1
|
Sharma S, Sharma D, Dhobi M, Wang D, Tewari D. An insight to treat cardiovascular diseases through phytochemicals targeting PPAR-α. Mol Cell Biochem 2024; 479:707-732. [PMID: 37171724 DOI: 10.1007/s11010-023-04755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Peroxisome proliferator-activated receptor-α (PPAR-α) belonging to the nuclear hormone receptor superfamily is a promising target for CVDs which mechanistically improves the production of high-density lipid as well as inhibit vascular smooth muscle cell proliferation. PPAR-α mainly interferes with adenosine monophosphate-activated protein kinase, transforming growth factor-β-activated kinase, and nuclear factor-κB pathways to protect against cardiac complications. Natural products/extracts could serve as a potential therapeutic strategy in CVDs for targeting PPAR-α with broad safety margins. In recent years, the understanding of naturally derived PPAR-α agonists has considerably improved; however, the information is scattered. In vitro and in vivo studies on acacetin, apigenin, arjunolic acid, astaxanthin, berberine, resveratrol, vaticanol C, hispidulin, ginsenoside Rb3, and genistein showed significant effects in CVDs complications by targeting PPAR-α. With the aim of demonstrating the tremendous chemical variety of natural products targeting PPAR-α in CVDs, this review provides insight into various natural products that can work to prevent CVDs by targeting the PPAR-α receptor along with their detailed mechanism.
Collapse
Affiliation(s)
- Supriya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Divya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
2
|
Yin L, Wang L, Shi Z, Ji X, Liu L. The Role of Peroxisome Proliferator-Activated Receptor Gamma and Atherosclerosis: Post-translational Modification and Selective Modulators. Front Physiol 2022; 13:826811. [PMID: 35309069 PMCID: PMC8924581 DOI: 10.3389/fphys.2022.826811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is the hallmark of cardiovascular disease (CVD) which is a leading cause of death in type 2 diabetes patients, and glycemic control is not beneficial in reducing the potential risk of CVD. Clinically, it was shown that Thiazolidinediones (TZDs), a class of peroxisome proliferator-activated receptor gamma (PPARγ) agonists, are insulin sensitizers with reducing risk of CVD, while the potential adverse effects, such as weight gain, fluid retention, bone loss, and cardiovascular risk, restricts its use in diabetic treatment. PPARγ, a ligand-activated nuclear receptor, has shown to play a crucial role in anti-atherosclerosis by promoting cholesterol efflux, repressing monocytes infiltrating into the vascular intima under endothelial layer, their transformation into macrophages, and inhibiting vascular smooth muscle cells proliferation as well as migration. The selective activation of subsets of PPARγ targets, such as through PPARγ post-translational modification, is thought to improve the safety profile of PPARγ agonists. Here, this review focuses on the significance of PPARγ activity regulation (selective activation and post-translational modification) in the occurrence, development and treatment of atherosclerosis, and further clarifies the value of PPARγ as a safe therapeutic target for anti-atherosclerosis especially in diabetic treatment.
Collapse
Affiliation(s)
- Liqin Yin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lihui Wang
- Department of Medical Imaging, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University, Shanghai, China
| | - Zunhan Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaohui Ji
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Longhua Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Longhua Liu,
| |
Collapse
|
3
|
Meijer FA, Oerlemans GJ, Brunsveld L. Orthosteric and Allosteric Dual Targeting of the Nuclear Receptor RORγt with a Bitopic Ligand. ACS Chem Biol 2021; 16:510-519. [PMID: 33596047 PMCID: PMC8023582 DOI: 10.1021/acschembio.0c00941] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
The RORγt nuclear
receptor (NR) is of critical importance
for the differentiation and proliferation of T helper 17 (Th17) cells
and their production of the pro-inflammatory cytokine IL-17a. Dysregulation
of RORγt has been linked to various autoimmune diseases, and
small molecule inhibition of RORγt is therefore an attractive
strategy to treat these diseases. RORγt is a unique NR in that
it contains both a canonical, orthosteric and a second, allosteric
ligand binding site in its ligand binding domain (LBD). Hence, dual
targeting of both binding pockets constitutes an attractive alternative
molecular entry for pharmacological modulation. Here, we report a
chemical biology approach to develop a bitopic ligand for the RORγt
NR, enabling concomitant engagement of both binding pockets. Three
candidate bitopic ligands, Bit-L15, Bit-L9, and Bit-L4, comprising an orthosteric and allosteric
RORγt pharmacophore linked via a polyethylene glycol (PEG) linker,
were designed, synthesized, and evaluated to examine the influence
of linker length on the RORγt binding mode. Bit-L15 and Bit-L9 show convincing evidence of concomitant
engagement of both RORγt binding pockets, while the shorter Bit-L4 does not show this evidence, as was anticipated during
the ligand design. As the most potent bitopic RORγt ligand, Bit-L15, antagonizes RORγt function in a potent manner
in both a biochemical and cellular context. Furthermore, Bit-L15 displays an increased selectivity for RORγt over RORα
and PPARγ compared to the purely orthosteric and allosteric
parent compounds. Combined, these results highlight potential advantages
of bitopic NR modulation over monovalent targeting strategies.
Collapse
Affiliation(s)
- Femke A. Meijer
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612 AZ, The Netherlands
| | - Guido J.M. Oerlemans
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612 AZ, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, Eindhoven, 5612 AZ, The Netherlands
| |
Collapse
|
4
|
Wittrisch S, Klöting N, Mörl K, Chakaroun R, Blüher M, Beck-Sickinger AG. NPY 1R-targeted peptide-mediated delivery of a dual PPARα/γ agonist to adipocytes enhances adipogenesis and prevents diabetes progression. Mol Metab 2019; 31:163-180. [PMID: 31918918 PMCID: PMC6931124 DOI: 10.1016/j.molmet.2019.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022] Open
Abstract
Objective PPARα/γ dual agonists have been in clinical development for the treatment of metabolic diseases including type 2 diabetes and dyslipidemia. However, severe adverse side effects led to complications in clinical trials. As most of the beneficial effects rely on the compound activity in adipocytes, the selective targeting of this cell type is a cutting-edge strategy to develop safe anti-diabetic drugs. The goal of this study was to strengthen the adipocyte-specific uptake of the PPARα/γ agonist tesaglitazar via NPY1R-mediated internalization. Methods NPY1R-preferring peptide tesaglitazar-[F7, P34]-NPY (tesa-NPY) was synthesized by a combination of automated SPPS and manual couplings. Following molecular and functional analyses for proof of concept, cell culture experiments were conducted to monitor the effects on adipogenesis. Mice treated with peptide drug conjugates or vehicle either by gavage or intraperitoneal injection were characterized phenotypically and metabolically. Histological analysis and transcriptional profiling of the adipose tissue were performed. Results In vitro studies revealed that the tesaglitazar-[F7, P34]-NPY conjugate selectively activates PPARγ in NPY1R-expressing cells and enhances adipocyte differentiation and adiponectin expression in adipocyte precursor cells. In vivo studies using db/db mice demonstrated that the anti-diabetic activity of the peptide conjugate is as efficient as that of systemically administered tesaglitazar. Additionally, tesa-NPY induces adipocyte differentiation in vivo. Conclusions The use of the tesaglitazar-[F7, P34]-NPY conjugate is a promising strategy to apply the beneficial PPARα/γ effects in adipocytes while potentially omitting adverse effects in other tissues. Tesaglitazar-NPY targets adipocytes via NPY1R receptor-mediated internalization. Peptide-drug conjugate is specifically delivered to NPY1R-expressing cells. Release of tesaglitazar in adipocytes activates PPARγ. Drug delivery enhances adipocyte differentiation and adiponectin expression. Peptide conjugate exhibits antidiabetic activity in vivo.
Collapse
Affiliation(s)
- Stefanie Wittrisch
- Universität Leipzig, Institute of Biochemistry, Brüderstraße 34, 04103 Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany.
| | - Karin Mörl
- Universität Leipzig, Institute of Biochemistry, Brüderstraße 34, 04103 Leipzig, Germany
| | - Rima Chakaroun
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany; Department of Medicine, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Ph.-Rosenthal-Str. 27, 04103 Leipzig, Germany; Department of Medicine, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany.
| | | |
Collapse
|
5
|
Comparison between red wine and isolated trans-resveratrol on the prevention and regression of atherosclerosis in LDLr (-/-) mice. J Nutr Biochem 2018; 61:48-55. [PMID: 30184518 DOI: 10.1016/j.jnutbio.2018.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/22/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
Moderate consumption of red wine has been widely associated with reduced cardiovascular risk, mainly due to its composition in phenolic compounds with antioxidant activity, such as resveratrol. The objective of this study was to compare the effect of red wine vs. trans-resveratrol consumption on the prevention and regression of atherosclerosis in LDLr (-/-) mice. This study consisted of two protocols: "Prevention" (PREV) and "Regression" (REGR). Both protocols included four groups: red wine (WINE), dealcoholized red wine (EXT), trans-resveratrol (RESV), and control (CONT). In PREV protocol, animals received a regular diet for 8 weeks and then switched to an atherogenic diet for the following 8 weeks, while the opposite was performed in REGR. Animals that received atherogenic diet after an initial period of standard diet (PREV) gained more body weight (39.25±2.30%) than the opposite (29.27±1.91%, P=.0013), suggesting an interaction between age and weight gain. Trans-resveratrol showed the highest hypocholesterolemic effect during PREV, reducing total cholesterol, LDL-C, VLDL-C and HDL-C. Supplementation with trans-resveratrol and dealcoholized red wine changed the fatty acids profile in the liver in both protocols, leading to an increase of MDA concentrations and SOD activity in the PREV protocol. In conclusion, supplementation with trans-resveratrol, red wine and the same wine without alcohol altered biomarkers of oxidative stress and lipidemia but had no effect on the prevention or regression of fatty streaks. These data suggest that cardiovascular protection associated with the "French Paradox" may be a result of synergistic effects between wine and the Mediterranean diet.
Collapse
|
6
|
Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α. Future Cardiol 2017; 13:259-278. [PMID: 28581332 PMCID: PMC5941715 DOI: 10.2217/fca-2016-0059] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
This article provides a comprehensive review about the molecular and metabolic actions of PPAR-α. It describes its structural features, ligand specificity, gene transcription mechanisms, functional characteristics and target genes. In addition, recent progress with the use of loss of function and gain of function mouse models in the discovery of diverse biological functions of PPAR-α, particularly in the vascular system and the status of the development of new single, dual, pan and partial PPAR agonists (PPAR modulators) in the clinical management of metabolic diseases are presented. This review also summarizes the clinical outcomes from a large number of clinical trials aimed at evaluating the atheroprotective actions of current clinically used PPAR-α agonists, fibrates and statin-fibrate combination therapy.
Collapse
Affiliation(s)
- Lu Han
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Wen-Jun Shen
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stefanie Bittner
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Fredric B Kraemer
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Salman Azhar
- Geriatrics Research, Education & Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Luo H, Liu J, Ouyang Q, Xuan C, Wang L, Li T, Liu J. The effects of oleanolic acid on atherosclerosis in different animal models. Acta Biochim Biophys Sin (Shanghai) 2017; 49:349-354. [PMID: 28338883 DOI: 10.1093/abbs/gmx013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Indexed: 12/13/2022] Open
Abstract
In the present study, three animal models, including C57BL/6J mice, low-density lipoprotein receptor knockout (LDLR-/-) mice, and rabbit that mimicked atherosclerosis, were established to investigate the inhibitory effect of oleanolic acid (OA) on atherosclerosis. In rabbit model, serum total cholesterol (TC), triglyceride, low density lipoprotein cholesterol (LDL-C), and high density lipoprotein cholesterol (HDL-C) were measured. Carotid artery lesions were isolated for histological analysis. The red oil O and hematoxylin-eosin staining in liver were examined. The messenger ribonucleicacid (mRNA) levels of PPARγ, AdipoR1, and AdipoR2 related to lipid metabolism were determined. Compared with model group, OA and atorvastatin significantly lowered the levels of TC and LDL-C. The result of red oil O staining showed that OA and atorvastatin had similar effect on reducing the accumulation of lipid. Histological result demonstrated that OA reduced the thickness of intima. AdipoR1 was markedly increased, while AdipoR2 was remarkably decreased in OA group compared with that in the control group of the rabbit model. In LDLR-/- mouse model, lipid parameters in blood and mRNA levels of PPARγ, AdipoR1, and AdipoR2 were measured. It was found that OA exhibited similar effects as atorvastatin including reduced TG, LDL-C, and enhanced HDL-C. Notably, OA elevated the levels of AdipoR1 and PPARγ. At the same time, OA decreased TC and LDL-C in C57BL/6J mice model. Our results in three different animal models all revealed that OA retarded the development of atherosclerosis by influencing serum lipid levels, lipid accumulation in liver and intimal thickening of artery. And the underlying mechanism of OA on atherosclerosis may involve in lipid metabolism genes: PPARγ, AdipoR1, and AdipoR2.
Collapse
Affiliation(s)
- Hanqiong Luo
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Jine Liu
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Qiong Ouyang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Chunxiao Xuan
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Lanlan Wang
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Li
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Liu
- Jiangsu Key Laboratory of Drug Screening and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Zhang J, Liu X, Xie XB, Cheng XC, Wang RL. Multitargeted bioactive ligands for PPARs discovered in the last decade. Chem Biol Drug Des 2016; 88:635-663. [PMID: 27317624 DOI: 10.1111/cbdd.12806] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/20/2016] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes took insulin resistance as the main clinical manifestation. PPARs have been reported to be the therapeutic targets of metabolic disorders, such as obesity, hypertension, diabetes, and cardiovascular disease. Previously, PPARγ agonist rosiglitazone was restricted in clinic due to cardiomyocytes infarction, weight gain, and other serious side-effects, which were mainly due to the single and selective PPARγ agonism. In recent years, multitarget-directed PPAR agonists with synergistic reaction as well as fewer side-effect have been the hot topic in designing promising agents. In this review, we updated and generalized the development of PPARγ partial agonists, PPARγ antagonists, PPARα/γ dual agonists, PPARδ partial agonists, PPARδ antagonists, PPARα/δ dual agonists, PPARγ/δ dual agonists, and PPARα/γ/δ pan-agonists published in recent decade. Most of these molecules were modified from known structures or came from high-throughput screening. Among these molecules, some were expected to be promising drugs against metabolic disorders, while others seemed to provide new insight for designing novel PPAR agents.
Collapse
Affiliation(s)
- Jun Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xian-Bin Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China.
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
César FA, Rudnicki M, de Las Heras B, Boscá L, Lima MCA, Pitta IR, Abdalla DSP. New indole-thiazolidine attenuates atherosclerosis in LDLr(-/-) mice. Vascul Pharmacol 2015; 71:174-80. [PMID: 25869519 DOI: 10.1016/j.vph.2015.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/02/2015] [Accepted: 03/28/2015] [Indexed: 02/07/2023]
Abstract
Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor γ (PPARγ) agonists that improve insulin-mediated glucose uptake and possess beneficial vasculoprotective actions. However, because undesirable side effects are associated with these drugs, novel TZDs are under development. In this study, we evaluated the biological activity of LYSO-7, a new indole-thiazolidine, on PPAR activation, inflammation and atherogenesis using a gene reporter assay, lipopolysaccharide (LPS)-activated RAW 264.7 cell culture, and a low-density lipoprotein receptor knockout (LDLr(-/-)) mouse model of atherosclerosis. LYSO-7 shows low cytotoxicity in RAW 264.7 cells and at 2.5μmol/L induces PPARα and PPARγ transactivation as well as inhibits LPS-induced nitrite production and the mRNA gene expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1). In addition, treatment with LYSO-7 reduces the development of atherosclerosis in LDLr(-/-) mice, improves the lipid profile, blood glucose levels, and downregulates CD40 and CD40L expression without affecting the body weight of the animals. Altogether, our data show that LYSO-7 possesses anti-inflammatory properties and that treatment with this TZD attenuates atherosclerosis progression in LDLr(-/-) mice by modulating lipid metabolism and inflammation. Thus, LYSO-7 shows potential as a new drug candidate for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Fernanda A César
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Martina Rudnicki
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Beatriz de Las Heras
- Department of Pharmacology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Maria C A Lima
- Center of Health Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Ivan R Pitta
- Center of Health Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Dulcineia S P Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
10
|
The PPAR α / γ Agonist, Tesaglitazar, Improves Insulin Mediated Switching of Tissue Glucose and Free Fatty Acid Utilization In Vivo in the Obese Zucker Rat. PPAR Res 2013; 2013:305347. [PMID: 24285952 PMCID: PMC3826326 DOI: 10.1155/2013/305347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/16/2022] Open
Abstract
Metabolic flexibility was assessed in male Zucker rats: lean controls, obese controls, and obese rats treated with the dual peroxisome proliferator activated receptor (PPAR) α/γ agonist, tesaglitazar, 3 μmol/kg/day for 3 weeks. Whole body glucose disposal rate (Rd) and hepatic glucose output (HGO) were assessed under basal fasting and hyperinsulinemic isoglycemic clamp conditions using [3,3H]glucose. Indices of tissue specific glucose utilization (Rg′) were measured at basal, physiological, and supraphysiological levels of insulinemia using 2-deoxy-D-[2,6-3H]glucose. Finally, whole body and tissue specific FFA and glucose utilization and metabolic fate were evaluated under basal and hyperinsulinemic conditions using a combination of [U-13C]glucose, 2-deoxy-D-[U-14C]glucose, [U-14C]palmitate, and [9,10-3H]-(R)-bromopalmitate. Tesaglitazar improved whole body insulin action by greater suppression of HGO and stimulation of Rd
compared to obese controls. This involved increased insulin stimulation of Rg′
in fat and skeletal muscle as well as increased glycogen synthesis. Tesaglitazar dramatically improved insulin mediated suppression of plasma FFA level, whole body turnover (Rfa), and muscle, liver, and fat utilization. At basal insulin levels, tesaglitazar failed to lower HGO or Rfa
compared to obese controls. In conclusion, the results demonstrate that tesaglitazar has a remarkable ability to improve insulin mediated control of glucose and FFA fluxes in obese Zucker rats.
Collapse
|
11
|
Abstract
Vascular endothelial dysfunction is determined by both genetic and environmental factors that cause decreased bioavailability of the vasodilator nitric oxide. This is a hallmark of atherosclerosis, hypertension, and coronary heart disease, which are major complications of metabolic disorders, including diabetes and obesity. Several therapeutic interventions, including changes in lifestyle as well as pharmacologic treatments, are useful for improving endothelial dysfunction in the face of lipotoxicity. This review discusses the current understanding of molecular and physiologic mechanisms underlying lipotoxicity-mediated endothelial dysfunction as well as relevant therapeutic approaches to ameliorate dyslipidemia and consequent endothelial dysfunction that have the potential to improve cardiovascular and metabolic outcomes.
Collapse
Affiliation(s)
- Jeong-a Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, 1808 7th Avenue South, BDB 777, Birmingham, AL 35294-0012, USA
- Department of Cell Biology, University of Alabama at Birmingham, 1808 7th Avenue South, BDB 777, Birmingham, AL 35294, USA
| | - Monica Montagnani
- Department of Biomedical Sciences and Human Oncology, Pharmacology Section, University “Aldo Moro” at Bari, Policlinico, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Sruti Chandrasekran
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland at Baltimore, 660 West Redwood Street, HH 495, Baltimore, MD 21201, USA
| | - Michael J. Quon
- Department of Medicine, Division of Endocrinology, Diabetes & Nutrition, University of Maryland at Baltimore, 660 West Redwood Street, HH 495, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Zhang BC, Li WM, Li XK, Zhu MY, Che WL, Xu YW. Tesaglitazar ameliorates non-alcoholic fatty liver disease and atherosclerosis development in diabetic low-density lipoprotein receptor-deficient mice. Exp Ther Med 2012; 4:987-992. [PMID: 23226761 PMCID: PMC3494130 DOI: 10.3892/etm.2012.713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/04/2012] [Indexed: 01/18/2023] Open
Abstract
Previous research has demonstrated that the dual PPARα/γ agonist tesaglitazar reduces atherosclerosis in a mouse model of hyperlipidemia by reducing both lipid content and inflammation in the aorta. However, much of the underlying mechanism of tesaglitazar in non-alcoholic fatty liver disease (NAFLD) remains less clear. The aim of the present study was to determine whether tesaglitazar attenuates NAFLD and atherosclerosis development in diabetic low-density lipoprotein receptor-deficient (LDLr−/−) mice. Female LDLr−/− mice (3 weeks old) were induced by a high-fat diet (HFD) combined with low-dose streptozotocin (STZ) injection to develop an animal model of type 2 diabetes (T2DM). The mice were randomly divided into two groups: diabetic group (untreated diabetic mice, n=15) and tesaglitazar therapeutic group (n=15, 20 μg/kg/day oral treatment for 6 weeks). Fifteen LDLr−/− mice were fed with an HFD as the control group. Tesaglitazar decreased serum glucose and lipid levels compared with the diabetic mice. Tesaglitazar significantly reduced atherosclerotic lesions, lipid accumulation in the liver, macrophage infiltration, and decreased total hepatic cholesterol and triglyceride content compared to the diabetic mice. In addition, tesaglitazar reduced inflammatory markers at both the serum and mRNA levels. Our data suggest that tesaglitazar may be effective in preventing NAFLD and atherosclerosis in a pre-existing diabetic condition by regulating glucose and lipid metabolism, and the inflammatory response.
Collapse
Affiliation(s)
- Bu-Chun Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
| | | | | | | | | | | |
Collapse
|
13
|
Ma Y, Wang W, Zhang J, Lu Y, Wu W, Yan H, Wang Y. Hyperlipidemia and atherosclerotic lesion development in Ldlr-deficient mice on a long-term high-fat diet. PLoS One 2012; 7:e35835. [PMID: 22558236 PMCID: PMC3338468 DOI: 10.1371/journal.pone.0035835] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 03/23/2012] [Indexed: 11/19/2022] Open
Abstract
Background Mice deficient in the LDL receptor (Ldlr−/− mice) have been widely used as a model to mimic human atherosclerosis. However, the time-course of atherosclerotic lesion development and distribution of lesions at specific time-points are yet to be established. The current study sought to determine the progression and distribution of lesions in Ldlr−/− mice. Methodology/Principal Findings Ldlr-deficient mice fed regular chow or a high-fat (HF) diet for 0.5 to 12 months were analyzed for atherosclerotic lesions with en face and cross-sectional imaging. Mice displayed significant individual differences in lesion development when fed a chow diet, whereas those on a HF diet developed lesions in a time-dependent and site-selective manner. Specifically, mice subjected to the HF diet showed slight atherosclerotic lesions distributed exclusively in the aortic roots or innominate artery before 3 months. Lesions extended to the thoracic aorta at 6 months and abdominal aorta at 9 months. Cross-sectional analysis revealed the presence of advanced lesions in the aortic sinus after 3 months in the group on the HF diet and in the innominate artery at 6 to 9 months. The HF diet additionally resulted in increased total cholesterol, LDL, glucose, and HBA1c levels, along with the complication of obesity. Conclusions/Significance Ldlr-deficient mice on the HF diet tend to develop site-selective and size-specific atherosclerotic lesions over time. The current study should provide information on diet induction or drug intervention times and facilitate estimation of the appropriate locations of atherosclerotic lesions in Ldlr−/− mice.
Collapse
Affiliation(s)
- Yanling Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenyi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jie Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Youli Lu
- Central Laboratory, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Wenyu Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hong Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yiping Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
14
|
Xu L, Shen S, Ma Y, Kim JK, Rodriguez-Agudo D, Heuman DM, Hylemon PB, Pandak WM, Ren S. 25-Hydroxycholesterol-3-sulfate attenuates inflammatory response via PPARγ signaling in human THP-1 macrophages. Am J Physiol Endocrinol Metab 2012; 302:E788-99. [PMID: 22275753 PMCID: PMC3330710 DOI: 10.1152/ajpendo.00337.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nuclear receptor peroxisome proliferator-activated receptors (PPARs) are important in regulating lipid metabolism and inflammatory responses in macrophages. Activation of PPARγ represses key inflammatory response gene expressions. Recently, we identified a new cholesterol metabolite, 25-hydroxycholesterol-3-sulfate (25HC3S), as a potent regulatory molecule of lipid metabolism. In this paper, we report the effect of 25HC3S and its precursor 25-hydroxycholesterol (25HC) on PPARγ activity and on inflammatory responses. Addition of 25HC3S to human macrophages markedly increased nuclear PPARγ and cytosol IκB and decreased nuclear NF-κB protein levels. PPARγ response element reporter gene assays showed that 25HC3S significantly increased luciferase activities. PPARγ competitor assay showed that the K(i) for 25HC3S was ∼1 μM, similar to those of other known natural ligands. NF-κB-dependent promoter reporter gene assays showed that 25HC3S suppressed TNFα-induced luciferase activities only when cotransfected with pcDNAI-PPARγ plasmid. In addition, 25HC3S decreased LPS-induced expression and release of IL-1β. In the PPARγ-specific siRNA transfected macrophages or in the presence of PPARγ-specific antagonist, 25HC3S failed to increase IκB and to suppress TNFα and IL-1β expression. In contrast to 25HC3S, its precursor 25HC, a known liver X receptor ligand, decreased nuclear PPARγ and cytosol IκB and increased nuclear NF-κB protein levels. We conclude that 25HC3S acts in macrophages as a PPARγ ligand and suppresses inflammatory responses via the PPARγ/IκB/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Leyuan Xu
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23249, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jin J, Zhang Y, Hu WX, Zhang ZY, Xu NN, Zhou QL. [Effects of Huanglian Jiedu Decoction on blood lipid metabolism and its related gene expressions in rats with hyperlipidemia]. ACTA ACUST UNITED AC 2012; 8:275-9. [PMID: 20226151 DOI: 10.3736/jcim20100313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To observe the effects of Huanglian Jiedu Decoction (HJD), a compound traditional Chinese herbal medicine, on lipid metabolism and its related gene expressions in rats with hyperlipidemia. METHODS Fifty SD rats were randomly divided into normal control group, untreated group, Lipitor (atorvastatin) group, and low- and high-dose HJD groups. Except the normal control group, rats in the other groups were fed with high-fat diet to induce hyperlipidemia. Then the rats were administered with corresponding drugs for 8 weeks. After treatment, the serum levels of total cholesterol (TC), triacylglycerol (TAG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were assayed. The activities of lipoprotein lipase (LPL) and hepatic lipase (HL) in liver tissues were measured. Low-density lipoprotein receptor (LDLR) and peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA expressions in liver tissues were determined by reverse transcription-polymerase chain reaction. RESULTS Compared with the normal control group, the levels of serum TC, TAG and LDL-C in the untreated group were increased and the level of serum HDL-C was reduced. The activities of LPL and HL and expressions of LDLR and PPARgamma mRNAs in the untreated group were lower than those in the normal control group. After treatment, high-dose HJD significantly improved hyperlipemia by decreasing TC, TAG and LDL-C and increasing HDL-C. The activities of LPL and HL and expression levels of LDLR and PPARgamma mRNAs in liver tissues were also markedly enhanced in the high-dose HJD group as compared with those in the untreated group. CONCLUSION HJD can activate the activity of lipid metabolism enzyme, and enhance the expressions of LDLR and PPARgamma mRNAs to modulate the lipid metabolic disorders in rats with hyperlipidemia.
Collapse
Affiliation(s)
- Jin Jin
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun 130022, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
16
|
Iyer N, Marathe SA, Chaudhuri D, Garai P, Chakravortty D. Immunomodulation using agonists and antagonists: potential clinical applications. Expert Opin Investig Drugs 2011; 21:67-81. [PMID: 22149716 DOI: 10.1517/13543784.2012.642367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Extensive studies have gone into understanding the differential role of the innate and adaptive arms of the immune system in the context of various diseases. Receptor-ligand interactions are responsible for mediating cross-talk between the innate and adaptive arms of the immune system, so as to effectively counter the pathogenic challenge. While TLRs remain the best studied innate immune receptor, many other receptor families are now coming to the fore for their role in various pathologies. Research has focused on the discovery of novel agonists and antagonists for these receptors as potential therapeutics. AREAS COVERED In this review, we present an overview of the recent advances in the discovery of drugs targeting important receptors such as G-protein coupled receptors, TRAIL-R, IL-1β receptor, PPARs, etc. All these receptors play a critical role in the modulation of the immune response. We focus on the recent paradigms applied for the generation of specific and effective therapeutics for these receptors and their status in clinical trials. EXPERT OPINION Non-specific activation by antagonist/agonist is a difficult problem to dodge. This demands innovation in ligand designing with the use of strategies such as allosterism and dual-specific ligands. Rigorous preclinical and clinical studies are required in transforming a compound to a therapeutic.
Collapse
Affiliation(s)
- Namrata Iyer
- Indian Institute of Science, Centre for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Bangalore 560012, India
| | | | | | | | | |
Collapse
|
17
|
Adeghate E, Adem A, Hasan MY, Tekes K, Kalasz H. Medicinal Chemistry and Actions of Dual and Pan PPAR Modulators. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2011; 5:93-8. [PMID: 21966330 PMCID: PMC3174518 DOI: 10.2174/1874104501105010093] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/25/2011] [Accepted: 03/11/2011] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR) agonists are used as adjunct therapy in the treatment of diabetes mellitus. Fibrates, including fenofibrate, gemfibrozil, benzafibrate, ciprofibrate, and clofibrate act on PPAR alpha to reduce the level of hypertriglyceridemia. However, agonists (ligands) of PPAR-beta/delta receptors, such as tesaglitazar, muraglitazar, ragaglitazar, imiglitazar, aleglitazar, alter the body's energy substrate preference from glucose to lipids and hence contribute to the reduction of blood glucose level. Glitazones or thiazolidinediones on the other hand, bind to PPAR-gamma receptors located in the nuclei of cells. Activation of PPAR-gamma receptors leads to a decrease in insulin resistance and modification of adipocyte metabolism. They reduce hyperlipidaemia by increasing the level of ATP-binding cassette A1, which modifies extra-hepatic cholesterol into HDL. Dual or pan PPAR ligands stimulate two or more isoforms of PPAR and thereby reduce insulin resistance and prevent short- and long-term complications of diabetes including micro-and macroangiopathy and atherosclerosis, which are caused by deposition of cholesterol. This review examines the chemical structure, actions, side effects and future prospects of dual and pan PPAR agonists.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Anatomy, Faculty of Medicine and Health Science, United Arab Emirates, University Al Ain, United Arab Emirates
| | | | | | | | | |
Collapse
|
18
|
Paik J, Fierce Y, Mai PO, Phelps SR, McDonald T, Treuting P, Drivdahl R, Brabb T, LeBoeuf R, O'Brien KD, Maggio-Price L. Murine norovirus increases atherosclerotic lesion size and macrophages in Ldlr(-/-) mice. Comp Med 2011; 61:330-338. [PMID: 22330248 PMCID: PMC3155399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/20/2011] [Accepted: 04/28/2011] [Indexed: 05/31/2023]
Abstract
Murine norovirus (MNV) is prevalent in rodent facilities in the United States. Because MNV has a tropism for macrophages and dendritic cells, we hypothesized that it may alter phenotypes of murine models of inflammatory diseases, such as obesity and atherosclerosis. We examined whether MNV infection influences phenotypes associated with diet-induced obesity and atherosclerosis by using Ldlr(-/-) mice. Male Ldlr(-/-) mice were maintained on either a diabetogenic or high-fat diet for 16 wk, inoculated with either MNV or vehicle, and monitored for changes in body weight, blood glucose, glucose tolerance, and insulin sensitivity. Influence of MNV on atherosclerosis was analyzed by determining aortic sinus lesion area. Under both dietary regimens, MNV-infected and control mice gained similar amounts of weight and developed similar degrees of insulin resistance. However, MNV infection was associated with significant increases in aortic sinus lesion area and macrophage content in Ldlr(-/-) mice fed a high-fat diet but not those fed a diabetogenic diet. In conclusion, MNV infection exacerbates atherosclerosis in Ldlr(-/-) mice fed a high-fat diet but does not influence obesity- and diabetes-related phenotypes. Increased lesion size was associated with increased macrophages, suggesting that MNV may influence macrophage activation or accumulation in the lesion area.
Collapse
Affiliation(s)
- Jisun Paik
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Amelioration of D-galactosamine-induced acute liver injury in rats by dietary supplementation with betaine derived from sugar beet molasses. Biosci Biotechnol Biochem 2011; 75:1335-41. [PMID: 21737928 DOI: 10.1271/bbb.110105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effects of betaine supplementation on D-galactosamine-induced liver injury were examined in terms of hepatic and serum enzyme activities and of the levels of glutathione and betaine-derived intermediates. The rats induced with liver injury showed marked increases in serum enzyme activity, but those receiving dietary supplementation of 1% betaine showed enzyme activity levels similar to a control group without liver injury. Administration of betaine also increased both hepatic and serum glutathione levels, even following D-galactosamine injection. The activity of glutathione-related enzymes was markedly decreased following injection of D-galactosamine, but remained comparable to that of the control group in rats receiving 1% betaine. The concentrations of hepatic S-adenosyl methionine and cysteine showed similar trends to that observed for hepatic glutathione levels. These results indicate that 1% betaine has a hepatoprotective effect by increasing hepatic and serum glutathione levels along with glutathione-related enzyme activities in rats.
Collapse
|
20
|
Abstract
The thiazolidinedione PPAR-γ activator drugs rosiglitazone and pioglitazone suppress insulin resistance in type 2 diabetic patients. They lock lipids into adipose tissue triglyceride stores, thereby preventing lipid metabolites from causing insulin resistance in liver and skeletal muscle and β-cell failure. They also reduce the secretion of inflammatory cytokines such as TNFα and increase the plasma level of adiponectin, which increases insulin sensitivity in liver and skeletal muscle. However, they have only a modest effect on dyslipidaemia, and they increase fat mass and plasma volume. Fibrate PPAR-α activator drugs decrease plasma triglycerides and increase HDL-cholesterol levels. PPAR-δ activators increase the capacity for fat oxidation in skeletal muscle.Clinical experience with bezafibrate, which activates PPAR-δ and -α, and studies on the PPAR-α/δ activator tetradecylthioacetic acid, the PPAR-δ activator GW501516, and combinations of the PPAR-α activator fenofibrate with rosiglitazone or pioglitazone have encouraged attempts to develop single molecules that activate two or all three PPARs. Most effort has focussed on dual PPAR-α/γ activators. These reduce both hyperglycaemia and dyslipidaemia, but their development has been terminated by issues such as increased weight gain, oedema, plasma creatinine and myocardial infarction or stroke. In addition, the FDA has stated that many PPAR ligands submitted to it have caused increased numbers of tumours in carcinogenicity studies.Rather than aiming for full potent agonists, it may be best to identify subtype-selective partial agonists or compounds that selectively activate PPAR signalling pathways and use these in combination. Nutrients or modified lipids that are low-affinity agonists may also have potential.
Collapse
Affiliation(s)
- Monique Heald
- Clore Laboratory, University of Buckingham, Buckingham, Buckinghamshire, UK
| | | |
Collapse
|
21
|
Robinson E, Grieve DJ. Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. Pharmacol Ther 2009; 122:246-63. [PMID: 19318113 DOI: 10.1016/j.pharmthera.2009.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 01/12/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that belong to the nuclear receptor superfamily. Three isoforms of PPAR have been identified, alpha, delta and gamma, which play distinct roles in the regulation of key metabolic processes, such as glucose and lipid redistribution. PPARalpha is expressed predominantly in the liver, kidney and heart, and is primarily involved in fatty acid oxidation. PPARgamma is mainly associated with adipose tissue, where it controls adipocyte differentiation and insulin sensitivity. PPARdelta is abundantly and ubiquitously expressed, but as yet its function has not been clearly defined. Activators of PPARalpha (fibrates) and gamma (thiazolidinediones) have been used clinically for a number of years in the treatment of hyperlipidaemia and to improve insulin sensitivity in diabetes. More recently, PPAR activation has been found to confer additional benefits on endothelial function, inflammation and thrombosis, suggesting that PPAR agonists may be good candidates for the treatment of cardiovascular disease. In this regard, it has been demonstrated that PPAR activators are capable of reducing blood pressure and attenuating the development of atherosclerosis and cardiac hypertrophy. This review will provide a detailed discussion of the current understanding of basic PPAR physiology, with particular reference to the cardiovascular system. It will also examine the evidence supporting the involvement of the different PPAR isoforms in cardiovascular disease and discuss the current and potential future clinical applications of PPAR activators.
Collapse
Affiliation(s)
- Emma Robinson
- Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 3rd Floor, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL UK
| | | |
Collapse
|
22
|
van der Hoorn JWA, Jukema JW, Havekes LM, Lundholm E, Camejo G, Rensen PCN, Princen HMG. The dual PPARalpha/gamma agonist tesaglitazar blocks progression of pre-existing atherosclerosis in APOE*3Leiden.CETP transgenic mice. Br J Pharmacol 2009; 156:1067-75. [PMID: 19220285 DOI: 10.1111/j.1476-5381.2008.00109.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND AND PURPOSE We have evaluated the effects of a peroxisome proliferator-activated receptor (PPAR)alpha/gamma agonist on the progression of pre-existing atherosclerotic lesions in APOE*3Leiden.cholesteryl ester transfer protein (E3L.CETP) transgenic mice. EXPERIMENTAL APPROACH E3L.CETP mice were fed a high-cholesterol diet for 11 weeks to induce atherosclerosis, followed by a low-cholesterol diet for 4 weeks to obtain a lower plasma total cholesterol level of approximately 10 mmol.L(-1). Mice were divided into three groups, which were either killed before (baseline) or after an 8 week treatment period with low-cholesterol diet without (control) or with the PPARalpha/gamma agonist tesaglitazar (10 microg.kg(-1).day(-1)). Atherosclerosis was assessed in the aortic root. KEY RESULTS Treatment with tesaglitazar significantly reduced plasma triglycerides, total cholesterol, CETP mass and CETP activity, and increased high-density lipoprotein-cholesterol. At baseline, substantial atherosclerosis had developed. During the 8 week low-cholesterol diet, atherosclerosis progressed in the control group with respect to lesion area and severity, whereas tesaglitazar inhibited lesion progression during this period. Tesaglitazar reduced vessel wall inflammation, as reflected by decreased monocyte adhesion and macrophage area, and modified lesions to a more stabilized phenotype, with increased smooth muscle cell content in the cap and collagen content. CONCLUSIONS AND IMPLICATIONS Dual PPARalpha/gamma agonism with tesaglitazar markedly improved the atherogenic triad by reducing triglycerides and very low-density lipoprotein-cholesterol and increasing high-density lipoprotein-cholesterol and additionally reduced cholesterol-induced vessel wall activation. These actions resulted in complete inhibition of progression and stabilization of pre-existing atherosclerotic lesions in E3L.CETP mice.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Peroxisome proliferator activated receptors (PPARs) are ligand-dependent transcription factors that mediate a range of important metabolic functions by transactivation, transrepression or corepression of various gene targets. PPAR agonists also have direct antiatherosclerotic effects, independent of their metabolic effects on glucose and lipid homeostasis. The purpose of this review is to evaluate the currently available evidence for a direct vasculoprotective effect of PPAR agonists. RECENT FINDINGS Current studies have emphasized PPAR-mediated effects on inflammatory and immune responses, oxidative stress, the renin-angiotensin system and modulation of plaque composition. Furthermore, it has become evident that the relative activation of the different PPAR isoforms and the contribution of transactivation of target genes against transrepression of transcription factors need to be considered when assessing the vasculoprotective effects of PPAR agonists. SUMMARY It is anticipated that the antiatherosclerotic effects of PPAR agonists observed in experimental studies will translate into reduced cardiovascular events. This promise is yet to be realized in short-to-medium term studies. Given the central role of the PPAR in gene regulation, particularly in metabolic states, it is possible that more targeted modulation of PPAR signalling may hold many rewards for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Karin A M Jandeleit-Dahm
- Diabetes Division, Albert Einstein JDRF Centre for Diabetes Complications, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
24
|
Bibliography. Current world literature. Nutrition and metabolism. Curr Opin Lipidol 2009; 20:63-72. [PMID: 19106709 DOI: 10.1097/mol.0b013e32832402a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
PPAR activators and COX inhibitors selectively block cytokine-induced COX-2 expression and activity in human aortic smooth muscle cells. Eur J Pharmacol 2009; 606:121-9. [PMID: 19374865 DOI: 10.1016/j.ejphar.2009.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 12/16/2008] [Accepted: 01/09/2009] [Indexed: 11/22/2022]
Abstract
Atherosclerotic complications are related to the unstable character of the plaque rather than its volume. Vulnerable plaques often contain a large lipid core, a reduced content of smooth muscle cells (SMCs), and an accumulation of inflammatory cells. Regulation of this inflammatory response is an essential element in chronic inflammatory diseases such as atherosclerosis. Nuclear receptors and particularly peroxisome proliferator-activated receptors (PPARs) have emerged as therapeutic targets with a widespread impact on the treatment of metabolic disorders because they can modulate gene expression involved in lipid and glucose homeostasis and can exert anti-inflammatory properties. However, little is known about nuclear receptor effects on SMC inflammation, which produces large amounts of IL-6 and prostanoids. The aim of this study was to evaluate anti-inflammatory properties of nuclear receptor activators in a human physiological SMC model. We show that PPAR activators, as well as liver X receptor alpha, farnesoid X receptor and retinoid X receptor alpha activators, inhibit IL-1beta-induced SMC 6-keto PGF1alpha synthesis, an index of cyclooxygenase (COX)-2 activity, with IC(50) between 1 and 69 microM. In contrast, PPARgamma activators, as exemplified by rosiglitazone and pioglitazone, were unable to inhibit cytokine-induced 6-keto PGF1alpha synthesis. We also demonstrate for the first time that the COX-2 inhibitor rofecoxib can reduce 6-keto PGF1alpha production by both enzymatic inhibition and transcriptional repression. These results show that some nuclear receptor activators have SMC anti-inflammatory properties due to COX-2 inhibition which could participate in their anti-atherosclerotic properties beyond lipid impacts.
Collapse
|
26
|
Bibliography. Current world literature. Atherosclerosis: cell biology and lipoproteins. Curr Opin Lipidol 2008; 19:525-35. [PMID: 18769235 DOI: 10.1097/mol.0b013e328312bffc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
PAR-5359, a well-balanced PPARalpha/gamma dual agonist, exhibits equivalent antidiabetic and hypolipidemic activities in vitro and in vivo. Eur J Pharmacol 2008; 595:119-25. [PMID: 18727927 DOI: 10.1016/j.ejphar.2008.07.066] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 07/16/2008] [Accepted: 07/23/2008] [Indexed: 02/01/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR) alpha and gamma are key regulators of lipid homeostasis and insulin resistance. In this study, we characterize the pharmacological profiles of PAR-5359, a dual agonist of PPARalpha and gamma with well-balanced activities. In transient transactivation assay, PAR-5359 (3-(4-(2[4-(4chloro-phenyl)-3,6-dihydro-2H-pyridin-1-yl]-ethoxy)-phenyl)-(2S)-ethoxy-propionic acid) significantly activated human and mouse PPARalpha and gamma without activating PPARdelta. In functional assays using human mesenchymal stem cells and human hepatoma HepG2 cells, PAR-5359 significantly induced adipocyte differentiation and human ApoA1 secretion, which coincided with its transactivation potencies against the corresponding human receptor subtypes. Interestingly, PAR-5359 showed equivalent potencies against the mouse receptor subtypes (alpha and gamma; 2.84 microM and 3.02 microM, respectively), which suggests the possibility that PAR-5359 could simultaneously activates each subtype of receptors subtype in under physiological conditions. In an insulin-resistant ob/ob mouse model, PAR-5359 significantly reduced plasma insulin levels, improved insulin sensitivity (HOMA-IR), and completely normalized plasma glucose levels. In a severe diabetic db/db mouse model, PAR-5359 dose-dependently reduced the plasma levels of glucose (ED(30) = 0.07 mg/kg). Furthermore, it lowered plasma levels of non HDL- (ED(30) = 0.13 mg/kg) and total cholesterol (ED(30) = 0.03 mg/kg) in high cholesterol diet-fed rats for 4 days treatment. These results suggest that PAR-5359 has the balanced activities for PPARalpha and PPARgamma in vivo as well as in vitro. And its balanced activities may render PAR-5359 as a pharmacological tool in elucidating the complex roles of PPARalpha/gamma dual agonists.
Collapse
|
28
|
Peroxisome proliferator-activated receptors and the vascular system: beyond their metabolic effects. ACTA ACUST UNITED AC 2008; 2:227-38. [DOI: 10.1016/j.jash.2007.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/28/2007] [Accepted: 12/28/2007] [Indexed: 12/19/2022]
|
29
|
Kitajima K, Miura SI, Mastuo Y, Uehara Y, Saku K. Newly developed PPAR-alpha agonist (R)-K-13675 inhibits the secretion of inflammatory markers without affecting cell proliferation or tube formation. Atherosclerosis 2008; 203:75-81. [PMID: 18606415 DOI: 10.1016/j.atherosclerosis.2008.05.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 05/22/2008] [Accepted: 05/29/2008] [Indexed: 11/28/2022]
Abstract
Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is a key regulator of lipid and glucose metabolism and has been implicated in inflammation. The vascular effects of activator for PPARs, particularly PPAR-alpha, on vascular cells remain to be fully elucidated. Therefore, we analyzed the hypothesis that newly developed (R)-K-13675 decreases the secretion of inflammatory markers without affecting cell proliferation or tube formation. Human coronary endothelial cells (HCECs) were maintained in different doses of (R)-K-13675 under serum starvation. After 20h, the levels of monocyte chemoattractant protein-1 (MCP-1), regulated on activation, normal T expressed and secreted (RANTES), interleukin-6 (IL-6) and interferon-gamma (INF-gamma) secreted in the medium and nuclear factor kappa B (NFkappaB) in cell lysate were analyzed using enzyme-linked immunosorbent assays (ELISA). Upon treatment with (R)-K-13675 at 0, 10, 20, 50 and 100nM, with the inflammatory markers at 0nM as 100 (arbitrary units), MCP-1 levels were significantly suppressed (94+/-9, 88+/-2, 80+/-5 and 74+/-11, respectively). RANTES, IL-6 and INF-gamma levels were also significantly suppressed (RANTES: 92+/-2, 74+/-9, 64+/-7 and 60+/-2, respectively, IL-6: 97+/-2, 89+/-10, 82+/-1 and 66+/-7, respectively, INF-gamma: 98+/-7, 94+/-3, 76+/-8 and 64+/-8, respectively). NFkappaB levels were also decreased to 91+/-5, 90+/-5, 84+/-7 and 82+/-8, respectively. In addition, (R)-K-13675 did not affect HCEC proliferation or tube formation at up to 100nM. Thus, (R)-K-13675 was associated with the inhibition of inflammatory responses without affecting cell proliferation or angiogenesis, and subsequently may induce an anti-atherosclerotic effect.
Collapse
Affiliation(s)
- Ken Kitajima
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | | | | | | | | |
Collapse
|
30
|
Calkin AC, Thomas MC. PPAR Agonists and Cardiovascular Disease in Diabetes. PPAR Res 2008; 2008:245410. [PMID: 18288280 PMCID: PMC2233765 DOI: 10.1155/2008/245410] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/04/2007] [Indexed: 01/23/2023] Open
Abstract
Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARalpha agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARgamma agonists, and more recently dual PPARalpha/gamma coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARgamma receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Anna C. Calkin
- JDRF Center for Diabetes Complications,
Baker Heart Research Institute,
Melbourne, VIC 3004,
Australia
| | - Merlin C. Thomas
- JDRF Center for Diabetes Complications,
Baker Heart Research Institute,
Melbourne, VIC 3004,
Australia
| |
Collapse
|
31
|
Abstract
Patients with type-2 diabetes mellitus (T2DM) are considered to be at particularly high risk for cardiovascular disease. Over the last decade, the members of the peroxisome proliferator-activated receptor (PPAR) subfamily of nuclear receptors have emerged as valuable pharmacological targets whose activation can normalize metabolic dysfunctions and reduce some cardiovascular risk factors associated with T2DM. PPARalpha agonists, such as the fibrates, can correct dyslipidemia. PPARgamma agonists, such as the thiazolidinediones, act as insulin sensitizers and improve insulin resistance in patients with T2DM. Because of restricted potency and certain side-effects of PPAR agonists, as well as the increasingly epidemic incidence of T2DM, there is a real need for the development of selective PPAR agonists with improved clinical efficacy. This chapter focuses on the PPAR agonists currently used in the clinic, as well as on the discovery and development of the next generation of PPAR agonists.
Collapse
Affiliation(s)
- Barbara Gross
- Institut Pasteur de Lille, 1 rue du Prof Calmette, Lille, F-59019, France
| | | |
Collapse
|