1
|
Snodgrass RG, Stephensen CB, Laugero KD. Atypical monocyte dynamics in healthy humans in response to fasting and refeeding are distinguished by fasting HDL and postprandial cortisol. Am J Physiol Endocrinol Metab 2024; 327:E229-E240. [PMID: 38958546 PMCID: PMC11427091 DOI: 10.1152/ajpendo.00158.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Monocytes are innate immune cells that are continuously produced in bone marrow which enter and circulate the vasculature. In response to nutrient scarcity, monocytes migrate back to bone marrow, where, upon refeeding, they are rereleased back into the bloodstream to replenish the circulation. In humans, the variability in monocyte behavior in response to fasting and refeeding has not been characterized. To investigate monocyte dynamics in humans, we measured blood monocyte fluctuations in 354 clinically healthy individuals after a 12-h overnight fast and at 3 and 6 h after consuming a mixed macronutrient challenge meal. Using cluster analysis, we identified three distinct monocyte behaviors. Group 1 was characterized by relatively low fasting monocyte counts that markedly increased after consuming the test meal. Group 2 was characterized by relatively high fasting monocyte counts that decreased after meal consumption. Group 3, like Group 1, was characterized by lower fasting monocyte counts but increased to a lesser extent after consuming the meal. Although monocyte fluctuations observed in Groups 1 and 3 align with the current paradigm of monocyte dynamics in response to fasting and refeeding, the atypical dynamic observed in Group 2 does not. Although generally younger in age, Group 2 subjects had lower whole body carbohydrate oxidation rates, lower HDL-cholesterol levels, delayed postprandial declines in salivary cortisol, and reduced postprandial peripheral microvascular endothelial function. These unique characteristics were not explained by group differences in age, sex, or body mass index (BMI). Taken together, these results highlight distinct patterns of monocyte responsiveness to natural fluctuations in dietary fuel availability.NEW & NOTEWORTHY Our study composed of adult volunteers revealed that monocyte dynamics exhibit a high degree of individual variation in response to fasting and refeeding. Although circulating monocytes in most volunteers behaved in ways that align with previous reports, many exhibited atypical dynamics demonstrated by elevated fasting blood monocyte counts that sharply decreased after meal consumption. This group was also distinguished by lower HDL levels, reduced postprandial endothelial function, and a delayed postprandial decline in salivary cortisol.
Collapse
Affiliation(s)
- Ryan G Snodgrass
- Immunity and Disease Prevention Research Unit, Western Human Nutrition Research Center, Agricultural Research Services, United States Department of Agriculture, Davis, California, United States
- Department of Nutrition, University of California, Davis, California, United States
| | - Charles B Stephensen
- Immunity and Disease Prevention Research Unit, Western Human Nutrition Research Center, Agricultural Research Services, United States Department of Agriculture, Davis, California, United States
- Department of Nutrition, University of California, Davis, California, United States
| | - Kevin D Laugero
- Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, Agricultural Research Services, United States Department of Agriculture, Davis, California, United States
- Department of Nutrition, University of California, Davis, California, United States
| |
Collapse
|
2
|
Rahbek-Hansen SH, Mikkelsen M, Stokholm J, Bønnelykke K, Chawes BL, Brustad N. Preventive effects of prenatal administration of OM-85/BV on asthma and respiratory infection risk in the offspring: A review of animal models. Pediatr Allergy Immunol 2024; 35:e14184. [PMID: 38924159 DOI: 10.1111/pai.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Asthma is the most common chronic disease in childhood affecting the daily lives of many patients despite current treatment regimens. Therefore, the need for new therapeutic approaches is evident, where a primary prevention strategy is the ultimate goal. Studies of children born to mothers in farming environments have shown a lower risk of respiratory infections and asthma development. Already at birth, these newborns have demonstrated accelerated maturation and upregulation of host defense immune functions suggesting a prenatal transplacental training of the innate immune system through maternal microbial exposure. This mechanism could possibly be utilized to help prevent both respiratory infections and asthma in young children. Human studies exploring the potential preventative effects of pregnancy bacterial lysate treatment on asthma and respiratory infections are lacking, however, this has been studied in experimental studies using mice through administrations of the bacterial lysate OM-85. This review will present the current literature on the immunomodulatory effects relevant for respiratory infections and asthma in the offspring of mice treated with OM-85 throughout pregnancy. Further, the review will discuss the cellular and molecular mechanisms behind these effects. In conclusion, we found promising results of an accelerated immune competence and improved resistance to airway challenges as a result of prenatal bacterial lysate treatment that may pave the way for implementing this in human trials to prevent asthma and respiratory infections.
Collapse
Affiliation(s)
- Signe Hahn Rahbek-Hansen
- Copenhagen Prospective Studies on Asthma in Childhood, Health Sciences, Danish Pediatric Asthma Center, Copenhagen University Hospital, University of Copenhagen, Gentofte, Denmark
| | - Marianne Mikkelsen
- Copenhagen Prospective Studies on Asthma in Childhood, Health Sciences, Danish Pediatric Asthma Center, Copenhagen University Hospital, University of Copenhagen, Gentofte, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Health Sciences, Danish Pediatric Asthma Center, Copenhagen University Hospital, University of Copenhagen, Gentofte, Denmark
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood, Health Sciences, Danish Pediatric Asthma Center, Copenhagen University Hospital, University of Copenhagen, Gentofte, Denmark
| | - Bo L Chawes
- Copenhagen Prospective Studies on Asthma in Childhood, Health Sciences, Danish Pediatric Asthma Center, Copenhagen University Hospital, University of Copenhagen, Gentofte, Denmark
| | - Nicklas Brustad
- Copenhagen Prospective Studies on Asthma in Childhood, Health Sciences, Danish Pediatric Asthma Center, Copenhagen University Hospital, University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
3
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
4
|
Robichaud S, Rochon V, Emerton C, Laval T, Ouimet M. Trehalose promotes atherosclerosis regression in female mice. Front Cardiovasc Med 2024; 11:1298014. [PMID: 38433753 PMCID: PMC10906268 DOI: 10.3389/fcvm.2024.1298014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Atherosclerosis is a chronic inflammatory disease caused by the deposition of lipids within the artery wall. During atherogenesis, efficient autophagy is needed to facilitate efferocytosis and cholesterol efflux, limit inflammation and lipid droplet buildup, and eliminate defective mitochondria and protein aggregates. Central to the regulation of autophagy is the transcription factor EB (TFEB), which coordinates the expression of lysosomal biogenesis and autophagy genes. In recent years, trehalose has been shown to promote TFEB activation and protect against atherogenesis. Here, we sought to investigate the role of autophagy activation during atherosclerosis regression. Methods and results Atherosclerosis was established in C57BL/6N mice by injecting AAV-PCSK9 and 16 weeks of Western diet feeding, followed by switching to a chow diet to induce atherosclerosis regression. During the regression period, mice were either injected with trehalose concomitant with trehalose supplementation in their drinking water or injected with saline for 6 weeks. Female mice receiving trehalose had reduced atherosclerosis burden, as evidenced by reduced plaque lipid content, macrophage numbers and IL-1β content in parallel with increased plaque collagen deposition, which was not observed in their male counterparts. In addition, trehalose-treated female mice had lower levels of circulating leukocytes, including inflammatory monocytes and CD4+ T cells. Lastly, we found that autophagy flux in male mice was basally higher than in female mice during atherosclerosis progression. Conclusions Our data demonstrate a sex-specific effect of trehalose in atherosclerosis regression, whereby trehalose reduced lipid content, inflammation, and increased collagen content in female mice but not in male mice. Furthermore, we discovered inherent differences in the autophagy flux capacities between the sexes: female mice exhibited lower plaque autophagy than males, which rendered the female mice more responsive to atherosclerosis regression. Our work highlights the importance of understanding sex differences in atherosclerosis to personalize the development of future therapies to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Sabrina Robichaud
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cardiovascular Metabolism and Cell Biology Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Valérie Rochon
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cardiovascular Metabolism and Cell Biology Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Christina Emerton
- Cardiovascular Metabolism and Cell Biology Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Thomas Laval
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cardiovascular Metabolism and Cell Biology Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Mireille Ouimet
- Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Cardiovascular Metabolism and Cell Biology Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
5
|
Gianopoulos I, Daskalopoulou SS. Macrophage profiling in atherosclerosis: understanding the unstable plaque. Basic Res Cardiol 2024; 119:35-56. [PMID: 38244055 DOI: 10.1007/s00395-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 01/22/2024]
Abstract
The development and rupture of atherosclerotic plaques is a major contributor to myocardial infarctions and ischemic strokes. The dynamic evolution of the plaque is largely attributed to monocyte/macrophage functions, which respond to various stimuli in the plaque microenvironment. To this end, macrophages play a central role in atherosclerotic lesions through the uptake of oxidized low-density lipoprotein that gets trapped in the artery wall, and the induction of an inflammatory response that can differentially affect the stability of the plaque in men and women. In this environment, macrophages can polarize towards pro-inflammatory M1 or anti-inflammatory M2 phenotypes, which represent the extremes of the polarization spectrum that include Mhem, M(Hb), Mox, and M4 populations. However, this traditional macrophage model paradigm has been redefined to include numerous immune and nonimmune cell clusters based on in-depth unbiased single-cell approaches. The goal of this review is to highlight (1) the phenotypic and functional properties of monocyte subsets in the circulation, and macrophage populations in atherosclerotic plaques, as well as their contribution towards stable or unstable phenotypes in men and women, and (2) single-cell RNA sequencing studies that have advanced our knowledge of immune, particularly macrophage signatures present in the atherosclerotic niche. We discuss the importance of performing high-dimensional approaches to facilitate the development of novel sex-specific immunotherapies that aim to reduce the risk of cardiovascular events.
Collapse
Affiliation(s)
- Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada.
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University Health Centre, McGill University, Montreal, Canada.
- Department of Medicine, Research Institute of the McGill University Health Centre, Glen Site, 1001 Decarie Boulevard, EM1.2210, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
6
|
Phillips E, Alharithi Y, Kadam L, Coussens LM, Kumar S, Maloyan A. Metabolic abnormalities in the bone marrow cells of young offspring born to obese mothers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569274. [PMID: 38077037 PMCID: PMC10705475 DOI: 10.1101/2023.11.29.569274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Intrauterine metabolic reprogramming occurs in obese mothers during gestation, putting the offspring at high risk of developing obesity and associated metabolic disorders even before birth. We have generated a mouse model of maternal high-fat diet-induced obesity that recapitulates the metabolic changes seen in humans. Here, we profiled and compared the metabolic characteristics of bone marrow cells of newly weaned 3-week-old offspring of dams fed either a high-fat (Off-HFD) or a regular diet (Off-RD). We utilized a state-of-the-art targeted metabolomics approach coupled with a Seahorse metabolic analyzer. We revealed significant metabolic perturbation in the offspring of HFD-fed vs. RD-fed dams, including utilization of glucose primarily via oxidative phosphorylation, and reduction in levels of amino acids, a phenomenon previously linked to aging. Furthermore, in the bone marrow of three-week-old offspring of high-fat diet-fed mothers, we identified a unique B cell population expressing CD19 and CD11b, and found increased expression of Cyclooxygenase-2 (COX-2) on myeloid CD11b, and on CD11b hi B cells, with all the populations being significantly more abundant in offspring of dams fed HFD but not a regular diet. Altogether, we demonstrate that the offspring of obese mothers show metabolic and immune changes in the bone marrow at a very young age and prior to any symptomatic metabolic disease.
Collapse
|
7
|
Liu C, Liao W, Chen J, Yu K, Wu Y, Zhang S, Chen M, Chen F, Wang S, Cheng T, Wang J, Du C. Cholesterol confers ferroptosis resistance onto myeloid-biased hematopoietic stem cells and prevents irradiation-induced myelosuppression. Redox Biol 2023; 62:102661. [PMID: 36906952 PMCID: PMC10025135 DOI: 10.1016/j.redox.2023.102661] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
There is growing appreciation that hematopoietic alterations underpin the ubiquitous detrimental effects of metabolic disorders. The susceptibility of bone marrow (BM) hematopoiesis to perturbations of cholesterol metabolism is well documented, while the underlying cellular and molecular mechanisms remain poorly understood. Here we reveal a distinct and heterogeneous cholesterol metabolic signature within BM hematopoietic stem cells (HSCs). We further show that cholesterol directly regulates maintenance and lineage differentiation of long-term HSCs (LT-HSCs), with high levels of intracellular cholesterol favoring maintenance and myeloid bias of LT-HSCs. During irradiation-induced myelosuppression, cholesterol also safeguards LT-HSC maintenance and myeloid regeneration. Mechanistically, we unravel that cholesterol directly and distinctively enhances ferroptosis resistance and boosts myeloid but dampens lymphoid lineage differentiation of LT-HSCs. Molecularly, we identify that SLC38A9-mTOR axis mediates cholesterol sensing and signal transduction to instruct lineage differentiation of LT-HSCs as well as to dictate ferroptosis sensitivity of LT-HSCs through orchestrating SLC7A11/GPX4 expression and ferritinophagy. Consequently, myeloid-biased HSCs are endowed with a survival advantage under both hypercholesterolemia and irradiation conditions. Importantly, a mTOR inhibitor rapamycin and a ferroptosis inducer imidazole ketone erastin prevent excess cholesterol-induced HSC expansion and myeloid bias. These findings unveil an unrecognized fundamental role of cholesterol metabolism in HSC survival and fate decisions with valuable clinical implications.
Collapse
Affiliation(s)
- Chaonan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Weinian Liao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jun Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kuan Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yiding Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shuzhen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Mo Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fang Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Song Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tianmin Cheng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Changhong Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
8
|
The Relationship of Cholesterol Responses to Mitochondrial Dysfunction and Lung Inflammation in Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020253. [PMID: 36837454 PMCID: PMC9958740 DOI: 10.3390/medicina59020253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Hyperlipidemia is frequently reported in chronic obstructive pulmonary disease (COPD) patients and is linked to the progression of the disease and its comorbidities. Hypercholesterolemia leads to cholesterol accumulation in many cell types, especially immune cells, and some recent studies suggest that cholesterol impacts lung epithelial cells' inflammatory responses and mitochondrial responses. Several studies also indicate that targeting cholesterol responses with either statins or liver X receptor (LXR) agonists may be plausible means of improving pulmonary outcomes. Equally, cholesterol metabolism and signaling are linked to mitochondrial dysfunction and inflammation attributed to COPD progression. Here, we review the current literature focusing on the impact of cigarette smoke on cholesterol levels, cholesterol efflux, and the influence of cholesterol on immune and mitochondrial responses within the lungs.
Collapse
|
9
|
Fang F, Xiao C, Li C, Liu X, Li S. Tuning macrophages for atherosclerosis treatment. Regen Biomater 2022; 10:rbac103. [PMID: 36683743 PMCID: PMC9845526 DOI: 10.1093/rb/rbac103] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease and a leading cause of death worldwide. Macrophages play an important role in inflammatory responses, cell-cell communications, plaque growth and plaque rupture in atherosclerotic lesions. Here, we review the sources, functions and complex phenotypes of macrophages in the progression of atherosclerosis, and discuss the recent approaches in modulating macrophage phenotype and autophagy for atherosclerosis treatment. We then focus on the drug delivery strategies that target macrophages or use macrophage membrane-coated particles to deliver therapeutics to the lesion sites. These biomaterial-based approaches that target, modulate or engineer macrophages have broad applications for disease therapies and tissue regeneration.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Crystal Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chunli Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
10
|
Xu D, Zhao W, Feng Y, Wen X, Liu H, Ping J. Pentoxifylline attenuates nonalcoholic fatty liver by inhibiting hepatic macrophage polarization to the M1 phenotype. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154368. [PMID: 35994850 DOI: 10.1016/j.phymed.2022.154368] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/30/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver (NAFL), recognized as one of the most common causes of chronic liver diseases, is increasingly prevalent worldwide. Pentoxifylline, a derivative of theobromine extracted from Theobroma cacao and tea, has been studied for effects on blood viscosity, tissue oxygenation and inflammation. However, its effects on hepatic lipid accumulation and the potential mechanisms remain unclear. PURPOSE This study aimed to investigate the therapeutic effects of pentoxifylline on high-fat diet-induced NAFL and to explore the corresponding molecular mechanisms. METHODS NAFL mice were injected with or without 25, 50 or 100 mg/kg pentoxifylline for 2 weeks. Hepatic steatosis was observed by haematoxylin-eosin staining and Oil Red O staining, the levels of serum total cholesterol, triglyceride were detected by biochemical kits, and insulin resistance was evaluated by glucose and insulin tolerance tests. In addition, we measured the frequencies of macrophage and its polarization subsets in the liver using flow cytometry and immunofluorescence. The expressions of proteins associated with macrophage polarization signaling pathways were assessed by Western blotting and flow cytometry histograms. Molecular docking and cellular thermal shift assay were conducted to identify and verify the target protein of pentoxifylline in macrophage. RESULTS Pentoxifylline significantly alleviated hepatic lipid accumulation, reduced blood lipid levels and improved insulin resistance. Strikingly, the excessive M1 macrophages in NAFL development was abolished by pentoxifylline. And pentoxifylline was further evidenced it failed to reduce hepatocyte lipid accumulation in the absence of macrophages in vitro. Mechanistically, pentoxifylline competed with LPS for binding to toll-like receptor 4, dramatically inhibiting the TLR4/MyD88/NF-κB signaling pathway. CONCLUSION Pentoxifylline attenuated NAFL by inhibiting hepatic macrophage M1 polarization, indicating that pentoxifylline could be a therapeutic candidate for NAFL. This study first observed that M1 macrophages were increased in NAFL mice and then revealed the molecule targeted by pentoxifylline. In addition, we provided evidence that macrophage targeting may be an emerging strategy for NAFL treatment.
Collapse
Affiliation(s)
- Dongqin Xu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185 East Lake Road, Wuhan, 430071, , China
| | - Wenhao Zhao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185 East Lake Road, Wuhan, 430071, , China
| | - Yiting Feng
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185 East Lake Road, Wuhan, 430071, , China
| | - Xiao Wen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185 East Lake Road, Wuhan, 430071, , China
| | - Hanxiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185 East Lake Road, Wuhan, 430071, , China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, 185 East Lake Road, Wuhan, 430071, , China.
| |
Collapse
|
11
|
O’Hagan R, Berg AR, Hong CG, Parel PM, Mehta NN, Teague HL. Systemic consequences of abnormal cholesterol handling: Interdependent pathways of inflammation and dyslipidemia. Front Immunol 2022; 13:972140. [PMID: 36091062 PMCID: PMC9459038 DOI: 10.3389/fimmu.2022.972140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic conditions such as obesity and associated comorbidities are increasing in prevalence worldwide. In chronically inflamed pathologies, metabolic conditions are linked to early onset cardiovascular disease, which remains the leading cause of death despite decades of research. In recent years, studies focused on the interdependent pathways connecting metabolism and the immune response have highlighted that dysregulated cholesterol trafficking instigates an overactive, systemic inflammatory response, thereby perpetuating early development of cardiovascular disease. In this review, we will discuss the overlapping pathways connecting cholesterol trafficking with innate immunity and present evidence that cholesterol accumulation in the bone marrow may drive systemic inflammation in chronically inflamed pathologies. Lastly, we will review the current therapeutic strategies that target both inflammation and cholesterol transport, and how biologic therapy restores lipoprotein function and mitigates the immune response.
Collapse
|
12
|
Savla SR, Prabhavalkar KS, Bhatt LK. Liver X Receptor: a potential target in the treatment of atherosclerosis. Expert Opin Ther Targets 2022; 26:645-658. [PMID: 36003057 DOI: 10.1080/14728222.2022.2117610] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Liver X receptors (LXRs) are master regulators of atherogenesis. Their anti-atherogenic potential has been attributed to their role in the inhibition of macrophage-mediated inflammation and promotion of reverse cholesterol transport. Owing to the significance of their anti-atherogenic potential, it is essential to develop and test new generation LXR agonists, both synthetic and natural, to identify potential LXR-targeted therapeutics for the future. AREAS COVERED This review describes the role of LXRs in atherosclerotic development, provides a summary of LXR agonists and future directions for atherosclerosis research. We searched PubMed, Scopus and Google Scholar for relevant reports, from last 10 years, using atherosclerosis, liver X receptor, and LXR agonist as keywords. EXPERT OPINION LXRα has gained widespread recognition as a regulator of cholesterol homeostasis and expression of inflammatory genes. Further research using models of cell type-specific knockout and specific agonist-targeted LXR isoforms is warranted. Enthusiasm for therapeutic value of LXR agonists has been tempered due to LXRα-mediated induction of hepatic lipogenesis. LXRα agonism and LXRβ targeting, gut-specific inverse LXR agonists, investigations combining LXR agonists with other lipogenesis mitigating agents, like IDOL antagonists and synthetic HDL, and targeting ABCA1, M2 macrophages and LXRα phosphorylation, remain as promising possibilities.
Collapse
Affiliation(s)
- Shreya R Savla
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| | - Lokesh K Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| |
Collapse
|
13
|
Yu Q, Weng W, Luo H, Yan J, Zhao X. The Novel Predictive Biomarkers for Type 2 Diabetes Mellitus in Active Pulmonary Tuberculosis Patients. Infect Drug Resist 2022; 15:4529-4539. [PMID: 35992755 PMCID: PMC9384973 DOI: 10.2147/idr.s377465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose This study was to explore the predictive value of monocyte to high-density lipoprotein cholesterol ratio (MHR), neutrophils to high-density lipoprotein cholesterol ratio (NHR), C-reactive protein-to-lymphocyte ratio (CLR), and C-reactive protein-to-albumin ratio (CAR) for type 2 diabetes mellitus (T2DM) in patients with active pulmonary tuberculosis (APTB). Patients and Methods A total of 991 active pulmonary tuberculosis (APTB) patients (201 with T2DM) were hospitalized in the Department of Tuberculosis, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology were included. The routine blood examination indicators and biochemical parameters were collected to calculate MHR, NHR, CLR, and CAR. The Pearson correlation analysis, Univariate Logistic regression analysis, and receiver operating characteristic (ROC) curve analysis were performed to assess the predictive value of MHR, NHR, CLR, and CAR for APTB-T2DM patients. Results The levels of MHR, NHR, CLR, and CAR in the APTB-T2DM patients were significantly higher than in the APTB-no T2DM patients (P < 0.05). Additionally, the MHR, NHR, CLR, and CAR have a positive correlation with fasting blood glucose in the whole study population. However, in the APTB-T2DM patients, MHR, NHR, and CAR were not correlated with fasting blood glucose, and only CLR was positively correlated with fasting blood glucose. The area under curve (AUC) predicting APTB-T2DM patients of the MHR, NHR, CLR, and CAR was 0.632, 0.72, 0.715, and 0.713, respectively. Further, univariate logistic regression analyses showed that the higher MHR, NHR, CLR, and CAR were independent risk factors for APTB-T2DM (P < 0.01). The MHR, NHR, CLR, and CAR quartiles were used to divide the APTB patients into four groups for further analysis. The prevalence of T2DM was significantly higher in APTB individuals as MHR, NHR, CLR, and CAR values increased (P < 0.05). Conclusion MHR, NHR, CLR, and CAR are simple and practicable inflammatory parameters that could be used for assessing T2DM in APTB. APTB patients have a greater possibility to be diagnosed with T2DM with the higher MHR, NHR CLR, and CAR values. Therefore, more attention should be given to the indicator in the examination of APTB.
Collapse
Affiliation(s)
- Qi Yu
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, People's Republic of China
| | - Wujin Weng
- Department of Oncology, Quzhou Hospital of Traditional Chinese Medicine, Zhejiang University of Chinese Medicine, Quzhou, 310053, People's Republic of China
| | - Hong Luo
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, People's Republic of China
| | - Jisong Yan
- Department of Respiratory and Critical Care Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, 430023, People's Republic of China
| | - Xin Zhao
- Department of Pediatrics, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, People's Republic of China
| |
Collapse
|
14
|
Motkowski R, Alifier M, Abramowicz P, Konstantynowicz J, Mikołuć B, Stasiak-Barmuta A. Innate and Acquired Cellular Immunity in Children with Familial Hypercholesterolemia Treated with Simvastatin. J Clin Med 2022; 11:2924. [PMID: 35629051 PMCID: PMC9147505 DOI: 10.3390/jcm11102924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of this cross-sectional study was to assess the influence of simvastatin treatment in children with familial hypercholesterolemia (FH) on parameters of cellular immunity. Twenty-six children with FH were included, of which thirteen were treated with 10 mg simvastatin for at least 26 weeks, and thirteen were age- and sex-matched with a low-cholesterol diet only. Total WBC count and lipid profile were measured. Flow cytometry was used to identify lymphocyte subsets and determine the expression of adhesion molecules (AM) and toll-like receptors (TLRs) on leukocytes. No differences were found in the basic values of peripheral blood count and subpopulations of lymphocytes between groups. The percentage of granulocytes with the expression of AM was higher in those treated with statins. The TLR-2 expression on granulocytes and monocytes showed higher values, whereas the TLR-4 expression was lower on lymphocytes and granulocytes in simvastatin-treated children. Treatment with simvastatin in children with FH is not associated with alterations in the amounts of granulocytes and monocytes. There is no association between statin treatment and the pattern of peripheral blood lymphocyte subpopulations. The role of AM and TLRs needs further investigation, given the effect of statins on the innate immunity may be important for their efficacy and safety during growth.
Collapse
Affiliation(s)
- Radosław Motkowski
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Marek Alifier
- Department of Clinical Immunology, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Paweł Abramowicz
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Jerzy Konstantynowicz
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Bożena Mikołuć
- Department of Pediatrics, Rheumatology, Immunology and Metabolic Bone Diseases, Medical University of Bialystok, 15-274 Bialystok, Poland
| | - Anna Stasiak-Barmuta
- Department of Clinical Immunology, Medical University of Bialystok, 15-274 Bialystok, Poland
| |
Collapse
|
15
|
Devesa A, Lobo-González M, Martínez-Milla J, Oliva B, García-Lunar I, Mastrangelo A, España S, Sanz J, Mendiguren JM, Bueno H, Fuster JJ, Andrés V, Fernández-Ortiz A, Sancho D, Fernández-Friera L, Sanchez-Gonzalez J, Rossello X, Ibanez B, Fuster V. Bone marrow activation in response to metabolic syndrome and early atherosclerosis. Eur Heart J 2022; 43:1809-1828. [PMID: 35567559 PMCID: PMC9113301 DOI: 10.1093/eurheartj/ehac102] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Experimental studies suggest that increased bone marrow (BM) activity is involved in the association between cardiovascular risk factors and inflammation in atherosclerosis. However, human data to support this association are sparse. The purpose was to study the association between cardiovascular risk factors, BM activation, and subclinical atherosclerosis. METHODS AND RESULTS Whole body vascular 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) was performed in 745 apparently healthy individuals [median age 50.5 (46.8-53.6) years, 83.8% men] from the Progression of Early Subclinical Atherosclerosis (PESA) study. Bone marrow activation (defined as BM 18F-FDG uptake above the median maximal standardized uptake value) was assessed in the lumbar vertebrae (L3-L4). Systemic inflammation was indexed from circulating biomarkers. Early atherosclerosis was evaluated by arterial metabolic activity by 18F-FDG uptake in five vascular territories. Late atherosclerosis was evaluated by fully formed plaques on MRI. Subjects with BM activation were more frequently men (87.6 vs. 80.0%, P = 0.005) and more frequently had metabolic syndrome (MetS) (22.2 vs. 6.7%, P < 0.001). Bone marrow activation was significantly associated with all MetS components. Bone marrow activation was also associated with increased haematopoiesis-characterized by significantly elevated leucocyte (mainly neutrophil and monocytes) and erythrocyte counts-and with markers of systemic inflammation including high-sensitivity C-reactive protein, ferritin, fibrinogen, P-selectin, and vascular cell adhesion molecule-1. The associations between BM activation and MetS (and its components) and increased erythropoiesis were maintained in the subgroup of participants with no systemic inflammation. Bone marrow activation was significantly associated with high arterial metabolic activity (18F-FDG uptake). The co-occurrence of BM activation and arterial 18F-FDG uptake was associated with more advanced atherosclerosis (i.e. plaque presence and burden). CONCLUSION In apparently healthy individuals, BM 18F-FDG uptake is associated with MetS and its components, even in the absence of systemic inflammation, and with elevated counts of circulating leucocytes. Bone marrow activation is associated with early atherosclerosis, characterized by high arterial metabolic activity. Bone marrow activation appears to be an early phenomenon in atherosclerosis development.[Progression of Early Subclinical Atherosclerosis (PESA); NCT01410318].
Collapse
Affiliation(s)
- Ana Devesa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manuel Lobo-González
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Juan Martínez-Milla
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Belén Oliva
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Cardiology Department, Hospital Ramón y Cajal, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Annalaura Mastrangelo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Samuel España
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, IdISSC, Madrid, Spain
| | - Javier Sanz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Hector Bueno
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, Hospital Universitario 12 de Octubre, and i+12 Research Institute, Madrid, Spain
| | - Jose J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Antonio Fernández-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Hospital Clínico San Carlos, Universidad Complutense, IdISSC, Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
| | - Leticia Fernández-Friera
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Hospital Universitario HM Montepríncipe-CIEC, Madrid, Spain
| | | | - Xavier Rossello
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiology Department, Hospital Universitari Son Espases-IDISBA, Palma de Mallorca, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), c/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
16
|
Guleken Z, Kanber EM, Sarıbal D, Depciuch J. Applying spectrochemical analyses on venous disease patients treated by N-Butyl Cyanoacrylate Ablation Surgery. Technol Health Care 2022; 30:1091-1106. [DOI: 10.3233/thc-213642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: The venous disease of the legs is a common disease among adults that may lead to a deterioration in the structure and concentration of biomolecules. N-Butyl Cyanoacrylate Ablation Surgery (NBCA) or cyanoacrylate embolization (CAE) technique to adhesive the saphenous vein is an alternative method for the treatment of venous disease. OBJECTIVE: We aimed to show what kind of changes occurs after CAE surgery using FTIR spectroscopy combined chemometrics. We compared before and after surgery blood sera of patients to find whether a correlation between spectral data and laboratory indexes. We studied the blood sera of those who suffered from varicose veins and treated them by CAE technique. METHODS: In order to examine the molecular profiles in blood sera who underwent the CAE technique of the great saphenous vein for the treatment we used Fourier Transform InfraRed spectroscopy (FTIR) spectroscopy of blood samples of patients before and after surgery as a fast diagnostic technique. To obtain information about the spectra variation among the types of samples Principal component analysis (PCA) was performed for fingerprint, amide II with amide I regions. To find normality among variations Partial Least Square P-P plot of residual was performed. RESULTS: Absorbance values were statistically significant only in amide II, amide I, and OH vibrations. In the blood collected before surgery, higher peaks area of α-helix and β-harmonica were noticed. However, in both groups of samples, a higher amount of β-harmonica was visible. Pearson correlation analysis showed that the value of white blood cells (WBC) correlate with absorbance at 2858 cm-1 wavenumber. Moreover, a correlation between neutrophil (NEU) and OH vibrations, and between hematocrit (HCT) and 1082 cm-1, were found. Furthermore, a high correlation Platelets (PLT) and FTIR peak at 1165 cm-1, was noticed. CONCLUSIONS: This methodology suggests with PCA analysis CAE caused structural and quantitative chemical changes in blood samples of patients.
Collapse
Affiliation(s)
- Zozan Guleken
- Department of Physiology, Faculty of Medicine, Uskudar University, Istanbul, Turkey
| | - Eyüp Murat Kanber
- Department of Cardiovascular Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Devrim Sarıbal
- Department of Biophysics, Medical School, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciencse, Krakow, Poland
| |
Collapse
|
17
|
Xie E, Yang F, Luo S, Liu Y, Xue L, Huang W, Xie N, Chen L, Liu J, Yang X, Su S, Li J, Luo J. Association Between Preoperative Monocyte to High-Density Lipoprotein Ratio on In-hospital and Long-Term Mortality in Patients Undergoing Endovascular Repair for Acute Type B Aortic Dissection. Front Cardiovasc Med 2022; 8:775471. [PMID: 35071351 PMCID: PMC8777016 DOI: 10.3389/fcvm.2021.775471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Aims: The monocyte to high-density lipoprotein ratio (MHR), a novel marker of inflammation and cardiovascular events, has recently been found to facilitate the diagnosis of acute aortic dissection. This study aimed to assess the association of preoperative MHR with in-hospital and long-term mortality after thoracic endovascular aortic repair (TEVAR) for acute type B aortic dissection (TBAD). Methods: We retrospectively evaluated 637 patients with acute TBAD who underwent TEVAR from a prospectively maintained database. Multivariable logistic and cox regression analyses were conducted to assess the relationship between preoperative MHR and in-hospital as well as long-term mortality. For clinical use, MHR was modeled as a continuous variable and a categorical variable with the optimal cutoff evaluated by receiver operator characteristic curve for long-term mortality. Propensity score matching was used to diminish baseline differences and subgroups analyses were conducted to assess the robustness of the results. Results: Twenty-one (3.3%) patients died during hospitalization and 52 deaths (8.4%) were documented after a median follow-up of 48.1 months. The optimal cutoff value was 1.13 selected according to the receiver operator characteristic curve (sensitivity 78.8%; specificity 58.9%). Multivariate analyses showed that MHR was independently associated with either in-hospital death [odds ratio (OR) 2.11, 95% confidence interval (CI) 1.16-3.85, P = 0.015] or long-term mortality [hazard ratio (HR) 1.78, 95% CI 1.31-2.41, P < 0.001). As a categorical variable, MHR > 1.13 remained an independent predictor of in-hospital death (OR 4.53, 95% CI 1.44-14.30, P = 0.010) and long-term mortality (HR 4.16, 95% CI 2.13-8.10, P < 0.001). Propensity score analyses demonstrated similar results for both in-hospital death and long-term mortality. The association was further confirmed by subgroup analyses. Conclusions: MHR might be useful for identifying patients at high risk of in-hospital and long-term mortality, which could be integrated into risk stratification strategies for acute TBAD patients undergoing TEVAR.
Collapse
Affiliation(s)
- Enmin Xie
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fan Yang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Songyuan Luo
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuan Liu
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ling Xue
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenhui Huang
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Nianjin Xie
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lyufan Chen
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jitao Liu
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinyue Yang
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Sheng Su
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie Li
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jianfang Luo
- Department of Cardiology, Vascular Center, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Razeghian-Jahromi I, Karimi Akhormeh A, Razmkhah M, Zibaeenezhad MJ. Immune system and atherosclerosis: Hostile or friendly relationship. Int J Immunopathol Pharmacol 2022; 36:3946320221092188. [PMID: 35410514 PMCID: PMC9009140 DOI: 10.1177/03946320221092188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coronary artery disease has remained a major health challenge despite enormous
progress in prevention, diagnosis, and treatment strategies. Formation of
atherosclerotic plaque is a chronic process that is developmentally influenced
by intrinsic and extrinsic determinants. Inflammation triggers atherosclerosis,
and the fundamental element of inflammation is the immune system. The immune
system involves in the atherosclerosis process by a variety of immune cells and
a cocktail of mediators. It is believed that almost all main components of this
system possess a profound contribution to the atherosclerosis. However, they
play contradictory roles, either protective or progressive, in different stages
of atherosclerosis progression. It is evident that monocytes are the first
immune cells appeared in the atherosclerotic lesion. With the plaque growth,
other types of the immune cells such as mast cells, and T lymphocytes are
gradually involved. Each cell releases several cytokines which cause the
recruitment of other immune cells to the lesion site. This is followed by
affecting the expression of other cytokines as well as altering certain
signaling pathways. All in all, a mix of intertwined interactions determine the
final outcome in terms of mild or severe manifestations, either clinical or
subclinical. Therefore, it is of utmost importance to precisely understand the
kind and degree of contribution which is made by each immune component in order
to stop the growing burden of cardiovascular morbidity and mortality. In this
review, we present a comprehensive appraisal on the role of immune cells in the
atherosclerosis initiation and development.
Collapse
Affiliation(s)
- Iman Razeghian-Jahromi
- Cardiovascular Research Center, 571605Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Karimi Akhormeh
- Cardiovascular Research Center, 571605Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, 48435Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
19
|
Groenen AG, Bazioti V, van Zeventer IA, Chen L, Groot HE, Balder JW, Zhernakova A, van der Harst P, Rimbert A, Kuivenhoven JA, Fu J, Westerterp M. Large HDL particles negatively associate with leukocyte counts independent of cholesterol efflux capacity: A cross sectional study in the population-based LifeLines DEEP cohort. Atherosclerosis 2022; 343:20-27. [DOI: 10.1016/j.atherosclerosis.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
|
20
|
Yvan-Charvet L, Westerterp M. LDL-cholesterol drives reversible myelomonocytic skewing in human bone marrow. Eur Heart J 2021; 42:4321-4323. [PMID: 34508568 DOI: 10.1093/eurheartj/ehab630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Marit Westerterp
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Lipid-mediated atherogenesis is hallmarked by a chronic inflammatory state. Low-density lipoprotein cholesterol (LDL-C), triglyceride rich lipoproteins (TRLs), and lipoprotein(a) [Lp(a)] are causally related to atherosclerosis. Within the paradigm of endothelial activation and subendothelial lipid deposition, these lipoproteins induce numerous pro-inflammatory pathways. In this review, we will outline the effects of lipoproteins on systemic inflammatory pathways in atherosclerosis. RECENT FINDINGS Apolipoprotein B-containing lipoproteins exert a variety of pro-inflammatory effects, ranging from the local artery to systemic immune cell activation. LDL-C, TRLs, and Lp(a) induce endothelial dysfunction with concomitant activation of circulating monocytes through enhanced lipid accumulation. The process of trained immunity of the innate immune system, predominantly induced by LDL-C particles, hallmarks the propagation of the low-grade inflammatory response. In concert, bone marrow activation induces myeloid skewing, further contributing to immune cell mobilization and plaque progression. SUMMARY Lipoproteins and inflammation are intertwined in atherogenesis. Elucidating the inflammatory pathways will provide new opportunities for therapeutic agents.
Collapse
Affiliation(s)
- Jordan M. Kraaijenhof
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - G. Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam
| | - Jeffrey Kroon
- Amsterdam UMC, University of Amsterdam, Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Checkouri E, Blanchard V, Meilhac O. Macrophages in Atherosclerosis, First or Second Row Players? Biomedicines 2021; 9:biomedicines9091214. [PMID: 34572399 PMCID: PMC8465019 DOI: 10.3390/biomedicines9091214] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages represent a cell type that has been widely described in the context of atherosclerosis since the earliest studies in the 17th century. Their role has long been considered to be preponderant in the onset and aggravation of atherosclerosis, in particular by participating in the establishment of a chronic inflammatory state by the release of pro-inflammatory cytokines and by uncontrolled engorgement of lipids resulting in the formation of foam cells and later of the necrotic core. However, recent evidence from mouse models using an elegant technique of tracing vascular smooth muscle cells (VSMCs) during plaque development revealed that resident VSMCs display impressive plastic properties in response to an arterial injury, allowing them to switch into different cell types within the plaque, including mesenchymal-like cells, macrophage-like cells and osteochondrogenic-like cells. In this review, we oppose the arguments in favor or against the influence of macrophages versus VSMCs in all stages of atherosclerosis including pre-atherosclerosis, formation of lipid-rich foam cells, development of the necrotic core and the fibrous cap as well as calcification and rupture of the plaque. We also analyze the relevance of animal models for the investigation of the pathophysiological mechanisms of atherosclerosis in humans, and discuss potential therapeutic strategies targeting either VSMCs or macrophage to prevent the development of cardiovascular events. Overall, although major findings have been made from animal models, efforts are still needed to better understand and therefore prevent the development of atherosclerotic plaques in humans.
Collapse
Affiliation(s)
- Eloïse Checkouri
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- Habemus Papam, Food Industry, 97470 Saint-Benoit, France
| | - Valentin Blanchard
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- Departments of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul’s Hospital, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Olivier Meilhac
- INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Sainte-Clotilde, France; (E.C.); (V.B.)
- CHU de La Réunion, INSERM, CIC1410, 97500 Saint-Pierre, France
- Correspondence: ; Tel.: +33-262-93-8811
| |
Collapse
|
23
|
Igel E, Haller A, Wolfkiel PR, Orr-Asman M, Jaeschke A, Hui DY. Distinct pro-inflammatory properties of myeloid cell-derived apolipoprotein E2 and E4 in atherosclerosis promotion. J Biol Chem 2021; 297:101106. [PMID: 34425108 PMCID: PMC8437825 DOI: 10.1016/j.jbc.2021.101106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Polymorphisms in the apolipoprotein E (apoE) gene are risk factors for chronic inflammatory diseases including atherosclerosis. The gene product apoE is synthesized in many cell types and has both lipid transport–dependent and lipid transport–independent functions. Previous studies have shown that apoE expression in myeloid cells protects against atherogenesis in hypercholesterolemic ApoE−/− mice. However, the mechanism of this protection is still unclear. Using human APOE gene replacement mice as models, this study showed that apoE2 and apoE4 expressed endogenously in myeloid cells enhanced the inflammatory response via mechanisms independent of plasma lipoprotein transport. The data revealed that apoE2-expressing myeloid cells contained higher intracellular cholesterol levels because of impaired efflux, causing increasing inflammasome activation and myelopoiesis. In contrast, intracellular cholesterol levels were not elevated in apoE4-expressing myeloid cells, and its proinflammatory property was found to be independent of inflammasome signaling and related to enhanced oxidative stress. When ApoE−/− mice were reconstituted with bone marrow from various human APOE gene replacement mice, effective reduction of atherosclerosis was observed with marrow cells obtained from APOE3 but not APOE2 and APOE4 gene replacement mice. Taken together, these results documented that apoE2 and apoE4 expression in myeloid cells promotes inflammation via distinct mechanisms and promotes atherosclerosis in a plasma lipoprotein transport–independent manner.
Collapse
Affiliation(s)
- Emily Igel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - April Haller
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Patrick R Wolfkiel
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Melissa Orr-Asman
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David Y Hui
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
24
|
Rodriguez-Coira J, Villaseñor A, Izquierdo E, Huang M, Barker-Tejeda TC, Radzikowska U, Sokolowska M, Barber D. The Importance of Metabolism for Immune Homeostasis in Allergic Diseases. Front Immunol 2021; 12:692004. [PMID: 34394086 PMCID: PMC8355700 DOI: 10.3389/fimmu.2021.692004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
There is increasing evidence that the metabolic status of T cells and macrophages is associated with severe phenotypes of chronic inflammation, including allergic inflammation. Metabolic changes in immune cells have a crucial role in their inflammatory or regulatory responses. This notion is reinforced by metabolic diseases influencing global energy metabolism, such as diabetes or obesity, which are known risk factors of severity in inflammatory conditions, due to the metabolic-associated inflammation present in these patients. Since several metabolic pathways are closely tied to T cell and macrophage differentiation, a better understanding of metabolic alterations in immune disorders could help to restore and modulate immune cell functions. This link between energy metabolism and inflammation can be studied employing animal, human or cellular models. Analytical approaches rank from classic immunological studies to integrated analysis of metabolomics, transcriptomics, and proteomics. This review summarizes the main metabolic pathways of the cells involved in the allergic reaction with a focus on T cells and macrophages and describes different models and platforms of analysis used to study the immune system and its relationship with metabolism.
Collapse
Affiliation(s)
- Juan Rodriguez-Coira
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Alma Villaseñor
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Elena Izquierdo
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Mengting Huang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Tomás Clive Barker-Tejeda
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain.,Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| | - Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos Wolfgang, Switzerland
| | - Domingo Barber
- Departamento de Ciencias Medicas Basicas, Instituto de Medicina Molecular Aplicada (IMMA), Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Boadilla Del Monte, Madrid, Spain
| |
Collapse
|
25
|
Sawant S, Tucker B, Senanayake P, Waters DD, Patel S, Rye KA, Ong KL, Cochran BJ. The association between lipid levels and leukocyte count: A cross-sectional and longitudinal analysis of three large cohorts. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2021; 4:100024. [PMID: 38559680 PMCID: PMC10976292 DOI: 10.1016/j.ahjo.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 04/04/2024]
Abstract
Background Relationships between dyslipidaemia and leukocyte counts have been investigated in several studies, demonstrating limited evidence of associations in humans. As such, studying a diverse range of cohorts will ensure evidence is robust. This study focused on investigating cross-sectional and longitudinal relationships in three large-scale cohorts. Methods The cross-sectional analysis included a total of 27,566 participants with valid data on lipid measures and leukocyte counts from three study cohorts: National Health and Nutrition Survey (NHANES), Korean National Health and Nutrition Survey (KNHANES) and Treating to New Targets (TNT) trial. The longitudinal analysis included 9323 participants with valid data on lipid measures and leukocyte counts at baseline and one year with statin treatment. Associations between lipid levels and leukocyte counts were analysed by multivariable linear regression and adjusted for basic demographic and cardiovascular risk factors. Results Cross-sectional data from NHANES demonstrated the association of lower high-density lipoprotein (HDL) cholesterol and higher triglycerides with higher leukocyte count (0.9% lower and 0.3% higher count per 10 mg/dL increase in HDL cholesterol and triglycerides respectively, both p < 0.001). Similar trends were found in TNT trial (both p < 0.001), but not in KNHANES. In the TNT trial, 10 mg/dL increase in triglycerides over one year was also associated with a 0.09 × 103/μL increase in leukocyte count over the same period. Conclusions The findings of this study are consistent with those of previous human studies, supporting weak yet noteworthy associations between dyslipidaemia and leukocytosis.
Collapse
Affiliation(s)
| | - Bradley Tucker
- Heart Research Institute, Sydney, Australia
- School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | | | - David D. Waters
- Division of Cardiology, San Francisco General Hospital and the University of California at San Francisco, San Francisco, CA, United States of America
| | - Sanjay Patel
- Royal Prince Alfred Hospital, Sydney, Australia
- Heart Research Institute, Sydney, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Kwok Leung Ong
- School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | | |
Collapse
|
26
|
Patel VK, Williams H, Li SCH, Fletcher JP, Medbury HJ. Monocyte Subset Recruitment Marker Profile Is Inversely Associated With Blood ApoA1 Levels. Front Immunol 2021; 12:616305. [PMID: 33717107 PMCID: PMC7952433 DOI: 10.3389/fimmu.2021.616305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/12/2021] [Indexed: 12/30/2022] Open
Abstract
Dyslipidemia promotes development of the atherosclerotic plaques that characterise cardiovascular disease. Plaque progression requires the influx of monocytes into the vessel wall, but whether dyslipidemia is associated with an increased potential of monocytes to extravasate is largely unknown. Here (using flow cytometry) we examined recruitment marker expression on monocytes from generally healthy individuals who differed in lipid profile. Comparisons were made between monocyte subsets, participants and relative to participants’ lipid levels. Monocyte subsets differed significantly in their expression of recruitment markers, with highest expression being on either the classical or non-classical subsets. However, these inter-subset differences were largely overshadowed by considerable inter-participant differences with some participants having higher levels of recruitment markers on all three monocyte subsets. Furthermore, when the expression of one recruitment marker was high, so too was that of most of the other markers, with substantial correlations evident between the markers. The inter-participant differences were explained by lipid levels. Most notably, there was a significant inverse correlation for most markers with ApoA1 levels. Our results indicate that dyslipidemia, in particular low levels of ApoA1, is associated with an increased potential of all monocyte subsets to extravasate, and to do so using a wider repertoire of recruitment markers than currently appreciated.
Collapse
Affiliation(s)
- Vyoma K Patel
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW, Australia.,The University of Sydney, Westmead Clinical School, Westmead, NSW, Australia
| | - Helen Williams
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW, Australia.,The University of Sydney, Westmead Clinical School, Westmead, NSW, Australia
| | - Stephen C H Li
- Western Sydney University, Blacktown/Mt Druitt Clinical School, Blacktown Hospital, Blacktown, NSW, Australia.,Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - John P Fletcher
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW, Australia.,The University of Sydney, Westmead Clinical School, Westmead, NSW, Australia
| | - Heather J Medbury
- Vascular Biology Research Centre, Department of Surgery, Westmead Hospital, Westmead, NSW, Australia.,The University of Sydney, Westmead Clinical School, Westmead, NSW, Australia
| |
Collapse
|
27
|
Yildirim Simsir I, Donmez A, Kabaroglu C, Yavasoglu I, Basol G, Gungor A, Comert Ozkan M, Saygili F, Bolaman Z, Tombuloglu M. The effect of serum lipid levels on peripheral blood hematopoietic stem cell levels. Transfus Apher Sci 2021; 60:103074. [PMID: 33574011 DOI: 10.1016/j.transci.2021.103074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/28/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION There are limited numbers of available retrospective studies on various hematological diseases treated with stem cell mobilization therapy. In the present study, we aimed to demonstrate the effects of serum lipid levels on peripheral blood CD34+ (PBCD34+) cell counts as well as the changes in serum lipid levels during stem cell mobilization process. METHOD PBCD34+ cell counts were compared between hypercholesterolemic patients and healthy individuals. Additionally, total cholesterol (TChol), LDL-cholesterol (LDL-C), HDL-cholesterol (HDL-C), and triglyceride (TG) levels were measured from healthy donors who underwent stem cell mobilization, at different time points (prior to filgrastim [phase 1], prior to apheresis [phase II], and the first week following apheresis [phase III]. RESULTS In the hypercholesterolemia group, the PBCD34+ cell count was found to be higher among patients with elevated LDL-C (2.6 ± 0.35/μL vs. 1.7 ± 0.17/μL, p = 0.003) and TChol (2.6 ± 0.34/μL vs. 1.7 ± 0.14/μL, p = 0.006) in comparison to the healthy controls. In the mobilization group, phase II HDL-C levels (35.3 ± 2.8 mg/dL) were found to be lower than both phase I (45.6 ± 2.1 mg/dL) and phase III (44.5 ± 2.6 mg/dL) (p = 0.007). Phase II TChol levels (183.5 ± 10.0 mg/dL) were lower than both phase I (216.8 ± 8.5 mg/dL) and phase III (212.2 ± 8.4 mg/dL) (p = 0.02). At phase II, there was an inverse correlation between PBCD34+ cell count and HDL-C (r = - 0.57, p = 0.003). DISCUSSION Our results indicate that, while increased LDL-C level is the determinant of baseline PBCD34+ cell count, reduced HDL-C is the determinant of PBCD34+ cell count during mobilization process.
Collapse
Affiliation(s)
- Ilgin Yildirim Simsir
- Ege University Medical Faculty, Division of Endocrinology and Metabolism Disorders, Izmir, 35100, Turkey.
| | - Ayhan Donmez
- Ege University Medical Faculty, Division of Hematology, Izmir, Turkey
| | - Ceyda Kabaroglu
- Ege University Medical Faculty, Division of Clinical Biochemistry, Izmir, Turkey
| | - Irfan Yavasoglu
- Adnan Menderes University Medical Faculty, Division of Hematology, Aydin, Turkey
| | - Gunes Basol
- Ege University Medical Faculty, Division of Clinical Biochemistry, Izmir, Turkey
| | - Ayşe Gungor
- Ege University Medical Faculty, Division of Hematology, Izmir, Turkey
| | | | - Fusun Saygili
- Ege University Medical Faculty, Division of Endocrinology and Metabolism Disorders, Izmir, 35100, Turkey
| | - Zahit Bolaman
- Adnan Menderes University Medical Faculty, Division of Hematology, Aydin, Turkey
| | - Murat Tombuloglu
- Ege University Medical Faculty, Division of Hematology, Izmir, Turkey
| |
Collapse
|
28
|
Chen SY, Chen YZ, Lee YJ, Jiang CL, Lu SC, Lin FJ. Maternal hypercholesterolemia exacerbates atherosclerosis lesions in female offspring through potentiating macrophage polarization toward an inflammatory M1 phenotype. J Nutr Biochem 2020; 90:108575. [PMID: 33387610 DOI: 10.1016/j.jnutbio.2020.108575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Maternal hypercholesterolemia induces early onset of cardiovascular diseases in offspring; however, its underlying mechanism remains poorly understood. We hypothesized that maternal hypercholesterolemia increases offspring susceptibility to atherosclerosis in adulthood through developmental modifications of macrophages. Female apolipoprotein E (ApoE)-deficient mice were fed a Western-type diet (WD) or a control diet (CD) prior to and throughout gestation and lactation. The offspring were all fed a WD after weaning. Sixteen-week-old female offspring of WD-fed dams showed a significant increase in atherosclerotic lesions of the aorta and aortic root compared with those of CD-fed dams. This effect was associated with increased macrophage accumulation within lesions, macrophage inflammation and an increase in circulating Ly6Chigh monocyte and F4/80 macrophage counts. We further evidenced that in utero WD exposure promoted macrophage polarization toward the M1 phenotype by elevating M1 markers (Cd86, Inos/Nos2) without affecting M2 markers (Cd206, Arg1). Proinflammatory cytokine synthesis was also enhanced in response to LPS. Finally, maternal WD intake strongly inhibited the macrophage expression of Pparg and Lxra, which was associated with aberrant DNA methylation of Lxra promoter. Our findings demonstrate that maternal hypercholesterolemia exacerbates atherosclerosis, in part by altering the epigenetic state of the macrophage genome of the offspring, imprinting gene expression, and changing macrophage polarization, which ultimately contributes to plaque macrophage burden.
Collapse
Affiliation(s)
- Sin-Yu Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Zhen Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Jing Lee
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Lu
- Department of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan; Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
29
|
Mincham KT, Jones AC, Bodinier M, Scott NM, Lauzon-Joset JF, Stumbles PA, Bosco A, Holt PG, Strickland DH. Transplacental Innate Immune Training via Maternal Microbial Exposure: Role of XBP1-ERN1 Axis in Dendritic Cell Precursor Programming. Front Immunol 2020; 11:601494. [PMID: 33424847 PMCID: PMC7793790 DOI: 10.3389/fimmu.2020.601494] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
We recently reported that offspring of mice treated during pregnancy with the microbial-derived immunomodulator OM-85 manifest striking resistance to allergic airways inflammation, and localized the potential treatment target to fetal conventional dendritic cell (cDC) progenitors. Here, we profile maternal OM-85 treatment-associated transcriptomic signatures in fetal bone marrow, and identify a series of immunometabolic pathways which provide essential metabolites for accelerated myelopoiesis. Additionally, the cDC progenitor compartment displayed treatment-associated activation of the XBP1-ERN1 signalling axis which has been shown to be crucial for tissue survival of cDC, particularly within the lungs. Our forerunner studies indicate uniquely rapid turnover of airway mucosal cDCs at baseline, with further large-scale upregulation of population dynamics during aeroallergen and/or pathogen challenge. We suggest that enhanced capacity for XBP1-ERN1-dependent cDC survival within the airway mucosal tissue microenvironment may be a crucial element of OM-85-mediated transplacental innate immune training which results in postnatal resistance to airway inflammatory disease.
Collapse
Affiliation(s)
- Kyle T. Mincham
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anya C. Jones
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Marie Bodinier
- INRA Pays de la Loire, UR 1268 Biopolymers Interactions Assemblies (BIA) Nantes, Nantes, France
| | - Naomi M. Scott
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Jean-Francois Lauzon-Joset
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Centre de recherche de I‘Institut de Cardiologie et de Pneumologie de Québec, Université, Laval, QC, Canada
| | - Philip A. Stumbles
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Patrick G. Holt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
30
|
Tang Y, Liu W, Wang W, Fidler T, Woods B, Levine RL, Tall AR, Wang N. Inhibition of JAK2 Suppresses Myelopoiesis and Atherosclerosis in Apoe -/- Mice. Cardiovasc Drugs Ther 2020; 34:145-152. [PMID: 32086626 PMCID: PMC7125070 DOI: 10.1007/s10557-020-06943-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Increased myelopoiesis has been linked to risk of atherosclerotic cardiovascular disease (ACD). Excessive myelopoiesis can be driven by dyslipidemia and cholesterol accumulation in hematopoietic stem and progenitor cells (HSPC) and may involve increased signaling via Janus kinase 2 (JAK2). Constitutively activating JAK2 mutants drive biased myelopoiesis and promote development of myeloproliferative neoplasms (MPN) or clonal hematopoiesis, conditions associated with increased risk of ACD. JAK2 inhibitors have been developed as a therapy for MPNs. The potential for JAK2 inhibitors to protect against atherosclerosis has not been tested. We therefore assessed the impact of JAK2 inhibition on atherogenesis. METHODS A selective JAK2 inhibitor TG101348 (fedratinib) or vehicle was given to high-fat high-cholesterol Western diet (WD)-fed wild-type (WT) or Apoe-/- mice. Hematopoietic cell profiles, cell proliferation, and atherosclerosis in WT or Apoe-/- mice were assessed. RESULTS TG101348 selectively reversed neutrophilia, monocytosis, HSPC, and granulocyte-macrophage progenitor (GMP) expansion in Apoe-/- mice with decreased cellular phosphorylated STAT5 and ERK1/2 and reduced cell cycling and BrdU incorporation in HSPCs, indicating inhibition of JAK/STAT signaling and cell proliferation. Ten-week WD feeding allowed the development of marked aortic atherosclerosis in Apoe-/- mice which was substantially reduced by TG101348. CONCLUSIONS Selective JAK2 inhibition reduces atherogenesis by suppressing excessive myelopoiesis in hypercholesterolemic Apoe-/- mice. These findings suggest selective JAK2 inhibition as a potential therapeutic approach to decrease ACD risk in patients with increased myelopoiesis and leukocytosis.
Collapse
Affiliation(s)
- Yang Tang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA.,Department of Hematology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Wenli Liu
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Wei Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Trevor Fidler
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Britany Woods
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University Medical Center, 630 W. 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
31
|
Aguilar-Ballester M, Herrero-Cervera A, Vinué Á, Martínez-Hervás S, González-Navarro H. Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis. Nutrients 2020; 12:nu12072021. [PMID: 32645995 PMCID: PMC7400846 DOI: 10.3390/nu12072021] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Cholesterol, the most important sterol in mammals, helps maintain plasma membrane fluidity and is a precursor of bile acids, oxysterols, and steroid hormones. Cholesterol in the body is obtained from the diet or can be de novo synthetized. Cholesterol homeostasis is mainly regulated by the liver, where cholesterol is packed in lipoproteins for transport through a tightly regulated process. Changes in circulating lipoprotein cholesterol levels lead to atherosclerosis development, which is initiated by an accumulation of modified lipoproteins in the subendothelial space; this induces significant changes in immune cell differentiation and function. Beyond lesions, cholesterol levels also play important roles in immune cells such as monocyte priming, neutrophil activation, hematopoietic stem cell mobilization, and enhanced T cell production. In addition, changes in cholesterol intracellular metabolic enzymes or transporters in immune cells affect their signaling and phenotype differentiation, which can impact on atherosclerosis development. In this review, we describe the main regulatory pathways and mechanisms of cholesterol metabolism and how these affect immune cell generation, proliferation, activation, and signaling in the context of atherosclerosis.
Collapse
Affiliation(s)
- María Aguilar-Ballester
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Andrea Herrero-Cervera
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Ángela Vinué
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Sergio Martínez-Hervás
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- Endocrinology and Nutrition Department Clinic Hospital and Department of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Herminia González-Navarro
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Didactics of Experimental and Social Sciences, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963864403; Fax: +34-963987860
| |
Collapse
|
32
|
Morgan PK, Fang L, Lancaster GI, Murphy AJ. Hematopoiesis is regulated by cholesterol efflux pathways and lipid rafts: connections with cardiovascular diseases. J Lipid Res 2020; 61:667-675. [PMID: 31471447 PMCID: PMC7193969 DOI: 10.1194/jlr.tr119000267] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lipid rafts are highly ordered regions of the plasma membrane that are enriched in cholesterol and sphingolipids and play important roles in many cells. In hematopoietic stem and progenitor cells (HSPCs), lipid rafts house receptors critical for normal hematopoiesis. Lipid rafts also can bind and sequester kinases that induce negative feedback pathways to limit proliferative cytokine receptor cycling back to the cell membrane. Modulation of lipid rafts occurs through an array of mechanisms, with optimal cholesterol efflux one of the major regulators. As such, cholesterol homeostasis also regulates hematopoiesis. Increased lipid raft content, which occurs in response to changes in cholesterol efflux in the membrane, can result in prolonged receptor occupancy in the cell membrane and enhanced signaling. In addition, certain diseases, like diabetes, may contribute to lipid raft formation and affect cholesterol retention in rafts. In this review, we explore the role of lipid raft-related mechanisms in hematopoiesis and CVD (specifically, atherosclerosis) and discuss how defective cholesterol efflux pathways in HSPCs contribute to expansion of lipid rafts, thereby promoting myelopoiesis and thrombopoiesis. We also discuss the utility of cholesterol acceptors in contributing to lipid raft regulation and disruption, and highlight the potential to manipulate these pathways for therapeutic gain in CVD as well as other disorders with aberrant hematopoiesis.jlr;61/5/667/F1F1f1.
Collapse
Affiliation(s)
- Pooranee K Morgan
- Division of Immunometabolism,Baker Heart and Diabetes Institute, Melbourne, Australia; School of Life Sciences,La Trobe University, Bundoora, Australia
| | - Longhou Fang
- Center for Cardiovascular Regeneration,Houston Methodist, Houston, TX
| | - Graeme I Lancaster
- Division of Immunometabolism,Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Andrew J Murphy
- Division of Immunometabolism,Baker Heart and Diabetes Institute, Melbourne, Australia; School of Life Sciences,La Trobe University, Bundoora, Australia
| |
Collapse
|
33
|
Kim S, Subramanian V, Abdel-Latif A, Lee S. Role of Heparin-Binding Epidermal Growth Factor-Like Growth Factor in Oxidative Stress-Associated Metabolic Diseases. Metab Syndr Relat Disord 2020; 18:186-196. [PMID: 32077785 DOI: 10.1089/met.2019.0120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heparin-binding EGF-like growth factor (HB-EGF) is an EGF family member that interacts with epidermal growth factor receptor (EGFR) and ERBB4. Since HB-EGF was first identified as a novel growth factor secreted from a human macrophage cell line, numerous pathological and physiological functions related to cell proliferation, migration, and inflammation have been reported. Notably, the expression of HB-EGF is sensitively upregulated by oxidative stress in the endothelial cells and functions for auto- and paracrine-EGFR signaling. Overnutrition and obesity cause elevation of HB-EGF expression and EGFR signaling in the hepatic and vascular systems. Modulations of HB-EGF signaling showed a series of protections against phenotypes related to metabolic syndrome and advanced metabolic diseases, suggesting HB-EGF as a potential target against metabolic diseases.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Ahmed Abdel-Latif
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Medicine-Cardiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Sangderk Lee
- Saha Cardiovascular Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
34
|
Amorós-Pérez M, Fuster JJ. Clonal hematopoiesis driven by somatic mutations: A new player in atherosclerotic cardiovascular disease. Atherosclerosis 2020; 297:120-126. [PMID: 32109665 DOI: 10.1016/j.atherosclerosis.2020.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
The accumulation of acquired mutations is an inevitable consequence of the aging process, but its pathophysiological relevance has remained largely unexplored beyond cancer. Most of these mutations have little or no functional consequences, but in a few rare instances, a mutation may arise that confers a competitive advantage to a stem cell, leading to its clonal expansion. When such a mutation occurs in hematopoietic stem cells, it leads to a situation of clonal hematopoiesis, which has the potential to affect multiple tissues beyond the bone marrow, as the clonal expansion of the mutant stem cell is extended to circulating blood cells and tissue-infiltrating immune cells. Recent genomics and experimental studies have provided support to the notion that this somatic mutation-driven clonal hematopoiesis contributes to vascular inflammation and the development of atherosclerosis and related cardiovascular and cerebrovascular ischemic events. Here, we review our current understanding of this emerging cardiovascular risk modifier and the mechanisms underlying its connection to atherosclerosis development.
Collapse
Affiliation(s)
- Marta Amorós-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
35
|
Pardali E, Dimmeler S, Zeiher AM, Rieger MA. Clonal hematopoiesis, aging, and cardiovascular diseases. Exp Hematol 2019; 83:95-104. [PMID: 31891750 DOI: 10.1016/j.exphem.2019.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/09/2019] [Accepted: 12/25/2019] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. Many studies have provided evidence that both genetic and environmental factors induce atherosclerosis, leading thus to cardiovascular complications. Atherosclerosis is an inflammatory disease, and aging is strongly associated with the development of atherosclerosis. Recent experimental evidence suggests that clonal hematopoiesis (CH) is an emerging cardiovascular risk factor that contributes to the development of atherosclerosis and cardiac dysfunction and exacerbates cardiovascular diseases. CH is caused by somatic mutations in recurrent genes in hematopoietic stem cells, leading to the clonal expansion of mutated blood cell clones. Many of the mutated genes are known in the context of myeloid neoplasms. However, only some individuals carrying CH mutations develop hematologic abnormalities. CH is clearly age dependent and is not rare: at least 10%-20% of people >70 years old carry CH. The newly discovered association between myeloid leukemia-driver mutations and the progression of CVDs has raised medical interest. In this review, we summarize the current view on the contribution of CH in different cardiovascular diseases, CVD risk assessment, patient stratification, and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Evangelia Pardali
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Andreas M Zeiher
- Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Berlin, Germany; Department of Medicine, Cardiology, Goethe University Hospital, Frankfurt, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, Frankfurt, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute, Frankfurt, Germany.
| |
Collapse
|
36
|
Pernes G, Flynn MC, Lancaster GI, Murphy AJ. Fat for fuel: lipid metabolism in haematopoiesis. Clin Transl Immunology 2019; 8:e1098. [PMID: 31890207 PMCID: PMC6928762 DOI: 10.1002/cti2.1098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
The importance of metabolic regulation in the immune system has launched back into the limelight in recent years. Various metabolic pathways have been examined in the context of their contribution to maintaining immune cell homeostasis and function. Moreover, this regulation is also important in the immune cell precursors, where metabolism controls their maintenance and cell fate. This review will discuss lipid metabolism in the context of haematopoiesis, that is blood cell development. We specifically focus on nonoxidative lipid metabolism which encapsulates the synthesis and degradation of the major lipid classes such as phospholipids, sphingolipids and sterols. We will also discuss how these metabolic processes are affected by haematological malignancies such as leukaemia and lymphoma, which are known to have altered metabolism, and how these different pathways contribute to the pathology.
Collapse
Affiliation(s)
- Gerard Pernes
- Haematopoiesis and Leukocyte Biology Baker Heart and Diabetes Institute Melbourne VIC Australia.,Department of Immunology Monash University Melbourne VIC Australia
| | - Michelle C Flynn
- Haematopoiesis and Leukocyte Biology Baker Heart and Diabetes Institute Melbourne VIC Australia.,Department of Immunology Monash University Melbourne VIC Australia
| | - Graeme I Lancaster
- Haematopoiesis and Leukocyte Biology Baker Heart and Diabetes Institute Melbourne VIC Australia.,Department of Immunology Monash University Melbourne VIC Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology Baker Heart and Diabetes Institute Melbourne VIC Australia.,Department of Immunology Monash University Melbourne VIC Australia
| |
Collapse
|
37
|
The association of plasma lipids with white blood cell counts: Results from the Multi-Ethnic Study of Atherosclerosis. J Clin Lipidol 2019; 13:812-820. [DOI: 10.1016/j.jacl.2019.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 02/06/2023]
|
38
|
Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, Schultze JL. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front Immunol 2019; 10:2035. [PMID: 31543877 PMCID: PMC6728754 DOI: 10.3389/fimmu.2019.02035] [Citation(s) in RCA: 506] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Human monocytes are divided in three major populations; classical (CD14+CD16−), non-classical (CD14dimCD16+), and intermediate (CD14+CD16+). Each of these subsets is distinguished from each other by the expression of distinct surface markers and by their functions in homeostasis and disease. In this review, we discuss the most up-to-date phenotypic classification of human monocytes that has been greatly aided by the application of novel single-cell transcriptomic and mass cytometry technologies. Furthermore, we shed light on the role of these plastic immune cells in already recognized and emerging human chronic diseases, such as obesity, atherosclerosis, chronic obstructive pulmonary disease, lung fibrosis, lung cancer, and Alzheimer's disease. Our aim is to provide an insight into the contribution of human monocytes to the progression of these diseases and highlight their candidacy as potential therapeutic cell targets.
Collapse
Affiliation(s)
- Theodore S Kapellos
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Lorenzo Bonaguro
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Ioanna Gemünd
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Nico Reusch
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany
| | - Adem Saglam
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| | - Emily R Hinkley
- Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and University of Bonn, Bonn, Germany
| |
Collapse
|
39
|
Modulation of Bone and Marrow Niche by Cholesterol. Nutrients 2019; 11:nu11061394. [PMID: 31234305 PMCID: PMC6628005 DOI: 10.3390/nu11061394] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
Bone is a complex tissue composing of mineralized bone, bone cells, hematopoietic cells, marrow adipocytes, and supportive stromal cells. The homeostasis of bone and marrow niche is dynamically regulated by nutrients. The positive correlation between cardiovascular disease and osteoporosis risk suggests a close relationship between hyperlipidemia and/or hypercholesterolemia and the bone metabolism. Cholesterol and its metabolites influence the bone homeostasis through modulating the differentiation and activation of osteoblasts and osteoclasts. The effects of cholesterol on hematopoietic stem cells, including proliferation, migration, and differentiation, are also well-documented and further relate to atherosclerotic lesions. Correlation between circulating cholesterol and bone marrow adipocytes remains elusive, which seems opposite to its effects on osteoblasts. Epidemiological evidence has demonstrated that cholesterol deteriorates or benefits bone metabolism depending on the types, such as low-density lipoprotein (LDL) or high-density lipoprotein (HDL) cholesterol. In this review, we will summarize the latest progress of how cholesterol regulates bone metabolism and bone marrow microenvironment, including the hematopoiesis and marrow adiposity. Elucidation of these association and factors is of great importance in developing therapeutic options for bone related diseases under hypercholesterolemic conditions.
Collapse
|
40
|
Wang HY, Shi WR, Yi X, Zhou YP, Wang ZQ, Sun YX. Assessing the performance of monocyte to high-density lipoprotein ratio for predicting ischemic stroke: insights from a population-based Chinese cohort. Lipids Health Dis 2019; 18:127. [PMID: 31142338 PMCID: PMC6542056 DOI: 10.1186/s12944-019-1076-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background Monocyte to high-density lipoprotein cholesterol ratio (MHR) is a recently emerged measure of inflammation and oxidative stress and has been used to predict multiple cardiovascular abnormalities, but data relative to ischemic stroke are lacking. The goal of this study was to estimate the associations of MHR and prevalent ischemic stroke among a large cohort of general Chinese population. Method The study analyzed 8148 individuals (mean age: 54.1 years; 45.7% males) enrolled in a cross-sectional population-based Northeast China Rural Cardiovascular Health Study (NCRCHS). We identified 194 patients admitted from January and August 2013 with ischemic stroke. Results After adjustment for age, sex, and potential confounders, each standard deviation (SD) increment of MHR was predictive to a greater odd of ischemic stroke (odds ratio, 1.276; 95% confidence interval [CI], 1.082–1.504), with subjects in the highest quartile of MHR levels having a 1.6-fold higher risk of prevalent ischemic stroke (95% CI, 1.045–2.524) as compared with those in the lowest quartile. Moreover, smoothing curve showed a linear positive pattern of this association. The area under the curve (AUC) significantly increased (P = 0.042) to 0.808 (95% CI, 0.779–0.837) when the combined MHR was added to the baseline logistic regression model with ischemic stroke risk factors. Also, MHR (0.004) significantly improved integrated discrimination improvement when added to the baseline model. Conclusions The present study demonstrated for the first time a linear relation between MHR levels and the odds of ischemic stroke in a large community-based population. The MHR, a marker of high atherosclerotic burden, demonstrated incremental predictive value over traditional clinical risk factors, thus providing clinical utility in risk stratification in subjects presenting with ischemic stroke. These findings had implications for strategies aimed at lowering MHR to prevent adverse cardiovascular and cerebrovascular outcomes.
Collapse
Affiliation(s)
- Hao-Yu Wang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, China.,Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Rui Shi
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Xin Yi
- Department of Cardiovascular Medicine, Beijing Huimin Hospital, Beijing, 100054, China
| | - Ya-Ping Zhou
- Department of Neurology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Zhi-Qin Wang
- School of Clinical Medicine, China Medical University, Shenyang, 110122, China
| | - Ying-Xian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
41
|
Porta C, Marino A, Consonni FM, Bleve A, Mola S, Storto M, Riboldi E, Sica A. Metabolic influence on the differentiation of suppressive myeloid cells in cancer. Carcinogenesis 2019; 39:1095-1104. [PMID: 29982315 DOI: 10.1093/carcin/bgy088] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
New evidences indicate that the metabolic instruction of immunity (immune metabolism) results from the integration of cell metabolism and whole-body metabolism, which are both influenced by nutrition, microbiome metabolites and disease-driven metabolism (e.g. cancer metabolism). Cancer metabolism influences the immunological homeostasis and promotes immune alterations that support disease progression, hence influencing the clinical outcome. Cancer cells display increased glucose uptake and fermentation of glucose to lactate, even in the presence of completely functioning mitochondria. A major side effect of this event is immunosuppression, characterized by limited immunogenicity of cancer cells and restriction of the therapeutic efficacy of anticancer immunotherapy. Here, we discuss how the metabolism of myeloid cells associated with cancer contributes to the differentiation of their suppressive phenotype and therefore to cancer immune evasion.
Collapse
Affiliation(s)
- Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Arianna Marino
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | | | - Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Silvia Mola
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Mariangela Storto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Elena Riboldi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara.,Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
42
|
Nitz K, Lacy M, Atzler D. Amino Acids and Their Metabolism in Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39:319-330. [DOI: 10.1161/atvbaha.118.311572] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As a leading cause of death worldwide, cardiovascular disease is a global health concern. The development and progression of atherosclerosis, which ultimately gives rise to cardiovascular disease, has been causally linked to hypercholesterolemia. Mechanistically, the interplay between lipids and the immune system during plaque progression significantly contributes to the chronic inflammation seen in the arterial wall during atherosclerosis. Localized inflammation and increased cell-to-cell interactions may influence polarization and proliferation of immune cells via changes in amino acid metabolism. Specifically, the amino acids
l
-arginine (Arg),
l
-homoarginine (hArg) and
l
-tryptophan (Trp) have been widely studied in the context of cardiovascular disease, and their metabolism has been established as key regulators of vascular homeostasis, as well as immune cell function. Cyclic effects between endothelial cells, innate, and adaptive immune cells exist during Arg and hArg, as well as Trp metabolism, that may have distinct effects on the development of atherosclerosis. In this review, we describe the current knowledge surrounding the metabolism, biological function, and clinical perspective of Arg, hArg, and Trp in the context of atherosclerosis.
Collapse
Affiliation(s)
- Katrin Nitz
- From the Institute for Cardiovascular Prevention (K.N., M.L., D.A.), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.N., M.L., D.A.)
| | - Michael Lacy
- From the Institute for Cardiovascular Prevention (K.N., M.L., D.A.), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.N., M.L., D.A.)
| | - Dorothee Atzler
- From the Institute for Cardiovascular Prevention (K.N., M.L., D.A.), Ludwig-Maximilians-University, Munich, Germany
- Walther Straub Institute of Pharmacology and Toxicology (D.A.), Ludwig-Maximilians-University, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.N., M.L., D.A.)
| |
Collapse
|
43
|
Verhoeven D. Immunometabolism and innate immunity in the context of immunological maturation and respiratory pathogens in young children. J Leukoc Biol 2019; 106:301-308. [DOI: 10.1002/jlb.mr0518-204rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- David Verhoeven
- Department of Veterinary Microbiology and Preventative MedicineIowa State University Ames Iowa USA
| |
Collapse
|
44
|
Oguro H. The Roles of Cholesterol and Its Metabolites in Normal and Malignant Hematopoiesis. Front Endocrinol (Lausanne) 2019; 10:204. [PMID: 31001203 PMCID: PMC6454151 DOI: 10.3389/fendo.2019.00204] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
Hematopoiesis is sustained throughout life by hematopoietic stem cells (HSCs) that are capable of self-renewal and differentiation into hematopoietic progenitor cells (HPCs). There is accumulating evidence that cholesterol homeostasis is an important factor in the regulation of hematopoiesis. Increased cholesterol levels are known to promote proliferation and mobilization of HSCs, while hypercholesterolemia is associated with expansion of myeloid cells in the peripheral blood and links hematopoiesis with cardiovascular disease. Cholesterol is a precursor to steroid hormones, oxysterols, and bile acids. Among steroid hormones, 17β-estradiol (E2) induces HSC division and E2-estrogen receptor α (ERα) signaling causes sexual dimorphism of HSC division rate. Oxysterols are oxygenated derivatives of cholesterol and key substrates for bile acid synthesis and are considered to be bioactive lipids, and recent studies have begun to reveal their important roles in the hematopoietic and immune systems. 27-Hydroxycholesterol (27HC) acts as an endogenous selective estrogen receptor modulator and induces ERα-dependent HSC mobilization and extramedullary hematopoiesis. 7α,25-dihydroxycholesterol (7α,25HC) acts as a ligand for Epstein-Barr virus-induced gene 2 (EBI2) and directs migration of B cells in the spleen during the adaptive immune response. Bile acids serve as chemical chaperones and alleviate endoplasmic reticulum stress in HSCs. Cholesterol metabolism is dysregulated in hematologic malignancies, and statins, which inhibit de novo cholesterol synthesis, have cytotoxic effects in malignant hematopoietic cells. In this review, recent advances in our understanding of the roles of cholesterol and its metabolites as signaling molecules in the regulation of hematopoiesis and hematologic malignancies are summarized.
Collapse
|
45
|
Disordered haematopoiesis and cardiovascular disease: a focus on myelopoiesis. Clin Sci (Lond) 2018; 132:1889-1899. [PMID: 30185612 DOI: 10.1042/cs20180111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/19/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Cardiovascular (CV) diseases (CVD) are primarily caused by atherosclerotic vascular disease. Atherogenesis is mainly driven by recruitment of leucocytes to the arterial wall, where macrophages contribute to both lipid retention as well as the inflammatory milieu within the vessel wall. Consequently, diseases which present with an enhanced abundance of circulating leucocytes, particularly monocytes, have also been documented to accelerate CVD. A host of metabolic and inflammatory diseases, such as obesity, diabetes, hypercholesteraemia, and rheumatoid arthritis (RA), have been shown to alter myelopoiesis to exacerbate atherosclerosis. Genetic evidence has emerged in humans with the discovery of clonal haematopoiesis of indeterminate potential (CHIP), resulting in a disordered haematopoietic system linked to accelerated atherogenesis. CHIP, caused by somatic mutations in haematopoietic stem and progenitor cells (HSPCs), consequently provide a proliferative advantage over native HSPCs and, in the case of Tet2 loss of function mutation, gives rise to inflammatory plaque macrophages (i.e. enhanced interleukin (IL)-1β production). Together with the recent findings of the CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcomes Study) trial that revealed blocking IL-1β using Canakinumab reduced CV events, these studies collectively have highlighted a pivotal role of IL-1β signalling in a population of people with atherosclerotic CVD. This review will explore how haematopoiesis is altered by risk-factors and inflammatory disorders that promote CVD. Further, we will discuss some of the recent genetic evidence of disordered haematopoiesis in relation to CVD though the association with CHIP and suggest that future studies should explore what initiates HSPC mutations, as well as how current anti-inflammatory agents affect CHIP-driven atherosclerosis.
Collapse
|
46
|
Beyond the Foam Cell: The Role of LXRs in Preventing Atherogenesis. Int J Mol Sci 2018; 19:ijms19082307. [PMID: 30087224 PMCID: PMC6121590 DOI: 10.3390/ijms19082307] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic condition associated with cardiovascular disease. While largely identified by the accumulation of lipid-laden foam cells within the aorta later on in life, atherosclerosis develops over several stages and decades. During atherogenesis, various cell types of the aorta acquire a pro-inflammatory phenotype that initiates the cascade of signaling events facilitating the formation of these foam cells. The liver X receptors (LXRs) are nuclear receptors that upon activation induce the expression of transporters responsible for promoting cholesterol efflux. In addition to promoting cholesterol removal from the arterial wall, LXRs have potent anti-inflammatory actions via the transcriptional repression of key pro-inflammatory cytokines. These beneficial functions sparked an interest in the potential to target LXRs and the development of agonists as anti-atherogenic agents. These early studies focused on mediating the contributions of macrophages to the underlying pathogenesis. However, further evidence has since demonstrated that LXRs reduce atherosclerosis through their actions in multiple cell types apart from those monocytes/macrophages that infiltrate the lesion. LXRs and their target genes have profound effects on multiple other cells types of the hematopoietic system. Furthermore, LXRs can also mediate dysfunction within vascular cell types of the aorta including endothelial and smooth muscle cells. Taken together, these studies demonstrate the whole-body benefits of LXR activation with respect to anti-atherogenesis, and that LXRs remain a viable target for the treatment of atherosclerosis, with a reach which extends beyond plaque macrophages.
Collapse
|
47
|
Shen Y, Wang C, Ren Y, Ye J. A comprehensive look at the role of hyperlipidemia in promoting colorectal cancer liver metastasis. J Cancer 2018; 9:2981-2986. [PMID: 30123367 PMCID: PMC6096362 DOI: 10.7150/jca.25640] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most malignant cancers, and it tends to migrate to the liver and has a high mortality rate. Several mechanisms behind the metastasis of CRC have been identified, including hyperlipidemia. For example, hyperlipidemia can lead to enhanced stemness and neutrophil infiltration, which increases CRC metastasis. There are three primary aspects to the relationship between hyperlipidemia and CRC metastasis: hyperlipidemia (1) promotes the initial metastatic properties of CRC, (2) stimulates CRC cells to leave the vasculature, and (3) facilitates the development of CRC metastasis. In this study, we provide a comprehensive overview of the role that hyperlipidemia played in CRC metastasis to help reduce the mortality associated with CRC metastasis from the standpoint of metabolic. We also review cancer metastasis.
Collapse
Affiliation(s)
- Yimin Shen
- 1 Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Caihua Wang
- 2 Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuezhong Ren
- 1 Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jun Ye
- 2 Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
48
|
Burke AC, Sutherland BG, Telford DE, Morrow MR, Sawyez CG, Edwards JY, Drangova M, Huff MW. Intervention with citrus flavonoids reverses obesity and improves metabolic syndrome and atherosclerosis in obese Ldlr-/- mice. J Lipid Res 2018; 59:1714-1728. [PMID: 30008441 DOI: 10.1194/jlr.m087387] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Obesity and its associated metabolic dysfunction and cardiovascular disease risk represent a leading cause of adult morbidity worldwide. Currently available pharmacological therapies for obesity have had limited success in reversing existing obesity and metabolic dysregulation. Previous prevention studies demonstrated that the citrus flavonoids, naringenin and nobiletin, protect against obesity and metabolic dysfunction in Ldlr-/- mice fed a high-fat cholesterol-containing (HFHC) diet. However, their effects in an intervention model are unknown. In this report, we show that, in Ldlr-/- mice with diet-induced obesity, citrus flavonoid supplementation to a HFHC diet reversed existing obesity and adipocyte size and number through enhanced energy expenditure and increased hepatic fatty acid oxidation. Caloric intake was unaffected and no evidence of white adipose tissue browning was observed. Reversal of adiposity was accompanied by improvements in hyperlipidemia, insulin sensitivity, hepatic steatosis, and a modest reduction in blood monocytes. Together, this resulted in atherosclerotic lesions that were unchanged in size, but characterized by reduced macrophage content, consistent with a more stable plaque phenotype. These studies further suggest potential therapeutic utility of citrus flavonoids, especially in the context of existing obesity, metabolic dysfunction, and cardiovascular disease.
Collapse
Affiliation(s)
- Amy C Burke
- Molecular Medicine University of Western Ontario, London, Ontario, Canada N6A 5B7; Robarts Research Institute, Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Brian G Sutherland
- Molecular Medicine University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Dawn E Telford
- Molecular Medicine University of Western Ontario, London, Ontario, Canada N6A 5B7; Medicine, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Marisa R Morrow
- Molecular Medicine University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Cynthia G Sawyez
- Molecular Medicine University of Western Ontario, London, Ontario, Canada N6A 5B7; Medicine, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Jane Y Edwards
- Molecular Medicine University of Western Ontario, London, Ontario, Canada N6A 5B7; Medicine, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Maria Drangova
- Imaging Research Laboratories, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Murray W Huff
- Molecular Medicine University of Western Ontario, London, Ontario, Canada N6A 5B7; Robarts Research Institute, Departments of Biochemistry University of Western Ontario, London, Ontario, Canada N6A 5B7; Medicine, University of Western Ontario, London, Ontario, Canada N6A 5B7.
| |
Collapse
|
49
|
Nagareddy PR, Noothi SK, Flynn MC, Murphy AJ. It's reticulated: the liver at the heart of atherosclerosis. J Endocrinol 2018; 238:R1-R11. [PMID: 29720539 PMCID: PMC7065032 DOI: 10.1530/joe-18-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022]
Abstract
Platelets play a critical role in both the initiation and progression of atherosclerosis, and even more so in the ensuing atherothrombotic complications. Low-dose aspirin remains the mainstay of antiplatelet therapy in high-risk patients by reducing the risk of myocardial ischemia, stroke or death due to cardiovascular disease. However, antiplatelet therapies lose their efficacy in people with diabetes mellitus, increasing the risk of future atherothrombotic events. The molecular mechanisms that promote platelet hyperactivity remain unclear but could be due to glycation-induced conformational changes of platelet membranes resulting in impaired aspirin entry or less-efficient acetylation/compensatory increase in COX-2 expression in newborn platelets. Emerging evidence from our laboratory and elsewhere suggest that enhanced platelet turnover (thrombopoiesis), particularly the production of immature reticulated platelets from the bone marrow, could contribute to atherosclerotic complications. We have identified a major role for neutrophil-derived S100A8/A9, a damage-associated molecular pattern, in driving reticulated thrombopoiesis by directly interacting with its receptors on Kupffer cells in the liver. In this review, we discuss the role of hepatic inflammation in driving reticulated platelet production and suggest potential targets to control their production, improve efficacy of current antiplatelet therapies and reduce the risk of atherothrombotic complications.
Collapse
Affiliation(s)
| | - Sunil K Noothi
- Department of Nutrition SciencesUniversity of Alabama, Birmingham, UK
| | - Michelle C Flynn
- Division of ImmunometabolismBaker Heart and Diabetes Institute, Melbourne, Australia
- Department of ImmunologyMonash University, Melbourne, Australia
| | - Andrew J Murphy
- Division of ImmunometabolismBaker Heart and Diabetes Institute, Melbourne, Australia
- Department of ImmunologyMonash University, Melbourne, Australia
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Leukocytosis, elevated blood leukocyte levels, is associated with enhanced cardiovascular risk in humans. Hematopoietic stem and progenitor cells (HSPCs) drive leukocyte production in a process called hematopoiesis, which mainly occurs in the bone marrow, and under certain conditions also in other organs such as the spleen. Cholesterol accumulation in HSPCs enhances hematopoiesis, increasing levels of blood monocytes that infiltrate into atherosclerotic plaques. Although HSPC proliferation and monocytosis enhance atherogenesis in several studies, concomitant decreases in LDL-cholesterol levels have also been reported, associated with anti-atherogenic effects. This review focuses on the link between HSPC proliferation, leukocytosis, plasma LDL-cholesterol levels, and atherogenesis. RECENT FINDINGS Recent studies have shown that an acute infection enhances cholesterol accumulation in HSPCs, driving HSPC proliferation, and leading to the expansion of myeloid cells (monocytes, neutrophils, and macrophages). Enhanced hematopoiesis is associated with low plasma LDL-cholesterol levels in animal models and humans, probably because of the increased number of myeloid cells that take up LDL-cholesterol. Despite low-plasma LDL-cholesterol levels, specific patient populations with enhanced hematopoiesis show increased cardiovascular risk. SUMMARY Enhanced hematopoiesis and monocytosis may accelerate atherogenesis. Studies on these processes may lead to the identification of new therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Venetia Bazioti
- Section of Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|