1
|
Tirosh O, Verman M, Ivancovsky-Wajcman D, Grinshpan LS, Fliss-Isakov N, Webb M, Shibolet O, Kariv R, Zelber-Sagi S. Differential effects of low or high-fat dairy and fat derived from dairy products on MASLD. JHEP Rep 2024; 6:101194. [PMID: 39492926 PMCID: PMC11530594 DOI: 10.1016/j.jhepr.2024.101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 11/05/2024] Open
Abstract
Background & Aims Metabolic dysfunction-associated steatotic liver disease (MASLD) is strongly related to nutrition. However, only a few human and animal studies have tested the association between MASLD and dairy consumption and the effect of milk fat on liver damage. Therefore, we aimed at testing the association between consumption of dairy product and the incidence of MASLD and fibrosis markers in humans, and the effect of milk fat vs. other fats on MASLD in animal studies. Methods A prospective 7-year follow-up cohort study was performed including baseline and follow-up fasting blood tests, liver evaluation and a face-to-face interview on health status and behaviour using structured questionnaires. MASLD was determined by ultrasonography or by controlled attenuation parameter (CAP), and liver fibrosis by FibroTest™ or FibroScan®. An animal study was performed in which 6-week-old C57BL/6j male mice were fed a high-fat diet (HFD) consisting of lard, soybean oil, and milk fat for 12 weeks. Metabolic impairment was assessed during the animal experiment, and serum advanced glycation end-products (AGEs) and liver damage were evaluated. Results A total of 316 patients were included in the prospective cohort. In multivariable analysis, high consumption of low-medium fat low-sugar dairy products (g/day above the baseline sex-specific median) was associated with a lower risk for MASLD incidence (OR 0.42, 95% CI 0.18-0.95, p = 0.037) or incidence/persistence at follow-up (OR 0.58, 0.34-0.97, p = 0.039). Constantly high consumption of high-fat low-sugar dairy products was associated with greater odds for new onset/persistence of MASLD. Neither low-medium nor high-fat dairy consumption was related to fibrosis markers. In mice, all HFDs induced similar weight gain and steatosis and did not affect liver enzymes. Milk fat increases serum cholesterol and AGEs levels more than lard or soybean oil. Conclusions Low-medium fat low-sugar dairy products may be protective and should be preferred over high-fat dairy to prevent MASLD. HFDs from different fat sources with a wide spectrum of fatty acid saturation content are equally deleterious. Impact and implications MASLD is related to nutrition, but evidence of an association between high-fat and low-fat dairy products is lacking, therefore, we evaluated this association by performing experimental studies in mice and an observational human study. For MASLD prevention, a differential effect based on the type of dairy products should be considered: low-medium fat low-sugar dairy products were found to be protective, in contrast high-fat dairy and generally high-fat diets may be harmful. It would be advisable to prefer low-fat low-sugar dairy products and minimise intake of high-fat dairy products; however, additional evidence is needed to allow generalisability of our findings.
Collapse
Affiliation(s)
- Oren Tirosh
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Michal Verman
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dana Ivancovsky-Wajcman
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Laura Sol Grinshpan
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Naomi Fliss-Isakov
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
- Department of Health Promotion, School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Muriel Webb
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Oren Shibolet
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Revital Kariv
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
- Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| |
Collapse
|
2
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
3
|
Kanon AP, Spies SJ, MacGibbon AKH, Fuad M. Milk Fat Globule Membrane Is Associated with Lower Blood Lipid Levels in Adults: A Meta-Analysis of Randomized Controlled Trials. Foods 2024; 13:2725. [PMID: 39272491 PMCID: PMC11394670 DOI: 10.3390/foods13172725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, with dyslipidemia being a significant risk factor. This meta-analysis provides a comprehensive evaluation of the impact of bovine dairy-derived milk fat globule membrane (MFGM) supplementation on blood lipid profiles in adults. A systematic search was conducted across various databases up until March 2024, resulting in the inclusion of 6 trials with a total of 464 participants. The findings indicated that MFGM phospholipid supplementation may significantly reduce total cholesterol (TC) and low-density lipoprotein (LDL) cholesterol levels. A combined analysis of the effects on TC, LDL, and triglycerides (TG) revealed a significant overall reduction in these markers. However, no significant increase or reduction was observed on high-density lipoprotein (HDL) and TG levels. Overall, MFGM phospholipid intake may significantly decrease the level of TC and LDL, while no significant changes in TG and HDL were observed. These results suggest that MFGM supplementation could be a promising dietary intervention for improving lipid profiles in adults. Nonetheless, further research is warranted to confirm these results and to better understand the potential variability in the impact of MFGM on blood lipid levels.
Collapse
Affiliation(s)
- Alexander P Kanon
- Fonterra Research and Development Centre, Private Bag 11029, Dairy Farm Road, Palmerston North 4472, New Zealand
| | - Sarah J Spies
- Fonterra Research and Development Centre, Private Bag 11029, Dairy Farm Road, Palmerston North 4472, New Zealand
| | - Alastair K H MacGibbon
- Fonterra Research and Development Centre, Private Bag 11029, Dairy Farm Road, Palmerston North 4472, New Zealand
| | - Maher Fuad
- Fonterra Research and Development Centre, Private Bag 11029, Dairy Farm Road, Palmerston North 4472, New Zealand
| |
Collapse
|
4
|
Zhou AL, Ward RE. Dietary Milk Phospholipids Increase Body Fat and Modulate Gut Permeability, Systemic Inflammation, and Lipid Metabolism in Mice. J Dairy Sci 2024:S0022-0302(24)01079-8. [PMID: 39154725 DOI: 10.3168/jds.2024-25235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
The study aimed at how dietary milk polar lipids affect gut permeability, systemic inflammation, and lipid metabolism during diet-induced obesity (DIO). C57BL/6J mice (n = 6x3) were fed diets with 34% fat as energy for 15 weeks: (1) modified AIN-93G diet (CO); (2) CO with milk gangliosides (GG); (3) CO with milk phospholipids (MPL). Gut permeability was assessed by FITC-dextran and sugar absorption tests. Intestinal tight junction proteins were evaluated by Western blot. Plasma cytokines were measured by immunoassay. Body composition was assessed by magnetic resonance imaging. Tissue lipid profiles were obtained by thin layer chromatography. Hepatic expression of genes associated with lipid metabolism was assessed by RT-qPCR. MPL increased the efficiency of converting food into body fat and facilitated body fat accumulation compared with CO. MPL and GG did not affect fasting glucose or HOMA-IR during DIO. MPL increased while GG decreased plasma TG compared with CO. MPL decreased phospholipids subclasses in the muscle while increased those in the liver compared with CO. GG and MPL had little effect on hepatic expression of genes associated with lipid metabolism. Compared with CO, MPL decreased polar lipids content in colon mucosa. Small intestinal permeability decreased while colon permeability increased and then recovered during the feeding period. High-fat feeding increased plasma endotoxin after DIO but did not affect plasma cytokines. MPL and GG did not affect plasma endotoxin, adipokines and inflammatory cytokines. After the establishment of obesity, MPL increased gut permeability to large molecules but decreased intestinal absorption of small molecules while GG tended to have the opposite effects. MPL and GG decreased mannitol and sucralose excretions, which peaked at d 45 in the CO group. MPL decreased occludin in jejunum mucosa compared with CO. GG and MPL did not affect zonula occludens-1 in gut mucosa. In conclusion, during DIO, milk GG decreased gut permeability, and had little effect on systemic inflammation and lipid metabolism; MPL facilitated body fat accumulation, decreased gut permeability, did not affect systemic inflammation.
Collapse
Affiliation(s)
- Albert Lihong Zhou
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322, USA
| | - Robert E Ward
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322, USA.
| |
Collapse
|
5
|
Zhou AL, Ward RE. Dietary milk polar lipids modulate gut barrier integrity and lipid metabolism in C57BL/6J mice during systemic inflammation induced by Escherichia coli lipopolysaccharide. J Dairy Sci 2024:S0022-0302(24)00863-4. [PMID: 38825111 DOI: 10.3168/jds.2024-24759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/22/2024] [Indexed: 06/04/2024]
Abstract
The focus of this work is the role milk polar lipids play in affecting gut permeability, systemic inflammation, and lipid metabolism during acute and chronic inflammation induced by a single subcutaneous injection of lipopolysaccharide. Three groups of C57BL/6J mice were fed: modified AIN-93G diet with moderate level of fat (CO); CO with milk gangliosides (GG); CO with milk phospholipids (MPL). The MPL did not prevent a gut permeability increase upon LPS stress but increased the expression of tight junction proteins zonula occludens-1 and occludin in colon mucosa. The GG prevented the gut permeability increase upon LPS stress. The MPL decreased absolute and relative liver mass and decreased hepatic gene expression of acetyl-CoA carboxylase 2 and 3-hydroxy-3-methylglutaryl-CoA reductase. The GG increased hepatic gene expression of acetyl-CoA acyltransferase 2. In conclusion, milk GG protected the intestinal barrier integrity but had little effect on systemic inflammation and lipid metabolism; milk MPL, conversely, had complex effects on gut permeability, did not affect systemic inflammation, and had beneficial effect on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Albert Lihong Zhou
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322, USA
| | - Robert E Ward
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan, UT 84322, USA.
| |
Collapse
|
6
|
Xu J, Lao J, Jiang Q, Lin W, Chen X, Zhu C, He S, Xie W, Wang F, Yang B, Liu Y. Associations between Milk Intake and Sleep Disorders in Chinese Adults: A Cross-Sectional Study. Nutrients 2023; 15:4079. [PMID: 37764862 PMCID: PMC10536886 DOI: 10.3390/nu15184079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
We aimed to examine the association of milk intake with sleep disorders and their specific indicators. The current study included 768 adults aged 28-95 from Wenling, China. Milk intake was assessed using a food frequency questionnaire with ten food items, while sleep disorders were measured using the Pittsburgh Sleep Quality Index (PSQI), with higher scores indicating poorer sleep. The participants were divided into two groups according to the average intake of milk per week: rare intake (≤62.5 mL/week) and regular intake (>62.5 mL/week). Primary measurements were multivariate-adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for the prevalence of sleep disorders concerning regular milk intake compared with rare intake. In secondary analyses, linear regression analyses were performed to assess the effects of milk intake on sleep disorders and their specific dimensions. Regular intake of milk did not have a significant association with sleep disorders compared with rare intake (adjusted OR: 0.72, 95%; CI: 0.51, 1.03), but this association was found to be pronounced with sleep disturbances (OR: 0.49, 95%; CI: 0.28, 0.87). Increased intake of milk was significantly associated with the lower scores of PSQI for sleep quality (β: -0.045, 95%; CI: -0.083, -0.007) and sleep disturbances (β: -0.059, 95%; CI: -0.090, -0.029), respectively. When stratified by age and gender, the benefits of milk intake for sleep disorders and sleep disturbances were more significant in older adults (≥65) and men than in younger persons and women. In summary, regular milk intake benefits sleep quality, which may contribute to nutritional psychiatric support for prevention against sleep disorders.
Collapse
Affiliation(s)
- Jinzhong Xu
- Department of Clinical Pharmacy, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling 317500, China;
| | - Jiaying Lao
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (X.C.); (C.Z.); (S.H.); (W.X.)
| | - Qingxi Jiang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China;
| | - Wenhui Lin
- Cardiovascular Medicine, Affiliated Wenling Hospital, Wenzhou Medical University, Wenling 317500, China;
| | - Xiyi Chen
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (X.C.); (C.Z.); (S.H.); (W.X.)
| | - Chongrong Zhu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (X.C.); (C.Z.); (S.H.); (W.X.)
| | - Shencong He
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (X.C.); (C.Z.); (S.H.); (W.X.)
| | - Wenbo Xie
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China; (J.L.); (X.C.); (C.Z.); (S.H.); (W.X.)
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing 100096, China;
| | - Bo Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China;
| | - Yanlong Liu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
7
|
Characterization of Cow, Goat, and Water Buffalo Milk Fat Globule Lipids by High-Performance Thin Layer Chromatography. DAIRY 2023. [DOI: 10.3390/dairy4010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Ruminant milk is an essential part of the human diet and is widely accepted as a major nutrient source in developing countries. However, the polar and neutral lipid content variation in milk fat globules (MFG)among cow, goat, and water buffalo is poorly understood. This study used high-performance thin layer chromatography to identify and quantify five major polar (PL) and three neutral lipids (NL) from the MFG of cow, goat, and water buffalo. Optimal separation was achieved for PLs using chloroform: methanol: water (65:25:4), and hexane: diethyl ether: acetic acid (70:30:1) for NLs. The lower detectable (0.12 to 1.53 μg/mL) and quantification (0.12 to 1.53 μg/mL) limits indicated the high sensitivity of the method. Quantification at 540 nm showed the highest abundance of phosphatidylethanolamine and triglycerides. Fat globules were further characterized for size and microstructural properties, which revealed smaller globules in goats (0.99 ± 0.04 μm) than cows (1.85 ± 0.03 μm) and water buffaloes (2.91 ± 0.08 μm), indicating a negative correlation with PL but a positive correlation with NL. The variation in lipid quantity among different animal species suggests more research to support their selection as a suitable source for developing functional food to impact human health positively.
Collapse
|
8
|
Yuzbashian E, Moftah S, Chan CB. Graduate Student Literature Review: A scoping review on the impact of consumption of dairy products on phosphatidylcholine and lysophosphatidylcholine in circulation and the liver in human studies and animal models. J Dairy Sci 2023; 106:24-38. [PMID: 36400621 DOI: 10.3168/jds.2022-21938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Dairy consumption is inversely related to the risk of developing type 2 diabetes in epidemiological research. One proposed hypothesis is that phospholipid (PL) species associated with dairy consumption mediate this relationship. This scoping review aimed to identify the existing literature in animal and human trials investigating the impact of dairy products, including milk, yogurt, and cheese as well as dairy-derived PL supplementation on PL and its species in the circulation, summarizing the characteristics of these studies and identifying research gaps. A systematic search was conducted across 3 databases (PubMed, Scopus, and Web of Science) in March 2021. Of 2,427 identified references, 15 studies (7 humans and 8 animal studies) met the eligibility criteria and were included in the final narrative synthesis. The evidence base was heterogeneous, involving a variety of clinical and preclinical studies, metabolically healthy or obese/diabetic participants or animal models, and displayed mixed findings. Circulating postprandial concentrations of total PL were elevated acutely but unchanged after longer intervention with dairy products. The PL concentration remained stable even after a high dosage of milk supplemented with dairy-derived PL, which may be related to increased fecal excretion; however, certain phosphatidylcholine (PC) or lysophosphatidylcholine species were increased in circulation by interventions. These include several PC species with 32 to 38 total carbons in addition to the dairy biomarkers C15:0 and C17:0. The results of this scoping review demonstrate a small body of literature indicating that dairy products can influence blood concentrations of PC and lysophosphatidylcholine species in both rodents and humans without alteration of total PL and PC. There is a lack of well-designed trials in humans and animals that explore the potential differences between individual dairy foods on PL species. In addition, trials to understand the bioactive properties of PC and lysophosphatidylcholine species on cardiometabolic risk are needed.
Collapse
Affiliation(s)
- Emad Yuzbashian
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Salma Moftah
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Catherine B Chan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5; Department of Physiology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| |
Collapse
|
9
|
Venkat M, Chia LW, Lambers TT. Milk polar lipids composition and functionality: a systematic review. Crit Rev Food Sci Nutr 2022; 64:31-75. [PMID: 35997253 DOI: 10.1080/10408398.2022.2104211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polar lipids including glycerophospholipids and sphingophospholipids are important nutrients and milk is a major source, particularly for infants. This systematic review describes the human and bovine milk polar lipid composition, structural organization, sources for formulation, and physiological functionality. A total of 2840 records were retrieved through Scopus, 378 were included. Bovine milk is a good source of polar lipids, where yield and composition are highly dependent on the choice of dairy streams and processing. In milk, polar lipids are organized in the milk fat globule membrane as a tri-layer encapsulating triglyceride. The overall polar lipid concentration in human milk is dependent on many factors including lactational stage and maternal diet. Here, reasonable ranges were determined where possible. Similar for bovine milk, where differences in milk lipid concentration proved the largest factor determining variation. The role of milk polar lipids in human health has been demonstrated in several areas and critical review indicated that brain, immune and effects on lipid metabolism are best substantiated areas. Moreover, insights related to the milk fat globule membrane structure-function relation as well as superior activity of milk derived polar lipid compared to plant-derived sources are emerging areas of interest regarding future research and food innovations.
Collapse
Affiliation(s)
- Meyya Venkat
- FrieslandCampina Development Centre AMEA, Singapore
| | - Loo Wee Chia
- FrieslandCampina Development Centre AMEA, Singapore
- FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
10
|
Glycoproteomic and Lipidomic Characterization of Industrially Produced Whey Protein Phospholipid Concentrate with Emphasis on Antimicrobial Xanthine Oxidase, Oxylipins and Small Milk Fat Globules. DAIRY 2022. [DOI: 10.3390/dairy3020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work investigates the composition of whey protein phospholipid concentrate (WPPC), an underutilized dairy stream, and reveals that it is a source of many bioactive compounds that can benefit the immune system and gut health. Our glycoproteomics approach uncovered that proteins derived from the milk fat globule membrane (MFGM) represent 23% of the total protein relative abundance and identified 85 N-glycans. Released sialic acid, an additional marker of glycosylation, ranged from 1.2 to 2% of the total weight. Xanthine oxidase, a glycosylated marker of MFG bioactivity, was found in high abundance and displayed higher antimicrobial activity than bovine milk, despite its similar fat and solids content. An average MFG diameter of 2.64 ± 0.01 µm was found in liquid WPPC, compared to 4.78 ± 0.13 µm in bovine milk, which likely explains the unusually high presence of glycosylated membrane-bound proteins and phospholipids, whose total fatty acids accounted for 20% of the WPPC total fatty acid pool. Free and bound oxylipins (mainly derived from linoleic acid) were also identified, together with other less abundant anti-inflammatory lipid mediators derived from eicosapentaenoic acid and docosahexaenoic acid. Our study demonstrates that WPPC represents a promising starting material for bioactive compound extraction and a functional vehicle for the delivery of small MFGs.
Collapse
|
11
|
Ahn Y, Kim MG, Jo K, Hong KB, Suh HJ. Effects of Sphingomyelin-Containing Milk Phospholipids on Skin Hydration in UVB-Exposed Hairless Mice. Molecules 2022; 27:molecules27082545. [PMID: 35458740 PMCID: PMC9032803 DOI: 10.3390/molecules27082545] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Reactive oxygen species (ROS) generated by ultraviolet (UV) exposure cause skin barrier dysfunction, which leads to dry skin. In this study, the skin moisturizing effect of sphingomyelin-containing milk phospholipids in UV-induced hairless mice was evaluated. Hairless mice were irradiated with UVB for eight weeks, and milk phospholipids (50, 100, and 150 mg/kg) were administered daily. Milk phospholipids suppressed UV-induced increase in erythema and skin thickness, decreased transepidermal water loss, and increased skin moisture. Milk phospholipids increased the expression of filaggrin, involucrin, and aquaporin3 (AQP3), which are skin moisture-related factors. Additionally, hyaluronic acid (HA) content in the skin tissue was maintained by regulating the expression of HA synthesis- and degradation-related enzymes. Milk phospholipids alleviated UV-induced decrease in the expression of the antioxidant enzymes superoxidase dismutase1 and 2, catalase, and glutathione peroxidase1. Moreover, ROS levels were reduced by regulating heme oxygenase-1 (HO-1), an ROS regulator, through milk phospholipid-mediated activation of nuclear factor erythroid-2-related factor 2 (Nrf2). Collectively, sphingomyelin-containing milk phospholipids contributed to moisturizing the skin by maintaining HA content and reducing ROS levels in UVB-irradiated hairless mice, thereby, minimizing damage to the skin barrier caused by photoaging.
Collapse
Affiliation(s)
- Yejin Ahn
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (Y.A.); (M.G.K.); (K.J.)
| | - Min Guk Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (Y.A.); (M.G.K.); (K.J.)
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (Y.A.); (M.G.K.); (K.J.)
| | - Ki-Bae Hong
- Department of Food Science and Nutrition, Jeju National University, Jeju 63243, Korea
- Correspondence: (K.-B.H.); (H.J.S.); Tel.: +82-23-290-5639 (H.J.S.)
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Korea; (Y.A.); (M.G.K.); (K.J.)
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul 02841, Korea
- Correspondence: (K.-B.H.); (H.J.S.); Tel.: +82-23-290-5639 (H.J.S.)
| |
Collapse
|
12
|
Zhao Y, Ji X, Guo P, Onwuka JU, Zhang Y, He H, Luo C, Wang L, Tang N, Zhao J, Feng R. Dose-response relationships between dairy intake and non-communicable chronic diseases: an NHANES-based cross-sectional study. Int J Food Sci Nutr 2021; 73:552-563. [PMID: 34965361 DOI: 10.1080/09637486.2021.2021154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The purpose of this study was to explore the possible association between dairy and NCDs and identify possible dairy types that could lower the odds of NCDs. Data were from the 2003-2016 NHANES, a cross-sectional study with 20,297 adults. Multivariable logistic regression analyses and restricted cubic spline (RCS) models were conducted. In the highest intake group (>250 g/d, 1 daily serving), yogurt and milk were inversely associated with the odds of general obesity and central obesity [OR (95% CI), general obesity, 0.74 (0.60-0.91) and 0.75 (0.68-0.83); central obesity, 0.70 (0.56-0.87), and 0.77 (0.70-0.86), respectively, p < 0.05]. Higher milk intake is inversely associated with diabetes, and higher cream intake is associated with a lower likelihood of hyperlipidaemia. The intake of yogurt, milk, cheese, and butter was 0-308 g/d (0-1.2 daily servings), 0-887 g/d (0-3.5 daily servings), <75 g/d (1.7 daily servings), and <15 g/d (0.5 daily servings), respectively.
Collapse
Affiliation(s)
- Yan Zhao
- Emergency Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoning Ji
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China.,National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Panpan Guo
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China.,Shanghai Clinical Nutrition Quality Control Center, Department of Clinical Nutrition, Shanghai Tenth People's Hospital, Shanghai, China
| | | | - Ying Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Hui He
- Harbin Center for Disease Control and Prevention, Harbin, China
| | - Chao Luo
- STD/AIDS Prevention and Control Department, Harbin Disease Prevention and Control Center, Harbin, China
| | - Liang Wang
- Medical Administration Department, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ningxin Tang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Jueqiong Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Abstract
Low-quality dietary patterns impair cardiometabolic health by increasing the risk of obesity-related disorders. Cardiometabolic risk relative to dairy-food consumption continues to be a controversial topic, due to recommendations that endorse low-fat and nonfat dairy foods over full-fat varieties despite accumulated evidence that does not strongly support these recommendations. Controlled human studies and mechanistic preclinical investigations support that full-fat dairy foods decrease cardiometabolic risk by promoting gut health, reducing inflammation, and managing dyslipidemia. These gut- and systemic-level cardiometabolic benefits are attributed, at least in part, to milk polar lipids (MPLs) derived from the phospholipid- and sphingolipid-rich milk fat globule membrane that is of higher abundance in full-fat dairy milk. The controversy surrounding full-fat dairy food consumption is discussed in this review relative to cardiometabolic health and MPL bioactivities that alleviate dyslipidemia, shift gut microbiota composition, and reduce inflammation. This summary, therefore, is expected to advance the understanding of full-fat dairy foods through their MPLs and the need for translational research to establish evidence-based dietary recommendations.
Collapse
Affiliation(s)
- Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | - Avinash Pokala
- Human Nutrition Program, The Ohio State University, Columbus, Ohio, USA
| | | | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
14
|
Lee JH, Lee HS, Ahn SB, Kwon YJ. Dairy protein intake is inversely related to development of non-alcoholic fatty liver disease. Clin Nutr 2021; 40:5252-5260. [PMID: 34534894 DOI: 10.1016/j.clnu.2021.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is closely related to metabolic dysfunction, including insulin resistance, obesity, and metabolic syndrome. Dairy protein, rich in casein and whey protein, could help to reduce metabolic diseases. Therefore, we investigated the relationship between dairy protein intake and incident NAFLD. METHODS We analyzed data for 5171 adults aged 40-69 years from the Korean Genome and Epidemiology Study.(KoGES) Participants were separated as men, women aged ≥50 years, and women aged <50 years and then divided into tertiles based on dairy protein intake. NAFLD was defined as NAFLD liver fat score >-0.640. Scores were calculated as 1.18 × metabolic syndrome (Yes: 1, No: 0) + 0.45 × diabetes mellitus (Yes: 2, No: 0) + 0.15 × serum insulin +0.04 × AST - 0.94 × (AST/ALT) - 2.89. Cox proportional hazards spline curves were drawn to visualize dose-response relationships between dairy protein intake and incident NAFLD. Multiple Cox hazard regression analysis was conducted to examine associations between dairy protein intake and incident NAFLD. RESULTS The Cox proportional hazards spline curves revealed a negative linear relationship between dairy protein intake and incident NAFLD. The cumulative incidence of NAFLD significantly decreased with increasing tertiles of dairy protein intake in men and women aged ≥50 years. After adjusting for confounding factors, the hazard ratios and 95% confidence intervals for NAFLD in the middle and highest tertiles, compared to the lowest tertile, were 0.80 (0.67-0.96) and 0.71 (0.57-0.88) in men, 0.89 (0.72-1.09) and 0.72 (0.56-0.92) in women aged ≥50 years, and 1.01 (0.80-1.27) and 0.91 (0.67-1.24) in women aged <50 years, respectively. CONCLUSIONS We found that higher dairy protein intake was significantly and inversely associated with the risk of incident NAFLD in men and women aged ≥50 years. Consumption of milk and other dairy products could help prevent the development of NAFLD.
Collapse
Affiliation(s)
- Jun-Hyuk Lee
- Department of Family Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, 01830, Republic of Korea.
| | - Hye Sun Lee
- Biostatistics Collaboration Unit, Department of Research Affairs, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| | - Sang Bong Ahn
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, 01830, Republic of Korea.
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, 16995, Republic of Korea.
| |
Collapse
|
15
|
Thøgersen R, Lindahl IEI, Khakimov B, Kjølbæk L, Juhl Jensen K, Astrup A, Hammershøj M, Raben A, Bertram HC. Progression of Postprandial Blood Plasma Phospholipids Following Acute Intake of Different Dairy Matrices: A Randomized Crossover Trial. Metabolites 2021; 11:454. [PMID: 34357348 PMCID: PMC8307057 DOI: 10.3390/metabo11070454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
Studies have indicated that the dairy matrix can affect postprandial responses of dairy products, but little is known about the effect on postprandial plasma phospholipid levels. This study investigated postprandial plasma phospholipid levels following consumption of four different dairy products that are similar in micro and macro nutrients, but different in texture and structure: cheddar cheese (Cheese), homogenized cheddar cheese (Hom. Cheese), micellar casein isolate with cream (MCI Drink) or a gel made from the MCI Drink (MCI Gel). The study was an acute randomized, crossover trial in human volunteers with four test days. Blood samples were collected during an 8 h postprandial period and the content of 53 plasma phospholipids was analysed using liquid chromatography-mass spectrometry (LC-MS). No meal-time interactions were revealed; however, for nine of the 53 phospholipids, a meal effect was found. Thus, the results indicated a lower plasma level of specific lyso-phosphatidylethanolamines (LPEs) and lyso-phosphatidylcholines (LPCs) following consumption of the MCI Gel compared to the MCI Drink and Hom. Cheese, which might be attributed to an effect of viscosity. However, further studies are needed in order to reveal more details on the effect of the dairy matrix on postprandial phospholipids.
Collapse
Affiliation(s)
- Rebekka Thøgersen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark; (I.E.I.L.); (M.H.); (H.C.B.)
| | - Ida Emilie I. Lindahl
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark; (I.E.I.L.); (M.H.); (H.C.B.)
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, DK-1958 Frederiksberg C, Denmark;
| | - Louise Kjølbæk
- Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-1958 Frederiksberg C, Denmark; (L.K.); (A.A.); (A.R.)
| | | | - Arne Astrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-1958 Frederiksberg C, Denmark; (L.K.); (A.A.); (A.R.)
| | - Marianne Hammershøj
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark; (I.E.I.L.); (M.H.); (H.C.B.)
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-1958 Frederiksberg C, Denmark; (L.K.); (A.A.); (A.R.)
- Steno Diabetes Center Copenhagen, DK-2820 Gentofte, Denmark
| | - Hanne Christine Bertram
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark; (I.E.I.L.); (M.H.); (H.C.B.)
| |
Collapse
|
16
|
Zhang Q, Ye L, Xin F, Zhou J, Cao B, Dong Y, Qian L. Milk Fat Globule Membrane Supplementation During Suckling Ameliorates Maternal High Fat Diet-Induced Hepatic Steatosis in Adult Male Offspring of Mice. J Nutr 2021; 151:1487-1496. [PMID: 33693864 DOI: 10.1093/jn/nxab026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/09/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Exposure to a maternal high-fat diet (HFD) predisposes offspring to nonalcoholic fatty liver disease. OBJECTIVES The aim of this study was to explore whether milk fat globule membrane (MFGM) supplementation during suckling exerts a long-term protective effect on hepatic lipid metabolism in adult offspring exposed to maternal HFD. METHODS We fed 5-week-old female C57BL/6J mice either a HFD (60% kcal fat) or control diet (CD; 16.7% kcal fat) for 3 weeks before mating, as well as throughout gestation and lactation. After delivery, male offspring from HFD dams were supplemented with 1 g/(kg body weight·day) MFGM (HFD + MFGM group) or the same volume of vehicle (HFD group) during suckling. Male offspring from CD dams were also supplemented with vehicle during suckling (CD group). All offspring were weaned onto CD for 8 weeks. Histopathology, metabolic parameters, lipogenic level, oxidative stress, and mitochondria function in the liver were analyzed. A 1-way ANOVA and a Kruskal-Wallis test were used for multi-group comparisons. RESULTS As compared to the CD group, the HFD group had more lipid droplets in livers, and exhibited ∼100% higher serum triglycerides, ∼38% higher hepatic triglycerides, ∼75% higher serum aspartate aminotransferase, and ∼130% higher fasting blood glucose (P < 0.05). The changes of these metabolic parameters were normalized in the HFD + MFGM group. Phosphorylated mammalian targets of rapamycin and AKT were downregulated, but phosphorylated adenosine monophosphate-activated protein kinase was upregulated in the HFD + MFGM group as compared to the HFD group (P < 0.05). As compared to the CD group, the HFD group showed an ∼80% higher malondialdehyde level, and ∼20% lower superoxide dismutase activity (P < 0.05), which were normalized in the HFD + MFGM group. Additionally, mitochondria function was also impaired in the HFD group and normalized in the HFD + MFGM group. CONCLUSIONS MFGM supplementation during suckling ameliorates maternal HFD-induced hepatic steatosis in mice via suppressing de novo lipogenesis, reinforcing antioxidant defenses and improving mitochondrial function.
Collapse
Affiliation(s)
- Qianren Zhang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lin Ye
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Fengzhi Xin
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jiefei Zhou
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Baige Cao
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yan Dong
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Linxi Qian
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
17
|
Le Barz M, Vors C, Combe E, Joumard-Cubizolles L, Lecomte M, Joffre F, Trauchessec M, Pesenti S, Loizon E, Breyton AE, Meugnier E, Bertrand K, Drai J, Robert C, Durand A, Cuerq C, Gaborit P, Leconte N, Bernalier-Donadille A, Cotte E, Laville M, Lambert-Porcheron S, Ouchchane L, Vidal H, Malpuech-Brugère C, Cheillan D, Michalski MC. Milk polar lipids favorably alter circulating and intestinal ceramide and sphingomyelin species in postmenopausal women. JCI Insight 2021; 6:146161. [PMID: 33857018 PMCID: PMC8262315 DOI: 10.1172/jci.insight.146161] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/09/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND High circulating levels of ceramides (Cer) and sphingomyelins (SM) are associated with cardiometabolic diseases. The consumption of whole fat dairy products, naturally containing such polar lipids (PL), is associated with health benefits, but the impact on sphingolipidome remains unknown. METHODS In a 4-week randomized controlled trial, 58 postmenopausal women daily consumed milk PL-enriched cream cheese (0, 3, or 5 g of milk PL). Postprandial metabolic explorations were performed before and after supplementation. Analyses included SM and Cer species in serum, chylomicrons, and feces. The ileal contents of 4 ileostomy patients were also explored after acute milk PL intake. RESULTS Milk PL decreased serum atherogenic C24:1 Cer, C16:1 SM, and C18:1 SM species (Pgroup < 0.05). Changes in serum C16+18 SM species were positively correlated with the reduction of cholesterol (r = 0.706), LDL-C (r = 0.666), and ApoB (r = 0.705) (P < 0.001). Milk PL decreased chylomicron content in total SM and C24:1 Cer (Pgroup < 0.001), parallel to a marked increase in total Cer in feces (Pgroup < 0.001). Milk PL modulated some specific SM and Cer species in both ileal efflux and feces, suggesting differential absorption and metabolization processes in the gut. CONCLUSION Milk PL supplementation decreased atherogenic SM and Cer species associated with the improvement of cardiovascular risk markers. Our findings bring insights on sphingolipid metabolism in the gut, especially Cer, as signaling molecules potentially participating in the beneficial effects of milk PL. TRIAL REGISTRATION ClinicalTrials.gov, NCT02099032, NCT02146339. FUNDING ANR-11-ALID-007-01; PHRCI-2014: VALOBAB, no. 14-007; CNIEL; GLN 2018-11-07; HCL (sponsor).
Collapse
Affiliation(s)
- Mélanie Le Barz
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Cécile Vors
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Emmanuel Combe
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Laurie Joumard-Cubizolles
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Manon Lecomte
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Florent Joffre
- ITERG, ZA Pessac-Canéjan, 11 Rue Gaspard Monge, 33610, Canéjan, France
| | - Michèle Trauchessec
- Hospices Civils de Lyon, 69000, Lyon, France.,Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69677, Bron, France
| | - Sandra Pesenti
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Emmanuelle Loizon
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Anne-Esther Breyton
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Emmanuelle Meugnier
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Karène Bertrand
- ITERG, ZA Pessac-Canéjan, 11 Rue Gaspard Monge, 33610, Canéjan, France
| | - Jocelyne Drai
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69495, Pierre-Bénite, France
| | - Chloé Robert
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| | - Annie Durand
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Charlotte Cuerq
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69495, Pierre-Bénite, France
| | - Patrice Gaborit
- ACTALIA Dairy Products and Technologies, Avenue François Mitterrand, BP49, 17700, Surgères, France.,ENILIA ENSMIC, Avenue François Mitterrand, 17700, Surgères, France
| | - Nadine Leconte
- INRAE, Institut Agro, STLO (Science et Technologie du Lait et de l'Œuf), 35042, Rennes, France
| | | | - Eddy Cotte
- Hospices Civils de Lyon, 69000, Lyon, France.,Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Service de chirurgie digestive, 69310, Pierre-Bénite, France.,Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Sud-Charles Mérieux, EMR 3738, 69600, Oullins, France
| | - Martine Laville
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Sud-Charles Mérieux, EMR 3738, 69600, Oullins, France
| | - Stéphanie Lambert-Porcheron
- TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France
| | - Lemlih Ouchchane
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, 63000, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Unité de Biostatistique-Informatique Médicale, 63000, Clermont-Ferrand, France
| | - Hubert Vidal
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France
| | - Corinne Malpuech-Brugère
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - David Cheillan
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,Hospices Civils de Lyon, 69000, Lyon, France.,Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69677, Bron, France
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69310, Pierre-Bénite, France.,TCentre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE Network, 69310, Pierre-Bénite, France
| |
Collapse
|
18
|
Raza GS, Herzig KH, Leppäluoto J. Invited review: Milk fat globule membrane-A possible panacea for neurodevelopment, infections, cardiometabolic diseases, and frailty. J Dairy Sci 2021; 104:7345-7363. [PMID: 33896625 DOI: 10.3168/jds.2020-19649] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/15/2021] [Indexed: 12/23/2022]
Abstract
Milk is an evolutionary benefit for humans. For infants, it offers optimal nutrients for normal growth, neural development, and protection from harmful microbes. Humans are the only mammals who drink milk throughout their life. Lipids in colostrum originate mostly from milk fat globule membrane (MFGM) droplets extruded from the mammary gland. The MFGM gained much interest as a potential nutraceutical, due to their high phospholipid (PL), ganglioside (GD), and protein contents. In this review, we focused on health effects of MFGM ingredients and dairy food across the life span, especially on neurodevelopment, cardiometabolic health, and frailty in older adults. The MFGM supplements to infants and children reduced gastrointestinal and respiratory tract infections and improved neurodevelopment due to the higher content of protein, PL, and GD in MFGM. The MFGM formulas containing PL and GD improved brain myelination and fastened nerve conduction speed, resulting in improved behavioral developments. Administration of MFGM-rich ingredients improved insulin sensitivity and decreased inflammatory markers, LDL-cholesterol, and triglycerides by lowering intestinal absorption of cholesterol and increasing its fecal excretion. The MFGM supplements, together with exercise, improved ambulatory activities, leg muscle mass, and muscle fiber velocity in older adults. There are great variations in the composition of lipids and proteins in MFGM products, which make comparisons of the different studies impossible. In addition, investigations of the individual MFGM components are required to evaluate their specific effects and molecular mechanisms. Although we are currently only beginning to understand the possible health effects of MFGM products, the current MFGM supplementation trials as presented in this review have shown significant clinical health benefits across the human life span, which are worth further investigation.
Collapse
Affiliation(s)
- Ghulam Shere Raza
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland; Oulu University Hospital, 90220 Oulu, Finland; Pediatric Institute, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Juhani Leppäluoto
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, 90014 Oulu, Finland.
| |
Collapse
|
19
|
Price TR, Baskaran SA, Moncada KL, Minamoto Y, Klemashevich C, Jayuraman A, Sucholdoski JS, Tedeschi LO, Steiner JM, Pillai SD, Walzem RL. Whole and Isolated Protein Fractions Differentially Affect Gastrointestinal Integrity Markers in C57Bl/6 Mice Fed Diets with a Moderate-Fat Content. Nutrients 2021; 13:nu13041251. [PMID: 33920187 PMCID: PMC8069602 DOI: 10.3390/nu13041251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Various proteins or protein fractions reportedly positively affect gastrointestinal integrity and inflammation in diets providing >45% energy as fat. This study tested whether benefits were seen in diets providing 30% of energy as fat. Purified diets (PD) with isolated soy protein (ISP), dried whole milk powder (DWMP), milk fat globule membrane (MFGM), or milk protein concentrate (MPC) as protein sources were fed to C57BL/6J mice (n = 15/diet group) for 13 weeks. MFGM-fed mice were heaviest (p < 0.005) but remained within breeder norms. Growth rates and gut motility were similar for all PD-fed mice. FITC-dextran assessed gut permeability was lowest in DWMP and MFGM (p = 0.054); overall, plasma endotoxin and unprovoked circulating cytokines indicated a non-inflammatory state for all PD-fed mice. Despite differences in cecal butyrate and intestinal gene expression, all PDs supported gastrointestinal health. Whole milk provided more positive effects compared to its fractions. However, ISP-fed mice showed a >370%, (p < 0.006) increase in colonic myeloperoxidase activity indicative of tissue neutrophil infiltration. Surprisingly, FITC-dextran and endotoxin outcomes were many folds better in PD-fed mice than mice (strain, vendor, age and sex matched) fed a “chow-type” nutritionally adequate non-PD. Additional variables within a diet’s matrix appear to affect routine indicators or gastrointestinal health.
Collapse
Affiliation(s)
- Tara R. Price
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Sangeetha A. Baskaran
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
| | - Kristin L. Moncada
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
| | - Yasushi Minamoto
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Cory Klemashevich
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (C.K.); (A.J.)
| | - Arul Jayuraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (C.K.); (A.J.)
| | - Jan S. Sucholdoski
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Luis O. Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Suresh D. Pillai
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | - Rosemary L. Walzem
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
- Correspondence:
| |
Collapse
|
20
|
Suzuki-Iwashima A, Iwasawa A, Kawai M, Kubouchi H, Ozaki R, Miyashita K, Shiota M. Antioxidant activity toward fish oil triacylglycerols exerted by sphingoid bases isolated from butter serum with α-tocopherol. Food Chem 2020; 334:127588. [PMID: 32721837 DOI: 10.1016/j.foodchem.2020.127588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/05/2020] [Accepted: 07/12/2020] [Indexed: 11/30/2022]
Abstract
A mixture of sphingoid bases (SPGs) was prepared from butter serum, a by-product of anhydrous milk fat production. The mixture comprised seven types of SPGs with C16 to C19 alkyl chains. These milk SPGs inhibited the oxidation of fish oil triacylglycerol (TAG) more effectively than did a standard SPG (d18:1) with α-tocopherol. Reaction products were prepared from the combination of d18:0 or d18:1 with acrolein and propanal. Both sets of reaction products showed antioxidant activity toward fish oil TAG. Antioxidant activity of reaction products from d18:0 was stronger than that of reaction products from d18:1, suggesting that the molecule d18:0 may be a significant focus of the difference in antioxidant activity between milk SPGs and d18:1. To use SPGs as food additives in the future, an appropriate source of SPGs will be needed, and butter serum appears to have promise as a source of functional SPGs with strong antioxidant activity.
Collapse
Affiliation(s)
- Ai Suzuki-Iwashima
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2, Minamidai, Kawagoe, Saitama 350-1165, Japan.
| | - Ai Iwasawa
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2, Minamidai, Kawagoe, Saitama 350-1165, Japan; Central Food Analysis Laboratory, Megmilk Snow Brand Co., Ltd., 1-1-2, Minamidai, Kawagoe, Saitama 350-1165, Japan.
| | - Mayumi Kawai
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2, Minamidai, Kawagoe, Saitama 350-1165, Japan.
| | - Hiroaki Kubouchi
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2, Minamidai, Kawagoe, Saitama 350-1165, Japan.
| | - Ryuhei Ozaki
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato, Hakodate, Hokkaido 041-8611, Japan.
| | - Kazuo Miyashita
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato, Hakodate, Hokkaido 041-8611, Japan.
| | - Makoto Shiota
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2, Minamidai, Kawagoe, Saitama 350-1165, Japan.
| |
Collapse
|
21
|
Anto L, Warykas SW, Torres-Gonzalez M, Blesso CN. Milk Polar Lipids: Underappreciated Lipids with Emerging Health Benefits. Nutrients 2020; 12:E1001. [PMID: 32260440 PMCID: PMC7230917 DOI: 10.3390/nu12041001] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022] Open
Abstract
Milk fat is encased in a polar lipid-containing tri-layer milk fat globule membrane (MFGM), composed of phospholipids (PLs) and sphingolipids (SLs). Milk PLs and SLs comprise about 1% of total milk lipids. The surfactant properties of PLs are important for dairy products; however, dairy products vary considerably in their polar lipid to total lipid content due to the existence of dairy foods with different fat content. Recent basic science and clinical research examining food sources and health effects of milk polar lipids suggest they may beneficially influence dysfunctional lipid metabolism, gut dysbiosis, inflammation, cardiovascular disease, gut health, and neurodevelopment. However, more research is warranted in clinical studies to confirm these effects in humans. Overall, there are a number of potential effects of consuming milk polar lipids, and they should be considered as food matrix factors that may directly confer health benefits and/or impact effects of other dietary lipids, with implications for full-fat vs. reduced-fat dairy.
Collapse
Affiliation(s)
- Liya Anto
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.A.); (S.W.W.)
| | - Sarah Wen Warykas
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.A.); (S.W.W.)
| | | | - Christopher N. Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; (L.A.); (S.W.W.)
| |
Collapse
|
22
|
Vahmani P, Ponnampalam EN, Kraft J, Mapiye C, Bermingham EN, Watkins PJ, Proctor SD, Dugan MER. Bioactivity and health effects of ruminant meat lipids. Invited Review. Meat Sci 2020; 165:108114. [PMID: 32272342 DOI: 10.1016/j.meatsci.2020.108114] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/07/2023]
Abstract
Ruminant meat (RM) is an excellent source of high-quality protein, B vitamins and trace minerals and plays an important role in global food and nutrition security. However, nutritional guidelines commonly recommend reduced intake of RM mainly because of its high saturated fatty acid (SFA) content, and more recently because of its perceived negative environmental impacts. RM is, however, rich in heart healthy cis-monounsaturated fatty acids and can be an important source of long-chain omega-3 (n-3) fatty acids in populations with low fish consumption. In addition, RM is a source of bioactive phospholipids, as well as rumen-derived bioactive fatty acids including branched-chain, vaccenic and rumenic acids, which have been associated with several health benefits. However, the role of bioactive RM lipids in maintaining and improving consumers' health have been generally ignored in nutritional guidelines. The present review examines RM lipids in relation to human health, and evaluates the effectiveness of different feeding strategies and possibilities for future profile and content improvement.
Collapse
Affiliation(s)
- Payam Vahmani
- Department of Animal Science, University of California, 2201 Meyer Hall, Davis, California 95616, United States.
| | - Eric N Ponnampalam
- Animal Production Sciences, Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Bundoora, VIC 3083, Australia.
| | - Jana Kraft
- Department of Animal and Veterinary Sciences, and Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, The University of Vermont, Burlington, VT 05405, USA.
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | - Peter J Watkins
- Commonwealth Scientific Industry Research Organisation, 671 Sneydes Road, Werribees, VIC 3030, Australia.
| | - Spencer D Proctor
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Michael E R Dugan
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta T4L 1W1, Canada.
| |
Collapse
|
23
|
Hirahatake KM, Bruno RS, Bolling BW, Blesso C, Alexander LM, Adams SH. Dairy Foods and Dairy Fats: New Perspectives on Pathways Implicated in Cardiometabolic Health. Adv Nutr 2020; 11:266-279. [PMID: 31555799 PMCID: PMC7442361 DOI: 10.1093/advances/nmz105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/19/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Low-fat and nonfat dairy products have been promoted as part of a healthy dietary pattern by both US dietary guidelines and professional organizations for several decades. The basis for this recommendation stems in part from the putative negative cardiometabolic effects associated with saturated fat consumption. However, as nutrition research has shifted from a single nutrient to a whole-food/dietary pattern approach, the role of dairy foods and dairy fat in the diet-disease relationship is being reexamined. Most observational and experimental evidence does not support a detrimental relationship between full-fat dairy intake and cardiometabolic health, including risks of cardiovascular disease and type 2 diabetes. Indeed, an expanded understanding of the dairy food matrix and the bioactive properties of dairy fats and other constituents suggests a neutral or potentially beneficial role in cardiometabolic health. To consider how consuming dairy foods, including full-fat dairy, is associated with cardiometabolic health, this review provides an innovative perspective on mechanisms that link dairy consumption to 3 main biological systems at the core of metabolic health, the gastrointestinal, hepatic, and vascular systems.
Collapse
Affiliation(s)
- Kristin M Hirahatake
- Department of Epidemiology, College of Health Sciences, University of California, Irvine, CA, USA
| | - Richard S Bruno
- Human Nutrition Program, Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Bradley W Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher Blesso
- Department of Nutritional Sciences, College of Agriculture, Health and Natural Resources, University of Connecticut, Storrs, CT, USA
| | - Lacy M Alexander
- Department of Kinesiology, College of Health and Human Development, The Pennsylvania State University, State College, PA, USA
| | - Sean H Adams
- Arkansas Children's Nutrition Center, Little Rock, AR, USA,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA,Address correspondence to SHA (e-mail: )
| |
Collapse
|
24
|
Vors C, Joumard-Cubizolles L, Lecomte M, Combe E, Ouchchane L, Drai J, Raynal K, Joffre F, Meiller L, Le Barz M, Gaborit P, Caille A, Sothier M, Domingues-Faria C, Blot A, Wauquier A, Blond E, Sauvinet V, Gésan-Guiziou G, Bodin JP, Moulin P, Cheillan D, Vidal H, Morio B, Cotte E, Morel-Laporte F, Laville M, Bernalier-Donadille A, Lambert-Porcheron S, Malpuech-Brugère C, Michalski MC. Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: towards a gut sphingomyelin-cholesterol interplay. Gut 2020; 69:487-501. [PMID: 31189655 PMCID: PMC7034342 DOI: 10.1136/gutjnl-2018-318155] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate whether milk polar lipids (PL) impact human intestinal lipid absorption, metabolism, microbiota and associated markers of cardiometabolic health. DESIGN A double-blind, randomised controlled 4-week study involving 58 postmenopausal women was used to assess the chronic effects of milk PL consumption (0, 3 or 5 g-PL/day) on lipid metabolism and gut microbiota. The acute effects of milk PL on intestinal absorption and metabolism of cholesterol were assessed in a randomised controlled crossover study using tracers in ileostomy patients. RESULTS Over 4 weeks, milk PL significantly reduced fasting and postprandial plasma concentrations of cholesterol and surrogate lipid markers of cardiovascular disease risk, including total/high-density lipoprotein-cholesterol and apolipoprotein (Apo)B/ApoA1 ratios. The highest PL dose preferentially induced a decreased number of intestine-derived chylomicron particles. Also, milk PL increased faecal loss of coprostanol, a gut-derived metabolite of cholesterol, but major bacterial populations and faecal short-chain fatty acids were not affected by milk PL, regardless of the dose. Acute ingestion of milk PL by ileostomy patients shows that milk PL decreased cholesterol absorption and increased cholesterol-ileal efflux, which can be explained by the observed co-excretion with milk sphingomyelin in the gut. CONCLUSION The present data demonstrate for the first time in humans that milk PL can improve the cardiometabolic health by decreasing several lipid cardiovascular markers, notably through a reduced intestinal cholesterol absorption involving specific interactions in the gut, without disturbing the major bacterial phyla of gut microbiota. TRIAL REGISTRATION NUMBER NCT02099032 and NCT02146339; Results.
Collapse
Affiliation(s)
- Cécile Vors
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | - Laurie Joumard-Cubizolles
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Manon Lecomte
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Emmanuel Combe
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Lemlih Ouchchane
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, 63000, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Unité de Biostatistique-Informatique Médicale, 63000, Clermont-Ferrand, France
| | - Jocelyne Drai
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | - Ketsia Raynal
- ACTALIA Dairy Products and Technologies, 17700, Surgères, France
| | | | - Laure Meiller
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | - Mélanie Le Barz
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Patrice Gaborit
- ACTALIA Dairy Products and Technologies, 17700, Surgères, France
| | - Aurélie Caille
- CHU Clermont-Ferrand, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Monique Sothier
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | - Carla Domingues-Faria
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Adeline Blot
- CHU Clermont-Ferrand, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Aurélie Wauquier
- Université Clermont Auvergne, INRA, UMR 454, MEDIS, 63000, Clermont-Ferrand, France
| | - Emilie Blond
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- Unité de Nutrition Endocrinologie Métabolisme, Service de Biochimie, Centre de Biologie et de Pathologie Sud, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | - Valérie Sauvinet
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | - Geneviève Gésan-Guiziou
- STLO, Science et Technologie du Lait et de l’Œuf, INRA, AGROCAMPUS OUEST, 35000, Rennes, France
| | | | - Philippe Moulin
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- Fédération d’Endocrinologie, Maladies Métaboliques, Diabète et Nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, 69500, Bron, France
| | - David Cheillan
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 69500, Bron, France
| | - Hubert Vidal
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Béatrice Morio
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
| | - Eddy Cotte
- Université Claude Bernard Lyon 1, Faculté de médecine Lyon-Sud-Charles Mérieux, EMR 3738, 69600, Oullins, France
- Centre Hospitalier Lyon Sud, Service de Chirurgie Digestive, Hospices Civils de Lyon, 69310, Pierre-Bénite, France
| | | | - Martine Laville
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| | | | - Stéphanie Lambert-Porcheron
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
- Hospices Civils de Lyon, 69000, Lyon, France
| | - Corinne Malpuech-Brugère
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000, Clermont-Ferrand, France
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Charles Mérieux Medical School, 69600, Oullins, France
- CRNH Rhône-Alpes, Hospices Civils de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône-Alpes, 69310, Pierre-Bénite, France
| |
Collapse
|
25
|
Li T, Gong H, Yuan Q, Du M, Ren F, Mao X. Supplementation of polar lipids-enriched milk fat globule membrane in high-fat diet-fed rats during pregnancy and lactation promotes brown/beige adipocyte development and prevents obesity in male offspring. FASEB J 2020; 34:4619-4634. [PMID: 32020679 DOI: 10.1096/fj.201901867rrr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
Abstract
Promoting brown adipose tissue (BAT) function or browning of white adipose tissue (WAT) provides a defense against obesity. The aim of the study was to investigate whether maternal polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to high-fat diet (HFD) rats during pregnancy and lactation could promote brown/beige adipogenesis and protect against HFD-induced adiposity in offspring. Female SD rats were fed a HFD for 8 weeks to induce obesity and, then, fed a HFD during pregnancy and lactation with or without MFGM-PL. Male offspring were weaned at postnatal Day 21 and then fed a HFD for 9 weeks. MFGM-PL treatment to HFD dams decreased the body weight gain and WAT mass as well as lowered the serum levels of insulin and triglycerides in male offspring at weaning. MFGM-PL+HFD offspring showed promoted thermogenic function in BAT and inguinal WAT through the upregulation of UCP1 and other thermogenic genes. In adulthood, maternal MFGM-PL supplementation reduced adiposity and increased oxygen consumption, respiratory exchange ratio, and heat production in male offspring. The enhancement of energy expenditure was correlated with elevated BAT activity and inguinal WAT thermogenic program. In conclusion, maternal MFGM-PL treatment activated thermogenesis in offspring, which exerted long-term beneficial effects against HFD-induced obesity in later life.
Collapse
Affiliation(s)
- Tiange Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Han Gong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Qichen Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, Key Laboratory of Functional Dairy, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Millar CL, Jiang C, Norris GH, Garcia C, Seibel S, Anto L, Lee JY, Blesso CN. Cow's milk polar lipids reduce atherogenic lipoprotein cholesterol, modulate gut microbiota and attenuate atherosclerosis development in LDL-receptor knockout mice fed a Western-type diet. J Nutr Biochem 2020; 79:108351. [PMID: 32007663 DOI: 10.1016/j.jnutbio.2020.108351] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/18/2022]
Abstract
Milk sphingomyelin (SM), a polar lipid (PL) component of milk fat globule membranes, is protective against dyslipidemia. However, it is unclear whether ingestion of milk PLs protect against atherosclerosis. To determine this, male LDLr-/- mice (age 6 weeks) were fed ad libitum either a high-fat, added-cholesterol diet (CTL; 45% kcal from fat, 0.2% cholesterol by weight; n=15) or the same diet supplemented with 1% milk PL (1% MPL; n=15) or 2% milk PL (2% MPL; n=15) added by weight from butter serum. After 14 weeks on diets, mice fed 2% MPL had significantly lower serum cholesterol (-51%) compared to CTL (P<.01), with dose-dependent effects in lowering VLDL- and LDL-cholesterol. Mice fed 2% MPL displayed lower inflammatory markers in the serum, liver, adipose and aorta. Notably, milk PLs reduced atherosclerosis development in both the thoracic aorta and the aortic root, with 2% MPL-fed mice having significantly lower neutral lipid plaque size by 59% (P<.01) and 71% (P<.02) compared to CTL, respectively. Additionally, the 2% MPL-fed mice had greater relative abundance of Bacteroidetes, Actinobacteria and Bifidobacterium, and lower Firmicutes in cecal feces compared to CTL. Milk PL feeding resulted in significantly different microbial communities as demonstrated by altered beta diversity indices. In summary, 2% MPL strongly reduced atherogenic lipoprotein cholesterol, modulated gut microbiota, lowered inflammation and attenuated atherosclerosis development. Thus, milk PL content may be important to consider when choosing dairy products as foods for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Courtney L Millar
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Christina Jiang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Gregory H Norris
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Chelsea Garcia
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Samantha Seibel
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Liya Anto
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269.
| |
Collapse
|
27
|
Townsend LK, Gandhi S, Shamshoum H, Trottier SK, Mutch DM, Reimer RA, Shearer J, LeBlanc PJ, Wright DC. Exercise and Dairy Protein have Distinct Effects on Indices of Liver and Systemic Lipid Metabolism. Obesity (Silver Spring) 2020; 28:97-105. [PMID: 31729829 DOI: 10.1002/oby.22621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study aimed to explore the individual and combined effects of skim milk powder (SMP) and exercise on indices of systemic and liver lipid metabolism in male obese rats. METHODS Rats were fed a high-fat (~ 40% kcal from fat), high-sugar diet for 8 weeks. At 12 weeks of age, rats were assigned to one of four weight-matched, isocaloric, high-fat, high-sugar groups for 6 weeks: (1) casein-sedentary, (2) casein-exercise, (3) SMP-sedentary, and (4) SMP-exercise. Nonfat SMP or casein was the sole protein source in the dairy and control casein diets, respectively. Exercise training occurred 5 d/wk for 60 minutes on a motorized treadmill. Whole-body metabolism was assessed by a Comprehensive Lab Animal Monitoring System. Lipidomics, Western blot, and polymerase chain reaction were used to assess markers of hepatic lipid metabolism. RESULTS Exercise, but not SMP, altered the fatty acid composition of liver triglycerides, reduced indices of lipogenesis, and increased expression of genes linked to oxidative metabolism, in conjunction with increases in whole-body fat oxidation. SMP and exercise reduced plasma triglycerides in an additive manner. CONCLUSIONS These findings provide evidence that SMP and exercise exert distinct effects on whole-body and hepatic carbohydrate and lipid metabolism and that they could work in a synergistic manner to reduce serum triglyceride concentrations.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Shivam Gandhi
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Hesham Shamshoum
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Sarah K Trottier
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul J LeBlanc
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
28
|
Esakkimuthu S, Nagulkumar S, Darvin SS, Buvanesvaragurunathan K, Sathya TN, Navaneethakrishnan KR, Kumaravel TS, Murugan SS, Shirota O, Balakrishna K, Pandikumar P, Ignacimuthu S. Antihyperlipidemic effect of iridoid glycoside deacetylasperulosidic acid isolated from the seeds of Spermacoce hispida L. - A traditional antiobesity herb. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112170. [PMID: 31434002 DOI: 10.1016/j.jep.2019.112170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
ETHNOBOTANICAL RELEVANCE The interest on herbal health supplements for obesity is increasing globally. Our previous ethnobotanical survey in Tiruvallur district, Tamil Nadu, India indicated the use of Spermacoce hispida L. seeds for the treatment of obesity. AIM OF THE STUDY This study was aimed to validate the traditional claim and to identify the antihyperlipidemic principle in the seeds of Spermacoce hispida using bioassay guided fractionation method. METHODS Bioassay monitored fractionation of the aqueous extract from Spermacoce hispida seeds was carried out using triton WR 1339 induced hyperlipidemic animals. It yielded deacetylasperulosidic acid (DAA) as the active ingredient. Pharmacokinetic properties of DAA were predicted using DataWarrior and SwissADME tools. In vitro antiobesity and antihyperlipidemic effects of DAA were evaluated in 3T3L1 preadipocytes and HepG2 cells, respectively. The chronic antihyperlipidemic efficacy of DAA was evaluated in high fat diet fed rats. RESULTS DAA did not show any mutagenic and tumorigenic properties. It bound with PPARα with comparable ligand efficiency as fenofibrate. The treatment with DAA significantly lowered the proliferation of matured adipocytes, but not preadipocytes. The treatment of steatotic HepG2 cells with DAA significantly decreased the LDH leakage by 43.03% (P < 0.05) at 50 μM concentration. In triton WR 1339 induced hyperlipidemic animals, the treatment with 50 mg/kg dose significantly lowered the TC, TG and LDL-c levels by 40.27, 46.00 and 63.65% respectively. In HFD fed animals, the treatment at 10 mg/kg decreased BMI and AC/TC ratio without altering SRBG. It also improved serum lipid, transaminases and phosphatases levels of HFD fed animals. The treatment lowered adipocyte hypertrophy and steatosis of hepatocytes. CONCLUSION This preliminary report supported the traditional use of Spermacoce hispida for the treatment of obesity. Further detailed investigations on the long term safety, efficacy and molecular mode of action of Spermacoce hispida and DAA will throw more light on their usefulness for the management of obesity.
Collapse
Affiliation(s)
- S Esakkimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India
| | - S Nagulkumar
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India
| | - S Sylvester Darvin
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India
| | - K Buvanesvaragurunathan
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India
| | - T N Sathya
- GLR Laboratories Private Limited, Mathur, Chennai, 600068, India
| | | | - T S Kumaravel
- GLR Laboratories Private Limited, Mathur, Chennai, 600068, India
| | - S S Murugan
- GLR Laboratories Private Limited, Mathur, Chennai, 600068, India
| | - Osamu Shirota
- Laboratory of Pharmacognosy and Natural Products Chemistry, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Kagawa, 769-2193, Japan.
| | - K Balakrishna
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India.
| | - P Pandikumar
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India.
| | - S Ignacimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College (University of Madras), Chennai, Tamil Nadu, 600034, India; St. Xavier Research Foundation, St. Xavier's College, High Ground Road, Palayamkottai, Tirunelveli, Tamil Nadu, 627002, India.
| |
Collapse
|
29
|
Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. J Nutr Biochem 2019; 73:108224. [DOI: 10.1016/j.jnutbio.2019.108224] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 07/31/2019] [Indexed: 12/20/2022]
|
30
|
Le Barz M, Boulet MM, Calzada C, Cheillan D, Michalski MC. Alterations of endogenous sphingolipid metabolism in cardiometabolic diseases: Towards novel therapeutic approaches. Biochimie 2019; 169:133-143. [PMID: 31614170 DOI: 10.1016/j.biochi.2019.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
The increasing prevalence of obesity and metabolic diseases is a worldwide public health concern, and the advent of new analytical technologies has made it possible to highlight the involvement of some molecules, such as sphingolipids (SL), in their pathophysiology. SL are constituents of cell membranes, lipoproteins and lipid droplets (LD), and are now considered as bioactive molecules. Indeed, growing evidence suggests that SL, characterized by diverse families and species, could represent one of the main regulators of lipid metabolism. There is an increasing amount of data reporting that plasma SL profile is altered in metabolic diseases. However, less is known about SL metabolism dysfunction in cells and tissues and how it may impact the lipoprotein metabolism, its functionality and composition. In cardiometabolic pathologies, the link between serum SL concentrations and alterations of their metabolism in various organs and LD is still unclear. Pharmacological approaches have been developed in order to activate or inhibit specific key enzymes of the SL metabolism, and to positively modulate SL profile or related metabolic pathways. Nevertheless, little is known about the long-term impact of such approaches in humans and the current literature still focuses on the decomposition of the different parts of this complex system rather than performing an integrated analysis of the whole SL metabolism. In addition, since SL can be provided from exogenous sources, it is also of interest to evaluate their impact on the homeostasis of endogenous SL metabolism, which could be beneficial in prevention or treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Mélanie Le Barz
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France.
| | - Marie Michèle Boulet
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France.
| | - Catherine Calzada
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France.
| | - David Cheillan
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France; Service Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie Est, Hospices Civils de Lyon, 69677, Bron, France.
| | - Marie-Caroline Michalski
- Univ Lyon, CarMeN Laboratory, Inserm, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon-Sud Medical School, Pierre-Bénite, Fr-69310, France.
| |
Collapse
|
31
|
Dietary milk fat globule membrane regulates JNK and PI3K/Akt pathway and ameliorates type 2 diabetes in mice induced by a high-fat diet and streptozotocin. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
32
|
Nasab ME, Takzaree N, Saffari PM, Partoazar A. In vitro antioxidant activity and in vivo wound-healing effect of lecithin liposomes: a comparative study. J Comp Eff Res 2019; 8:633-643. [DOI: 10.2217/cer-2018-0128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study was conducted to determine the potentials of egg lecithin (egg-l) and soy lecithin (soy-l) liposomes in antioxidative and wound healing properties. Materials & methods: The suspensions of egg-l and soy-l were prepared using the fusion technique. The free radical scavenging activity of both lecithin liposomes was evaluated by DPPH and ABTS methods. Tissue staining was used to assess wound-healing parameter. Results: Liposomal lecithins showed an increasing trend of 1–10 mg/ml in radical-scavenging activities (p < 0.0001). Wound-healing assessments showed a significant effect (p < 0.0001) in treatment with topical lecithin liposomes. The results of wound healing also showed better outcomes of egg-l in comparison with phenytoin 1% cream. Conclusion: Antioxidant lecithin liposomes may enhance the treatment of wound injuries.
Collapse
Affiliation(s)
- Maryam Eskandari Nasab
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Takzaree
- Department of Anatomy & Medicinal Plants Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Partow Mirzaee Saffari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Zhou AL, Ward RE. Milk polar lipids modulate lipid metabolism, gut permeability, and systemic inflammation in high-fat-fed C57BL/6J ob/ob mice, a model of severe obesity. J Dairy Sci 2019; 102:4816-4831. [PMID: 30981495 DOI: 10.3168/jds.2018-15949] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022]
Abstract
Dynamic interactions between lipid metabolism, gut permeability, and systemic inflammation remain unclear in the context of obesity. Milk polar lipids, lipids derived from the milk fat globule membrane, could positively affect the aforementioned obesity-related endpoints. This study aimed to test the hypotheses that milk polar lipids will reduce gut permeability, systemic inflammation, and liver lipid levels, and differentially affect the hepatic expression of genes associated with fatty acid synthesis and cholesterol regulation in preexisting obesity. We fed 3 groups of C57BL/6J ob/ob mice (n = 6 per group) for 2 wk: (1) a modified AIN-93G diet (CO) with 34% fat by energy; (2) CO with milk gangliosides (GG) at 0.2 g/kg of diet; and (3) CO with milk phospholipids (PL) at 10 g/kg of diet. The GG and PL were provided as semi-purified concentrates and replaced 2.0% and 7.2% of dietary fat by energy. The GG and PL did not affect total food intake, weight gain, fasting glucose, or gut permeability. The PL decreased liver mass and the mesenteric fat depot compared with the CO. The GG increased tight junction protein occludin in colon mucosa compared with the CO. The GG and PL decreased tight junction protein zonula occludens-1 in jejunum mucosa compared with the CO. Plasma endotoxin increased during the study but was unaffected by the treatments. Compared with the CO and GG, the PL increased plasma sphingomyelin and plasma IL-6. The GG and PL differentially regulated genes associated with lipid metabolism in the liver compared with the CO. Regarding general effects on lipid metabolism, the GG and PL decreased lipid levels in the liver and the mesenteric depot, and increased lipid levels in the plasma. Diet consumption decreased significantly when the ob/ob mice were kept in metabolic cages, which were not big enough and resulted in unwanted animal deaths. Future studies may keep this in mind and use better metabolic equipment for ob/ob mice. In conclusion, dietary milk polar lipids may have limited beneficial effects on gut barrier integrity, systemic inflammation, and lipid metabolism in the context of severe obesity.
Collapse
Affiliation(s)
- A L Zhou
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan 84322
| | - R E Ward
- Nutrition, Dietetics and Food Sciences, Utah State University, 8700 Old Main Hill, Logan 84322.
| |
Collapse
|
34
|
Milard M, Penhoat A, Durand A, Buisson C, Loizon E, Meugnier E, Bertrand K, Joffre F, Cheillan D, Garnier L, Viel S, Laugerette F, Michalski MC. Acute effects of milk polar lipids on intestinal tight junction expression: towards an impact of sphingomyelin through the regulation of IL-8 secretion? J Nutr Biochem 2019; 65:128-138. [DOI: 10.1016/j.jnutbio.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/30/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
|
35
|
Otto AC, Gan-Schreier H, Zhu X, Tuma-Kellner S, Staffer S, Ganzha A, Liebisch G, Chamulitrat W. Group VIA phospholipase A2 deficiency in mice chronically fed with high-fat-diet attenuates hepatic steatosis by correcting a defect of phospholipid remodeling. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:662-676. [PMID: 30735855 DOI: 10.1016/j.bbalip.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022]
Abstract
A defect of hepatic remodeling of phospholipids (PL) is seen in non-alcoholic fatty liver disease and steatohepatitis (NASH) indicating pivotal role of PL metabolism in this disease. The deletion of group VIA calcium-independent phospholipase A2 (iPla2β) protects ob/ob mice from hepatic steatosis (BBAlip 1861, 2016, 440-461), however its role in high-fat diet (HFD)-induced NASH is still elusive. Here, wild-type and iPla2β-null mice were subjected to chronic feeding with HFD for 6 months. We showed that protection was observed in iPla2β-null mice with an attenuation of diet-induced body and liver-weight gains, liver enzymes, serum free fatty acids as well as hepatic TG and steatosis scores. iPla2β deficiency under HFD attenuated the levels of 1-stearoyl lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), and lysophosphatidylinositol (LPI) as well as elevation of hepatic arachidonate, arachidonate-containing cholesterol esters and prostaglandin E2. More importantly, this deficiency rescued a defect in PL remodeling and attenuated the ratio of saturated and unsaturated PL. The protection by iPla2β deficiency was not observed during short-term HFD feeding of 3 or 5 weeks which showed no PL remodeling defect. In addition to PC/PE, this deficiency reversed the suppression of PC/PI and PE/PI among monounsaturated PL. However, this deficiency did not modulate hepatic PL contents and PL ratios in ER fractions, ER stress, fibrosis, and inflammation markers. Hence, iPla2β inactivation protected mice against hepatic steatosis and obesity during chronic dietary NASH by correcting PL remodeling defect and PI composition relative to PC and PE.
Collapse
Affiliation(s)
- Ann-Christin Otto
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Xingya Zhu
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Alexandra Ganzha
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
36
|
Milard M, Laugerette F, Durand A, Buisson C, Meugnier E, Loizon E, Louche-Pelissier C, Sauvinet V, Garnier L, Viel S, Bertrand K, Joffre F, Cheillan D, Humbert L, Rainteau D, Plaisancié P, Bindels LB, Neyrinck AM, Delzenne NM, Michalski MC. Milk Polar Lipids in a High-Fat Diet Can Prevent Body Weight Gain: Modulated Abundance of Gut Bacteria in Relation with Fecal Loss of Specific Fatty Acids. Mol Nutr Food Res 2019; 63:e1801078. [DOI: 10.1002/mnfr.201801078] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/18/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Marine Milard
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
| | - Fabienne Laugerette
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
| | - Annie Durand
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
| | - Charline Buisson
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
| | - Emmanuelle Meugnier
- Univ Lyon; CarMeN Laboratory; INSERM; INRA; INSA Lyon; Université Claude Bernard Lyon 1; 69600 Oullins France
| | - Emmanuelle Loizon
- Univ Lyon; CarMeN Laboratory; INSERM; INRA; INSA Lyon; Université Claude Bernard Lyon 1; 69600 Oullins France
| | - Corinne Louche-Pelissier
- Centre de Recherche en Nutrition Humaine (CRNH) Rhône-Alpes; Centre Européen Pour la Nutrition et la Santé; Centre Hospitalier Lyon Sud; Université Claude Bernard Lyon 1; INSERM, Hospices Civils de Lyon F-69310 Pierre Bénite France
| | - Valérie Sauvinet
- Centre de Recherche en Nutrition Humaine (CRNH) Rhône-Alpes; Centre Européen Pour la Nutrition et la Santé; Centre Hospitalier Lyon Sud; Université Claude Bernard Lyon 1; INSERM, Hospices Civils de Lyon F-69310 Pierre Bénite France
| | - Lorna Garnier
- Laboratoire d'Immunologie; Hospices Civils de Lyon; Centre Hospitalier Lyon Sud; Pierre-Bénite France
| | - Sébastien Viel
- Laboratoire d'Immunologie; Hospices Civils de Lyon; Centre Hospitalier Lyon Sud; Pierre-Bénite France
| | | | | | - David Cheillan
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
- Service Biochimie et Biologie Moléculaire Grand Est; Centre de Biologie Est; Hospices Civils de Lyon; Lyon France
| | - Lydie Humbert
- Sorbonne Universités; UPMC Univ. Paris 06; École normale supérieure; PSL Research University; CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), 27 rue de Chaligny Paris 75005 France
| | - Dominique Rainteau
- Sorbonne Universités; UPMC Univ. Paris 06; École normale supérieure; PSL Research University; CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), 27 rue de Chaligny Paris 75005 France
| | - Pascale Plaisancié
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
| | - Laure B. Bindels
- Louvain Drug Research Institute; Metabolism and Nutrition Research Group; Université catholique de Louvain; Brussels Belgium
| | - Audrey M. Neyrinck
- Louvain Drug Research Institute; Metabolism and Nutrition Research Group; Université catholique de Louvain; Brussels Belgium
| | - Nathalie M. Delzenne
- Louvain Drug Research Institute; Metabolism and Nutrition Research Group; Université catholique de Louvain; Brussels Belgium
| | - Marie-Caroline Michalski
- Univ Lyon; CarMeN Laboratory; INSERM U1060; INRA U1397; INSA Lyon; Université Claude Bernard Lyon 1; 69621 Villeurbanne France
| |
Collapse
|
37
|
Hosomi R, Fukunaga K, Nagao T, Tanizaki T, Miyauchi K, Yoshida M, Kanda S, Nishiyama T, Takahashi K. Effect of Dietary Partial Hydrolysate of Phospholipids, Rich in Docosahexaenoic Acid-Bound Lysophospholipids, on Lipid and Fatty Acid Composition in Rat Serum and Liver. J Food Sci 2019; 84:183-191. [DOI: 10.1111/1750-3841.14416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ryota Hosomi
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Kenji Fukunaga
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Toshihiro Nagao
- Osaka Research Inst. of Industrial Science and Technology; Morinomiya Center; 1-6-50, Morinomiya Joto-ku Osaka 536-8553 Japan
| | - Toshifumi Tanizaki
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Kazumasa Miyauchi
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Munehiro Yoshida
- Faculty of Chemistry, Materials, and Bioengineering; Kansai Univ.; 3-3-35, Yamate-cho Suita Osaka 564-8680 Japan
| | - Seiji Kanda
- Dept. of Public Health; Kansai Medical Univ.; 2-5-1, Shin-machi Hirakata Osaka 573-1010 Japan
| | - Toshimasa Nishiyama
- Dept. of Public Health; Kansai Medical Univ.; 2-5-1, Shin-machi Hirakata Osaka 573-1010 Japan
| | - Koretaro Takahashi
- Faculty of Engineering; Kitami Inst. of Technology; 165 Koen-cho Kitami Hokkaido 090-8507 Japan
| |
Collapse
|
38
|
Repressive effects of red bean, Phaseolus angularis, extracts on obesity of mouse induced with high-fat diet via downregulation of adipocyte differentiation and modulating lipid metabolism. Food Sci Biotechnol 2018; 27:1811-1821. [PMID: 30483446 DOI: 10.1007/s10068-018-0421-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 10/28/2022] Open
Abstract
Obesity is generally caused by quantitative changes in adipocyte differentiation and fat metabolism. Only a few studies have been determined the effect of red beans extract on obesity and plasma cholesterol concentration. We have been studied the functional activities of red-bean extracts including anti-oxidative effect against DNA and cell damages. Histological study including micro CT analysis showed that the accumulation of fat in hepatocytes and intestines was significantly decreased in red bean extract treated group. In addition, plasma cholesterol and triglyceride levels were decreased in blood samples. In addition, it was confirmed that the red bean extract inhibited the expression of PPARγ, Fabp4 and RETN genes, which regulate total adipocyte differentiation and lipid metabolism. Red bean extract inhibits the expressions of transcription factors associated with adipocyte differentiation in a dose-dependent manner, thereby inhibiting fat accumulation and decreasing blood lipid levels in obese mice induced by high fat diet.
Collapse
|
39
|
Bernard L, Bonnet M, Delavaud C, Delosière M, Ferlay A, Fougère H, Graulet B. Milk Fat Globule in Ruminant: Major and Minor Compounds, Nutritional Regulation and Differences Among Species. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700039] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Laurence Bernard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Carole Delavaud
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Mylène Delosière
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Anne Ferlay
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Hélène Fougère
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| | - Benoît Graulet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores; F-63122 Saint-Genès-Champanelle France
| |
Collapse
|
40
|
Wat E, Wang Y, Chan K, Law HW, Koon CM, Lau KM, Leung PC, Yan C, Lau CBS. An in vitro and in vivo study of a 4-herb formula on the management of diet-induced metabolic syndrome. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 42:112-125. [PMID: 29655677 DOI: 10.1016/j.phymed.2018.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/16/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Metabolic syndrome is the cluster of risk factors that leads to increased episodes of cardiovascular disease (CVD). These risk factors include but are not limited to obesity, non-alcoholic fatty liver (NAFLD), dyslipidemia, and type 2 diabetes. Since the pathogenesis of metabolic syndrome has multiple metabolic origins, there is no single treatment for it. Pharmacological approaches consist of separate drugs which target at individual risk factors which pose various side effects. Functional foods or nutraceuticals which have potentially important anti-obesity properties have thus attracted great attention. Schisandrae Fructus is a Chinese herb traditionally used as a liver tonic. Silymarin, an extract of the milk thistle (Silybum marianum), is a dietary supplement that is widely used in western society for the prevention and treatment of liver problems. Crataegus Fructus (hawthorn) is traditionally used to promote digestion and dissipate food stagnation. Momordica charantia (bitter melon) is traditionally used for treatment of diabetes in Ayurvedic Medicine. HYPOTHESIS/PURPOSE We aimed to develop a multi-targeted herbal formula to target on the multiple risk factors of metabolic syndrome using individual herbs. This proposed herbal formula include sylimarin and Schisandrae Fructus, for NAFLD; Crataegus Fructus for obesity and hyperlipidemia; and Momordica charantia for hyperglycemia. STUDY DESIGN AND METHODS For in vitro study, we carried out insulin-induced 3T3-L1 adipocytes differentiation and fluorescent tagged cholesterol-treated Caco-2 cell assay to study for adipogenesis and cholesterol uptake into Caco-2 cells, respectively. Oleic acid-induced HepG2 cell assay was used to study for oleic acid-induced fatty liver, and brush border membrane vesicles (BBMV) assay was used to study for glucose uptake from the gut. For in vivo study, we performed an 8-week and a 12-week treatment studies, with each study comprising of 4 groups of C57Bl/6 male mice given: (i) Normal-chow diet; (ii)-(iv) High-fat diet (contains 21% fat and 0.15% cholesterol). After the initial 8 weeks of normal chow or high-fat diet feeding to induce obesity, animals were given: (i) Normal-chow diet; (ii) High-fat diet; (iii) High-fat diet + 2% herbal formula; or (iv) High-fat diet + 4% herbal formula as treatment for another 8 weeks or 12 weeks. RESULTS Our in vitro results suggested Crataegus Fructus aqueous extract exerted potent inhibitory effects on 3T3-L1 preadipocytes differentiation and cholesterol uptake into Caco-2 cells. Schisandrae Fructus aqueous extract and milk thistle exerted inhibitory effects on oleic acid-induced fatty liver in HepG2 cells. Momordica charantia extract on the other hand, exerted significant inhibitory effect on glucose uptake into BBMV. Our in vivo results showed that our herbal formula exhibited a trend to reduce diet-induced increase in body weight and fat pad mass (epididymal, perirenal and inguinal fat); and significantly reduced diet-induced increase in liver weight, liver lipid, and plasma lipid dose-dependently. Besides, high-fat diet induced a significant reduction in adiponectin level which was significantly improved by herbal formula supplementation at 4%. There was however no significant effect of the herbal formula on diet-induced increase in plasma glucose or insulin levels at either dose. Herbal formula also significantly reduced diet-induced inflammation in the liver at both doses. CONCLUSIONS Taken together, these data suggested the potential of our novel multi-targeted herbal formula to be used as a therapeutic agent for diet-induced metabolic syndrome, with special emphasis on NAFLD.
Collapse
Affiliation(s)
- Elaine Wat
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yanping Wang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ken Chan
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Hon Wai Law
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chi Man Koon
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kit Man Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ping Chung Leung
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Choly Yan
- Venture Tycoon Limited, 21/F, Man Shing Industrial Building, Kowloon, Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong; State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
41
|
Bermingham EN, Reis MG, Subbaraj AK, Cameron-Smith D, Fraser K, Jonker A, Craigie CR. Distribution of fatty acids and phospholipids in different table cuts and co-products from New Zealand pasture-fed Wagyu-dairy cross beef cattle. Meat Sci 2018; 140:26-37. [PMID: 29501930 DOI: 10.1016/j.meatsci.2018.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 01/21/2023]
Abstract
Wagyu beef products are marketed as luxury goods to discerning consumers and the lipid content and composition are important drivers of wagyu product value. Wagyu beef is an extensively marbled meat product, well characterised for its tenderness and flavour. In New Zealand, pasture-fed Wagyu-dairy beef production is increasing to meet demand for ultra-premium meat products. Important for these characteristics is the composition of lipid species and their distribution across the carcass. The aim of this study was to analyse the distribution of fatty acids and phospholipids in 26 table cuts, nine co-products and three fat deposits of carcasses from New Zealand pasture-fed Wagyu-dairy cross beef carcasses (n = 5). Phospholipid and fatty acid levels varied across different cuts of the carcass, but typically cuts with high levels of phospholipids also had high levels of omega-3 fatty acids and low levels of saturated fatty acids. This work will be used in the future to examine the potential health aspects of pasture-fed Wagyu beef.
Collapse
Affiliation(s)
- Emma N Bermingham
- Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand.
| | | | - Arvind K Subbaraj
- Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand
| | - David Cameron-Smith
- Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand; Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Karl Fraser
- Food Nutrition & Health Team, AgResearch, Palmerston North, New Zealand
| | - Arjan Jonker
- Animal Nutrition & Physiology Team, AgResearch, Palmerston North, New Zealand
| | - Cameron R Craigie
- Food Assurance & Meat Quality Team, AgResearch, Hamilton, New Zealand
| |
Collapse
|
42
|
Characterization of phospholipid profiles in six kinds of nut using HILIC-ESI-IT-TOF-MS system. Food Chem 2018; 240:1171-1178. [DOI: 10.1016/j.foodchem.2017.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/22/2017] [Accepted: 08/03/2017] [Indexed: 11/21/2022]
|
43
|
Abstract
A growing body of nutritional science highlights the complex mechanisms and pleiotropic pathways of cardiometabolic effects of different foods. Among these, some of the most exciting advances are occurring in the area of flavonoids, bioactive phytochemicals found in plant foods; and in the area of dairy, including milk, yogurt, and cheese. Many of the relevant ingredients and mechanistic pathways are now being clarified, shedding new light on both the ingredients and the pathways for how diet influences health and well-being. Flavonoids, for example, have effects on skeletal muscle, adipocytes, liver, and pancreas, and myocardial, renal, and immune cells, for instance, related to 5'-monophosphate-activated protein kinase phosphorylation, endothelial NO synthase activation, and suppression of NF-κB (nuclear factor-κB) and TLR4 (toll-like receptor 4). Effects of dairy are similarly complex and may be mediated by specific amino acids, medium-chain and odd-chain saturated fats, unsaturated fats, branched-chain fats, natural trans fats, probiotics, vitamin K1/K2, and calcium, as well as by processing such as fermentation and homogenization. These characteristics of dairy foods influence diverse pathways including related to mammalian target of rapamycin, silent information regulator transcript-1, angiotensin-converting enzyme, peroxisome proliferator-activated receptors, osteocalcin, matrix glutamate protein, hepatic de novo lipogenesis, hepatic and adipose fatty acid oxidation and inflammation, and gut microbiome interactions such as intestinal integrity and endotoxemia. The complexity of these emerging pathways and corresponding biological responses highlights the rapid advances in nutritional science and the continued need to generate robust empirical evidence on the mechanistic and clinical effects of specific foods.
Collapse
Affiliation(s)
- Dariush Mozaffarian
- From the Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (D.M.); and the George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia (J.H.Y.W.).
| | - Jason H Y Wu
- From the Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (D.M.); and the George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia (J.H.Y.W.)
| |
Collapse
|
44
|
Norris GH, Blesso CN. Dietary sphingolipids: potential for management of dyslipidemia and nonalcoholic fatty liver disease. Nutr Rev 2017; 75:274-285. [PMID: 28383715 DOI: 10.1093/nutrit/nux004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of therapeutic approaches aimed at reducing inflammation, improving lipid metabolism, and preventing nonalcoholic fatty liver disease holds significant potential in the management of obesity-associated disease. In this review, the recent basic science and clinical research examining dietary sphingolipid intake and the prevention of dyslipidemia and nonalcoholic fatty liver disease is summarized. Dietary sphingolipids have been shown to dose-dependently reduce the acute intestinal absorption of cholesterol, triglycerides, and fatty acids in rodents. Overall, studies feeding dietary sphingolipids to rodents typically show reductions in serum lipids. Furthermore, these hypolipidemic effects are also observed in most human studies, although the magnitude of such effects is typically smaller. Dietary sphingolipids also appear useful in preventing hepatic lipid uptake and accumulation and have shown benefits in preventing hepatic steatosis in rodent models. Dietary sphingolipids may affect the gut-liver axis by preventing the translocation of gut bacteria-derived lipopolysaccharide and/or inhibiting its proinflammatory effects. Current evidence from preclinical studies indicates that dietary sphingolipids have lipid-lowering and anti-inflammatory properties, although their potential to prevent human chronic disease has not been fully explored. It will be important to determine if such effects seen in cell and animal models translate to humans. More research is warranted to define how dietary sphingolipids influence lipid metabolism and inflammation.
Collapse
Affiliation(s)
- Gregory H Norris
- G.H. Norris and C.N. Blesso are with the Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Christopher N Blesso
- G.H. Norris and C.N. Blesso are with the Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
45
|
Talawar ST, Harohally NV, Ramakrishna C, Suresh Kumar G. Development of Wheat Bran Oil Concentrates Rich in Bioactives with Antioxidant and Hypolipidemic Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9838-9848. [PMID: 29047281 DOI: 10.1021/acs.jafc.7b03440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Wheat bran, an abundant byproduct of the milling industry, comprises fat-soluble bioactives and fibers. In the present study, two concentrates were prepared from wheat bran oil (WBO) using silicic acid coupled with acetone (WBA) and hexane (WBH). WBA extract had enhanced color and viscosity and was enriched with fat-soluble bioactives (sterols, oryzanol-like compounds, tocopherols, and carotenoids) as evidenced from NMR and other techniques. In in vitro studies, WBA exhibited significant free radical scavenging activity, limited DNA and LDL oxidation, and inhibiting HMG-CoA reductase and lipase activity better than WBH and WBO. Further, an in vivo study with WBA 2 or 3.5% containing high fat diet ameliorated malonaldehyde (MDA) level, lipid profile, and antioxidant enzyme (SOD, catalase, GPx, and GR) activities in liver. A possible reason for this effect is downregulation of HMG-CoA reductase expression with WBA. Thus, WBA has significant potential as an ingredient in health food formulations.
Collapse
Affiliation(s)
- Sharanappa T Talawar
- Department of Biochemistry and ‡Spice, Flavour Science, CSIR-Central Food Technological Research Institute , Mysuru 570020, India
| | - Nanishankar V Harohally
- Department of Biochemistry and ‡Spice, Flavour Science, CSIR-Central Food Technological Research Institute , Mysuru 570020, India
| | - Chetana Ramakrishna
- Department of Biochemistry and ‡Spice, Flavour Science, CSIR-Central Food Technological Research Institute , Mysuru 570020, India
| | - G Suresh Kumar
- Department of Biochemistry and ‡Spice, Flavour Science, CSIR-Central Food Technological Research Institute , Mysuru 570020, India
| |
Collapse
|
46
|
Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017; 9:nu9111180. [PMID: 29143791 PMCID: PMC5707652 DOI: 10.3390/nu9111180] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a common underlying factor in many major metabolic diseases afflicting Western societies. Sphingolipid metabolism is pivotal in the regulation of inflammatory signaling pathways. The regulation of sphingolipid metabolism is in turn influenced by inflammatory pathways. In this review, we provide an overview of sphingolipid metabolism in mammalian cells, including a description of sphingolipid structure, biosynthesis, turnover, and role in inflammatory signaling. Sphingolipid metabolites play distinct and complex roles in inflammatory signaling and will be discussed. We also review studies examining dietary sphingolipids and inflammation, derived from in vitro and rodent models, as well as human clinical trials. Dietary sphingolipids appear to influence inflammation-related chronic diseases through inhibiting intestinal lipid absorption, altering gut microbiota, activation of anti-inflammatory nuclear receptors, and neutralizing responses to inflammatory stimuli. The anti-inflammatory effects observed with consuming dietary sphingolipids are in contrast to the observation that most cellular sphingolipids play roles in augmenting inflammatory signaling. The relationship between dietary sphingolipids and low-grade chronic inflammation in metabolic disorders is complex and appears to depend on sphingolipid structure, digestion, and metabolic state of the organism. Further research is necessary to confirm the reported anti-inflammatory effects of dietary sphingolipids and delineate their impacts on endogenous sphingolipid metabolism.
Collapse
|
47
|
Ali AH, Zou X, Abed SM, Korma SA, Jin Q, Wang X. Natural phospholipids: Occurrence, biosynthesis, separation, identification, and beneficial health aspects. Crit Rev Food Sci Nutr 2017; 59:253-275. [PMID: 28820277 DOI: 10.1080/10408398.2017.1363714] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During the last years, phospholipids (PLs) have attracted great attention because of their crucial roles in providing nutritional values, technological and medical applications. There are considerable proofs that PLs have unique nutritional benefits on human health, such as reducing cholesterol absorption, improving liver functions, and decreasing the risk of cardiovascular diseases. PLs are the main structural lipid components of cell and organelle membranes in all living organisms, and therefore, they occur in all organisms and the derived food products. PLs are distinguished by the presence of a hydrophilic head and a hydrophobic tail, consequently they possess amphiphilic features. Due to their unique characteristics, the extraction, separation, and identification of PLs are critical issues to be concerned. This review is focused on the content of PLs classes in several sources (including milk, vegetable oils, egg yolk, and mitochondria). As well, it highlights PLs biosynthesis, and the methodologies applied for PLs extraction and separation, such as solvent extraction and solid-phase extraction. In addition, the determination and quantification of PLs classes by using thin layer chromatography, high-performance liquid chromatography coupled with different detectors, and nuclear magnetic resonance spectroscopy techniques.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- a State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology , Jiangnan University , 1800 Lihu Road, Wuxi , Jiangsu , PR China.,b Department of Food Science, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| | - Xiaoqiang Zou
- a State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology , Jiangnan University , 1800 Lihu Road, Wuxi , Jiangsu , PR China
| | - Sherif M Abed
- a State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology , Jiangnan University , 1800 Lihu Road, Wuxi , Jiangsu , PR China.,c Food and Dairy Science and Technology Department, Faculty of Environmental Agricultural Science , El Arish University , El Arish , Egypt
| | - Sameh A Korma
- a State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology , Jiangnan University , 1800 Lihu Road, Wuxi , Jiangsu , PR China.,b Department of Food Science, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| | - Qingzhe Jin
- a State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology , Jiangnan University , 1800 Lihu Road, Wuxi , Jiangsu , PR China
| | - Xingguo Wang
- a State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology , Jiangnan University , 1800 Lihu Road, Wuxi , Jiangsu , PR China
| |
Collapse
|
48
|
Wat E, Ng CF, Koon CM, Zhang C, Gao S, Tomlinson B, Lau CBS. The adjuvant value of Herba Cistanches when used in combination with statin in murine models. Sci Rep 2017; 7:9391. [PMID: 28839280 PMCID: PMC5570940 DOI: 10.1038/s41598-017-10008-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022] Open
Abstract
Statins are well known to have muscle toxicity problem. Herba Cistanches (HC) is a Chinese herb traditionally used for pain in the loins and knees. Our previous in vitro study suggested that it could protect against statin-induced muscle toxicity. However, its in vivo protective effect has never been investigated. The objective of this study was to determine if the aqueous extract of HC (HCE) could prevent simvastatin-induced muscle toxicity in rats, and whether HCE could also exert beneficial effects on reducing high-fat diet-induced hypercholesterolemia and elevated liver cholesterol, thereby reducing the dose of simvastatin when used in combined therapy. From our results, HCE significantly restored simvastatin-induced reduction in muscle weights and reduced elevated plasma creatine kinase in rats. HCE also improved simvastatin-induced reduction in muscle glutathione levels, muscle mitochondrial membrane potential, and reduced simvastatin-induced muscle inflammation. Furthermore, HCE could exert reduction on liver weight, total liver lipid levels and plasma lipid levels in high-fat-fed mice. In conclusion, our study provided in vivo evidence that HCE has potential protective effect on simvastatin-induced toxicity in muscles, and also beneficial effects on diet-induced non-alcoholic fatty liver and hyperlipidemia when being used alone or in combination with simvastatin at a reduced dose.
Collapse
Affiliation(s)
- Elaine Wat
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chun Fai Ng
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chi Man Koon
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Cheng Zhang
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Si Gao
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.,State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Brian Tomlinson
- Division of Clinical Pharmacology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Clara Bik San Lau
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. .,State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| |
Collapse
|
49
|
Grażyna C, Hanna C, Adam A, Magdalena BM. Natural antioxidants in milk and dairy products. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12359] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cichosz Grażyna
- Department of Dairy Science and Quality Management; University of Warmia and Mazury in Olsztyn; ul. Oczapowskiego 7 10-719 Olsztyn Poland
| | - Czeczot Hanna
- Department of Biochemistry; I Faculty of Medicine; Medical University of Warsaw; ul. Banacha 1 02-097 Warszawa Poland
| | - Ambroziak Adam
- Department of Dairy Science and Quality Management; University of Warmia and Mazury in Olsztyn; ul. Oczapowskiego 7 10-719 Olsztyn Poland
| | - Bielecka Marika Magdalena
- Department of Dairy Science and Quality Management; University of Warmia and Mazury in Olsztyn; ul. Oczapowskiego 7 10-719 Olsztyn Poland
| |
Collapse
|
50
|
Yamauchi I, Uemura M, Hosokawa M, Iwashima-Suzuki A, Shiota M, Miyashita K. The dietary effect of milk sphingomyelin on the lipid metabolism of obese/diabetic KK-A(y) mice and wild-type C57BL/6J mice. Food Funct 2016; 7:3854-67. [PMID: 27501823 DOI: 10.1039/c6fo00274a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purified milk sphingomyelin (SM) was obtained from lipid concentrated butter serum (LC-BS) by successive separations involving solvent fractionation, selective saponification, and silicic acid column chromatography. The SM obtained was given to obese/diabetic KK-A(y) mice and wild-type C57BL/6J mice. SM supplementation significantly increased fecal lipids paralleled with a decrease in non-HDL cholesterol levels in the serum and neutral lipids and in cholesterol levels in the livers of KK-A(y) mice. The reduction of liver lipid levels also resulted in a decrease in the total fatty acid content of the KK-A(y) mice livers, while n-3 fatty acids derived from the conversion of α-linolenic acid (18:3n-3) increased due to SM supplementation. In contrast to the KK-A(y) mice, little change in the serum and liver lipids was observed in wild-type C57BL/6J mice. The present study suggests that SM may be effective only in subjects with metabolic disorders.
Collapse
Affiliation(s)
- Ippei Yamauchi
- Laboratory of Bio-functional Material Chemistry, Division of Marine Bioscience, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | | | | | | | | | |
Collapse
|