1
|
Fan Z, Gan Y, Hu Y. The potential utilization of platelet-derived extracellular vesicles in clinical treatment. Platelets 2024; 35:2397592. [PMID: 39287127 DOI: 10.1080/09537104.2024.2397592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024]
Abstract
Platelet-derived extracellular vesicles (PEVs) are released by platelets in the blood circulation, which carry a rich bio-molecular cargo influential in intercellular communications. PEVs can enter the lymph, bone marrow, and synovial fluid as nano-sized particles, while platelets cannot cross tissue barriers. Considering the advantages of PEVs such as low immunogenicity, high regulation of signal transduction, and easy obtainment, PEVs may be promising therapeutic tools for medical applications. The exceptional functional roles played by PEVs explain the recent interest in exploring new cell-free therapies that could address needs in angiogenesis, regenerative medicine, and targeted drug delivery. The review takes a critical look at the main advances of PEVs in the treatment of diseases by presenting the latest knowledge from the performed studies, in order to enhance the further translation of the PEVs research into feasible therapeutic applications.
Collapse
Affiliation(s)
- Zhijia Fan
- Department of Laboratory Medicine, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, PR China
| | - Yixiao Gan
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yanwei Hu
- Department of Laboratory Medicine, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, PR China
| |
Collapse
|
2
|
Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, Azadfallah A, Mahdizade Ari M, Hemmati M, Darban M, Alavi Toosi P, Banihashemian SZ. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm 2024; 2024:5830491. [PMID: 38445291 PMCID: PMC10914434 DOI: 10.1155/2024/5830491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Atherosclerosis is a leading cause of death in the world. A significant body of evidence suggests that inflammation and various players are implicated and have pivotal roles in the formation of atherosclerotic plaques. Toll-like receptor 4 (TLR4) is linked with different stages of atherosclerosis. This receptor is highly expressed in the endothelial cells (ECs) and atherosclerotic plaques. TLR4 activation can lead to the production of inflammatory cytokines and related responses. Lectin-like oxidized low-density lipoprotein-1 (LOX-1), an integral membrane glycoprotein with widespread expression on the ECs, is involved in atherosclerosis and has some common pathways with TLR4 in atherosclerotic lesions. In addition, proprotein convertase subtilisin/kexin type9 (PCSK9), which is a regulatory enzyme with different roles in cholesterol uptake, is implicated in atherosclerosis. At present, TLR4, PCSK9, and LOX-1 are increasingly acknowledged as key players in the pathogenesis of atherosclerotic cardiovascular diseases. Herein, we presented the current evidence on the structure, functions, and roles of TLR4, PCSK9, and LOX-1 in atherosclerosis.
Collapse
Affiliation(s)
- Bahador Bagheri
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Ahmad Nouri
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Azadfallah
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahyar Mahdizade Ari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maral Hemmati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Darban
- Department of Internal Medicine, Kowsar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Alavi Toosi
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
3
|
Feng Y, Dai L, Zhang Y, Sun S, Cong S, Ling S, Zhang H. Buyang Huanwu Decoction alleviates blood stasis, platelet activation, and inflammation and regulates the HMGB1/NF-κB pathway in rats with pulmonary fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117088. [PMID: 37652195 DOI: 10.1016/j.jep.2023.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qi deficiency and blood stasis are identified to be pathological factors of pulmonary fibrosis (PF) in traditional Chinese medicine (TCM) theory. Buyang Huanwu Decoction (BYHWD) is a traditional Chinese prescription ameliorating Qi deficiency and blood stasis. AIM OF THE STUDY The objective of this study was to investigate the anti-fibrosis effect of BYHWD and the potential molecular mechanism in rats. MATERIALS AND METHODS Bleomycin was used to construct PF rat models. 27 PF rats were randomly divided into three groups based on treatments: model group (saline solution, n = 9), low-dose BYHWD group (3.5 g/kg, n = 9), and high-dose BYHWD group (14.0 g/kg, n = 9). Moreover, 9 normal rats were used as the blank group. The blood viscosity, coagulation indexes (APTT, TT, PT, and FIB), platelet-related parameters (PLT, PDW, MPV, PCT, and PLCR), platelet microparticles (PMPs), and inflammatory factors (IL-2, IL-10, IL-1β, IL-6, IL-8, IL-17, IFN-γ, TNF-α, PAC-1, HMGB1, NF-κB, and TF) were determined. The lung tissue samples of rats were observed after hematoxylin-eosin (HE) staining. The full component analysis of the BYHWD extract was performed using the ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The signaling pathway included into the study was selected on the basis of bioinformatics analysis and the results of the phytochemical analysis. The expression levels of genes and proteins involved in the selected signaling pathway were detected. RESULTS Compared to the blank group, the whole blood viscosity, PLR, PDW, MPV, PCT, PLCR, PMPs, and the levels of IL-1β, IL-6, IL-8, IL-17, TNF-α, PAC-1, HMGB1, NF-κB, and TF were increased, while the levels of IL-2 and IL-10 were decreased in the model group. Both low-dose BYHWD and high-dose BYHWD reversed these PF-induced effects in spite of the fact that low-dose BYHWD had no significant effect on the level of NF-κB. In addition, BYHWD ameliorated PF-induced inflammation in the rat lung tissue. The phytochemical analysis of the BYHWD extract combined with the bioinformatics analysis suggested that the therapeutical effect of BYHWD on PF was related to the HMGB1/NF-κB pathway, which consisted of NF-κB, IKBKB, ICAM1, VCAM1, HMGB1, and TLR4. Both RT-qPCR and western blot analyses showed that PF induced increases in the expression levels of NF-κB, ICAM1, VCAM1, HMGB1, and TLR4, but a decrease in the expression level of IKBKB. Moreover, both low-dose BYHWD and high-dose BYHWD exerted the opposite effects, and recovered the expression levels of NF-κB, ICAM1, VCAM1, HMGB1, TLR4, and IKBKB, despite the fact that low-dose BYHWD had no effects on the mRNA expression levels of NF-κB or TLR4. CONCLUSIONS In summary, BYHWD alleviated PF-induced blood stasis, platelet activation, and inflammation in the rats. Our study suggested BYHWD had a therapeutic effect on PF and was a good alternative for the complementary therapy of PF, and the potential molecular mechanism was modulation of HMGB1/NF-κB signaling pathway, and it needs further study.
Collapse
Affiliation(s)
- Yuenan Feng
- Experimental Training Center, Heilongjiang University of Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Linfeng Dai
- Xiangfang District:Department of Pharmacy, Heilongjiang Provincial Hospital, No.82 Zhongshan Road, Xiangfang District, Harbin, 150036, Heilongjiang Province, China.
| | - Yanli Zhang
- Experimental Training Center, Heilongjiang University of Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Simiao Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No.24 Heping Road, Xiangfang District, Harbin, 150040, Heilongjiang Province, China.
| | - Shan Cong
- Department of Pharmacy, The Second Affiliated Hospital of Qiqihar Medical University, No.64 Zhonghua West Road, Jianhua District, Qiqihar, 161006, Heilongjiang Province, China.
| | - Shuang Ling
- Jiamusi College, Heilongjiang University of Chinese Medicine, No.53 Guanghua Street, Jiamusi, 154007, China.
| | - Huan Zhang
- Nangang District:Department of Pharmacy, Heilongjiang Provincial Hospital, No. 405 Gogol Street, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
4
|
Lv N, Zhang Y, Wang L, Suo Y, Zeng W, Yu Q, Yu B, Jiang X. LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress. Curr Pharm Biotechnol 2024; 25:1021-1040. [PMID: 37842894 DOI: 10.2174/0113892010267577231005102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Aggarwal A, Jennings CL, Manning E, Cameron SJ. Platelets at the Vessel Wall in Non-Thrombotic Disease. Circ Res 2023; 132:775-790. [PMID: 36927182 PMCID: PMC10027394 DOI: 10.1161/circresaha.122.321566] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
Platelets are small, anucleate entities that bud from megakaryocytes in the bone marrow. Among circulating cells, platelets are the most abundant cell, traditionally involved in regulating the balance between thrombosis (the terminal event of platelet activation) and hemostasis (a protective response to tissue injury). Although platelets lack the precise cellular control offered by nucleate cells, they are in fact very dynamic cells, enriched in preformed RNA that allows them the capability of de novo protein synthesis which alters the platelet phenotype and responses in physiological and pathological events. Antiplatelet medications have significantly reduced the morbidity and mortality for patients afflicted with thrombotic diseases, including stroke and myocardial infarction. However, it has become apparent in the last few years that platelets play a critical role beyond thrombosis and hemostasis. For example, platelet-derived proteins by constitutive and regulated exocytosis can be found in the plasma and may educate distant tissue including blood vessels. First, platelets are enriched in inflammatory and anti-inflammatory molecules that may regulate vascular remodeling. Second, platelet-derived microparticles released into the circulation can be acquired by vascular endothelial cells through the process of endocytosis. Third, platelets are highly enriched in mitochondria that may contribute to the local reactive oxygen species pool and remodel phospholipids in the plasma membrane of blood vessels. Lastly, platelets are enriched in proteins and phosphoproteins which can be secreted independent of stimulation by surface receptor agonists in conditions of disturbed blood flow. This so-called biomechanical platelet activation occurs in regions of pathologically narrowed (atherosclerotic) or dilated (aneurysmal) vessels. Emerging evidence suggests platelets may regulate the process of angiogenesis and blood flow to tumors as well as education of distant organs for the purposes of allograft health following transplantation. This review will illustrate the potential of platelets to remodel blood vessels in various diseases with a focus on the aforementioned mechanisms.
Collapse
Affiliation(s)
- Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Courtney L. Jennings
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Emily Manning
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Scott J. Cameron
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Hematology, Taussig Cancer Center, Cleveland, Ohio
| |
Collapse
|
6
|
Perez GI, Bernard MP, Vocelle D, Zarea AA, Saleh NA, Gagea MA, Schneider D, Bauzon M, Hermiston T, Kanada M. Phosphatidylserine-Exposing Annexin A1-Positive Extracellular Vesicles: Potential Cancer Biomarkers. Vaccines (Basel) 2023; 11:639. [PMID: 36992223 PMCID: PMC10059271 DOI: 10.3390/vaccines11030639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/11/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
Under physiological conditions, phosphatidylserine (PS) predominantly localizes to the cytosolic leaflet of the plasma membrane of cells. During apoptosis, PS is exposed on the cell surface and serves as an "eat-me" signal for macrophages to prevent releasing self-immunogenic cellular components from dying cells which could potentially lead to autoimmunity. However, increasing evidence indicates that viable cells can also expose PS on their surface. Interestingly, tumor cell-derived extracellular vesicles (EVs) externalize PS. Recent studies have proposed PS-exposing EVs as a potential biomarker for the early detection of cancer and other diseases. However, there are confounding results regarding subtypes of PS-positive EVs, and knowledge of PS exposure on the EV surface requires further elucidation. In this study, we enriched small EVs (sEVs) and medium/large EVs (m/lEVs) from conditioned media of breast cancer cells (MDA-MB-231, MDA-MB-468) and non-cancerous cells (keratinocytes, fibroblasts). Since several PS-binding molecules are available to date, we compared recombinant proteins of annexin A5 and the carboxylated glutamic acid domain of Protein S (GlaS), also specific for PS, to detect PS-exposing EVs. Firstly, PS externalization in each EV fraction was analyzed using a bead-based EV assay, which combines EV capture using microbeads and analysis of PS-exposing EVs by flow cytometry. The bulk EV assay showed higher PS externalization in m/lEVs derived from MDA-MB-468 cells but not from MDA-MB-231 cells, while higher binding of GlaS was also observed in m/lEVs from fibroblasts. Second, using single EV flow cytometry, PS externalization was also analyzed on individual sEVs and m/lEVs. Significantly higher PS externalization was detected in m/lEVs (annexin A1+) derived from cancer cells compared to m/lEVs (annexin A1+) from non-cancerous cells. These results emphasize the significance of PS-exposing m/lEVs (annexin A1+) as an undervalued EV subtype for early cancer detection and provide a better understanding of PS externalization in disease-associated EV subtypes.
Collapse
Affiliation(s)
- Gloria I. Perez
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Matthew P. Bernard
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Vocelle
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Ahmed A. Zarea
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
- College of Natural Science, Michigan State University, East Lansing, MI 48824, USA
| | - Najla A. Saleh
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
| | - Matthew A. Gagea
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- Lyman Briggs College, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | - Masamitsu Kanada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA (M.P.B.)
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Blood Count-Derived Inflammatory Markers and Acute Complications of Ischemic Heart Disease in Elderly Women. J Clin Med 2023; 12:jcm12041369. [PMID: 36835905 PMCID: PMC9961980 DOI: 10.3390/jcm12041369] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Coronary artery disease (CAD) in women occurs later than in men. Underlying atherosclerosis, a chronic process of lipoprotein deposition in arterial walls with a prominent inflammatory component, is influenced by several risk factors. In women, commonly used inflammatory markers are generally found to be related to the occurrence of acute coronary syndrome (ACS), as well as the development of other diseases that influence CAD. New inflammatory markers derived from total blood count-systemic inflammatory response index (SII), systemic inflammatory reaction index (SIRI), monocyte-lymphocyte ratio (MLR), platelet-lymphocyte ratio (PLR), and neutrophil-lymphocyte ratio (NLR)-were analyzed in the group of 244 elderly, postmenopausal women with the diagnosis of ACS or stable CAD. SII, SIRI, MLR, and NLR were significantly higher in women with ACS compared to those with stable CAD (p < 0.05 for all)-the highest values were observed in women with NSTEMI. MLR from new inflammatory markers, HDL, and history of MI turned out to be significant factors associated with ACS. These results suggest that MLR as representative of blood count-derived inflammatory markers may be considered as additional CVD risk factors in women with suspected ACS.
Collapse
|
8
|
The Role of NO/sGC/cGMP/PKG Signaling Pathway in Regulation of Platelet Function. Cells 2022; 11:cells11223704. [PMID: 36429131 PMCID: PMC9688146 DOI: 10.3390/cells11223704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating blood platelets are controlled by stimulatory and inhibitory factors, and a tightly regulated equilibrium between these two opposing processes is essential for normal platelet and vascular function. NO/cGMP/ Protein Kinase G (PKG) pathways play a highly significant role in platelet inhibition, which is supported by a large body of studies and data. This review focused on inconsistent and controversial data of NO/sGC/cGMP/PKG signaling in platelets including sources of NO that activate sGC in platelets, the role of sGC/PKG in platelet inhibition/activation, and the complexity of the regulation of platelet inhibitory mechanisms by cGMP/PKG pathways. In conclusion, we suggest that the recently developed quantitative phosphoproteomic method will be a powerful tool for the analysis of PKG-mediated effects. Analysis of phosphoproteins in PKG-activated platelets will reveal many new PKG substrates. A future detailed analysis of these substrates and their involvement in different platelet inhibitory pathways could be a basis for the development of new antiplatelet drugs that may target only specific aspects of platelet functions.
Collapse
|
9
|
Platelet Redox Imbalance in Hypercholesterolemia: A Big Problem for a Small Cell. Int J Mol Sci 2022; 23:ijms231911446. [PMID: 36232746 PMCID: PMC9570056 DOI: 10.3390/ijms231911446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
The imbalance between reactive oxygen species (ROS) synthesis and their scavenging by anti-oxidant defences is the common soil of many disorders, including hypercholesterolemia. Platelets, the smallest blood cells, are deeply involved in the pathophysiology of occlusive arterial thrombi associated with myocardial infarction and stroke. A great deal of evidence shows that both increased intraplatelet ROS synthesis and impaired ROS neutralization are implicated in the thrombotic process. Hypercholesterolemia is recognized as cause of atherosclerosis, cerebro- and cardiovascular disease, and, closely related to this, is the widespread acceptance that it strongly contributes to platelet hyperreactivity via direct oxidized LDL (oxLDL)-platelet membrane interaction via scavenger receptors such as CD36 and signaling pathways including Src family kinases (SFK), mitogen-activated protein kinases (MAPK), and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In turn, activated platelets contribute to oxLDL generation, which ends up propagating platelet activation and thrombus formation through a mechanism mediated by oxidative stress. When evaluating the effect of lipid-lowering therapies on thrombogenesis, a large body of evidence shows that the effects of statins and proprotein convertase subtilisin/kexin type 9 inhibitors are not limited to the reduction of LDL-C but also to the down-regulation of platelet reactivity mainly by mechanisms sensitive to intracellular redox balance. In this review, we will focus on the role of oxidative stress-related mechanisms as a cause of platelet hyperreactivity and the pathophysiological link of the pleiotropism of lipid-lowering agents to the beneficial effects on platelet function.
Collapse
|
10
|
Marcinkowska A, Wolska N, Luzak B, Cisiecki S, Marcinkowski K, Rozalski M. Platelet-Derived Procoagulant Microvesicles Are Elevated in Patients with Retinal Vein Occlusion (RVO). J Clin Med 2022; 11:jcm11175099. [PMID: 36079028 PMCID: PMC9457368 DOI: 10.3390/jcm11175099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The etiopathogenesis of retinal vein occlusion (RVO) is multifactorial, and the contribution of platelets to RVO development has not been fully elucidated. We aimed to analyze platelet function in RVO patients (n = 35) and controls (n = 35). We found a higher (p < 0.05) level of soluble P-selectin in RVO group vs. controls. Additionally, in RVO patients, the concentration of platelet-derived microvesicles was higher (p < 0.05), and the difference between groups was deeper for the fraction of platelet-derived microvesicles with the procoagulant phenotype (p < 0.0001) and for overall procoagulant microvesicles level (p < 0.0001). The results were similar for the total RVO group and for both RVO types (central- and branched-retinal vein occlusion). We did not find differences in simple platelet parameters (platelet count, mean platelet volume, platelet distribution width, platecrit, reticulated platelets) and inflammatory markers (platelet-lymphocyte ratio, neutrophil-lymphocyte ratio). Similarly, no differences were found for platelet aggregation-stimulated byadenosine diphosphate; collagen; arachidonic acid; and in multiparametric flow cytometry evaluation of P-selectin, PAC-1, and fibrinogen binding for both unstimulated and adenosine diphosphate-, collagen-, and thrombin receptor activating peptide-stimulated platelets. Our results suggest that platelets can contribute to developing RVO by enhancing procoagulant activity through providing a procoagulation surface via platelet-derived microvesicles. The direct role of platelets’ hyperreactivity in developing RVO is less apparent, which is consistent with the complexity and multifactorial background of this disorder.
Collapse
Affiliation(s)
- Adrianna Marcinkowska
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
- Department of Ophthalmology, Karol Jonscher’s Municipal Medical Center, 93-113 Lodz, Poland
| | - Nina Wolska
- Platelet Signalling and Vascular Diseases, Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Boguslawa Luzak
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Slawomir Cisiecki
- Department of Ophthalmology, Karol Jonscher’s Municipal Medical Center, 93-113 Lodz, Poland
| | - Karol Marcinkowski
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Marcin Rozalski
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
- Correspondence:
| |
Collapse
|
11
|
Stampouloglou PK, Siasos G, Bletsa E, Oikonomou E, Vogiatzi G, Kalogeras K, Katsianos E, Vavuranakis MA, Souvaliotis N, Vavuranakis M. The Role of Cell Derived Microparticles in Cardiovascular Diseases: Current Concepts. Curr Pharm Des 2022; 28:1745-1757. [DOI: 10.2174/1381612828666220429081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 12/07/2022]
Abstract
Abstract:
Cardiovascular disease remains the main cause of human morbidity and mortality in the developed countries. Microparticles (MPs) are small vesicles originating from the cell membrane as a result of various stimuli and particularly of biological processes that constitute the pathophysiology of atherosclerosis, such as endothelial damage. They form vesicles that can transfer various molecules and signals to remote target cells without direct cell to cell interaction. Circulating microparticles have been associated with cardiovascular diseases. Therefore, many studies have been designed to further investigate the role of microparticles as biomarkers for diagnosis, prognosis, and disease monitoring. To this concept the pro-thrombotic and atherogenic potential of platelets and endothelial derived MPs has gain research interest especially concerning accelerate atherosclerosis and acute coronary syndrome triggering and prognosis. MPs especially of endothelial origin have been investigated in different clinical scenarios of heart failure and in association of left ventricular loading conditions. Finally, most cardiovascular risk factors present unique patterns of circulating MPs population, highlighting their pathophysiologic link to cardiovascular disease progression. In this review article we present a synopsis of the biogenesis and characteristics of microparticles, as well as the most recent data concerning their implication in the cardiovascular settings.
Collapse
Affiliation(s)
- Panagiota K. Stampouloglou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Evanthia Bletsa
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Georgia Vogiatzi
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Efstratios Katsianos
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Michael-Andrew Vavuranakis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Nektarios Souvaliotis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Sotiria Chest Disease Hospital, Athens. Greece
| |
Collapse
|
12
|
Kiss MG, Binder CJ. The multifaceted impact of complement on atherosclerosis. Atherosclerosis 2022; 351:29-40. [DOI: 10.1016/j.atherosclerosis.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
|
13
|
Lin YJ, Jiao KL, Liu B, Fang L, Meng S. Antiplatelet and myocardial protective effect of Shexiang Tongxin Dropping Pill in patients undergoing percutaneous coronary intervention: A randomized controlled trial. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:126-134. [PMID: 35101369 DOI: 10.1016/j.joim.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND High on-clopidogrel platelet reactivity could be partially explained by loss-of-function alleles of CYP2C19, the enzyme that converts clopidogrel into its active form. Shexiang Tongxin Dropping Pill (STDP) is a traditional Chinese medicine to treat angina pectoris. STDP has been shown to improve blood flow in patients with slow coronary flow and attenuate atherosclerosis in apolipoprotein E-deficient mice. However, whether STDP can affect platelet function remains unknown. OBJECTIVE The purpose of this study is to examine the potential effects of STDP on platelet function in patients undergoing percutaneous coronary intervention (PCI) for unstable angina. The interaction between the effects of STDP with polymorphisms of CYP2C19 was also investigated. DESIGN, PARTICIPANTS AND INTERVENTION This was a single-center, randomized controlled trial in patients undergoing elective PCI for unstable angina. Eligible subjects were randomized to receive STDP (210 mg per day) plus dual antiplatelet therapy (DAPT) with clopidogrel and aspirin or DAPT alone. MAIN OUTCOME MEASURES The primary outcome was platelet function, reflected by adenosine diphosphate (ADP)-induced platelet aggregation and platelet microparticles (PMPs). The secondary outcomes were major adverse cardiovascular events (MACEs) including recurrent ischemia or myocardial infarction, repeat PCI and cardiac death; blood biomarkers for myocardial injury including creatine kinase-MB isoenzyme (CK-MB) and high-sensitive troponin I (hsTnI); and biomarkers for inflammation including intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-1) and galectin-3. RESULTS A total of 118 subjects (mean age: [66.8 ± 8.9] years; male: 59.8%) were included into analysis: 58 in the control group and 60 in the STDP group. CYP2C19 genotype distribution was comparable between the 2 groups. In comparison to the control group, the STDP group had significantly lower CK-MB (P < 0.05) but similar hsTnI (P > 0.05) at 24 h after PCI, lower ICAM-1, VCAM-1, MCP-1 and galectin-3 at 3 months (all P < 0.05) but not at 7 days after PCI (P > 0.05). At 3 months, the STDP group had lower PMP number ([42.9 ± 37.3] vs. [67.8 ± 53.1] counts/μL in the control group, P = 0.05). Subgroup analysis showed that STDP increased percentage inhibition of ADP-induced platelet aggregation only in slow metabolizers (66.0% ± 20.8% in STDP group vs. 36.0% ± 28.1% in the control group, P < 0.05), but not in intermediate or fast metabolizers. The rate of MACEs during the 3-month follow-up did not differ between the two groups. CONCLUSION STDP produced antiplatelet, anti-inflammatory and cardioprotective effects. Subgroup analysis indicated that STDP inhibited residual platelet reactivity in slow metabolizers only. TRIAL REGISTRATION This study was registered on www.chictr.org.cn: ChiCTR-IPR-16009785.
Collapse
Affiliation(s)
- Yan-Jun Lin
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Kun-Li Jiao
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Bo Liu
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lu Fang
- Haematopoiesis and Leukocyte Biology Laboratory, Baker Heart and Diabetes Research Institute, Melbourne, VIC 3004, Australia
| | - Shu Meng
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
14
|
Chang WH, Herianto S, Lee CC, Hung H, Chen HL. The effects of phthalate ester exposure on human health: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147371. [PMID: 33965815 DOI: 10.1016/j.scitotenv.2021.147371] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 05/26/2023]
Abstract
Phthalate esters (PAEs) are one of the most widely used plasticizers in polymer products and humans are increasingly exposed to them. The constant exposure to PAEs-contained products has raised some concerns against human health. Thus, the impacts of PAEs and their metabolites on human health require a comprehensive study for a better understanding of the associated risks. Here, we attempt to review eight main health effects of PAE exposure according to the most up-to-date studies. We found that epidemiological studies demonstrated a consistent association between PAE exposure (especially DEHP and its metabolites) and a decrease in sperm quality in males and symptom development of ADHD in children. Overall, we found insufficient evidence and lack of consistency of the association between PAE exposure and cardiovascular diseases (hypertension, atherosclerosis, and CHD), thyroid diseases, respiratory diseases, diabetes, obesity, kidney diseases, intelligence performance in children, and other reproductive system-related diseases (anogenital distance, girl precocious puberty, and endometriosis). Future studies (longitudinal and follow-up investigations) need to thoroughly perform in large-scale populations to yield more consistent and powerful results and increase the precision of the association as well as enhance the overall understanding of potential human health risks of PAEs in long-term exposure.
Collapse
Affiliation(s)
- Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Samuel Herianto
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Department of Chemistry (Chemical Biology Division), College of Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Chang Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsin Hung
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsiu-Ling Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Research Center of Environmental Trace Toxic Substances, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
15
|
Chu PL, Lin CY, Sung FC, Su TC. Apoptotic microparticles mediate the association between bisphenol A and subclinical atherosclerosis in a young population: A population-based study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112663. [PMID: 34418852 DOI: 10.1016/j.ecoenv.2021.112663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/29/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) exposure is associated with atherosclerotic cardiovascular diseases. The interactions between BPA, extracellular microparticles (MPs), and atherosclerosis are unknown. A total of 103,756 young students participated in the mass urine-screening program in Taiwan between 1992 and 2000 were analyzed. After exclusion, 886 subjects were recruited to test the relationships between serum level of BPA, endothelial and platelet MPs as well as subclinical atherosclerosis represented by carotid artery intima-media thickness (CIMT). We found that an increment of one unit of log-BPA could lead to significant association between thicker CIMT and concentrations of endothelial microparticles and platelet microparticles in the cohort (odds ratio (OR) 1.23, P < 0.001). CD31 + /CD42a- (> 50%, OR 1.229, P = 0.001) and CD31 + /CD42a+ (≦ 50%, OR 1.262, P = 0.017 and > 50%, OR 1.212, P = 0.006) were significantly associated with thicker CIMT in the presence of elevated BPA. When considering the interactions between CD31 + /CD42a- and CD31 + /CD42a+ , we observed increased OR as CD31 + /CD42a- was greater than 50% (CD31 +/CD42a- > 50% and CD31 +/CD42a+ ≦ 50%, OR 1.356, P = 0.029; CD31 +/CD42a- > 50% and CD31 +/CD42a+ > 50%, OR 1.204, P = 0.014). Our study identified a higher risk of thicker CIMT associated with altered MPs in the presence of elevated BPA levels. BPA exposure is associated with endothelial dysfunction and subclinical atherosclerosis in a young population.
Collapse
Affiliation(s)
- Pei-Lun Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei 242, Taiwan
| | - Chien-Yu Lin
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 242, Taiwan; Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung 404, Taiwan; Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei 100, Taiwan; Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan.
| |
Collapse
|
16
|
Hu S, Wang X, Li Z, Zhu D, Cores J, Wang Z, Li J, Mei X, Cheng X, Su T, Cheng K. Platelet membrane and stem cell exosome hybrid enhances cellular uptake and targeting to heart injury. NANO TODAY 2021; 39:101210. [PMID: 34306170 PMCID: PMC8294084 DOI: 10.1016/j.nantod.2021.101210] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Exosomes from mesenchymal stem cells have been largely studied as therapeutics to treat myocardial infarctions. However, exosomes injected for therapeutic purposes face a number of challenges, including competition from exosomes already in circulation, and the internalization/clearance by the mononuclear phagocyte system. In this study, we hybrid exosomes with platelet membranes to enhance their ability to target the injured heart and avoid being captured by macrophages. Furthermore, we found that encapsulation by the platelet membranes induces macropinocytosis, enhancing the cellular uptake of exosomes by endothelial cells and cardiomyocytes strikingly. In vivo studies showed that the cardiac targeting ability of hybrid exosomes in a mice model with myocardial infarction injury. Last, we tested cardiac functions and performed immunohistochemistry to confirm a better therapeutic effect of platelet membrane modified exosomes compared to non-modified exosomes. Our studies provide proof-of-concept data and a universal approach to enhance the binding and accumulation of exosomes in injured tissues.
Collapse
Affiliation(s)
- Shiqi Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Xianyun Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Zhenhua Li
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Dashuai Zhu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Jhon Cores
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Zhenzhen Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Junlang Li
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Xuan Mei
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiao Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Teng Su
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Ke Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University, Raleigh, North Carolina 27606, United States
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| |
Collapse
|
17
|
Che Mohd Nassir CMN, Hashim S, Wong KK, Abdul Halim S, Idris NS, Jayabalan N, Guo D, Mustapha M. COVID-19 Infection and Circulating Microparticles-Reviewing Evidence as Microthrombogenic Risk Factor for Cerebral Small Vessel Disease. Mol Neurobiol 2021; 58:4188-4215. [PMID: 34176095 PMCID: PMC8235918 DOI: 10.1007/s12035-021-02457-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/16/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) due to novel coronavirus disease 2019 (COVID-19) has affected the global society in numerous unprecedented ways, with considerable morbidity and mortality. Both direct and indirect consequences from COVID-19 infection are recognized to give rise to cardio- and cerebrovascular complications. Despite current limited knowledge on COVID-19 pathogenesis, inflammation, endothelial dysfunction, and coagulopathy appear to play critical roles in COVID-19-associated cerebrovascular disease (CVD). One of the major subtypes of CVD is cerebral small vessel disease (CSVD) which represents a spectrum of pathological processes of various etiologies affecting the brain microcirculation that can trigger subsequent neuroinflammation and neurodegeneration. Prevalent with aging, CSVD is a recognized risk factor for stroke, vascular dementia, and Alzheimer's disease. In the background of COVID-19 infection, the heightened cellular activations from inflammations and oxidative stress may result in elevated levels of microthrombogenic extracellular-derived circulating microparticles (MPs). Consequently, MPs could act as pro-coagulant risk factor that may serve as microthrombi for the vulnerable microcirculation in the brain leading to CSVD manifestations. This review aims to appraise the accumulating body of evidence on the plausible impact of COVID-19 infection on the formation of microthrombogenic MPs that could lead to microthrombosis in CSVD manifestations, including occult CSVD which may last well beyond the pandemic era.
Collapse
Affiliation(s)
- Che Mohd Nasril Che Mohd Nassir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Sabarisah Hashim
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Kah Keng Wong
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Sanihah Abdul Halim
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nur Suhaila Idris
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nanthini Jayabalan
- Translational Neuroscience Lab, UQ Centre for Clinical Research, the University of Queensland, Herston, Brisbane, 4029, Australia
| | - Dazhi Guo
- Department of Hyperbaric Oxygen, The Sixth Medical Center of PLA General Hospital, 6 Fucheng Rd, Beijing, 100048, China
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
18
|
Andreeva T, Komsa-Penkova R, Langari A, Krumova S, Golemanov G, Georgieva GB, Taneva SG, Giosheva I, Mihaylova N, Tchorbanov A, Todinova S. Morphometric and Nanomechanical Features of Platelets from Women with Early Pregnancy Loss Provide New Evidence of the Impact of Inherited Thrombophilia. Int J Mol Sci 2021; 22:ijms22157778. [PMID: 34360543 PMCID: PMC8346153 DOI: 10.3390/ijms22157778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/25/2022] Open
Abstract
Pregnancy is associated with hypercoagulation states and increased thrombotic risk, especially in women with thrombophilia. We combine atomic force microscopy (AFM) and flow cytometry to examine the morphology and nanomechanics of platelets derived from women with early pregnancy loss (EPL) and control pregnant (CP) and non-pregnant (CNP) women. Both control groups exhibit similar morphometric parameters (height and surface roughness) and membrane stiffness of platelets. EPL patients’ platelets, on the other hand, are more activated than the control groups, with prominent cytoskeletal rearrangement. In particular, reduced membrane roughness (22.9 ± 6 nm vs. 39.1 ± 8 nm) (p < 0.05) and height (692 ± 128 nm vs. 1090 ± 131 nm) (p < 0.05), strong alteration in the membrane Young modulus, increased production of platelets’ microparticles, and higher expression of procoagulant surface markers, as well as increased occurrence of thrombophilia (FVL, FII20210A, PLA1/A2, MTHFR C677T or 4G/5G PAI-1) polymorphisms were found. We suggest that the carriage of thrombophilic mutations triggers structural and nanomechanical abnormalities in platelets, resulting in their increased activation. The activation state of platelets can be well characterized by AFM, and the morphometric and nanomechanical characteristics might serve as a new criterion for evaluation of the cause of miscarriage and offer the prospect of an innovative approach serving for diagnostic purposes.
Collapse
Affiliation(s)
- Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria; (T.A.); (A.L.); (S.K.); (S.G.T.); (I.G.)
| | - Regina Komsa-Penkova
- Department of Biochemistry, Medical University, 1 St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (R.K.-P.); (G.G.); (G.B.G.)
| | - Ariana Langari
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria; (T.A.); (A.L.); (S.K.); (S.G.T.); (I.G.)
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria; (T.A.); (A.L.); (S.K.); (S.G.T.); (I.G.)
| | - Georgi Golemanov
- Department of Biochemistry, Medical University, 1 St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (R.K.-P.); (G.G.); (G.B.G.)
| | - Galya B. Georgieva
- Department of Biochemistry, Medical University, 1 St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (R.K.-P.); (G.G.); (G.B.G.)
| | - Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria; (T.A.); (A.L.); (S.K.); (S.G.T.); (I.G.)
| | - Ina Giosheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria; (T.A.); (A.L.); (S.K.); (S.G.T.); (I.G.)
- University Obstetrics and Gynecology Hospital “Maichin Dom”, 2 Zdrave Str., 1463 Sofia, Bulgaria
| | - Nikolina Mihaylova
- Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 26, 1113 Sofia, Bulgaria; (N.M.); (A.T.)
| | - Andrey Tchorbanov
- Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 26, 1113 Sofia, Bulgaria; (N.M.); (A.T.)
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria; (T.A.); (A.L.); (S.K.); (S.G.T.); (I.G.)
- Correspondence:
| |
Collapse
|
19
|
Husa P, Snopkova S, Zavrelova J, Zlamal F, Svacinka R, Husa P. Circulating microparticles in patients with chronic hepatitis C and changes during direct-acting antiviral therapy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 165:146-151. [PMID: 33928944 DOI: 10.5507/bp.2021.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Microparticles (MPs) are heterogeneous vesicles derived from membranes of different cells. Between 70 to 90% of MPs detected in blood originate from platelets. The release of MPs is associated with proinflammatory and procoagulant states. Elevated levels of MPs have been found in different diseases. We investigated MPs levels in patients with chronic hepatitis C (CHC) and changes in level during treatment using direct-acting antivirotics (DAA). PATIENTS AND METHODS Thirty-six patients with CHC and forty healthy volunteers were included in the study. Concentrations of MPs were determined indirectly by measuring their procoagulant activity in plasma at baseline, end of therapy (EOT), and 12 weeks after EOT when the sustained virological response was assessed (SVR12). RESULTS All patients achieved SVR12, which was associated with rapid improvement of markers of liver damage and function as well as liver stiffness (P=0.002). MPs levels were significantly higher in CHC patients than in healthy volunteers (P<0.001). No statistically significant decrease was found observed between baseline and SVR12 (P=0,330). Analysis of subpopulations with minimal fibrosis F0-1 (P=0.647), advanced fibrosis F2-4 (P=0.370), women(P=0.847), men (P=0.164) and genotype 1 (P=0.077) showed no significant changes during the follow-up period. CONCLUSIONS MPs levels are higher in CHC patients and remain elevated shortly after achieving SVR. Higher concentrations of MPs in plasma are probably caused by a chronic uncontrolled exaggerated inflammatory response caused by CHC. Longer observation would probably confirm the significance of MPs levels decrease because normalization of liver function, inflammation, and structure after SVR requires more than 12 weeks.
Collapse
Affiliation(s)
- Petr Husa
- Department of Infectious Diseases, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Svatava Snopkova
- Department of Infectious Diseases, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jirina Zavrelova
- Department of Hematology, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic
| | - Filip Zlamal
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 5, 60200 Brno, Czech Republic
| | - Radek Svacinka
- Department of Infectious Diseases, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Petr Husa
- Department of Infectious Diseases, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic.,Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
20
|
Clifford AH, Cohen Tervaert JW. Cardiovascular events and the role of accelerated atherosclerosis in systemic vasculitis. Atherosclerosis 2021; 325:8-15. [PMID: 33873090 DOI: 10.1016/j.atherosclerosis.2021.03.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
The spectrum of inflammatory blood vessel diseases includes both atherosclerosis and the primary systemic vasculitides. Although the inciting triggers differ, significant overlap exists in the mechanisms that contribute to sustained inflammation and vascular damage in both entities. With improvement in therapeutics to control acute vasculitis leading to longer survival, cardiovascular morbidity and mortality has emerged as the leading cause of death for vasculitis patients. Cardiovascular events likely occur as a consequence of vasculitis, vascular damage from prior inflammation causing a sustained procoagulant state, and accelerated atherosclerosis. In this review, we discuss the latest evidence regarding risk of cardiovascular events in patients with major forms of primary systemic vasculitis, and review the mechanisms by which accelerated atherosclerosis may occur.
Collapse
Affiliation(s)
- Alison H Clifford
- Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Jan Willem Cohen Tervaert
- Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
21
|
Circulating Extracellular Vesicles As Biomarkers and Drug Delivery Vehicles in Cardiovascular Diseases. Biomolecules 2021; 11:biom11030388. [PMID: 33808038 PMCID: PMC8001426 DOI: 10.3390/biom11030388] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are composed of a lipid bilayer containing transmembrane and soluble proteins. Subtypes of EVs include ectosomes (microparticles/microvesicles), exosomes, and apoptotic bodies that can be released by various tissues into biological fluids. EV cargo can modulate physiological and pathological processes in recipient cells through near- and long-distance intercellular communication. Recent studies have shown that origin, amount, and internal cargos (nucleic acids, proteins, and lipids) of EVs are variable under different pathological conditions, including cardiovascular diseases (CVD). The early detection and management of CVD reduce premature morbidity and mortality. Circulating EVs have attracted great interest as a potential biomarker for diagnostics and follow-up of CVD. This review highlights the role of circulating EVs as biomarkers for diagnosis, prognosis, and therapeutic follow-up of CVD, and also for drug delivery. Despite the great potential of EVs as a tool to study the pathophysiology of CVD, further studies are needed to increase the spectrum of EV-associated applications.
Collapse
|
22
|
Nassir CMNCM, Ghazali MM, Hashim S, Idris NS, Yuen LS, Hui WJ, Norman HH, Gau CH, Jayabalan N, Na Y, Feng L, Ong LK, Abdul Hamid H, Ahamed HN, Mustapha M. Diets and Cellular-Derived Microparticles: Weighing a Plausible Link With Cerebral Small Vessel Disease. Front Cardiovasc Med 2021; 8:632131. [PMID: 33718454 PMCID: PMC7943466 DOI: 10.3389/fcvm.2021.632131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebral small vessel disease (CSVD) represents a spectrum of pathological processes of various etiologies affecting the brain microcirculation that can trigger neuroinflammation and the subsequent neurodegenerative cascade. Prevalent with aging, CSVD is a recognized risk factor for stroke, vascular dementia, Alzheimer disease, and Parkinson disease. Despite being the most common neurodegenerative condition with cerebrocardiovascular axis, understanding about it remains poor. Interestingly, modifiable risk factors such as unhealthy diet including high intake of processed food, high-fat foods, and animal by-products are known to influence the non-neural peripheral events, such as in the gastrointestinal tract and cardiovascular stress through cellular inflammation and oxidation. One key outcome from such events, among others, includes the cellular activations that lead to elevated levels of endogenous cellular-derived circulating microparticles (MPs). MPs can be produced from various cellular origins including leukocytes, platelets, endothelial cells, microbiota, and microglia. MPs could act as microthrombogenic procoagulant that served as a plausible culprit for the vulnerable end-artery microcirculation in the brain as the end-organ leading to CSVD manifestations. However, little attention has been paid on the potential role of MPs in the onset and progression of CSVD spectrum. Corroboratively, the formation of MPs is known to be influenced by diet-induced cellular stress. Thus, this review aims to appraise the body of evidence on the dietary-related impacts on circulating MPs from non-neural peripheral origins that could serve as a plausible microthrombosis in CSVD manifestation as a precursor of neurodegeneration. Here, we elaborate on the pathomechanical features of MPs in health and disease states; relevance of dietary patterns on MP release; preclinical studies pertaining to diet-based MPs contribution to disease; MP level as putative surrogates for early disease biomarkers; and lastly, the potential of MPs manipulation with diet-based approach as a novel preventive measure for CSVD in an aging society worldwide.
Collapse
Affiliation(s)
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Sabarisah Hashim
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Nur Suhaila Idris
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Lee Si Yuen
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Wong Jia Hui
- Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Haziq Hazman Norman
- Anatomy Unit, International Medical School (IMS), Management and Science University (MSU), Shah Alam, Malaysia
| | - Chuang Huei Gau
- Department of Psychology and Counselling, Faculty of Arts and Social Science, Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia
| | - Nanthini Jayabalan
- Translational Neuroscience Lab, University of Queensland (UQ), Centre for Clinical Research, The University of Queensland, Herston, QLD, Australia
| | - Yuri Na
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Linqing Feng
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Lin Kooi Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
- School of Biomedical Sciences and Pharmacy, Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, National Health and Medical Research Council (NHMRC), Heidelberg, VIC, Australia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Haja Nazeer Ahamed
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian, Malaysia
| |
Collapse
|
23
|
Wang L, Tang C. Targeting Platelet in Atherosclerosis Plaque Formation: Current Knowledge and Future Perspectives. Int J Mol Sci 2020; 21:ijms21249760. [PMID: 33371312 PMCID: PMC7767086 DOI: 10.3390/ijms21249760] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
Besides their role in hemostasis and thrombosis, it has become increasingly clear that platelets are also involved in many other pathological processes of the vascular system, such as atherosclerotic plaque formation. Atherosclerosis is a chronic vascular inflammatory disease, which preferentially develops at sites under disturbed blood flow with low speeds and chaotic directions. Hyperglycemia, hyperlipidemia, and hypertension are all risk factors for atherosclerosis. When the vascular microenvironment changes, platelets can respond quickly to interact with endothelial cells and leukocytes, participating in atherosclerosis. This review discusses the important roles of platelets in the plaque formation under pro-atherogenic factors. Specifically, we discussed the platelet behaviors under disturbed flow, hyperglycemia, and hyperlipidemia conditions. We also summarized the molecular mechanisms involved in vascular inflammation during atherogenesis based on platelet receptors and secretion of inflammatory factors. Finally, we highlighted the studies of platelet migration in atherogenesis. In general, we elaborated an atherogenic role of platelets and the aspects that should be further studied in the future.
Collapse
Affiliation(s)
- Lei Wang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-512-6588-0899
| |
Collapse
|
24
|
Nazari M, Javandoost E, Talebi M, Movassaghpour A, Soleimani M. Platelet Microparticle Controversial Role in Cancer. Adv Pharm Bull 2020; 11:39-55. [PMID: 33747851 PMCID: PMC7961228 DOI: 10.34172/apb.2021.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Platelet-derived microparticles (PMPs) are a group of micrometer-scale extracellular vesicles released by platelets upon activation that are responsible for the majority of microvesicles found in plasma. PMPs’ physiological properties and functions have long been investigated by researchers. In this regard, a noticeable area of studies has been devoted to evaluating the potential roles and effects of PMPs on cancer progression. Clinical and experimental evidence conflictingly implicates supportive and suppressive functions for PMPs regarding cancer. Many of these functions could be deemed as a cornerstone for future considerations of PMPs usage in cancer targeted therapy. This review discusses what is currently known about PMPs and provides insights for new and possible research directions for further grasping the intricate interplay between PMPs and cancer.
Collapse
Affiliation(s)
- Mahnaz Nazari
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Javandoost
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. Introduction
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Zhang H, Bai Z, Zhu L, Liang Y, Fan X, Li J, Wen H, Shi T, Zhao Q, Wang Z. Hydrogen sulfide donors: Therapeutic potential in anti-atherosclerosis. Eur J Med Chem 2020; 205:112665. [DOI: 10.1016/j.ejmech.2020.112665] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022]
|
26
|
Miyazaki A, Uehara T, Usami Y, Ishimine N, Sugano M, Tozuka M. Highly oxidized low-density lipoprotein does not facilitate platelet aggregation. J Int Med Res 2020; 48:300060520958960. [PMID: 33100088 PMCID: PMC7607141 DOI: 10.1177/0300060520958960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study aimed to examine whether oxidized low-density lipoprotein (oxLDL) facilitates platelet aggregation, which is one cause for development of cardiovascular disease. METHODS The susceptibility of platelets to aggregation was monitored by light transmittance aggregometry and a laser light scattering method using low-density lipoprotein (LDL) and oxLDL as agonists. β-thromboglobulin (β-TG) levels released from platelets were also measured after incubation with or without oxLDL. RESULTS Platelet aggregation was suppressed by oxLDL as estimated by maximum light transmission. Additionally, adenosine diphosphate-induced further aggregation was slightly reduced by the presence of oxLDL. Aggregation levels of a low number of platelets, which was determined by the laser light scattering method, were lower upon addition of oxLDL compared with unoxidized LDL. After a short time of incubation, oxLDL increased secreted β-TG levels in platelet-rich plasma. However, further incubation with oxLDL caused relatively lower secreted β-TG levels compared with incubation with unoxidized LDL. This fluctuation was not due to β-TG degradation by oxLDL. CONCLUSIONS Levels of oxLDL in vitro weakly activate platelets at an early stage, but then inhibit platelet function, such as aggregation and β-TG secretion.
Collapse
Affiliation(s)
- Akari Miyazaki
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Yoko Usami
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Nau Ishimine
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Mitsutoshi Sugano
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Minoru Tozuka
- Life Science Research Center, Nagano Children’s Hospital, Azumino, Japan
| |
Collapse
|
27
|
Impact of Epicatechin on the Procoagulant Activities of Microparticles. Nutrients 2020; 12:nu12102935. [PMID: 32992756 PMCID: PMC7601556 DOI: 10.3390/nu12102935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Microparticles play a role in cardiovascular disease pathology. The flavanol-like epicatechin is increasingly considered due to its cardioprotective effects. The aim of this study was to investigate the impact of epicatechin on microparticle generation, phenotype and procoagulant properties. Plasma samples from 15 healthy subjects were incubated with increasing concentrations of epicatechin (1 to 100 μM). Then, the expression of glycoprotein IIb, phosphatidylserine (PS), glycoprotein Ib (GPIb) and P-selectin was assessed by flow cytometry analysis after (or not) platelet stimulation. Microparticle procoagulant activity was determined using ZymuphenTM MP and ZymuphenTM MP-TF for phospholipid and tissue factor content, and with thrombin generation (TG) assays for procoagulant function. Platelet microparticles that express GPIb (/µL) decreased from 20,743 ± 24,985 (vehicle) to 14,939 ± 14,333 (p = 0.6), 21,366 ± 16,949 (p = 0.9) and 15,425 ± 9953 (p < 0.05) in samples incubated with 1, 10 and 100 µM epicatechin, respectively. Microparticle concentration (nM PS) decreased from 5.6 ± 2.0 (vehicle) to 5.1 ± 2.2 (p = 0.5), 4.5 ± 1.5 (p < 0.05) and 4.7 ± 2.0 (p < 0.05) in samples incubated with 1, 10 and 100µM epicatechin, respectively. Epicatechin had no impact on tissue factor-positive microparticle concentration. Epicatechin decreased TG (endogenous thrombin potential, nM.min) from 586 ± 302 to 509 ± 226 (p = 0.3), 512 ± 270 (p = 0.3) and 445 ± 283 (p < 0.05). These findings indicate that epicatechin affects microparticle release, phenotype and procoagulant properties.
Collapse
|
28
|
Platelets in Healthy and Disease States: From Biomarkers Discovery to Drug Targets Identification by Proteomics. Int J Mol Sci 2020; 21:ijms21124541. [PMID: 32630608 PMCID: PMC7352998 DOI: 10.3390/ijms21124541] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Platelets are a heterogeneous small anucleate blood cell population with a central role both in physiological haemostasis and in pathological states, spanning from thrombosis to inflammation, and cancer. Recent advances in proteomic studies provided additional important information concerning the platelet biology and the response of platelets to several pathophysiological pathways. Platelets circulate systemically and can be easily isolated from human samples, making proteomic application very interesting for characterizing the complexity of platelet functions in health and disease as well as for identifying and quantifying potential platelet proteins as biomarkers and novel antiplatelet therapeutic targets. To date, the highly dynamic protein content of platelets has been studied in resting and activated platelets, and several subproteomes have been characterized including platelet-derived microparticles, platelet granules, platelet releasates, platelet membrane proteins, and specific platelet post-translational modifications. In this review, a critical overview is provided on principal platelet proteomic studies focused on platelet biology from signaling to granules content, platelet proteome changes in several diseases, and the impact of drugs on platelet functions. Moreover, recent advances in quantitative platelet proteomics are discussed, emphasizing the importance of targeted quantification methods for more precise, robust and accurate quantification of selected proteins, which might be used as biomarkers for disease diagnosis, prognosis and therapy, and their strong clinical impact in the near future.
Collapse
|
29
|
Lordan R, Tsoupras A, Zabetakis I. Platelet activation and prothrombotic mediators at the nexus of inflammation and atherosclerosis: Potential role of antiplatelet agents. Blood Rev 2020; 45:100694. [PMID: 32340775 DOI: 10.1016/j.blre.2020.100694] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 03/22/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022]
Abstract
Platelets are central to inflammation-related manifestations of cardiovascular diseases (CVD) such as atherosclerosis. Platelet-activating factor (PAF), thrombin, thromboxane A2 (TxA2), and adenosine diphosphate (ADP) are some of the key agonists of platelet activation that are at the intersection between a plethora of inflammatory pathways that modulate pro-inflammatory and coagulation processes. The aim of this article is to review the role of platelets and the relationship between their structure, function, and the interactions of their constituents in systemic inflammation and atherosclerosis. Antiplatelet therapies are discussed with a view to primary prevention of CVD by the clinical reduction of platelet reactivity and inflammation. Current antiplatelet therapies are effective in reducing cardiovascular risk but increase bleeding risk. Novel therapeutic antiplatelet approaches beyond current pharmacological modalities that do not increase the risk of bleeding require further investigation. There is potential for specifically designed nutraceuticals that may become safer alternatives to pharmacological antiplatelet agents for the primary prevention of CVD but there is serious concern over their efficacy and regulation, which requires considerably more research.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA.
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute (HRI), University of Limerick, Limerick, Ireland
| |
Collapse
|
30
|
Wei H, Davies JE, Harper MT. 2-Aminoethoxydiphenylborate (2-APB) inhibits release of phosphatidylserine-exposing extracellular vesicles from platelets. Cell Death Discov 2020; 6:10. [PMID: 32140260 PMCID: PMC7051957 DOI: 10.1038/s41420-020-0244-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Activated, procoagulant platelets shed phosphatidylserine (PS)-exposing extracellular vesicles (EVs) from their surface in a Ca2+- and calpain-dependent manner. These PS-exposing EVs are prothrombotic and proinflammatory and are found at elevated levels in many cardiovascular and metabolic diseases. How PS-exposing EVs are shed is not fully understood. A clearer understanding of this process may aid the development of drugs to selectively block their release. In this study we report that 2-aminoethoxydiphenylborate (2-APB) significantly inhibits the release of PS-exposing EVs from platelets stimulated with the Ca2+ ionophore, A23187, or the pore-forming toxin, streptolysin-O. Two analogues of 2-APB, diphenylboronic anhydride (DPBA) and 3-(diphenylphosphino)-1-propylamine (DP3A), inhibited PS-exposing EV release with similar potency. Although 2-APB and DPBA weakly inhibited platelet PS exposure and calpain activity, this was not seen with DP3A despite inhibiting PS-exposing EV release. These data suggest that there is a further target of 2-APB, independent of cytosolic Ca2+ signalling, PS exposure and calpain activity, that is required for PS-exposing EV release. DP3A is likely to inhibit the same target, without these other effects. Identifying the target of 2-APB, DPBA and DP3A may provide a new way to inhibit PS-exposing EV release from activated platelets and inhibit their contribution to thrombosis and inflammation.
Collapse
Affiliation(s)
- Hao Wei
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
31
|
Barale C, Bonomo K, Frascaroli C, Morotti A, Guerrasio A, Cavalot F, Russo I. Platelet function and activation markers in primary hypercholesterolemia treated with anti-PCSK9 monoclonal antibody: A 12-month follow-up. Nutr Metab Cardiovasc Dis 2020; 30:282-291. [PMID: 31653513 DOI: 10.1016/j.numecd.2019.09.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIMS In the association between hypercholesterolemia (HC) and thrombotic risk platelet hyper-reactivity plays an important role. The inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) to reduce plasma LDL-cholesterol merges as effective therapeutic strategy to prevent cardiovascular (CV) events. Aim of this study was to verify whether a treatment up to 12 months with the monoclonal antibodies (mAbs) anti-PCSK9 influences platelet function in primary HC. METHODS AND RESULTS In patients affected by primary HC (n = 24), all on background of statin and 17 on acetyl salicylic acid (ASA), platelet function parameters were evaluated at baseline up to 12 months of treatment with the mAb anti-PCSK9 alirocumab or evolocumab. From baseline, the treatment with anti-PCSK9 mAbs: i) in ASA HC patients, significantly decreased platelet aggregation detected in platelet-rich plasma by light transmission aggregometry and in whole blood Platelet Function Analyzer-100 assay; ii) in all HC patients, significantly decreased platelet membrane expression of CD62P and plasma levels of the in vivo platelet activation markers soluble CD40 Ligand, Platelet Factor-4, and soluble P-Selectin. Furthermore, CD62P expression, and sP-Selectin, PF-4, sCD40L levels significantly correlated with serum PCSK9. CONCLUSION Besides markedly lowering LDL-c levels, our results suggest that HC patients benefit from anti-PCSK9 mAb treatment also for reducing platelet reactivity and increasing platelet sensitivity to the inhibitory effects of aspirin. These effects on platelets could play a role in the reduction of CV event incidence in patients treated with PCSK9 inhibitors.
Collapse
Affiliation(s)
- Cristina Barale
- Department of Clinical and Biological Sciences of Turin University, Orbassano, Turin, Italy
| | - Katia Bonomo
- Metabolic Disease and Diabetes Unit, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Chiara Frascaroli
- Metabolic Disease and Diabetes Unit, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences of Turin University, Orbassano, Turin, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences of Turin University, Orbassano, Turin, Italy
| | - Franco Cavalot
- Metabolic Disease and Diabetes Unit, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Isabella Russo
- Department of Clinical and Biological Sciences of Turin University, Orbassano, Turin, Italy.
| |
Collapse
|
32
|
Takano AM, Iwata H, Miyosawa K, Kimura A, Mukaida H, Osawa S, Kubota K, Doi S, Funamizu T, Takasu K, Okai I, Tamura H, Isoda K, Okazaki S, Suwa S, Miyauchi K, Sumiyoshi M, Amano A, Daida H. Reduced Number of Platelets During Intra-Aortic Balloon Pumping Counterpulsation Predicts Higher Cardiovascular Mortality After Device Removal in Association with Systemic Inflammation. Int Heart J 2020; 61:89-95. [DOI: 10.1536/ihj.19-349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Asuka Minami Takano
- Department of Clinical Engineering, Juntendo University Graduate School of Medicine
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Hiroshi Iwata
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Katsutoshi Miyosawa
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Atsushi Kimura
- Department of Clinical Engineering, Juntendo University Nerima Hospital
| | - Hiroshi Mukaida
- Department of Clinical Engineering, Juntendo University Graduate School of Medicine
| | - Shota Osawa
- Department of Clinical Engineering, Juntendo University Graduate School of Medicine
| | - Kyoko Kubota
- Department of Clinical Engineering, Juntendo University Shizuoka Hospital
| | - Shinichiro Doi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Takehiro Funamizu
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Kiyoshi Takasu
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Iwao Okai
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Hiroshi Tamura
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Kikuo Isoda
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Shinya Okazaki
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Satoru Suwa
- Department of Cardiovascular Medicine, Juntendo University Shizuoka Hospital
| | - Katsumi Miyauchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| | - Masataka Sumiyoshi
- Department of Cardiovascular Medicine, Juntendo University Nerima Hospital
| | - Atsushi Amano
- Department of Cardiovascular Surgery, Juntendo University Graduate School of Medicine
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine
| |
Collapse
|
33
|
Jerez-Dolz D, Torramade-Moix S, Palomo M, Moreno-Castaño A, Lopez-Vilchez I, Hernandez R, Badimon JJ, Zafar MU, Diaz-Ricart M, Escolar G. Internalization of microparticles by platelets is partially mediated by toll-like receptor 4 and enhances platelet thrombogenicity. Atherosclerosis 2019; 294:17-24. [PMID: 31945614 DOI: 10.1016/j.atherosclerosis.2019.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/22/2019] [Accepted: 12/19/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Circulating platelet microparticles (PMP) are the most abundant in bloodstream, are highly procoagulant and contribute to cross-talk with inflammatory cells. The aim of the present study was to investigate the interactions of PMP with platelets and explore the involvement of toll-like receptor 4 (TLR-4). METHODS PMP were separated by ultracentrifugation of expired platelet concentrates and added to: i) washed platelets, to confirm uptake, by flow cytometry and confocal and transmission electron microscopy, ii) platelet rich plasma (PRP), to assess changes in platelet function due to uptake by aggregometry in response to ADP; and iii) whole blood, to evaluate heterotypic aggregate (HA) formation by flow cytometry. Moreover, whole blood previously enriched with platelets with internalized PMP was used to explore modifications in thromboelastometry parameters (ROTEM). The inhibitory action of anti-TLR-4 was investigated. RESULTS Confocal and ultrastructural microscopy studies revealed PMP internalization by platelets. Flow cytometry showed PMP-platelet association (p < 0.01 vs controls, at different PMP dilutions). PMP, at 1/20 dilution, increased HA (p < 0.05 vs controls), the percentage of maximal platelet aggregation to ADP (p < 0.05 vs controls), and accelerated clotting and clot formation times (p < 0.05 vs controls). Incubation of platelets with anti-TLR-4 prior to exposure to PMP reduced PMP-platelet association (p < 0.05 vs absence of the antibody), prevented HA formation, reduced maximal platelet aggregation and normalized ROTEM parameters. CONCLUSIONS Platelets exhibit internalization ability towards their own PMP, a process that potentiates their thrombogenicity and is partially mediated by the innate immunity receptor TLR-4.
Collapse
Affiliation(s)
- Didac Jerez-Dolz
- Hematopathology, Pathological Anatomy, Hospital Clinic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sergi Torramade-Moix
- Hematopathology, Pathological Anatomy, Hospital Clinic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Marta Palomo
- Hematopathology, Pathological Anatomy, Hospital Clinic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain; Barcelona Endothelium Team, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain
| | - Ana Moreno-Castaño
- Hematopathology, Pathological Anatomy, Hospital Clinic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Irene Lopez-Vilchez
- Hematopathology, Pathological Anatomy, Hospital Clinic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Rosa Hernandez
- Hematopathology, Pathological Anatomy, Hospital Clinic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Juan Jose Badimon
- Atherothrombosis Research Unit, Icahn School of Medicine at Mount Sinai, New York, USA
| | - M Urooj Zafar
- Atherothrombosis Research Unit, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Maribel Diaz-Ricart
- Hematopathology, Pathological Anatomy, Hospital Clinic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Barcelona Endothelium Team, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain
| | - Gines Escolar
- Hematopathology, Pathological Anatomy, Hospital Clinic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Atherothrombosis Research Unit, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
34
|
Effects of an acute bout of exercise on circulating extracellular vesicles: tissue-, sex-, and BMI-related differences. Int J Obes (Lond) 2019; 44:1108-1118. [PMID: 31578459 DOI: 10.1038/s41366-019-0460-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exercise is recognized to evoke multisystemic adaptations that, particularly in obese subjects, reduce body weight, improve glucometabolic control, counteract sarcopenia, and lower the risk of cardiometabolic diseases. Understanding the molecular and cellular mechanisms of exercise-induced benefits is of great interest due to the therapeutic implications against obesity. OBJECTIVES AND METHODS The aim of the present study was to evaluate time-related changes in size distribution and cell origin of extracellular vesicles (EVs) in obese and normal-weight subjects who underwent a moderate-intensity exercise on a treadmill (at 60% of their VO2max). Blood samples were drawn before, immediately at the end of the exercise and during the postexercise recovery period (3 and 24 h). Circulating EVs were analyzed by a nanoparticle tracking analysis and flow cytometry after labeling with the following cell-specific markers: CD14 (monocyte/macrophage), CD61 (platelet), CD62E (activated endothelium), CD105 (total endothelium), SCGA (skeletal muscle), and FABP (adipose tissue). RESULTS In all subjects, acute exercise reduced the release of total (i.e., 30-700 nm) EVs in circulation, predominantly EVs in the microvesicle size range (i.e., 130-700 nm EVs). The postexercise release of microvesicles was higher in normal-weight than obese subjects; after exercise, circulating levels of exosomes (i.e., 30-130 nm EVs) and microvesicles were, respectively, lower and higher in females than males. In all experimental subgroups (males vs. females and obese vs. normal-weight subjects), acute exercise reduced and increased, respectively, CD61 + and SCGA + EVs, being the effect on CD61 + EVs prolonged up to 24 h after the end of the test with subjects in resting conditions. Total EVs, exosomes, and CD61 + EVs were associated with HOMA-IR. CONCLUSIONS Though preliminary, the results of the present study show that a single bout of acute exercise modulates the release of EVs in circulation, which are tissue-, sex-, and BMI specific, suggesting that the exercise-related benefits might depend upon a complex interaction of tissue, endocrine, and metabolic factors.
Collapse
|
35
|
Bakogiannis C, Sachse M, Stamatelopoulos K, Stellos K. Platelet-derived chemokines in inflammation and atherosclerosis. Cytokine 2019; 122:154157. [DOI: 10.1016/j.cyto.2017.09.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/31/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022]
|
36
|
Feng C, Chen Q, Fan M, Guo J, Liu Y, Ji T, Zhu J, Zhao X. Platelet-derived microparticles promote phagocytosis of oxidized low-density lipoprotein by macrophages, potentially enhancing foam cell formation. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:477. [PMID: 31700913 DOI: 10.21037/atm.2019.08.06] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The interaction between platelets and macrophages plays an important role in the development and progression of atherosclerosis (AS). This study aimed to investigate the role of platelet microparticles (PMPs) in the development of foam cells. Methods PMPs are generated by activating platelets with thrombin and separated by ultracentrifugation. The macrophages were treated with PMPs, the phagocytosis of oxidized low-density lipoprotein (Ox-LDL) and formation of foam cells were evaluated by flow cytometry and confocal microscopy, respectively, and the inflammatory factors cytokines in the supernatant were detected by ELISA. Results PMPs significantly increase the phagocytosis of Ox-LDL and elevated foam cell formation of macrophages. IL-1β content in the supernatant of macrophages peaked around 2-4 h and declined to normal level after 6-8 h; IL-6 content peaked at 4 h and then decreased to normal level. TNF-α content peaked at 2-4 h. Conclusions The microparticles from activated platelets can increase the phagocytosis of Ox-LDL and the production of inflammatory cytokines by macrophages, which is related to the development of AS.
Collapse
Affiliation(s)
- Can Feng
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Qi Chen
- Department of Cardiology, Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Min Fan
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jun Guo
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yu Liu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing 210008, China
| | - Tao Ji
- Department of Neurosurgery, Tenth Affiliated Hospital, Tongji University, Shanghai 200072, China
| | - Jiaqi Zhu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
37
|
Liu X, Gorzelanny C, Schneider SW. Platelets in Skin Autoimmune Diseases. Front Immunol 2019; 10:1453. [PMID: 31333641 PMCID: PMC6620619 DOI: 10.3389/fimmu.2019.01453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and small vessel vasculitis are three autoimmune diseases frequently manifested in the skin. They share common pathogenic features, including production of autoantibodies, loss of tolerance to self-antigens, tissue necrosis and fibrosis, vasculopathy and activation of the coagulation system. Platelets occupy a central part within the coagulation cascade and are well-recognized for their hemostatic role. However, recent cumulative evidence implicates their additional and multifaceted immunoregulatory functions. Platelets express immune receptors and they store growth factors, cytokines, and chemokines in their granules enabling a significant contribution to inflammation. A plethora of activating triggers such as damage associated molecular patterns (DAMPs) released from damaged endothelial cells, immune complexes, or complement effector molecules can mediate platelet activation. Activated platelets further foster an inflammatory environment and the crosstalk with the endothelium and leukocytes by the release of immunoactive molecules and microparticles. Further insight into the pathogenic implications of platelet activation will pave the way for new therapeutic strategies targeting autoimmune diseases. In this review, we discuss the inflammatory functions of platelets and their mechanistic contribution to the pathophysiology of SSc, ANCA associated small vessel vasculitis and other autoimmune diseases affecting the skin.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Dermatology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Zhang L, Yuan M, Zhang L, Wu B, Sun X. Adiponectin alleviates NLRP3-inflammasome-mediated pyroptosis of aortic endothelial cells by inhibiting FoxO4 in arteriosclerosis. Biochem Biophys Res Commun 2019; 514:266-272. [DOI: 10.1016/j.bbrc.2019.04.143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 12/15/2022]
|
39
|
Friedman PN, Shaazuddin M, Gong L, Grossman RL, Harralson AF, Klein TE, Lee NH, Miller DC, Nutescu EA, O'Brien TJ, O'Donnell PH, O'Leary KJ, Tuck M, Meltzer DO, Perera MA. The ACCOuNT Consortium: A Model for the Discovery, Translation, and Implementation of Precision Medicine in African Americans. Clin Transl Sci 2019; 12:209-217. [PMID: 30592548 PMCID: PMC6510376 DOI: 10.1111/cts.12608] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023] Open
Abstract
The majority of pharmacogenomic (PGx) studies have been conducted on European ancestry populations, thereby excluding minority populations and impeding the discovery and translation of African American–specific genetic variation into precision medicine. Without accounting for variants found in African Americans, clinical recommendations based solely on genetic biomarkers found in European populations could result in misclassification of drug response in African American patients. To address these challenges, we formed the Transdisciplinary Collaborative Center (TCC), African American Cardiovascular Pharmacogenetic Consortium (ACCOuNT), to discover novel genetic variants in African Americans related to clinically actionable cardiovascular phenotypes and to incorporate African American–specific sequence variations into clinical recommendations at the point of care. The TCC consists of two research projects focused on discovery and translation of genetic findings and four cores that support the projects. In addition, the largest repository of PGx information on African Americans is being established as well as lasting infrastructure that can be utilized to spur continued research in this understudied population.
Collapse
Affiliation(s)
- Paula N Friedman
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mohammed Shaazuddin
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Li Gong
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Robert L Grossman
- Department of Medicine and Computer Science, Center for Data Intensive Science, The University of Chicago, Chicago, Illinois, USA
| | - Arthur F Harralson
- Department of Pharmacogenomics, Shenandoah University, Inova Center for Personalized Health, Fairfax, Virginia, USA.,Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Teri E Klein
- Department of Biomedical Data Science and Department of Medicine, Stanford University, Stanford, California, USA
| | - Norman H Lee
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Doriane C Miller
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Edith A Nutescu
- Department of Pharmacy Systems, Outcomes, and Policy and Personalized Medicine Program, University of Illinois, College of Pharmacy, Chicago, Illinois, USA
| | - Travis J O'Brien
- Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Peter H O'Donnell
- Department of Medicine, Center for Personalized Therapeutics, Committee on Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, Illinois, USA
| | - Kevin J O'Leary
- Division of Hospital Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew Tuck
- Washington DC VA Medical Center, Washington, DC and The George Washington University, Washington, DC, USA
| | - David O Meltzer
- Department of Medicine, Center for Health and the Social Sciences, The University of Chicago, Chicago, Illinois, USA
| | - Minoli A Perera
- Department of Pharmacology, Center for Pharmacogenomics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
40
|
Smith TJ, Johnson JL, Habtewold A, Burmeister MA. Cardiovascular Risk Reduction: A Pharmacotherapeutic Update for Antiplatelet Medications. Crit Care Nurs Clin North Am 2018; 31:15-30. [PMID: 30736932 DOI: 10.1016/j.cnc.2018.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This update presents evidence for new antiplatelet therapies including modified P2Y12 inhibitors and a new class of thromboxane antagonists. Discussed are emerging data on established antihyperlipidemic medications that support an additional antiplatelet effect. Current information about the effectiveness of several bleeding reversal agents is discussed, and the concept of personalized antiplatelet therapy, wherein selection of an antiplatelet therapy is based on genetic factors or laboratory testing that predict response to therapy and risk of adverse effects. Finally, future drug targets are introduced and drug interactions that can be leveraged to design more effective and safe antiplatelet therapies are described.
Collapse
Affiliation(s)
- Troy J Smith
- Department of Pharmacy Practice and Administration, William Carey University School of Pharmacy, 19640 MS-67, Biloxi, MS 39532, USA.
| | - Jessica L Johnson
- Department of Pharmacy Practice and Administration, William Carey University School of Pharmacy, 19640 MS-67, Biloxi, MS 39532, USA
| | - Abiy Habtewold
- Department of Pharmaceutical Sciences, William Carey University School of Pharmacy, 19640 MS-67, Biloxi, MS 39532, USA
| | - Melissa A Burmeister
- Department of Pharmaceutical Sciences, William Carey University School of Pharmacy, 19640 MS-67, Biloxi, MS 39532, USA
| |
Collapse
|
41
|
Characterization of fibrinogen binding on platelet-derived extracellular vesicles. Thromb Res 2018; 172:135-138. [DOI: 10.1016/j.thromres.2018.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 11/30/2022]
|
42
|
Elia E, Montecucco F, Portincasa P, Sahebkar A, Mollazadeh H, Carbone F. Update on pathological platelet activation in coronary thrombosis. J Cell Physiol 2018; 234:2121-2133. [PMID: 30317596 DOI: 10.1002/jcp.27575] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
Although coronary thrombosis (CT) is integral to cardiovascular outcomes, the underlying pathophysiological mechanisms remain unclear. CT may occur in case of atherosclerotic plaque erosion/rupture, or even after stenting implantation. Platelets (PLT) activation is the keystone of atherothrombosis and depends on many dysregulated elements, including endothelial dysfunction, oxidized lipoproteins, and immune response. Besides the classical view of PLT as an effector of hemostatic response, a new repertoire of PLT activities is emerging. PLT lipidome oxidation is a self-maintaining process which promotes PLT reactivity, coagulation cascade, and inflammatory cell activation. PLT-innate immune cell interaction is also sustained by neutrophil extracellular traps and NLRP3 inflammasome pathways. Other noteworthy emerging mechanisms are implicated in the crosstalk between PLT and surrounding cells. Especially, microvesicles (MVs) released from PLT may extend their signaling network far beyond the classical cell-cell interactions. Moreover, the recognition of noncoding RNA in PLT MVs introduce another layer of complexity in terms of intercellular signaling by a direct regulation of messenger RNA profile and gene expression in the recipient cells. The aim of this narrative review is to update the recent advance in CT and intracoronary stent thrombosis, including causal factors and potential translation of experimental evidence into the clinical setting.
Collapse
Affiliation(s)
- Edoardo Elia
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy.,Department of Internal Medicine, First Clinic of Internal Medicine, Ospedale Policlinico San Martino, 10 Largo Benzi, Genoa, Italy.,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica "A. Murri," University of Bari Medical School, Bari, Italy
| | - Amirhossein Sahebkar
- Department of Pharmaceutical Biotechnology, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Federico Carbone
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
43
|
Storch AS, Rocha HNM, Garcia VP, Batista GMDS, Mattos JD, Campos MO, Fuly AL, Nóbrega ACLD, Fernandes IA, Rocha NG. Oscillatory shear stress induces hemostatic imbalance in healthy men. Thromb Res 2018; 170:119-125. [DOI: 10.1016/j.thromres.2018.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/28/2018] [Accepted: 08/24/2018] [Indexed: 01/27/2023]
|
44
|
The impact of CYP2C19*2, CYP4F2*3, and clinical factors on platelet aggregation, CYP4F2 enzyme activity, and 20-hydroxyeicosatetraenoic acid concentration in patients treated with dual antiplatelet therapy. Blood Coagul Fibrinolysis 2018; 28:658-664. [PMID: 28806186 DOI: 10.1097/mbc.0000000000000658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
: The aim of the current study was to evaluate the impact of CYP2C192 (rs4244285), CYP4F23 (rs2108622), and nongenetic factors on platelet aggregation and to investigate the mechanism of CYP4F2's effect on platelet aggregation in the patients treated with dual antiplatelet therapy. A total of 146 patients were included in this study. Ticagrelor or clopidogrel were administered in a loading dose of 180 mg and 600 mg, respectively, in combination with aspirin (300 mg). Blood samples for analysis were taken the next morning after antiplatelet therapy induction. Clopidogrel users with the CYP2C1912 variant had higher platelet aggregation values (median 43, range 30-54%) compared with 11 wild-type carriers (median 33, range 15-77%; P = 0.009). Carriers of the CYP4F213 variant had higher platelet aggregation values than carriers of the 33 variant (median 34, range 8-70% vs. median 24.5, range 10-47%, P = 0.016, respectively). Higher CYP4F2 concentrations were detected in clopidogrel users than in ticagrelor users (median 3.6, range 1.6-22.0 ng/ml vs. median 2.3, range 1.6-27.2 ng/ml, P = 0.056, respectively) and in carriers of the CYP4F213 variant compared with carriers of the 11 variant (median 4.3, range 1.6-27.2 ng/ml vs. median 2.4, range 1.6-22.0 ng/ml, P = 0.009, respectively). No correlation between plasma 20-hydroxyeicosatetraenoic acid and CYP4F2 enzyme concentrations were detected (r = -0.045, P = 0.587). Our results proved that CYP2C192 might significantly affect antiplatelet function of clopidogrel. Plasma CYP4F2 concentrations were significantly lower in ticagrelor users than in clopidogrel users.
Collapse
|
45
|
Wei H, Malcor JDM, Harper MT. Lipid rafts are essential for release of phosphatidylserine-exposing extracellular vesicles from platelets. Sci Rep 2018; 8:9987. [PMID: 29968812 PMCID: PMC6030044 DOI: 10.1038/s41598-018-28363-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/21/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets protect the vascular system during damage or inflammation, but platelet activation can result in pathological thrombosis. Activated platelets release a variety of extracellular vesicles (EVs). EVs shed from the plasma membrane often expose phosphatidylserine (PS). These EVs are pro-thrombotic and increased in number in many cardiovascular and metabolic diseases. The mechanisms by which PS-exposing EVs are shed from activated platelets are not well characterised. Cholesterol-rich lipid rafts provide a platform for coordinating signalling through receptors and Ca2+ channels in platelets. We show that cholesterol depletion with methyl-β-cyclodextrin or sequestration with filipin prevented the Ca2+-triggered release of PS-exposing EVs. Although calpain activity was required for release of PS-exposing, calpain-dependent cleavage of talin was not affected by cholesterol depletion. P2Y12 and TPα, receptors for ADP and thromboxane A2, respectively, have been reported to be in platelet lipid rafts. However, the P2Y12 antagonist, AR-C69931MX, or the cyclooxygenase inhibitor, aspirin, had no effect on A23187-induced release of PS-exposing EVs. Together, these data show that lipid rafts are required for release of PS-exposing EVs from platelets.
Collapse
Affiliation(s)
- Hao Wei
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | | - Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
46
|
Platelet microparticle delivered microRNA-Let-7a promotes the angiogenic switch. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2633-2643. [PMID: 29684582 DOI: 10.1016/j.bbadis.2018.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 01/14/2023]
Abstract
Platelet microparticle (PMP)-induced angiogenesis plays a key role in tumour metastasis and has been proposed to contribute towards cardiovascular disease by enhancing atherosclerotic plaque vulnerability. However, the mechanisms underlying PMP induced angiogenesis are ill defined. Recent reports demonstrate that PMPs deliver micro-RNAs (miRNAs) to recipient cells, controlling gene expression. We therefore evaluated whether miRNA transfer was a key regulator of PMP-induced angiogenesis. Co-culturing PMPs with human umbilical vein endothelial cells (HUVEC) on extracellular matrix gel induced robust capillary like structure formation. PMP treatment altered the release of angiogenesis modulators from HUVEC, including significantly reducing production of anti-angiogenic thrombospondin-1 (THBS-1). Both functional responses were abrogated by treating PMPs with RNase, suggesting the transfer of PMP-derived RNA was a critical event. PMPs were an abundant source of miRNA Let-7a, which was transferred to HUVEC following co-incubation. Using luciferase reporter assays we have shown that Let-7a directly targets the 3'UTR of the THBS-1 mRNA. HUVEC transfection with a Let-7a anti-sense oligonucleotide reduced the ability of PMPs to inhibit THBS-1 release, and significantly decreased PMP induced in vitro angiogenesis. Antibody neutralisation of THBS-1 reversed the anti-angiogenic effect of let-7a inhibition in PMP treated HUVEC, highlighting Let-7a dependent translational repression of THBS-1 drives angiogenesis. Importantly, plasmid overexpression of Let-7a in HUVEC alone induced robust tubule formation on extracellular matrix gel. These data reveal a new role for Let-7a in promoting angiogenesis and show for the first time PMPs induced angiogenic responses occur through miRNA regulation of HUVEC.
Collapse
|
47
|
Xu YJ, Zheng L, Hu YW, Wang Q. Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta 2018; 476:28-37. [DOI: 10.1016/j.cca.2017.11.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
|
48
|
Giannella A, Radu CM, Franco L, Campello E, Simioni P, Avogaro A, de Kreutzenberg SV, Ceolotto G. Circulating levels and characterization of microparticles in patients with different degrees of glucose tolerance. Cardiovasc Diabetol 2017; 16:118. [PMID: 28927403 PMCID: PMC5606070 DOI: 10.1186/s12933-017-0600-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/09/2017] [Indexed: 12/12/2022] Open
Abstract
Background Microparticles (MPs) are vesicular structures shed from endothelial or circulating blood cells, after activation or apoptosis, and can be considered markers of vascular damage. We aimed to determine the levels of circulating MPs, their content of miRNA-126-3p and 5p, and their relationship with early endothelial activation/damage, in patients with different degree of glucose tolerance. Methods CD62E+, CD62P+, CD142+, CD45+ circulating MPs, their apoptotic (AnnexinV+) fractions, and miRNA-126 expression were determined in 39 prediabetic (PreDM), 68 type 2 diabetic (T2DM), and 53 control (NGT) subjects, along with main anthropometric and biochemical measurements. MPs were analysed by flow cytometry. miRNA-126 was measured by quantitative real-time PCR. Plasma antioxidant capacity was determined by electronic spin resonance; ICAM-1, and VCAM-1 by ELISA. Results Activated endothelial cell-derived MPs (CD62E+) were significantly increased in PreDM and T2DM in comparison to NGT (p < 0.0001). AnnexinV+/CD62E+ MPs and Annexin V+ MPs were significantly increased in T2DM compared to PreDM and NGT (p < 0.001); other MPs were not significantly different among groups. Plasma antioxidant capacity was significantly decreased in PreDM and T2DM compared to NGT (p = 0.001); VCAM-1 significantly increased in PreDM and T2DM in comparison to NGT (p = 0.001). miR-126-3p expression, but not miR-126-5p, in MPs, decreased significantly and progressively from NGT, to PreDM, and T2DM (p < 0.001). In PreDM and T2DM, CD62E+ MPs level was significantly and negatively associated with plasma glucose (p = 0.004). Conclusion We show for the first time that circulating CD62E+ MPs level and miR-126-3p content in MPs are abnormal in subjects with pre-diabetes; the content of miR-126-3p correlates with markers of endothelial inflammation, such as VCAM-1, plasma antioxidant capacity, and microparticles, well-accepted markers of endothelial dysfunction.
Collapse
Affiliation(s)
| | | | - Lorenzo Franco
- Department of Chemical Sciences, University of Padova, Padua, Italy
| | - Elena Campello
- Department of Medicine-DIMED, University of Padova, Padua, Italy
| | - Paolo Simioni
- Department of Medicine-DIMED, University of Padova, Padua, Italy
| | - Angelo Avogaro
- Department of Medicine-DIMED, University of Padova, Padua, Italy
| | | | - Giulio Ceolotto
- Department of Medicine-DIMED, University of Padova, Padua, Italy
| |
Collapse
|
49
|
Xiao X, Liu HX, Shen K, Cao W, Li XQ. Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases. Biomol Ther (Seoul) 2017; 25:471-481. [PMID: 28274093 PMCID: PMC5590790 DOI: 10.4062/biomolther.2016.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/04/2016] [Accepted: 12/27/2016] [Indexed: 12/29/2022] Open
Abstract
The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.
Collapse
Affiliation(s)
- Xiong Xiao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Xia Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.,Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Shen
- Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cao
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Qiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
50
|
Khattab SA, Abo-Elmatty DM, Ghattas MH, Mesbah NM, Mehanna ET. Intestinal fatty acid binding protein Ala54Thr polymorphism is associated with peripheral atherosclerosis combined with type 2 diabetes mellitus. J Diabetes 2017; 9:821-826. [PMID: 27778448 DOI: 10.1111/1753-0407.12496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Intestinal fatty acid-binding protein 2 (FABP2) is expressed in enterocytes and binds saturated and unsaturated long-chain fatty acids. The FABP2 Ala54Thr polymorphism has been reported to effect lipid metabolism. The aim of the present study was to assess the relationship between this polymorphism and peripheral atherosclerosis combined with type 2 diabetes mellitus (T2DM) in an Egyptian population. METHODS The study was performed on 100 T2DM patients with peripheral atherosclerosis and 100 control subjects. The Ala54Thr polymorphism was analyzed by polymerase chain reaction-restriction fragment length polymorphism, whereas serum FABP2 levels were determined using ELISA. Fasting blood glucose, fasting serum insulin concentrations, HbA1c, lipid profile, body mass index (BMI) and systolic and diastolic blood pressure (SBP and DBP, respectively) were determined. RESULTS There was a higher frequency of the Thr54 allele among the patient group (P = 0.002). In Ala54/Thr54 heterozygotes and carriers of the rare Thr54/Thr54 genotype, there were significant increases in BMI and FABP2. Those with the Thr54/Thr54 genotype had significantly decreased high-density lipoprotein cholesterol (HDL-C) concentrations; in addition, those with the Thr54/Thr54 genotype had significantly higher SBP and DBP than subjects with the Ala54/Ala54 and Ala54/Thr54 genotypes. There was a positive correlation between FABP2 levels and BMI, SBP and DBP, and a negative correlation with HDL-C. CONCLUSIONS The Thr54 allele of the FABP2 Ala54Thr polymorphism was associated with an increased incidence of peripheral atherosclerosis combined with T2DM in the population studied.
Collapse
Affiliation(s)
- Salma A Khattab
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Maivel H Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|