| | - Paula J Martínez
- Department of Immunology, IIS-Fundacion Jimenez Diaz, REDinREN, Madrid, Spain
| | | | | | - Gema Ruiz-Hurtado
- Hypertension Unit, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando de la Cuesta
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos SESCAM, Toledo, Spain
| | | | - Julian Segura
- Hypertension Unit, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics CNIC, Madrid, Spain
| | - Maria G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos SESCAM, Toledo, Spain
| | - Luis M Ruilope
- Hypertension Unit, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando Vivanco
- Department of Immunology, IIS-Fundacion Jimenez Diaz, REDinREN, Madrid, Spain.,Department of Biochemistry and Molecular Biology I, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
32
|
The interaction of phospholipase A2 with oxidized phospholipids at the lipid-water surface with different structural organization. Chem Phys Lipids 2018; 211:44-51. [DOI: 10.1016/j.chemphyslip.2017.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022]
|
33
|
Fine Regulation of Neutrophil Oxidative Status and Apoptosis by Ceruloplasmin and Its Derivatives. Cells 2018; 7:cells7010008. [PMID: 29329239 PMCID: PMC5789281 DOI: 10.3390/cells7010008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 01/27/2023] Open
Abstract
Timely neutrophil apoptosis is an essential part of the resolution phase of acute inflammation. Ceruloplasmin, an acute-phase protein, which is the predominant copper-carrying protein in the blood, has been suggested to have a marked effect on neutrophil life span. The present work is a comparative study on the effects of intact holo-ceruloplasmin, its copper-free (apo-) and partially proteolyzed forms, and synthetic free peptides RPYLKVFNPR (883-892) and RRPYLKVFNPRR (882-893) on polymorphonuclear leukocyte (PMNL, neutrophil) oxidant status and apoptosis. The most pronounced effect on both investigated parameters was found with copper-containing samples, namely, intact and proteolyzed proteins. Both effectively reduced spontaneous and tumor necrosis factor-α (TNF-α)-induced extracellular and intracellular accumulation of superoxide radicals, but induced a sharp increase in the oxidation of intracellular 2',7'-dichlorofluorescein upon short exposure. Therefore, intact and proteolyzed ceruloplasmin have both anti- and pro-oxidant effects on PMNLs wherein the latter effect is diminished by TNF-α and lactoferrin. Additionally, all compounds investigated were determined to be inhibitors of delayed spontaneous apoptosis. Intact enzyme retained its pro-survival activity, whereas proteolytic degradation converts ceruloplasmin from a mild inhibitor to a potent activator of TNF-α-induced neutrophil apoptosis.
Collapse
|
34
|
Skarżyńska E, Żytyńska-Daniluk J, Lisowska-Myjak B. Correlations between ceruloplasmin, lactoferrin and myeloperoxidase in meconium. J Trace Elem Med Biol 2017; 43:58-62. [PMID: 27903408 DOI: 10.1016/j.jtemb.2016.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND AIMS Oxidative stress and the generation of reactive oxygen/nitrogen species has a known significant impact on intrauterine fetal growth and the risk of metabolic diseases in adulthood. Compounds accumulated in fetal meconium may be a source of information about the oxidoreductive status during the intrauterine development. Three metal-containing proteins ceruloplasmin (CP), lactoferrin (LF) and myeloperoxidase (MPO) constitute the complementary panel modulating oxidative stress. The aim of this study was to assess the concentrations of these proteins and their correlations in meconium from healthy neonates. METHODS The CP, LF and MPO concentrations were determined using ELISA Kits. All serial meconium portions (n=80) were collected from healthy full-term neonates (n=19). RESULTS The mean±SD concentrations [μg/g] in meconium samples were as follows: CP 312.4±229.7 (range 52.2-1076), LF 45.6±78.9 (range 1.7-511.4), MPO 1.8±1.7 (range 0.02-8.8) with statistically significant correlations between CP vs. LF (R=0.459, p=0.00009) and LF vs. MPO (R=0.354, p=0.0013). A statistically significant increase in the concentrations (p<0.05) between the first and the last meconium portions was found for LF (p=0.027) and for MPO (p=0.0006). CONCLUSIONS Strong correlations between the meconium concentrations of CP, LF and MPO indicate a possible role of these complementary proteins in maintaining homeostasis of the intrauterine environment of the fetus. CP, LF and MPO measured in meconium may serve as biomarkers for assessment of impairment of oxidative balance during intrauterine life with its potential impact on disease development in adulthood.
Collapse
Affiliation(s)
- Ewa Skarżyńska
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland.
| | - Joanna Żytyńska-Daniluk
- Clinical Department of Obstetrics, Female Diseases and Gynaecological Oncology, Central Clinical Hospital of the Ministry of the Interior, Warsaw, Poland
| | - Barbara Lisowska-Myjak
- Department of Biochemistry and Clinical Chemistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
35
|
Dysfunctional high-density lipoproteins have distinct composition, diminished anti-inflammatory potential and discriminate acute coronary syndrome from stable coronary artery disease patients. Sci Rep 2017; 7:7295. [PMID: 28779156 PMCID: PMC5544737 DOI: 10.1038/s41598-017-07821-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/03/2017] [Indexed: 12/25/2022] Open
Abstract
There is a stringent need to find means for risk stratification of coronary artery diseases (CAD) patients. We aimed at identifying alterations of plasma high-density lipoproteins (HDL) components and their validation as dysfunctional HDL that could discriminate between acute coronary syndrome (ACS) and stable angina (SA) patients. HDL2 and HDL3 were isolated from CAD patients’ plasma and healthy subjects. ApolipoproteinAI (apoAI), apoAII, apoCIII, malondialdehyde (MDA), myeloperoxidase (MPO), ceruloplasmin and paraoxonase1 (PON1) were assessed. The anti-inflammatory potential of HDL subfractions was tested by evaluating the secreted inflammatory molecules of tumor necrosis factor α-activated endothelial cells (EC) upon co-incubation with HDL2 or HDL3. We found in ACS versus SA patients: 40% increased MPO, MDA, apoCIII in HDL2 and HDL3, 35% augmented apoAII in HDL2, and in HDL3 increased ceruloplasmin, decreased apoAII (40%) and PON1 protein and activity (15% and 25%). Co-incubation of activated EC with HDL2 or HDL3 from CAD patients induced significantly increased levels of secreted inflammatory molecules, 15–20% more for ACS versus SA. In conclusion, the assessed panel of markers correlates with the reduced anti-inflammatory potential of HDL subfractions isolated from ACS and SA patients (mostly for HDL3 from ACS) and can discriminate between these two groups of CAD patients.
Collapse
|
36
|
Bigazzi F, Adorni MP, Puntoni M, Sbrana F, Lionetti V, Pino BD, Favari E, Recchia FA, Bernini F, Sampietro T. Analysis of Serum Cholesterol Efflux Capacity in a Minipig Model of Nonischemic Heart Failure. J Atheroscler Thromb 2017; 24:853-862. [PMID: 27980243 PMCID: PMC5556192 DOI: 10.5551/jat.37101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Circulating levels of high-density lipoprotein cholesterol (HDL-C) are decreased in patients with heart failure (HF). We tested whether HDL-C serum levels are associated with cardiac contractile dysfunction in a minipig HF model. Methods: Blood samples were collected from 13 adult male minipigs: 1) before pacemaker implantation, 2) 10 days after surgery, and 3) 3 weeks after high-rate LV pacing. Serum cholesterol efflux capacity (CEC), an index of HDL functionality, was assessed through four mechanisms: ATP Binding Cassette transporter A1 (ABCA1), ATP Binding Cassette transporter G1 (ABCG1), Scavenger Receptor-Class B Type I (SR-BI) and Passive Diffusion (PD). Results: HDL-C serum levels significantly decrease in minipigs with HF compared with baseline (p < 0.0001). Serum CEC mediated by PD and SR-BI, but not ABCA1 or ABCG1, significantly decrease in animals with HF (p < 0.05 and p < 0.005, respectively). Discussion: HDL-C serum levels and partial serum CEC reduction may play a pathophysiological role in the cardiac function decay sustained by high-rate LV pacing, opening new avenues to understand of the pathogenesis of nonischemic myocardial remodeling.
Collapse
Affiliation(s)
| | | | | | | | - Vincenzo Lionetti
- Fondazione Toscana Gabriele Monasterio.,Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna
| | | | | | - Fabio A Recchia
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna.,Department of Physiology, Temple University School of Medicine
| | | | | |
Collapse
|
37
|
Lai M, Wang D, Lin Z, Zhang Y. Small Molecule Copper and Its Relative Metabolites in Serum of Cerebral Ischemic Stroke Patients. J Stroke Cerebrovasc Dis 2016; 25:214-9. [PMID: 26573522 DOI: 10.1016/j.jstrokecerebrovasdis.2015.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/11/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Copper is a strong pro-oxidant. The most important pro-oxidative form in serum is small molecule copper (SMC), which is copper that is loosely bound to small molecules, such as amino acids and polypeptides. The association between copper and atherosclerotic diseases has been confirmed, but that between SMC and cerebral ischemic stroke (CIS), one of the most principal manifestations and causes of death of atherosclerotic disease, is not yet clear. METHODS We recruited 45 CIS patients and 25 age- and gender-matched healthy controls. We detected their serum levels of SMC, total copper, homocysteine (Hcy), and ceruloplasmin (CP), as well as urinary total copper, and analyzed the relationship of SMC with these aforementioned metabolites or compounds in CIS patients. RESULTS SMC was 4.2 ± .5 µg/L and 2.1 ± .9 µg/L; total copper in sera was 1345.5 ± 308.2 µg/L and 1180.3 ± 134.0 µg/L; and total copper in urine was 27.6 ± 9.3 µg/L and 18.8 ± 8.1 µg/L in patients and controls, respectively (all P < .05). Serum CP activity in CIS patients was 59.92 ± 12.11 U/L versus 37.76 ± 5.71 U/L in controls (P = .0001). The concentration of SMC was positively correlated with CP activity, Hcy concentration in sera, and urinary total copper. CONCLUSION The serum level of SMC and total copper is remarkably elevated, and SMC positively correlates with Hcy, CP activity, and urinary total copper in CIS patients.
Collapse
Affiliation(s)
- Minchao Lai
- Department of Neurology, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dian Wang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, China
| | - Zhexuan Lin
- Analytical and Testing Center, Shantou University Medical College, Shantou, China
| | - Yuan Zhang
- Analytical and Testing Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
38
|
Herborn KA, Daunt F, Heidinger BJ, Granroth‐Wilding HMV, Burthe SJ, Newell MA, Monaghan P. Age, oxidative stress exposure and fitness in a long‐lived seabird. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12578] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katherine A. Herborn
- Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Francis Daunt
- Centre for Ecology & Hydrology Bush Estate Penicuik, Midlothian EH26 0QB UK
| | - Britt J. Heidinger
- Biological Sciences Department North Dakota State University Stevens Hall Fargo North Dakota 58108 USA
| | - Hanna M. V. Granroth‐Wilding
- Institutes of Evolutionary Biology and Immunology and Infection Research School of Biological Sciences University of Edinburgh Edinburgh EH9 3JT UK
| | - Sarah J. Burthe
- Centre for Ecology & Hydrology Bush Estate Penicuik, Midlothian EH26 0QB UK
| | - Mark A. Newell
- Centre for Ecology & Hydrology Bush Estate Penicuik, Midlothian EH26 0QB UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| |
Collapse
|
39
|
Sokolov AV, Acquasaliente L, Kostevich VA, Frasson R, Zakharova ET, Pontarollo G, Vasilyev VB, De Filippis V. Thrombin inhibits the anti-myeloperoxidase and ferroxidase functions of ceruloplasmin: relevance in rheumatoid arthritis. Free Radic Biol Med 2015; 86:279-94. [PMID: 26001728 DOI: 10.1016/j.freeradbiomed.2015.05.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 01/29/2023]
Abstract
Human ceruloplasmin (CP) is a multifunctional copper-binding protein produced in the liver. CP oxidizes Fe(2+) to Fe(3+), decreasing the concentration of Fe(2+) available for generating harmful oxidant species. CP is also a potent inhibitor of leukocyte myeloperoxidase (MPO) (Kd=130nM), a major source of oxidants in vivo. Rheumatoid arthritis (RA) is an inflammatory autoimmune disease affecting flexible joints and characterized by activation of both inflammatory and coagulation processes. Indeed, the levels of CP, MPO, and thrombin are markedly increased in the synovial fluid of RA patients. Here we show that thrombin cleaves CP in vitro at (481)Arg-Ser(482) and (887)Lys-Val(888) bonds, generating a nicked species that retains the native-like fold and the ferroxidase activity of the intact protein, whereas the MPO inhibitory function of CP is abrogated. Analysis of the synovial fluid of 24 RA patients reveals that CP is proteolytically degraded to a variable extent, with a fragmentation pattern similar to that observed with thrombin in vitro, and that proteolysis is blocked by hirudin, a highly potent and specific thrombin inhibitor. Using independent biophysical techniques, we show that thrombin has intrinsic affinity for CP (Kd=60-270nM), independent of proteolysis, and inhibits CP ferroxidase activity (KI=220±20nM). Mapping of thrombin binding sites with specific exosite-directed ligands (i.e., hirugen, fibrinogen γ'-peptide) and thrombin analogues having the exosites variably compromised (i.e., prothrombin, prethrombin-2, βT-thrombin) reveals that the positively charged exosite-II of thrombin binds to the negatively charged upper region of CP, while the protease active site and exosite-I remain accessible. These results suggest that thrombin can exacerbate inflammation in RA by impairing the MPO inhibitory function of CP via proteolysis and by competitively inhibiting CP ferroxidase activity. Notably, local administration of hirudin, a highly potent and specifc thrombin inhibitor, reduces the concentration of active MPO in the synovial fluid of RA patients and has a beneficial effect on the clinical symptoms of the disease.
Collapse
Affiliation(s)
- Alexej V Sokolov
- Institute for Experimental Medicine, Pavlov str., 12, Saint Petersburg, 197376 Russia; State University of Saint Petersburg, University Embankment, 4-7, Saint Petersburg, 199034 Russia
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo, 5, Padua, 35131 Italy
| | - Valeria A Kostevich
- Institute for Experimental Medicine, Pavlov str., 12, Saint Petersburg, 197376 Russia
| | - Roberta Frasson
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo, 5, Padua, 35131 Italy
| | - Elena T Zakharova
- Institute for Experimental Medicine, Pavlov str., 12, Saint Petersburg, 197376 Russia
| | - Giulia Pontarollo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo, 5, Padua, 35131 Italy
| | - Vadim B Vasilyev
- Institute for Experimental Medicine, Pavlov str., 12, Saint Petersburg, 197376 Russia; State University of Saint Petersburg, University Embankment, 4-7, Saint Petersburg, 199034 Russia
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo, 5, Padua, 35131 Italy.
| |
Collapse
|
40
|
Lee MJ, Jung CH, Kang YM, Jang JE, Leem J, Park JY, Lee WJ. Serum Ceruloplasmin Level as a Predictor for the Progression of Diabetic Nephropathy in Korean Men with Type 2 Diabetes Mellitus. Diabetes Metab J 2015; 39:230-9. [PMID: 26124993 PMCID: PMC4483608 DOI: 10.4093/dmj.2015.39.3.230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/12/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Oxidative stress is known to be associated with progression of diabetic kidney disease. Ceruloplasmin acts as a pro-oxidant under conditions of severe oxidative stress. Thus, we conducted a longitudinal observational study to evaluate whether the serum ceruloplasmin level is a predictive biomarker for progression of diabetic nephropathy. METHODS A total of 643 Korean men with type 2 diabetes mellitus were enrolled. Serum ceruloplasmin was measured using a nephelometric method. Progression of diabetic nephropathy was defined as transition in albuminuria class (i.e., normoalbuminuria to microalbuminuria, microalbuminuria to macroalbuminuria, or normoalbuminuria to macroalbuminuria) and/or a greater than 2-fold increase of serum creatinine at follow-up compared with the baseline value. RESULTS During the follow-up period (median, 2.7 years; range, 0.3 to 4.4 years), 49 of 643 patients (7.6%) showed the progression of diabetic nephropathy and three patients (0.5%) developed end-stage renal disease. Baseline ceruloplasmin levels were higher in the progressors than in the nonprogressors (262.6±40.9 mg/L vs. 233.3±37.8 mg/L, P<0.001). Kaplan-Meier analysis showed a significantly higher incidence of nephropathy progression according to ceruloplasmin tertile (log-rank test, P<0.001). The hazard ratio (HR) for progression of diabetic nephropathy was significantly higher in the highest ceruloplasmin tertile category compared with the lowest ceruloplasmin tertile category, even after adjusting for confounding variables (HR, 3.32; 95% confidence interval, 1.28 to 8.61; P=0.003). CONCLUSION Baseline serum ceruloplasmin is an independent predictive factor for the progression of diabetic nephropathy in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Min Jung Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yu Mi Kang
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Eun Jang
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jaechan Leem
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joong-Yeol Park
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woo Je Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Squadrone S, Brizio P, Mancini C, Pozzi E, Cavalieri S, Abete MC, Brusco A. Blood metal levels and related antioxidant enzyme activities in patients with ataxia telangiectasia. Neurobiol Dis 2015; 81:162-7. [PMID: 25882094 DOI: 10.1016/j.nbd.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 10/23/2022] Open
Abstract
Transition metals are cofactors for a wide range of vital enzymes and are directly or indirectly involved in the response against reactive oxygen species (ROS), which can damage cellular components. Their altered homeostasis has been studied in neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), but no data are available on rarer conditions. We aimed at studying the role of essential trace elements in ataxia telangiectasia (A-T), a rare form of pediatric autosomal recessive cerebellar ataxia with altered antioxidant response. We found an increased level of copper (Cu, p=0.0002) and a reduced level of zinc (Zn, p=0.0002) in the blood of patients (n. 16) compared to controls, using inductively coupled plasma mass spectrometry (ICP-MS). Other trace elements involved in the oxidative stress response, such as manganese (Mn) and selenium (Se), were unaltered. Cu/Zn-dependent superoxide dismutase (SOD1) was shown to have a 30% reduction in gene expression and 40% reduction in enzyme activity upon analysis of lymphoblastoid cell lines of patients (Student's t-test, p=0.0075). We also found a 30% reduction of Mn-SOD (SOD2; Student's t-test, p=0.02), probably due to a feedback regulatory loop between the two enzymes. The expression of antioxidant enzymes, such as erythrocyte glutathione peroxidase (GPX1), and SOD2 was unaltered, whereas catalase (CAT) was increased in A-T cells, both at the mRNA level and in terms of enzyme activity (~25%). Enhanced CAT expression can be attributed to the high ROS status, which induces CAT transcription. These results suggest that alterations in essential trace elements and their related enzymes may play a role in the pathogenesis of A-T, although we cannot conclude if altered homeostasis is a direct effect of A-T mutated genes (ATM). Altered homeostasis of trace elements may be more prevalent in neurodegenerative diseases than previously thought, and it may represent both a biomarker and a generic therapeutic target for different disorders with the common theme of altered antioxidant enzyme responses associated with an unbalance of metals.
Collapse
Affiliation(s)
- Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, Torino 10154, Italy.
| | - Paola Brizio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, Torino 10154, Italy
| | - Cecilia Mancini
- Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Elisa Pozzi
- Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Simona Cavalieri
- Department of Medical Sciences, University of Torino, Torino 10126, Italy; Città della Salute e della Scienza University Hospital, Medical Genetics Unit, Torino 10126, Italy
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, via Bologna 148, Torino 10154, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino 10126, Italy; Città della Salute e della Scienza University Hospital, Medical Genetics Unit, Torino 10126, Italy
| |
Collapse
|
42
|
|
43
|
Alexanian I, Parissis J, Farmakis D, Athanaselis S, Pappas L, Gavrielatos G, Mihas C, Paraskevaidis I, Sideris A, Kremastinos D, Spiliopoulou C, Anastasiou-Nana M, Lekakis J, Filippatos G. Clinical and echocardiographic correlates of serum copper and zinc in acute and chronic heart failure. Clin Res Cardiol 2014; 103:938-49. [PMID: 24908339 DOI: 10.1007/s00392-014-0735-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
AIM Emerging evidence suggests a pathophysiological role of micronutrient dyshomeostasis in heart failure, including promotion of adverse remodeling and clinical deterioration. We sought to evaluate serum copper (Cu) and zinc (Zn) levels in acute (AHF) and chronic (CHF) heart failure. METHODS We studied 125 patients, 71 % male, aged 69 ± 11 years, 37 % with preserved left ventricular ejection fraction (LVEF ≥40 %) (HFPEF), including 81 with AHF and 44 with CHF; 21 healthy volunteers served as controls. Serum Cu and Zn levels were determined using air-acetylene flame atomic absorption spectrophotometry. RESULTS Serum Cu levels were significantly higher in AHF (p = 0.006) and CHF (p = 0.002) patients compared to controls after adjusting for age, gender and comorbidities, whereas they did not differ between AHF and CHF (p = 0.840). Additionally, serum Cu in patients with LVEF <40 % was significantly higher compared to both controls (p < 0.001) and HFPEF patients (p = 0.003). Serum Zn was significantly lower in AHF (p < 0.001) and CHF (p = 0.039) compared to control after adjusting for the above-mentioned variables. Moreover, serum Zn was significantly lower in AHF than in CHF (p = 0.015). In multiple linear regression, LVEF (p = 0.033) and E/e ratio (p = 0.006) were independent predictors of serum Cu in total heart failure population, while NYHA class (p < 0.001) and E/e ratio (p = 0.007) were independent predictors of serum Zn. CONCLUSION Serum Cu was increased both in AHF and CHF and correlated with LV systolic and diastolic function. Serum Zn, in contrast, was decreased both in AHF and CHF and independently predicted by clinical status and LV diastolic function.
Collapse
Affiliation(s)
- Ioannis Alexanian
- Department of Cardiology, Athens University Hospital Attikon, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Dian J Cao
- From the Departments of Internal Medicine (Cardiology) (D.J.C., J.A.H.) and Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Joseph A Hill
- From the Departments of Internal Medicine (Cardiology) (D.J.C., J.A.H.) and Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas.
| |
Collapse
|
45
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1157] [Impact Index Per Article: 115.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
46
|
Grammer TB, Kleber ME, Silbernagel G, Pilz S, Scharnagl H, Lerchbaum E, Tomaschitz A, Koenig W, März W. Copper, ceruloplasmin, and long-term cardiovascular and total mortality (The Ludwigshafen Risk and Cardiovascular Health Study). Free Radic Res 2014; 48:706-15. [DOI: 10.3109/10715762.2014.901510] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- T. B. Grammer
- Mannheim Institute of Public Health, Social and Preventive Medicine, Mannheim Medical Faculty, University of Heidelberg,
Mannheim, Germany
- Department of Cardiology, Medical University of Graz,
Graz, Austria
| | - M. E. Kleber
- Medical Clinic V (Nephrology, Hypertensiology, Endocrinology, Diabetolgy, and Rheumatology), Mannheim Medical Faculty, University of Heidelberg,
Mannheim, Germany
| | - G. Silbernagel
- Department of Angiology, Swiss Cardiovascular Center,
Inselspital, University of Bern, Switzerland
| | - S. Pilz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Medical University of Graz,
Graz, Austria
| | - H. Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz,
Graz, Austria
| | - E. Lerchbaum
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Medical University of Graz,
Graz, Austria
- University Women’s Hospital Heidelberg,
Heidelberg, Germany
| | - A. Tomaschitz
- Department of Cardiology, Medical University of Graz,
Graz, Austria
- Specialist Clinic for Rehabilitation PVA Bad Aussee,
Bad Aussee, Austria
| | - W. Koenig
- Department of Internal Medicine II—Cardiology,
University of Ulm, Ulm Germany
| | - W. März
- Medical Clinic V (Nephrology, Hypertensiology, Endocrinology, Diabetolgy, and Rheumatology), Mannheim Medical Faculty, University of Heidelberg,
Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz,
Graz, Austria
- Synlab Academy, Synlab Services GmbH,
Mannheim, Germany
| |
Collapse
|
47
|
Adamsson Eryd S, Sjögren M, Smith JG, Nilsson PM, Melander O, Hedblad B, Engström G. Ceruloplasmin and atrial fibrillation: evidence of causality from a population-based Mendelian randomization study. J Intern Med 2014; 275:164-71. [PMID: 24118451 DOI: 10.1111/joim.12144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Inflammatory diseases and inflammatory markers secreted by the liver, including C-reactive protein (CRP) and ceruloplasmin, have been associated with incident atrial fibrillation (AF). Genetic studies have not supported a causal relationship between CRP and AF, but the relationship between ceruloplasmin and AF has not been studied. The purpose of this Mendelian randomization study was to explore whether genetic polymorphisms in the gene encoding ceruloplasmin are associated with elevated ceruloplasmin levels, and whether such genetic polymorphisms are also associated with the incidence of AF. DESIGN Genetic polymorphisms in the ceruloplasmin gene (CP) were genotyped in a population-based cohort study of men from southern Sweden (Malmö Preventive Project; n = 3900). Genetic polymorphisms associated with plasma ceruloplasmin concentration were also investigated for association with incident AF (n = 520) during a mean follow-up of 29 years in the same cohort. Findings were replicated in an independent case-control sample (The Malmö AF cohort; n = 2247 cases, 2208 controls). RESULTS A single nucleotide polymorphism (rs11708215, minor allele frequency 0.12) located in the CP gene promoter was strongly associated with increased levels of plasma ceruloplasmin (P = 9 × 10(-10) ) and with AF in both the discovery cohort [hazard ratio 1.24 per risk allele, 95% confidence interval (CI) 1.06-1.44, P = 0.006] and the replication cohort (odds ratio 1.13, 95% CI 1.02-1.26, P = 0.02). CONCLUSIONS Our findings indicate a causal role of ceruloplasmin in AF pathophysiology and suggest that ceruloplasmin might be a mediator in a specific inflammatory pathway that causally links inflammatory diseases and incidence of AF.
Collapse
Affiliation(s)
- S Adamsson Eryd
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
48
|
Jeremy JY, Shukla N. Ceruloplasmin dysfunction: a key factor in the pathophysiology of atrial fibrillation? J Intern Med 2014; 275:191-4. [PMID: 24188106 DOI: 10.1111/joim.12156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- J Y Jeremy
- NIHR Bristol Biomedical Research Unit, Bristol Heart Institute, University of Bristol, Bristol, UK
| | | |
Collapse
|
49
|
Choi GS, Kim JH, Shin YS, Ye YM, Kim SH, Park HS. Eosinophil activation and novel mediators in the aspirin-induced nasal response in AERD. Clin Exp Allergy 2014; 43:730-40. [PMID: 23786280 DOI: 10.1111/cea.12096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Eosinophil activation is the key feature of upper and lower airway inflammation in aspirin-exacerbated respiratory disease (AERD). OBJECTIVE To investigate the mechanism of eosinophil activation and identify novel inflammatory mediators using proteomics. METHODS Thirty-two asthmatic subjects were enrolled: 18 AERD patients who showed positive responses to the lysine-aspirin nasal provocation test (L-ASA NPT) and 14 aspirin-tolerant asthma (ATA) patients who showed negative responses to the L-ASA NPT (control group). Nasal lavage fluid (NLF) was collected before (baseline), at 10, 30 and 60 min (early response), and at 3 h (late response) after the L-ASA NPT. Eosinophil cationic protein (ECP) and cysteinyl leucotriene (CysLT) levels were measured using an ImmunoCAP system and ELISA respectively. To identify proteins involved in AERD, comparative proteomics was applied using NLFs collected before and after L-ASA NPTs in AERD patients. The clinical relevance of identified novel proteins was evaluated by ELISA using NLFs from the AERD and ATA groups. RESULTS Eosinophil cationic protein and CysLT levels both increased significantly during the early response in AERD. ECP levels increased until the late response in AERD, while CysLT levels were not significantly increased during the late response. Proteomic analysis showed up-regulation of apolipoprotein A1 (ApoA1), α2-macroglobulin (α2M) and ceruloplasmin (CP), with significant increases in NLF of AERD patients, which was significantly higher in AERD patients with chronic rhinosinusitis. Significant correlations were noted between ECP and CysLT, ApoA1, α2M and CP levels during the early response in AERD patients. CONCLUSION Eosinophil activation occurred in early and late responses after L-ASA NPT in upper airway mucosa of AERD patients, where ApoA1, α2M and CP as well as CysLT may be involved in eosinophilic inflammation.
Collapse
Affiliation(s)
- G-S Choi
- Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea
| | | | | | | | | | | |
Collapse
|
50
|
Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F, Ostan R, Cevenini E, Gonos ES, Monti D. Micronutrient-gene interactions related to inflammatory/immune response and antioxidant activity in ageing and inflammation. A systematic review. Mech Ageing Dev 2014; 136-137:29-49. [PMID: 24388876 DOI: 10.1016/j.mad.2013.12.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 02/07/2023]
Abstract
Recent longitudinal studies in dietary daily intake in human centenarians have shown that a satisfactory content of some micronutrients within the cells maintain several immune functions, a low grade of inflammation and preserve antioxidant activity. Micronutrients (zinc, copper, selenium) play a pivotal role in maintaining and reinforcing the performances of the immune and antioxidant systems as well as in affecting the complex network of the genes (nutrigenomic) with anti- and pro-inflammatory tasks. Genes of pro- and anti-inflammatory cytokines and some key regulators of trace elements homeostasis, such as Metallothioneins (MT), are involved in the susceptibility to major geriatric disease/disorders. Moreover, the genetic inter-individual variability may affect the nutrients' absorption (nutrigenetic) with altered effects on inflammatory/immune response and antioxidant activity. The interaction between genetic factors and micronutrients (nutrigenomic and nutrigenetic approaches) may influence ageing and longevity because the micronutrients may become also toxic. This review reports the micronutrient-gene interactions in ageing and their impact on the healthy state with a focus on the method of protein-metal speciation analysis. The association between micronutrient-gene interactions and the protein-metal speciation analysis can give a complete picture for a personalized nutrient supplementation or chelation in order to reach healthy ageing and longevity.
Collapse
Affiliation(s)
- Eugenio Mocchegiani
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy.
| | - Laura Costarelli
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Robertina Giacconi
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Marco Malavolta
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Andrea Basso
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Francesco Piacenza
- Translation Center of Research in Nutrition and Ageing, Scientific and Technological Pole, Italian National Research Centres on Ageing (INRCA), Via Birarelli 8, 60121 Ancona, Italy
| | - Rita Ostan
- Department of Experimental Diagnostic and Specialty Medicine (DIMES) and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Via San Giacomo, 12, 40126 Bologna, Italy
| | - Elisa Cevenini
- Department of Experimental Diagnostic and Specialty Medicine (DIMES) and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Via San Giacomo, 12, 40126 Bologna, Italy
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Daniela Monti
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Viale Morgagni, 50, 50134 Florence, Italy
| |
Collapse
|