1
|
Patil RS, Maloney ME, Lucas R, Fulton DJR, Patel V, Bagi Z, Kovacs-Kasa A, Kovacs L, Su Y, Verin AD. Zinc-Dependent Histone Deacetylases in Lung Endothelial Pathobiology. Biomolecules 2024; 14:140. [PMID: 38397377 PMCID: PMC10886568 DOI: 10.3390/biom14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from histones. In addition, they can deacetylate many non-histone histone proteins, including those located in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of their inhibitors for lung injury prevention.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Cardiothoracic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Laszlo Kovacs
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Johari NH, Menichini C, Hamady M, Xu XY. Computational modeling of low-density lipoprotein accumulation at the carotid artery bifurcation after stenting. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3772. [PMID: 37730441 DOI: 10.1002/cnm.3772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/10/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
Restenosis typically occurs in regions of low and oscillating wall shear stress, which also favor the accumulation of atherogenic macromolecules such as low-density lipoprotein (LDL). This study aims to evaluate LDL transport and accumulation at the carotid artery bifurcation following carotid artery stenting (CAS) by means of computational simulation. The computational model consists of coupled blood flow and LDL transport, with the latter being modeled as a dilute substance dissolved in the blood and transported by the flow through a convection-diffusion transport equation. The endothelial layer was assumed to be permeable to LDL, and the hydraulic conductivity of LDL was shear-dependent. Anatomically realistic geometric models of the carotid bifurcation were built based on pre- and post-stent computed tomography (CT) scans. The influence of stent design was investigated by virtually deploying two different types of stents (open- and closed-cell stents) into the same carotid bifurcation model. Predicted LDL concentrations were compared between the post-stent carotid models and the relatively normal contralateral model reconstructed from patient-specific CT images. Our results show elevated LDL concentration in the distal section of the stent in all post-stent models, where LDL concentration is 20 times higher than that in the contralateral carotid. Compared with the open-cell stents, the closed-cell stents have larger areas exposed to high LDL concentration, suggesting an increased risk of stent restenosis. This computational approach is readily applicable to multiple patient studies and, once fully validated against follow-up data, it can help elucidate the role of stent strut design in the development of in-stent restenosis after CAS.
Collapse
Affiliation(s)
- Nasrul H Johari
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
- Centre for Advanced Industrial Technology, University Malaysia Pahang, Pekan, Pahang, Malaysia
| | - Claudia Menichini
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Mohamad Hamady
- Department of Surgery & Cancer, Imperial College London, St. Mary's Campus, London, UK
| | - Xiao Y Xu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK
| |
Collapse
|
3
|
Patil NP, Gómez-Hernández A, Zhang F, Cancel L, Feng X, Yan L, Xia K, Takematsu E, Yang EY, Le V, Fisher ME, Gonzalez-Rodriguez A, Garcia-Monzon C, Tunnell J, Tarbell J, Linhardt RJ, Baker AB. Rhamnan sulfate reduces atherosclerotic plaque formation and vascular inflammation. Biomaterials 2022; 291:121865. [DOI: 10.1016/j.biomaterials.2022.121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/28/2022]
|
4
|
Ghim M, Yang SW, David KRZ, Eustaquio J, Warboys CM, Weinberg PD. NO Synthesis but Not Apoptosis, Mitosis or Inflammation Can Explain Correlations between Flow Directionality and Paracellular Permeability of Cultured Endothelium. Int J Mol Sci 2022; 23:8076. [PMID: 35897652 PMCID: PMC9332325 DOI: 10.3390/ijms23158076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022] Open
Abstract
Haemodynamic wall shear stress varies from site to site within the arterial system and is thought to cause local variation in endothelial permeability to macromolecules. Our aim was to investigate mechanisms underlying the changes in paracellular permeability caused by different patterns of shear stress in long-term culture. We used the swirling well system and a substrate-binding tracer that permits visualisation of transport at the cellular level. Permeability increased in the centre of swirled wells, where flow is highly multidirectional, and decreased towards the edge, where flow is more uniaxial, compared to static controls. Overall, there was a reduction in permeability. There were also decreases in early- and late-stage apoptosis, proliferation and mitosis, and there were significant correlations between the first three and permeability when considering variation from the centre to the edge under flow. However, data from static controls did not fit the same relation, and a cell-by-cell analysis showed that <5% of uptake under shear was associated with each of these events. Nuclear translocation of NF-κB p65 increased and then decreased with the duration of applied shear, as did permeability, but the spatial correlation between them was not significant. Application of an NO synthase inhibitor abolished the overall decrease in permeability caused by chronic shear and the difference in permeability between the centre and the edge of the well. Hence, shear and paracellular permeability appear to be linked by NO synthesis and not by apoptosis, mitosis or inflammation. The effect was mediated by an increase in transport through tricellular junctions.
Collapse
Affiliation(s)
| | | | | | | | | | - Peter D. Weinberg
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (M.G.); (S.-W.Y.); (K.R.Z.D.); (J.E.); (C.M.W.)
| |
Collapse
|
5
|
Kang H, Yang J, Zhang W, Lu J, Ma X, Sun A, Deng X. Effect of endothelial glycocalyx on water and LDL transport through the rat abdominal aorta. Am J Physiol Heart Circ Physiol 2021; 320:H1724-H1737. [PMID: 33710913 DOI: 10.1152/ajpheart.00861.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
The surface of vascular endothelial cells (ECs) is covered by a protective negatively charged layer known as the endothelial glycocalyx. Herein, we hypothesized its transport barrier and mechanosensory role in transmural water flux and low-density lipoprotein (LDL) transport in an isolated rat abdominal aorta perfused under 85 mmHg and 20 dyn/cm2 ex vivo. The endothelial glycocalyx was digested by hyaluronidase (HAase) from bovine tests. Water infiltration velocity (Vw) was measured by a graduated pipette. LDL coverage and mean maximum infiltration distance (MMID) in the vessel wall were quantified by confocal laser scanning microscopy. EC apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) technique, and leaky junction rates were evaluated by electron microscopy. The results showed that a 42% degradation of the endothelial glycocalyx by HAase treatment increased Vw, LDL coverage, and MMID. Shear stress increased Vw, which cannot be inhibited by HAase treatment. Four hour-shear application increased about fourfolds of LDL coverage, whereas exerted no significant effects on its MMID, EC apoptosis, and the leaky junctions. On the contrary, 24-h shear exposure has no significant effects on LDL coverage, whereas increased 2.74-folds of MMID and about 53% of EC apoptotic rates that could be inhibited by HAase treatment. These results suggest endothelial glycocalyx acts as a transport barrier by decreasing water and LDL transport, as well as a mechanosensor of shear to regulate EC apoptosis, thus affecting leaky junctions and regulating LDL transport into the vessel wall.NEW & NOTEWORTHY A 42% degradation of the endothelial glycocalyx by hyaluronidase of the isolated rat abdominal aorta facilitated water and LDL transport across the vessel wall, suggesting endothelial glycocalyx as a transport barrier. A 24-h shear exposure increased LDL mean maximum infiltration distance, and enhanced EC apoptosis, which could be both inhibited by hyaluronidase treatment, suggesting endothelial glycocalyx may also act as a mechanosensor of shear to regulate EC apoptosis, thus affecting leaky junctions and regulating LDL transport.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jiali Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Weichen Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jinyan Lu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xuejiao Ma
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Anqiang Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
6
|
Ghim M, Mohamied Y, Weinberg PD. The Role of Tricellular Junctions in the Transport of Macromolecules Across Endothelium. Cardiovasc Eng Technol 2021; 12:101-113. [PMID: 32820467 PMCID: PMC7904563 DOI: 10.1007/s13239-020-00483-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Transport of water and solutes across vascular endothelium is important in normal physiology and critical in the development of various diseases, including atherosclerosis. However, there is debate about the routes for such transport. We recently showed that an albumin-sized tracer crossed endothelium at bicellular and tricellular junctions, a tracer having the size of high density lipoprotein crossed only through tricellular junctions, and a tracer with the size of low density lipoprotein was unable to cross by either route and instead traversed the cells themselves. Here we review previous work on the structure and function of tricellular junctions. We then describe a study in which we assessed the role of such junctions in the transport of an albumin-sized tracer. METHODS We examined normal endothelial monolayers, the effect of agonists that modify their permeability, and the influence of different patterns of shear stress. RESULTS Under normal conditions, approximately 85% of transendothelial transport occurred through tricellular junctions. This fraction was unchanged when permeability was reduced by sphingosine-1-phosphate or increased by thrombin, and also did not differ between endothelium exposed to multidirectional as opposed to uniaxial shear stress despite a > 50% difference in permeability. CONCLUSION These data show that tricellular junctions dominate normal transport of this tracer and largely determine influences of agonists and shear. The effects were attributable to changes in both the number and conductivity of the junctions. Further investigation of these structures will lead to increased understanding of endothelial barrier function and may suggest new therapeutic strategies in disease.
Collapse
Affiliation(s)
- Mean Ghim
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Yumnah Mohamied
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Department of Aeronautics, Imperial College London, London, SW7 2AZ, UK
- Section of Cardiovascular Medicine, Yale Cardiovascular Research Centre, Yale University School of Medicine, New Haven, CT, USA
| | - Peter D Weinberg
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Guo J, Mei H, Sheng Z, Meng Q, Véniant MM, Yin H. Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis. J Lipid Res 2020; 61:1764-1775. [PMID: 33008925 PMCID: PMC7707179 DOI: 10.1194/jlr.ra120001121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Of the known regulators of atherosclerosis, miRNAs have been demonstrated to play critical roles in lipoprotein homeostasis and plaque formation. Here, we generated a novel animal model of atherosclerosis by knocking in LDLRW483X in C57BL/6 mice, as the W483X mutation in LDLR is considered the most common newly identified pathogenic mutation in Chinese familial hypercholesterolemia (FH) individuals. Using the new in vivo mouse model combined with a well-established atherosclerotic in vitro human cell model, we identified a novel atherosclerosis-related miRNA, miR-23a-3p, by microarray analysis of mouse aortic tissue specimens and human aortic endothelial cells (HAECs). miR-23a-3p was consistently downregulated in both models, which was confirmed by qPCR. Bioinformatics analysis and further validation experiments revealed that the TNFα-induced protein 3 (TNFAIP3) gene was the key target of miR-23a-3p. The miR-23a-3p-related functional pathways were then analyzed in HAECs. Collectively, the present results suggest that miR-23a-3p regulates inflammatory and apoptotic pathways in atherogenesis by targeting TNFAIP3 through the NF-κB and p38/MAPK signaling pathways.
Collapse
Affiliation(s)
- Jiayan Guo
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Hanbing Mei
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Zhen Sheng
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Qingyuan Meng
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Murielle M Véniant
- Department of Cardiometabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA.
| | - Hong Yin
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China.
| |
Collapse
|
8
|
Zhang L, Fan J, Li G, Yin Z, Fu BM. Transcellular Model for Neutral and Charged Nanoparticles Across an In Vitro Blood-Brain Barrier. Cardiovasc Eng Technol 2020; 11:607-620. [PMID: 33113565 PMCID: PMC7592456 DOI: 10.1007/s13239-020-00496-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE The therapeutic drug-loaded nanoparticles (NPs, 20-100 nm) have been widely used to treat brain disorders. To improve systemic brain delivery efficacy of these NPs, it is necessary to quantify their transport parameters across the blood-brain barrier (BBB) and understand the underlying transport mechanism. METHODS Permeability of an in vitro BBB, bEnd3 (mouse brain microvascular endothelial cells) monolayer, to three neutral NPs with the representative diameters was measured using an automated fluorometer system. To elucidate the transport mechanism of the neutral NPs across the in vitro BBB, and that of positively charged NPs whose BBB permeability was measured in a previous study, we developed a novel transcellular model, which incorporates the charge of the in vitro BBB, the mechanical property of the cell membrane, the ion concentrations of the surrounding salt solution and the size and charge of the NPs. RESULTS Our model indicates that the negative charge of the surface glycocalyx and basement membrane of the BBB plays a pivotal role in the transcelluar transport of NPs with diameter 20-100 nm across the BBB. The electrostatic force between the negative charge at the in vitro BBB and the positive charge at NPs greatly enhances NP permeability. The predictions from our transcellular model fit very well with the measured BBB permeability for both neutral and charged NPs. CONCLUSION Our model can be used to predict the optimal size and charge of the NPs and the optimal charge of the BBB for an optimal systemic drug delivery strategy to the brain.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Jie Fan
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Guanglei Li
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Zhaokai Yin
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA
| | - Bingmei M Fu
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA.
| |
Collapse
|
9
|
Anisodamine Hydrobromide Protects Glycocalyx and Against the Lipopolysaccharide-Induced Increases in Microvascular Endothelial Layer Permeability and Nitric Oxide Production. Cardiovasc Eng Technol 2020; 12:91-100. [PMID: 32935201 DOI: 10.1007/s13239-020-00486-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/08/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Anisodamine hydrobromide (Ani HBr) has been used to improve the microcirculation during cardiovascular disorders and sepsis. Glycocalyx plays an important role in preserving the endothelial cell (EC) barrier permeability and nitric oxide (NO) production. We aimed to test the hypothesis that Ani HBr could protect the EC against permeability and NO production via preventing glycocalyx shedding. METHODS A human cerebral microvascular EC hCMEC/D3 injury model induced by lipopolysaccharide (LPS) was established. Ani HBr was administrated to ECs with the LPS challenge. Cell viability was performed by Cell Counting Kit-8 assay. Cell proliferation and apoptosis were detected by EdU and Hoechst 33342 staining. Apoptosis and cell cycle were also assessed by flow cytometry with annexin V staining and propidium iodide staining, respectively. Then, adherens junction integrity was evaluated basing on the immunofluorescence staining of vascular endothelial cadherin (VE-cadherin). The glycocalyx component heparan sulfate (HS) was stained in ECs. The cell permeability was evaluated by leakage of fluorescein isothiocyanate (FITC)-dextran. Cellular NO production was measured by the method of nitric acid reductase. RESULTS Ani HBr at 20 μg/mL significantly increased the viability of ECs with LPS challenge, but significantly inhibited the cell viability at 80 μg/mL, showing a bidirectional regulation of cell viability by Ani HBr. Ani HBr had not significantly change the LPS-induced EC proliferation. Ani HBr significantly reversed the induction of LPS on EC apoptosis. Ani HBr reinstated the LPS-induced glycocalyx and VE-cadherin shedding and adherens junction disruption. Ani HBr significantly alleviated LPS-induced EC layer permeability and NO production. CONCLUSION Ani HBr protects ECs against LPS-induced increase in cell barrier permeability and nitric oxide production via preserving the integrity of glycocalyx. Ani HBr is a promising drug to rescue or protect the glycocalyx.
Collapse
|
10
|
β-catenin promotes endothelial survival by regulating eNOS activity and flow-dependent anti-apoptotic gene expression. Cell Death Dis 2020; 11:493. [PMID: 32606304 PMCID: PMC7326989 DOI: 10.1038/s41419-020-2687-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Increased endothelial cell (EC) apoptosis is associated with the development of atherosclerotic plaques that develop predominantly at sites exposed to disturbed flow (DF). Strategies to promote EC survival may therefore represent a novel therapeutic approach in cardiovascular disease. Nitric oxide (NO) and β-catenin have both been shown to promote cell survival and they interact in ECs as we previously demonstrated. Here we investigated the physiological role of β-catenin as a mediator of NO-induced cell survival in ECs. We found that β-catenin depleted human umbilical vein ECs (HUVEC) stimulated with pharmacological activators of endothelial NO synthase (eNOS) showed a reduction in eNOS phosphorylation (Ser1177) as well as reduced intracellular cyclic guanosine monophosphate levels compared to control cells in static cultures. In addition, β-catenin depletion abrogated the protective effects of the NO donor, S-nitroso-N-acetylpenicillamine, during TNFα- and H2O2-induced apoptosis. Using an orbital shaker to generate shear stress, we confirmed eNOS and β-catenin interaction in HUVEC exposed to undisturbed flow and DF and showed that β-catenin depletion reduced eNOS phosphorylation. β-catenin depletion promoted apoptosis exclusively in HUVEC exposed to DF as did inhibition of soluble guanylate cyclase (sGC) or β-catenin transcriptional activity. The expression of the pro-survival genes, Bcl-2 and survivin was also reduced following inhibition of β-catenin transcriptional activity, as was the expression of eNOS. In conclusion, our data demonstrate that β-catenin is a positive regulator of eNOS activity and cell survival in human ECs. sGC activity and β-catenin-dependent transcription of Bcl-2, survivin, BIRC3 and eNOS are essential to maintain cell survival in ECs under DF.
Collapse
|
11
|
Öörni K, Lehti S, Sjövall P, Kovanen PT. Triglyceride-Rich Lipoproteins as a Source of Proinflammatory Lipids in the Arterial Wall. Curr Med Chem 2019; 26:1701-1710. [DOI: 10.2174/0929867325666180530094819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/27/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
Abstract
Apolipoprotein B –containing lipoproteins include triglyceride-rich lipoproteins
(chylomicrons and their remnants, and very low-density lipoproteins and their remnants) and
cholesterol-rich low-density lipoprotein particles. Of these, lipoproteins having sizes below
70-80 nm may enter the arterial wall, where they accumulate and induce the formation of
atherosclerotic lesions. The processes that lead to accumulation of lipoprotein-derived lipids
in the arterial wall have been largely studied with a focus on the low-density lipoprotein particles.
However, recent observational and genetic studies have discovered that the triglyceriderich
lipoproteins and their remnants are linked with cardiovascular disease risk. In this review,
we describe the potential mechanisms by which the triglyceride-rich remnant lipoproteins can
contribute to the development of atherosclerotic lesions, and highlight the differences in the
atherogenicity between low-density lipoproteins and the remnant lipoproteins.
Collapse
Affiliation(s)
| | - Satu Lehti
- Wihuri Research Institute, Helsinki, Finland
| | | | | |
Collapse
|
12
|
Thondapu V, Bourantas CV, Foin N, Jang IK, Serruys PW, Barlis P. Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling. Eur Heart J 2018; 38:81-92. [PMID: 28158723 DOI: 10.1093/eurheartj/ehv689] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/07/2015] [Accepted: 11/27/2015] [Indexed: 01/13/2023] Open
Abstract
Coronary plaque rupture is the most common cause of vessel thrombosis and acute coronary syndrome. The accurate early detection of plaques prone to rupture may allow prospective, preventative treatment; however, current diagnostic methods remain inadequate to detect these lesions. Established imaging features indicating vulnerability do not confer adequate specificity for symptomatic rupture. Similarly, even though experimental and computational studies have underscored the importance of endothelial shear stress in progressive atherosclerosis, the ability of shear stress to predict plaque progression remains incremental. This review examines recent advances in image-based computational modelling that have elucidated possible mechanisms of plaque progression and rupture, and potentially novel features of plaques most prone to symptomatic rupture. With further study and clinical validation, these markers and techniques may improve the specificity of future culprit plaque detection.
Collapse
Affiliation(s)
- Vikas Thondapu
- Melbourne Medical School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Victoria, Australia,Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria, Australia
| | - Christos V Bourantas
- University College London Hospitals, National Health Service Foundation Trust, London, UK
| | - Nicolas Foin
- National Heart Centre, Singapore, Singapore,Duke-National University Singapore Medical School, Singapore
| | - Ik-Kyung Jang
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Peter Barlis
- Melbourne Medical School, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Victoria, Australia,Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Alimohammadi M, Pichardo-Almarza C, Agu O, Díaz-Zuccarini V. A multiscale modelling approach to understand atherosclerosis formation: A patient-specific case study in the aortic bifurcation. Proc Inst Mech Eng H 2017; 231:378-390. [PMID: 28427316 PMCID: PMC5405845 DOI: 10.1177/0954411917697356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atherogenesis, the formation of plaques in the wall of blood vessels, starts as a result of lipid accumulation (low-density lipoprotein cholesterol) in the vessel wall. Such accumulation is related to the site of endothelial mechanotransduction, the endothelial response to mechanical stimuli and haemodynamics, which determines biochemical processes regulating the vessel wall permeability. This interaction between biomechanical and biochemical phenomena is complex, spanning different biological scales and is patient-specific, requiring tools able to capture such mathematical and biological complexity in a unified framework. Mathematical models offer an elegant and efficient way of doing this, by taking into account multifactorial and multiscale processes and mechanisms, in order to capture the fundamentals of plaque formation in individual patients. In this study, a mathematical model to understand plaque and calcification locations is presented: this model provides a strong interpretability and physical meaning through a multiscale, complex index or metric (the penetration site of low-density lipoprotein cholesterol, expressed as volumetric flux). Computed tomography scans of the aortic bifurcation and iliac arteries are analysed and compared with the results of the multifactorial model. The results indicate that the model shows potential to predict the majority of the plaque locations, also not predicting regions where plaques are absent. The promising results from this case study provide a proof of concept that can be applied to a larger patient population.
Collapse
Affiliation(s)
- Mona Alimohammadi
- 1 Department of Mechanical Engineering, University College London, London, UK
| | | | - Obiekezie Agu
- 2 Vascular Unit, University College London Hospitals, London, UK
| | | |
Collapse
|
14
|
Ng J, Bourantas CV, Torii R, Ang HY, Tenekecioglu E, Serruys PW, Foin N. Local Hemodynamic Forces After Stenting: Implications on Restenosis and Thrombosis. Arterioscler Thromb Vasc Biol 2017; 37:2231-2242. [PMID: 29122816 DOI: 10.1161/atvbaha.117.309728] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022]
Abstract
Local hemodynamic forces are well-known to modulate atherosclerotic evolution, which remains one of the largest cause of death worldwide. Percutaneous coronary interventions with stent implantation restores blood flow to the downstream myocardium and is only limited by stent failure caused by restenosis, stent thrombosis, or neoatherosclerosis. Cumulative evidence has shown that local hemodynamic forces affect restenosis and the platelet activation process, modulating the pathophysiological mechanisms that lead to stent failure. This article first covers the pathophysiological mechanisms through which wall shear stress regulates arterial disease formation/neointima proliferation and the role of shear rate on stent thrombosis. Subsequently, the article reviews the current evidence on (1) the implications of stent design on the local hemodynamic forces, and (2) how stent/scaffold expansion can influence local flow, thereby affecting the risk of adverse events.
Collapse
Affiliation(s)
- Jaryl Ng
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Christos V Bourantas
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Ryo Torii
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Hui Ying Ang
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Erhan Tenekecioglu
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Patrick W Serruys
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.)
| | - Nicolas Foin
- From the National Heart Centre Singapore (J.N., H.Y.A., N.F.); Department of Biomedical Engineering, National University of Singapore, Singapore (J.N.); Departments of Cardiovascular Sciences (C.V.B.) and Mechanical Engineering (R.T.), University College London, United Kingdom; Department of Cardiology, Barts Health NHS Trust, London, United Kingdom (C.V.B.); Thoraxcenter, Erasmus MC, Rotterdam Erasmus University, The Netherlands (E.T., P.W.S.); National Heart & Lung Institute, Imperial College London, United Kingdom (P.W.S.); and Duke-NUS Medical School, National University of Singapore (N.F.).
| |
Collapse
|
15
|
Chooi KY, Comerford A, Sherwin SJ, Weinberg PD. Intimal and medial contributions to the hydraulic resistance of the arterial wall at different pressures: a combined computational and experimental study. J R Soc Interface 2017; 13:rsif.2016.0234. [PMID: 27307514 PMCID: PMC4938088 DOI: 10.1098/rsif.2016.0234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/18/2016] [Indexed: 11/12/2022] Open
Abstract
The hydraulic resistances of the intima and media determine water flux and the advection of macromolecules into and across the arterial wall. Despite several experimental and computational studies, these transport processes and their dependence on transmural pressure remain incompletely understood. Here, we use a combination of experimental and computational methods to ascertain how the hydraulic permeability of the rat abdominal aorta depends on these two layers and how it is affected by structural rearrangement of the media under pressure. Ex vivo experiments determined the conductance of the whole wall, the thickness of the media and the geometry of medial smooth muscle cells (SMCs) and extracellular matrix (ECM). Numerical methods were used to compute water flux through the media. Intimal values were obtained by subtraction. A mechanism was identified that modulates pressure-induced changes in medial transport properties: compaction of the ECM leading to spatial reorganization of SMCs. This is summarized in an empirical constitutive law for permeability and volumetric strain. It led to the physiologically interesting observation that, as a consequence of the changes in medial microstructure, the relative contributions of the intima and media to the hydraulic resistance of the wall depend on the applied pressure; medial resistance dominated at pressures above approximately 93 mmHg in this vessel.
Collapse
Affiliation(s)
- K Y Chooi
- Department of Bioengineering, Imperial College London, London, UK
| | - A Comerford
- Department of Aeronautics, Imperial College London, London, UK
| | - S J Sherwin
- Department of Aeronautics, Imperial College London, London, UK
| | - P D Weinberg
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
16
|
Ming JE, Abrams RE, Bartlett DW, Tao M, Nguyen T, Surks H, Kudrycki K, Kadambi A, Friedrich CM, Djebli N, Goebel B, Koszycki A, Varshnaya M, Elassal J, Banerjee P, Sasiela WJ, Reed MJ, Barrett JS, Azer K. A Quantitative Systems Pharmacology Platform to Investigate the Impact of Alirocumab and Cholesterol-Lowering Therapies on Lipid Profiles and Plaque Characteristics. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017710941. [PMID: 28804243 PMCID: PMC5484552 DOI: 10.1177/1177625017710941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/17/2017] [Indexed: 12/20/2022]
Abstract
Reduction in low-density lipoprotein cholesterol (LDL-C) is associated with decreased risk for cardiovascular disease. Alirocumab, an antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9), significantly reduces LDL-C. Here, we report development of a quantitative systems pharmacology (QSP) model integrating peripheral and liver cholesterol metabolism, as well as PCSK9 function, to examine the mechanisms of action of alirocumab and other lipid-lowering therapies, including statins. The model predicts changes in LDL-C and other lipids that are consistent with effects observed in clinical trials of single or combined treatments of alirocumab and other treatments. An exploratory model to examine the effects of lipid levels on plaque dynamics was also developed. The QSP platform, on further development and qualification, may support dose optimization and clinical trial design for PCSK9 inhibitors and lipid-modulating drugs. It may also improve our understanding of factors affecting therapeutic responses in different phenotypes of dyslipidemia and cardiovascular disease.
Collapse
Affiliation(s)
- Jeffrey E Ming
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Ruth E Abrams
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | | | - Mengdi Tao
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Tu Nguyen
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Howard Surks
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | | | | | | | - Nassim Djebli
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Britta Goebel
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Alex Koszycki
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Meera Varshnaya
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | | | | | | | | | - Jeffrey S Barrett
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| | - Karim Azer
- Sanofi, Bridgewater, NJ, USA; Frankfurt Am Main, Germany, and Montpellier, France
| |
Collapse
|
17
|
Wu L, Liu X, Wang L, Wang Y, Wang L, Guan B, Chen Z, Liu L. Exendin-4 protects HUVECs from tunicamycin-induced apoptosis via inhibiting the IRE1a/JNK/caspase-3 pathway. Endocrine 2017; 55:764-772. [PMID: 27915415 DOI: 10.1007/s12020-016-1190-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE The abnormal increase of apoptosis of endothelial cells induced by endoplasmic reticulum stress is a significant factor for vascular disease, especially for atherosclerosis. Protecting endothelial cells from endoplasmic reticulum stress is a crucial strategies to combate these diseases. The goal of this study was to explore the effect of Exendin-4, a glucagon-like peptide-1 receptor agonist, on tunicamycin-induced apoptosis in human umbilical vein endothelial cells. METHODS All studies were performed in primary human umbilical vein endothelial cells treated with tunicamycin with or without Exendin-4 pretreatment. Markers of cell viability and apoptosis were assessed in all cells, as well as the protein expression levels of IRE1α (inositol requiring enzyme-1а), p-IRE1α, JNK (c-Jun N-terminal kinase), p-JNK, and caspase-3. RESULTS Following tunicamycin administration, human umbilical vein endothelial cells viability was gradually reduced in a dose-dependent manner, and fluorescence microscopy confirmed that tunicamycin was inducing human umbilical vein endothelial cells apoptosis. This apoptotic effect was attenuated by Exendin-4 pretreatment. Similarly, the ratio of p-IRE1α/IRE1α, p-JNK/JNK and active caspase-3/procaspase-3 were increased by tunicamycin (10 μg/ml); an effect that was counteracted by Exendin-4. The effect of exendin-4 was similar to that of the anti-endoplasmic reticulum stress agent, tauroursodeoxycholic acid (TUDCA). CONCLUSIONS This study demonstrates that Exendin-4 can protect human umbilical vein endothelial cells from tunicamycin-induced apoptosis. Furthermore, our data suggests that the mechanism for this effect is mediated by inhibiting the IRE1α/JNK/caspase-3 pathway.
Collapse
Affiliation(s)
- Li Wu
- Department of Endocrinology, Fujian Medical University Union Hospital; Fujian Institute of Endocrinology, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - XiaoYing Liu
- Department of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - LinXi Wang
- Department of Endocrinology, Fujian Medical University Union Hospital; Fujian Institute of Endocrinology, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - YanPing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital; Fujian Institute of Endocrinology, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - LiJing Wang
- Department of Endocrinology, Fujian Medical University Union Hospital; Fujian Institute of Endocrinology, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - BinBin Guan
- Department of Endocrinology, Fujian Medical University Union Hospital; Fujian Institute of Endocrinology, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China
| | - Zhou Chen
- College of Pharmacy, Fujian Medical University, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.
| | - LiBin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital; Fujian Institute of Endocrinology, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.
- Institute of the Geriatric Health Sciences, 29 Xinquan Road, Fuzhou, Fujian, 350001, People's Republic of China.
| |
Collapse
|
18
|
Cancel LM, Ebong EE, Mensah S, Hirschberg C, Tarbell JM. Endothelial glycocalyx, apoptosis and inflammation in an atherosclerotic mouse model. Atherosclerosis 2016; 252:136-146. [PMID: 27529818 DOI: 10.1016/j.atherosclerosis.2016.07.930] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Previous experiments suggest that both increased endothelial cell apoptosis and endothelial surface glycocalyx shedding could play a role in the endothelial dysfunction and inflammation of athero-prone regions of the vasculature. We sought to elucidate the possibly synergistic mechanisms by which endothelial cell apoptosis and glycocalyx shedding promote atherogenesis. METHODS 4- to 6-week old male C57Bl/6 apolipoprotein E knockout (ApoE(-/-)) mice were fed a Western diet for 10 weeks and developed plaques in their brachiocephalic arteries. RESULTS Glycocalyx coverage and thickness were significantly reduced over the plaque region compared to the non-plaque region (coverage plaque: 71 ± 23%, non-plaque: 97 ± 3%, p = 0.02; thickness plaque: 0.85 ± 0.15 μm, non-plaque: 1.2 ± 0.21 μm, p = 0.006). Values in the non-plaque region were not different from those found in wild type mice fed a normal diet (coverage WT: 92 ± 3%, p = 0.7 vs. non-plaque ApoE(-/-), thickness WT: 1.1 ± 0.06 μm, p = 0.2 vs. non-plaque ApoE(-/-)). Endothelial cell apoptosis was significantly increased in ApoE(-/-) mice compared to wild type mice (ApoE(-/-):64.3 ± 33.0, WT: 1.1 ± 0.5 TUNEL-pos/cm, p = 2 × 10(-7)). The number of apoptotic endothelial cells per unit length was 2 times higher in the plaque region than in the non-plaque region of the same vessel (p = 3 × 10(-5)). Increased expression of matrix metalloproteinase 9 co-localized with glycocalyx shedding and plaque buildup. CONCLUSIONS Our results suggest that, in concert with endothelial apoptosis that increases lipid permeability, glycocalyx shedding initiated by inflammation facilitates monocyte adhesion and macrophage infiltration that promote lipid retention and the development of atherosclerotic plaques.
Collapse
Affiliation(s)
- Limary M Cancel
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| | - Eno E Ebong
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Solomon Mensah
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Carly Hirschberg
- Graduate Division Summer Undergraduate Research Program, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
19
|
Amaya R, Pierides A, Tarbell JM. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression. PLoS One 2015; 10:e0129952. [PMID: 26147292 PMCID: PMC4492743 DOI: 10.1371/journal.pone.0129952] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 05/14/2015] [Indexed: 11/19/2022] Open
Abstract
Endothelial cells lining the walls of blood vessels are exposed simultaneously to wall shear stress (WSS) and circumferential stress (CS) that can be characterized by the temporal phase angle between WSS and CS (stress phase angle - SPA). Regions of the circulation with highly asynchronous hemodynamics (SPA close to -180°) such as coronary arteries are associated with the development of pathological conditions such as atherosclerosis and intimal hyperplasia whereas more synchronous regions (SPA closer to 0°) are spared of disease. The present study evaluates endothelial cell gene expression of 42 atherosclerosis-related genes under asynchronous hemodynamics (SPA=-180 °) and synchronous hemodynamics (SPA=0 °). This study used a novel bioreactor to investigate the cellular response of bovine aortic endothelial cells (BAECS) exposed to a combination of pulsatile WSS and CS at SPA=0 or SPA=-180. Using a PCR array of 42 genes, we determined that BAECS exposed to non-reversing sinusoidal WSS (10±10 dyne/cm2) and CS (4 ± 4%) over a 7 hour testing period displayed 17 genes that were up regulated by SPA = -180 °, most of them pro-atherogenic, including NFκB and other NFκB target genes. The up regulation of NFκB p50/p105 and p65 by SPA =-180° was confirmed by Western blots and immunofluorescence staining demonstrating the nuclear translocation of NFκB p50/p105 and p65. These data suggest that asynchronous hemodynamics (SPA=-180 °) can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA may be an important parameter characterizing arterial susceptibility to disease.
Collapse
Affiliation(s)
- Ronny Amaya
- Department of Biomedical Engineering, City College of New York, City University of New York, New York, New York, 10031, United States of America
| | - Alexis Pierides
- Department of Biomedical Engineering, City College of New York, City University of New York, New York, New York, 10031, United States of America
| | - John M. Tarbell
- Department of Biomedical Engineering, City College of New York, City University of New York, New York, New York, 10031, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
Atherosclerosis is characterised by the accumulation of lipid-laden macrophages in atherosclerotic lesions and occurs preferentially at arterial branching points, which are prone to inflammation during hyperlipidaemic stress. The increased susceptibility at branching sites of arteries is attributable to poor adaptation of arterial endothelial cells to disturbed blood flow. In the past 5 years, several studies have provided mechanistic insights into the regulatory roles of microRNAs (miRNAs) in inflammatory activation, proliferation, and regeneration of endothelial cells during this maladaptive process. The intercellular transfer of vesicle-bound miRNAs contributes to arterial homeostasis, and the combinatorial effect of multiple miRNAs controls the unresolved inflammation orchestrated by macrophages in atherosclerotic lesions. In this Review, we highlight the miRNA-dependent regulation of the endothelial phenotype and the proliferative reserve that occurs in response to altered haemodynamic conditions as a prerequisite for atherogenic inflammation. In particular, we discuss the regulation of transcriptional modules by miRNAs and the protective role of complementary strand pairs, which encompasses remote miRNA signalling. In addition, we review the roles of miRNA tandems and describe the relevance of RNA target selection and competition to the behaviour of lesional macrophages. Elucidating miRNA-mediated regulatory mechanisms can aid the development of novel diagnostic and therapeutic strategies for atherosclerosis.
Collapse
|
21
|
Kim S, Giddens DP. Mass transport of low density lipoprotein in reconstructed hemodynamic environments of human carotid arteries: the role of volume and solute flux through the endothelium. J Biomech Eng 2015; 137:041007. [PMID: 25363359 DOI: 10.1115/1.4028969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Indexed: 12/22/2022]
Abstract
The accumulation of low density lipoprotein (LDL) in the arterial intima is a critical step in the initiation and progression of atheromatous lesions. In this study we examine subject-specific LDL transport into the intima of carotid bifurcations in three human subjects using a three-pore model for LDL mass transfer. Subject-specific carotid artery computational models were derived using magnetic resonance imaging (MRI) to obtain the geometry and phase-contract MRI (PC-MRI) to acquire pulsatile inflow and outflow boundary conditions for each subject. The subjects were selected to represent a wide range of anatomical configurations and different stages of atherosclerotic development from mild to moderate intimal thickening. A fluid-solid interaction (FSI) model was implemented in the computational fluid dynamics (CFD) approach in order to consider the effects of a compliant vessel on wall shear stress (WSS). The WSS-dependent response of the endothelium to LDL mass transfer was modeled by multiple pathways to include the contributions of leaky junctions, normal junctions, and transcytosis to LDL solute and plasma volume flux from the lumen into the intima. Time averaged WSS (TAWSS) over the cardiac cycle was computed to represent the spatial WSS distribution, and wall thickness (WTH) was determined from black blood MRI (BBMRI) so as to visualize intimal thickening patterns in the bifurcations. The regions which are exposed to low TAWSS correspond to elevated WTH and higher mass and volume flux via the leaky junctions. In all subjects, the maximum LDL solute flux was observed to be immediately downstream of the stenosis, supporting observations that existing atherosclerotic lesions tend to progress in the downstream direction of the stenosis.
Collapse
|
22
|
Mohri Z, Rowland EM, Clarke LA, De Luca A, Peiffer V, Krams R, Sherwin SJ, Weinberg PD. Elevated uptake of plasma macromolecules by regions of arterial wall predisposed to plaque instability in a mouse model. PLoS One 2014; 9:e115728. [PMID: 25531765 PMCID: PMC4274101 DOI: 10.1371/journal.pone.0115728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/28/2014] [Indexed: 11/19/2022] Open
Abstract
Atherosclerosis may be triggered by an elevated net transport of lipid-carrying macromolecules from plasma into the arterial wall. We hypothesised that whether lesions are of the thin-cap fibroatheroma (TCFA) type or are less fatty and more fibrous depends on the degree of elevation of transport, with greater uptake leading to the former. We further hypothesised that the degree of elevation can depend on haemodynamic wall shear stress characteristics and nitric oxide synthesis. Placing a tapered cuff around the carotid artery of apolipoprotein E -/- mice modifies patterns of shear stress and eNOS expression, and triggers lesion development at the upstream and downstream cuff margins; upstream but not downstream lesions resemble the TCFA. We measured wall uptake of a macromolecular tracer in the carotid artery of C57bl/6 mice after cuff placement. Uptake was elevated in the regions that develop lesions in hyperlipidaemic mice and was significantly more elevated where plaques of the TCFA type develop. Computational simulations and effects of reversing the cuff orientation indicated a role for solid as well as fluid mechanical stresses. Inhibiting NO synthesis abolished the difference in uptake between the upstream and downstream sites. The data support the hypothesis that excessively elevated wall uptake of plasma macromolecules initiates the development of the TCFA, suggest that such uptake can result from solid and fluid mechanical stresses, and are consistent with a role for NO synthesis. Modification of wall transport properties might form the basis of novel methods for reducing plaque rupture.
Collapse
Affiliation(s)
- Zahra Mohri
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ethan M. Rowland
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Lindsey A. Clarke
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Amalia De Luca
- Department of Aeronautics, Imperial College London, London, United Kingdom
| | - Véronique Peiffer
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Department of Aeronautics, Imperial College London, London, United Kingdom
| | - Rob Krams
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Spencer J. Sherwin
- Department of Aeronautics, Imperial College London, London, United Kingdom
| | - Peter D. Weinberg
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
ZHOU TIAN, ZHENG YIMING, QIU JUHUI, HU JIANJUN, SUN DAMING, TANG CHAOJUN, WANG GUIXUE. ENDOTHELIAL MECHANOTRANSDUCTION MECHANISMS FOR VASCULAR PHYSIOLOGY AND ATHEROSCLEROSIS. J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414300063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular physiology and disease progression, such as atherosclerosis, are mediated by hemodynamic force generated from blood flow. The hemodynamic force exerts on vascular endothelial cells (ECs), which could perceive the mechanical signals and transmit them into cell interior by multiple potential shear sensors, collectively known as mechanotransduction. However, we do not understand completely how these shear-sensitive components orchestrate physiological and atherosclerotic responses to shear stress. In this review, we provide an overview of biomechanical mechanisms underlying vascular physiology and atherosclerotic progression. Additionally, we summarize current evidences to illustrate that atherosclerotic lesions preferentially develop in arterial regions experiencing disturbance in blood flow, during which endothelial dysfunction is the initial event of atherosclerosis, inflammation plays dominant roles in atherosclerotic progression, and angiogenesis emerges as compensatory explanation for atherosclerotic plaque rupture. Especially in the presence of systemic risk factors (e.g., hyperlipidaemia, hypertension and hyperglycemia), the synergy between these systemic risk factors with hemodynamic factors aggravates atherosclerosis by co-stimulating some of these biomechanical events. Given the hemodynamic environment of vasculature, understanding how the rapid shear-mediated signaling, particularly in combination with systemic risk factors, contribute to atherosclerotic progression through endothelial dysfunction, inflammation and angiogenesis helps to elucidate the role for atherogenic shear stress in specifically localizing atherosclerotic lesions in arterial regions with disturbed flow.
Collapse
Affiliation(s)
- TIAN ZHOU
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - YIMING ZHENG
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - JUHUI QIU
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - JIANJUN HU
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - DAMING SUN
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - CHAOJUN TANG
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| | - GUIXUE WANG
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing Engineering Laboratory in Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
24
|
Amini N, Boyle JJ, Moers B, Warboys CM, Malik TH, Zakkar M, Francis SE, Mason JC, Haskard DO, Evans PC. Requirement of JNK1 for endothelial cell injury in atherogenesis. Atherosclerosis 2014; 235:613-8. [PMID: 24956536 PMCID: PMC4104040 DOI: 10.1016/j.atherosclerosis.2014.05.950] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/11/2014] [Accepted: 05/22/2014] [Indexed: 12/24/2022]
Abstract
Objective The c-Jun N-terminal kinase (JNK) family regulates fundamental physiological processes including apoptosis and metabolism. Although JNK2 is known to promote foam cell formation during atherosclerosis, the potential role of JNK1 is uncertain. We examined the potential influence of JNK1 and its negative regulator, MAP kinase phosphatase-1 (MKP-1), on endothelial cell (EC) injury and early lesion formation using hypercholesterolemic LDLR−/− mice. Methods and results To assess the function of JNK1 in early atherogenesis, we measured EC apoptosis and lesion formation in LDLR−/− or LDLR−/−/JNK1−/− mice exposed to a high fat diet for 6 weeks. En face staining using antibodies that recognise active, cleaved caspase-3 (apoptosis) or using Sudan IV (lipid deposition) revealed that genetic deletion of JNK1 reduced EC apoptosis and lesion formation in hypercholesterolemic mice. By contrast, although EC apoptosis was enhanced in LDLR−/−/MKP-1−/− mice compared to LDLR−/− mice, lesion formation was unaltered. Conclusion We conclude that JNK1 is required for EC apoptosis and lipid deposition during early atherogenesis. Thus pharmacological inhibitors of JNK may reduce atherosclerosis by preventing EC injury as well as by influencing foam cell formation. We studied the role of JNK1 MAP kinase in atherosclerosis. JNK1 was required for endothelial cell apoptosis and lesion formation. An interaction between flow, JNK1 activity and endothelial injury was detected. Targeting of JNK1 may have clinical utility to prevent atherosclerosis.
Collapse
Affiliation(s)
- Narges Amini
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Joseph J Boyle
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Britta Moers
- Department of Cardiovascular Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, Sheffield, UK
| | - Christina M Warboys
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Talat H Malik
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Mustafa Zakkar
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Sheila E Francis
- Department of Cardiovascular Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, Sheffield, UK
| | - Justin C Mason
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Dorian O Haskard
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Paul C Evans
- Department of Cardiovascular Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, Sheffield, UK.
| |
Collapse
|
25
|
Kang H, Cancel LM, Tarbell JM. Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers. Atherosclerosis 2014; 233:682-690. [PMID: 24583416 DOI: 10.1016/j.atherosclerosis.2014.01.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/20/2013] [Accepted: 01/30/2014] [Indexed: 11/29/2022]
Abstract
Previous animal experiments have shown that the transport of LDL into arterial walls is shear stress dependent. However, little work has probed shear effects on LDL transport in vitro where conditions are well defined and mechanisms are more easily explored. Therefore, we measured shear induced water and LDL fluxes across cultured bovine aortic endothelial (BAEC) monolayers in vitro and developed a three-pore model to describe the transport dynamics. Cell apoptosis was quantified by TdT-mediated dUTP nick end labeling (TUNEL) assay. We also examined the role of nitric oxide (NO) in shear induced water and LDL fluxes by incubating BAEC monolayers with an NO synthase inhibitor, NG-monomethyl-L-arginine (L-NMMA). Our results show that direct exposure of endothelial monolayers to 12 dyn/cm2 shear stress for 3 h elicited a 2.37-fold increase in water flux (Jv), a 3.00-fold increase in LDL permeability (Pe), a 1.32-fold increase in LDL uptake, and a 1.68-fold increase in apoptotic rate. L-NMMA treatment of BAEC monolayers blocked shear induced Jv response, but had no significant effect on shear responses of Pe and cell apoptosis. A long time shear exposure (12 h) of endothelial monolayers reduced Pe and apoptotic rate close to the baseline. These results suggest that an acute change in shear stress from a static baseline state induces increases in water flux that are mediated by an NO dependent mechanism. On the other hand, the permeability of endothelial monolayers to LDL is enhanced by a short term-shear application and reduced nearly to the baseline level by a longer time shear exposure, positively correlated to the leaky junctions forming around apoptotic cells.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Department of Biomedical Engineering, The City College of The City University of New York, New York, USA
| | - Limary M Cancel
- Department of Biomedical Engineering, The City College of The City University of New York, New York, USA
| | - John M Tarbell
- Department of Biomedical Engineering, The City College of The City University of New York, New York, USA.
| |
Collapse
|
26
|
Tarbell JM, Shi ZD, Dunn J, Jo H. Fluid Mechanics, Arterial Disease, and Gene Expression. ANNUAL REVIEW OF FLUID MECHANICS 2014; 46:591-614. [PMID: 25360054 DOI: 10.1146/annurev-fluid-010313-141418] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065
| | - Jessilyn Dunn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| |
Collapse
|
27
|
Tarbell JM, Shi ZD, Dunn J, Jo H. Fluid Mechanics, Arterial Disease, and Gene Expression. ANNUAL REVIEW OF FLUID MECHANICS 2014; 46:591-614. [PMID: 25360054 PMCID: PMC4211638 DOI: 10.1146/annurev-fluid-010313-141309] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of New York, New York, NY 10031
| | - Zhong-Dong Shi
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10065
| | - Jessilyn Dunn
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322
| |
Collapse
|
28
|
Karimi S, Dadvar M, Modarress H, Dabir B. A new correlation for inclusion of leaky junctions in macroscopic modeling of atherosclerotic lesion initiation. J Theor Biol 2013; 329:94-100. [PMID: 23507340 DOI: 10.1016/j.jtbi.2013.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 02/11/2013] [Accepted: 02/27/2013] [Indexed: 01/17/2023]
Abstract
Vascular endothelium cells are the main barriers between vessel wall and blood flow; they play an essential role in the progression of atherosclerosis. Various experimental and computational studies have been carried out to identify the pathways and mechanisms by which Low Density Lipoprotein (LDL) transfers through the endothelium cells. The most conventional hypothesis in LDL transfer is the presence of leaky junctions. Leaky junctions are large pores in endothelium cells associated with cell mitosis or apoptosis. Although some studies have microscopically modeled leaky junctions, none however have evaluated their effects in a macroscopic level modeling. In this study, a new approach is proposed to consider the presence of the leaky junction as the main pathway in LDL transport from the lumen into the arterial wall. LDL transport in macroscopic scale is simulated in a simplified axisymmetric model and Staverman filtration coefficient (SFC) is used as a measurement criterion for estimating the amount of leaky junctions. According to the results, decreasing SFC corresponds to decreasing the resistance of endothelium cells. In other words, an increase in the number of leaky junctions causes an increase in the LDL concentration inside the arterial wall. Additionally, a new correlation is presented for evaluating the fraction of leaky junctions in the endothelial cells by comparing the results of macroscopic and microscopic models. This correlation accredits each SFC to a specified fraction of leaky junction in the endothelial cells. Therefore, it can be used for the inclusion of leaky junctions in the macroscopic modeling without incorporating any of the complications that are raised by the microscopic modeling studies. This correlation has important implications in the modeling of the atherosclerosis lesions propagation.
Collapse
Affiliation(s)
- Safoora Karimi
- Department of Chemical Engineering, Jundi-Shapur University of Technology, Dezful, Iran
| | | | | | | |
Collapse
|
29
|
6-Shogaol Protects against Oxidized LDL-Induced Endothelial Injruries by Inhibiting Oxidized LDL-Evoked LOX-1 Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:503521. [PMID: 23533490 PMCID: PMC3590502 DOI: 10.1155/2013/503521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/14/2013] [Indexed: 11/20/2022]
Abstract
Endothelial dysfunction and oxLDL are believed to be early and critical events in atherogenesis. 6-Shogaol is the major bioactive compound present in Zingiber officinale and possesses the anti-atherosclerotic effect. However, the mechanisms remain poorly understood. The goal of this study was to investigate the effects of 6-shogaol on oxLDL-induced Human umbilical vein endothelial cells (HUVECs) injuries and its possible molecular mechanisms. Hence, we studied the effects of 6-shogaol on cell apoptosis, cellular reactive oxygen species (ROS), NF-κB activation, Bcl-2 expression, and caspase -3, -8, -9 activities. In addition, E-selectin, MCP-1, and ICAM-1 were determined by ELISA. Our study show that oxLDL increased LOX-1 expression, ROS levels, NF-κB, caspases-9 and -3 activation and decreased Bcl-2 expression in HUVECs. These alterations were attenuated by 6-shogaol. Cotreatment with 6-shogaol and siRNA of LOX-1 synergistically reduced oxLDL-induced caspases -9, -3 activities and cell apoptosis. Overexpression of LOX-1 attenuated the protection by 6-shogaol and suppressed the effects of 6-shogaol on oxLDL-induced oxidative stress. In addition, oxLDL enhanced the activation of NF-κB and expression of adhesion molecules. Pretreatment with 6-shogaol, however, exerted significant cytoprotective effects in all events. Our data indicate that 6-shogaol might be a potential natural antiapoptotic agent for the treatment of atherosclerosis.
Collapse
|
30
|
Wei DH, Jia XY, Liu YH, Guo FX, Tang ZH, Li XH, Wang Z, Liu LS, Wang GX, Jian ZS, Ruan CG. Cathepsin L stimulates autophagy and inhibits apoptosis of ox-LDL-induced endothelial cells: potential role in atherosclerosis. Int J Mol Med 2012; 31:400-6. [PMID: 23229094 DOI: 10.3892/ijmm.2012.1201] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/07/2012] [Indexed: 11/06/2022] Open
Abstract
The activation of endothelial cells by oxidized low-density lipoprotein (ox-LDL) with subsequent increases in endothelial permeability occurs in the early stage of atherosclerosis. Cathepsin L (CATL) is one of the cysteine proteases and has been implicated in advanced atherosclerotic lesions and plaque instability. This study aimed to explore the role of CATL in ox-LDL-induced early atherosclerotic events and to delineate the underlying mechanism. Results showed that ox-LDL upregulated CATL protein levels and activation in human umbilical vein endothelial cells (ECs) in a concentration-dependent manner and stimulated EC autophagy and apoptosis and increased EC monolayer permeability. Concomitantly, VE-cadherin expression was decreased. When ECs were pretreated with a CATL inhibitor, ox-LDL-induced autophagy was inhibited while apoptosis was further increased. In addition, the VE-cadherin protein level was increased, and the EC monolayer permeability was reduced. Taken together, the present study showed that the upregulated expression and activation of CATL induced by ox-LDL, increased EC autophagy and antagonized EC apoptosis, which partly neutralized the effect of increased EC monolayer permeability mediated by the downregulation of VE-cadherin. Thus, the proatherogenic effect of CATL was partly neutralized by inducing autophagy and inhibiting apoptosis in early stages of atherosclerosis.
Collapse
Affiliation(s)
- Dang-Heng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, P.R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cheung TM, Ganatra MP, Peters EB, Truskey GA. Effect of cellular senescence on the albumin permeability of blood-derived endothelial cells. Am J Physiol Heart Circ Physiol 2012; 303:H1374-83. [PMID: 23023872 DOI: 10.1152/ajpheart.00182.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, we tested the hypotheses that endothelial cells (ECs) derived from human umbilical cord blood (hCB-ECs) exhibit low permeability, which increases as hCB-ECs age and undergo senescence, and that the change in the permeability of hCB-ECs is due to changes in tight junction protein localization and the activity of exchange protein activated by cAMP (Epac)1. Albumin permeability across low-passage hCB-EC monolayers on Transwell membranes was 10 times lower than for human aortic ECs (HAECs) (P < 0.01) but similar to in vivo values in arteries. Expression of the tight junction protein occludin and tyrosine phosphorylation of occludin were less in hCB-ECs than in HAECs (P < 0.05). More hCB-ECs than HAECs underwent mitosis (P < 0.01). hCB-ECs that underwent >44 population doublings since isolation had a significantly higher permeability than hCB-ECs that underwent <31 population doublings (P < 0.05). This age-related increase in hCB-EC permeability was associated with an increase in tyrosine phosphorylation of occludin (P < 0.01); permeability and occludin phosphorylation were reduced by treatment with 2 μM resveratrol. Tyrosine phosphorylation of occludin and cell age influence the permeability of hCB-ECs, whereas levels of EC proliferation and expression of tight junction proteins did not explain the differences between hCB-EC and HAEC permeability. The elevated permeability in late passage hCB-ECs was reduced by 25-40% by elevation of membrane-associated cAMP and activation of the Epac1 pathway. Given the similarity to in vivo permeability to albumin and the high proliferation potential, hCB-ECs may be a suitable in vitro model to study transport-related pathologies and cell aging.
Collapse
Affiliation(s)
- Tracy M Cheung
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
32
|
Krouwer VJD, Hekking LHP, Langelaar-Makkinje M, Regan-Klapisz E, Post JA. Endothelial cell senescence is associated with disrupted cell-cell junctions and increased monolayer permeability. Vasc Cell 2012; 4:12. [PMID: 22929066 PMCID: PMC3527188 DOI: 10.1186/2045-824x-4-12] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/19/2012] [Indexed: 12/25/2022] Open
Abstract
Background Cellular senescence is associated with cellular dysfunction and has been shown to occur in vivo in age-related cardiovascular diseases such as atherosclerosis. Atherogenesis is accompanied by intimal accumulation of LDL and increased extravasation of monocytes towards accumulated and oxidized LDL, suggesting an affected barrier function of vascular endothelial cells. Our objective was to study the effect of cellular senescence on the barrier function of non-senescent endothelial cells. Methods Human umbilical vein endothelial cells were cultured until senescence. Senescent cells were compared with non-senescent cells and with co-cultures of non-senescent and senescent cells. Adherens junctions and tight junctions were studied. To assess the barrier function of various monolayers, assays to measure permeability for Lucifer Yellow (LY) and horseradish peroxidase (PO) were performed. Results The barrier function of monolayers comprising of senescent cells was compromised and coincided with a change in the distribution of junction proteins and a down-regulation of occludin and claudin-5 expression. Furthermore, a decreased expression of occludin and claudin-5 was observed in co-cultures of non-senescent and senescent cells, not only between senescent cells but also along the entire periphery of non-senescent cells lining a senescent cell. Conclusions Our findings show that the presence of senescent endothelial cells in a non-senescent monolayer disrupts tight junction morphology of surrounding young cells and increases the permeability of the monolayer for LY and PO.
Collapse
Affiliation(s)
- Vincent J D Krouwer
- Department of Biomolecular Imaging, Faculty of Science, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Warboys CM, Overby DR, Weinberg PD. Dendritic cells lower the permeability of endothelial monolayers. Cell Mol Bioeng 2012; 5:184-193. [PMID: 33968262 DOI: 10.1007/s12195-012-0220-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The permeability of cultured endothelial monolayers is higher than the permeability of endothelium in vivo. Co-culture with astrocytes can induce a tight, blood-brain-barrier phenotype in aortic endothelium in vitro. We hypothesised that dendritic cells, which reside in the intima of non-cerebral arteries and have features in common with astrocytes, may also reduce the permeability of cultured aortic endothelium. The permeability of porcine aortic endothelial monolayers was reduced by non-contact co-culture with dendritic cells (but not with the peripheral blood monocytes from which they were derived) and by dendritic cell conditioned medium, indicating a soluble mediator. The reduction in permeability was similar to that obtained by co-culture with astrocytes; however, dendritic cells did not up-regulate P-glycoprotein and there was no synergy with the effect of chronic shear stress on permeability, contrary to observations with astrocytes. Endothelial permeability was reduced by sphingosine-1-phosphate, which mediates the barrier-tightening effect of platelets, but inhibitors of sphingosine-1-phosphate receptors did not block the effect of dendritic cells. Rates of endothelial mitosis and apoptosis were also unaffected by co-culture. Hence dendritic cells reduce permeability by different mechanisms from those mediating barrier-tightening effects of astrocytes and platelets, although factors mediating the permeability-lowering effects of chronic shear stress may be involved. We speculate that dendritic cells influence endothelial permeability in vivo.
Collapse
|
34
|
Nikmanesh M, Shi ZD, Tarbell JM. Heparan sulfate proteoglycan mediates shear stress-induced endothelial gene expression in mouse embryonic stem cell-derived endothelial cells. Biotechnol Bioeng 2011; 109:583-94. [PMID: 21837663 DOI: 10.1002/bit.23302] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 07/06/2011] [Accepted: 08/03/2011] [Indexed: 02/02/2023]
Abstract
It has been shown that shear stress plays a critical role in promoting endothelial cell (EC) differentiation from embryonic stem cell (ESC)-derived ECs. However, the underlying mechanisms mediating shear stress effects in this process have yet to be investigated. It has been reported that the glycocalyx component heparan sulfate proteoglycan (HSPG) mediates shear stress mechanotransduction in mature EC. In this study, we investigated whether cell surface HSPG plays a role in shear stress modulation of EC phenotype. ESC-derived EC were subjected to shear stress (5 dyn/cm(2)) for 8 h with or without heparinase III (Hep III) that digests heparan sulfate. Immunostaining showed that ESC-derived EC surfaces contain abundant HSPG, which could be cleaved by Hep III. We observed that shear stress significantly increased the expression of vascular EC-specific marker genes (vWF, VE-cadherin, PECAM-1). The effect of shear stress on expression of tight junction protein genes (ZO-1, OCLD, CLD5) was also evaluated. Shear stress increased the expression of ZO-1 and CLD5, while it did not alter the expression of OCLD. Shear stress increased expression of vasodilatory genes (eNOS, COX-2), while it decreased the expression of the vasoconstrictive gene ET1. After reduction of HSPG with Hep III, the shear stress-induced expression of vWF, VE-cadherin, ZO-1, eNOS, and COX-2, were abolished, suggesting that shear stress-induced expression of these genes depends on HSPG. These findings indicate for the first time that HSPG is a mechanosensor mediating shear stress-induced EC differentiation from ESC-derived EC cells.
Collapse
Affiliation(s)
- Maria Nikmanesh
- Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
| | | | | |
Collapse
|
35
|
Cancel LM, Tarbell JM. The role of mitosis in LDL transport through cultured endothelial cell monolayers. Am J Physiol Heart Circ Physiol 2010; 300:H769-76. [PMID: 21169397 DOI: 10.1152/ajpheart.00445.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We (7) have previously shown that leaky junctions associated with dying or dividing cells are the dominant pathway for LDL transport under convective conditions, accounting for >90% of the transport. We (8) have also recently shown that the permeability of bovine aortic endothelial cell monolayers is highly correlated with their rate of apoptosis and that inhibiting apoptosis lowers the permeability of the monolayers to LDL. To explore the role of mitosis in the leaky junction pathway, the microtubule-stabilizing agent paclitaxel was used to alter the rate of mitosis, and LDL flux and water flux (J(v)) were measured. Control monolayers had an average mitosis rate of 0.029%. Treatment with paclitaxel (2.5 μM) for 1.5, 3, 4.5, or 6 h yielded increasing rates of mitosis ranging from 0.099% to 1.03%. The convective permeability of LDL (P(e)) increased up to fivefold, whereas J(v) increased up to threefold, over this range of mitosis rates. We found strong correlations between the mitosis rate and both P(e) and J(v). However, compared with our previous apoptosis study (8), we found that mitosis was only half as effective as apoptosis in increasing P(e). The results led us to conclude that while mitosis-related leaky junctions might play a role in the initial infiltration of LDL into the artery wall, the progression of atherosclerosis might be more closely correlated with apoptosis-related leaky junctions.
Collapse
Affiliation(s)
- Limary M Cancel
- Department of Biomedical Engineering, The City College of The City University of New York, and 2The Graduate Center of The City University of New York, New York, New York, USA
| | | |
Collapse
|
36
|
Liu S, Shen H, Xu M, Liu O, Zhao L, Liu S, Guo Z, Du J. FRP inhibits ox-LDL-induced endothelial cell apoptosis through an Akt-NF-{kappa}B-Bcl-2 pathway and inhibits endothelial cell apoptosis in an apoE-knockout mouse model. Am J Physiol Endocrinol Metab 2010; 299:E351-63. [PMID: 20530739 DOI: 10.1152/ajpendo.00005.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is the most common cause of cardiovascular diseases in the world. Although the development of atherosclerosis appears to be the result of multiple maladaptive pathways, a particularly important factor in the pathogenesis of atherosclerosis is oxidized low-density lipoprotein (ox-LDL), which contributes to endothelial damage. Data from our laboratory and others show that follistatin-related protein (FRP), which is expressed in the vasculature, has cardioprotective effects, suggesting that loss of FRP protection might play a role in the development of atherosclerosis. In the present study, we determined whether FRP overexpression protects against endothelial cell (EC) damage, an intermediate end point for atherosclerosis. We bred apoE-knockout (apoE(-/-)) mice that were FRP(+) transgenic (they overexpressed FRP). We compared them with control mice (their littermates). Human umbilical vein endothelial cells (HUVECs) were isolated and treated with ox-LDL and recombinant FRP. FRP-induced signal transduction and Bcl-2 mRNA and protein stability were analyzed. After 16 wk, apoE(-/-) FRP(+) mice had significantly fewer apoptotic ECs than controls. In vitro experiments showed that the effect of FRP on EC apoptosis was mediated by upregulation of expression of the antiapoptotic protein Bcl-2. In HUVECs, FRP upregulated Bcl-2 transcription via a PI3K-Akt-NF-kappaB pathway. We conclude that FRP overexpression maintains EC viability by preventing apoptosis via Bcl-2 upregulation. FRP may be a novel therapeutic target for the prevention and treatment of vascular EC injury and of atherosclerosis.
Collapse
Affiliation(s)
- Shu Liu
- Dept. of Vascular Biology, Capital Medical University, Beijing Anzhen Hospital, Beijing Institute of Heart, Lung, and Blood Vessel Disease, China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The shear stress of flowing blood on the surfaces of endothelial cells that provide the barrier to transport of solutes and water between blood and the underlying tissue modulates the permeability to solutes and the hydraulic conductivity. This review begins with a discussion of transport pathways across the endothelium and then considers the experimental evidence from both in vivo and in vitro studies that shows an influence of shear stress on endothelial transport properties after both acute (minutes to hours) and chronic (hours to days) changes in shear stress. Next, the effects of shear stress on individual transport pathways (tight junctions, adherens junctions, vesicles and leaky junctions) are described, and this information is integrated with the transport experiments to suggest mechanisms controlling both acute and chronic responses of transport properties to shear stress. The review ends with a summary of future research challenges.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of New York, Convent Avenue at 140th Street, New York, NY 10031, USA
| |
Collapse
|
38
|
Li G, Simon MJ, Cancel LM, Shi ZD, Ji X, Tarbell JM, Morrison B, Fu BM. Permeability of endothelial and astrocyte cocultures: in vitro blood-brain barrier models for drug delivery studies. Ann Biomed Eng 2010; 38:2499-511. [PMID: 20361260 DOI: 10.1007/s10439-010-0023-5] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 03/19/2010] [Indexed: 11/28/2022]
Abstract
The blood-brain barrier (BBB) is a major obstacle for drug delivery to the brain. To seek for in vitro BBB models that are more accessible than animals for investigating drug transport across the BBB, we compared four in vitro cultured cell models: endothelial monoculture (bEnd3 cell line), coculture of bEnd3 and primary rat astrocytes (coculture), coculture with collagen type I and IV mixture, and coculture with Matrigel. The expression of the BBB tight junction proteins in these in vitro models was assessed using RT-PCR and immunofluorescence. We also quantified the hydraulic conductivity (L (p)), transendothelial electrical resistance (TER) and diffusive solute permeability (P) of these models to three solutes: TAMRA, Dextran 10K and Dextran 70K. Our results show that L (p) and P of the endothelial monoculture and coculture models are not different from each other. Compared with in vivo permeability data from rat pial microvessels, P of the endothelial monoculture and coculture models are not significantly different from in vivo data for Dextran 70K, but they are 2-4 times higher for TAMRA and Dextran 10K. This suggests that the endothelial monoculture and all of the coculture models are fairly good models for studying the transport of relatively large solutes across the BBB.
Collapse
Affiliation(s)
- Guanglei Li
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | | | | | | | | | | | | | | |
Collapse
|