1
|
Liu XQ, Shi MZ, Bai YT, Su XL, Liu YM, Wu JC, Chen LR. Hypoxia and ferroptosis. Cell Signal 2024; 122:111328. [PMID: 39094672 DOI: 10.1016/j.cellsig.2024.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Ferroptosis is a novel, iron-dependent cell death characterized by the excessive accumulation of ferroptosis lipid peroxides ultimately leading to oxidative damage to the cell membrane. Iron, lipid, amino acid metabolism, and other signaling pathways all control ferroptosis. Numerous bodily tissues experience hypoxia under normal and pathological circumstances. Tissue cells can adjust to these changes by activating the hypoxia-inducible factor (HIF) signaling pathway and other mechanisms in response to the hypoxic environment. In recent years, there has been increasing evidence that hypoxia and ferroptosis are closely linked, and that hypoxia can regulate ferroptosis in specific cells and conditions through different pathways. In this paper, we review the possible positive and negative regulatory mechanisms of ferroptosis by hypoxia-inducible factors, as well as ferroptosis-associated ischemic diseases, with the intention of delivering novel therapeutic avenues for the defense and management of hypoxic illnesses linked to ferroptosis.
Collapse
Affiliation(s)
- Xiao-Qian Liu
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Meng-Zhen Shi
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yu-Ting Bai
- Qinghai Provincial People's Hospital, Xining 810001, PR China.
| | - Xiao-Ling Su
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yan-Min Liu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Jin-Chun Wu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Li-Rong Chen
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| |
Collapse
|
2
|
Sabri S, Salih S, Al-Timimi D. Low-Density Lipoprotein Receptor Apolipoprotein B Gene Polymorphism in Kurdish Patients With Severe Hypercholesterolemia. Cureus 2024; 16:e70387. [PMID: 39469407 PMCID: PMC11515686 DOI: 10.7759/cureus.70387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Background Polymorphisms in the low-density lipoprotein receptor (LDLR) and apolipoprotein B 100 (APOB-100) genes have been linked to severe hypercholesterolemia in several populations. This study investigated the frequency of LDLR-Ava II and APOB-Xba I polymorphisms among Kurdish patients with severe hypercholesterolemia. Methodology We investigated LDLR-Ava II and APOB-Xba I gene polymorphisms in Kurdish patients attending the Duhok Specialized Laboratory Center in Duhok, Kurdistan Region, Iraq. We included a total of 80 subjects in this study, of which 40 (20 males and 20 females) had severe hypercholesterolemia, and 40 apparently healthy volunteers (21 males and 19 females) had normocholesterolemia, served as a control group. We used the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique to determine the polymorphisms of the LDLR-Ava II and APOB-Xba I genes. Results In those with severe hypercholesterolemia, the observed allele frequencies were AA LDLR-Ava II polymorphism (eight, 20%) followed by TT APOB-Xba I polymorphisms (six, 15%), whereas these frequencies were five (12.5%) and one (2.5%) in those with normocholesterolemia, respectively. The AA genotype group had considerably higher cholesterol and LDL-C levels compared with the GG genotype group. A similar pattern was observed when comparing the TT and CC genotype groups. Conclusions Our results showed a high frequency of AA LDLR-Ava II polymorphism in conjunction with TT APOB-Xba I polymorphism which may be strongly associated with hypercholesterolemia in the Kurdish population.
Collapse
Affiliation(s)
- Saeed Sabri
- Medical Chemistry, College of Medicine, University of Duhok, Duhok, IRQ
| | - Sherwan Salih
- Medical Chemistry, College of Medicine, University of Duhok, Duhok, IRQ
| | - Dhia Al-Timimi
- Medical Chemistry, College of Medicine, University of Duhok, Duhok, IRQ
| |
Collapse
|
3
|
Mahsoub N, Almenshawy A, Taki Eldin AM, Abdel Hay NM, Youssef AR, El-Farahaty RM, El-Sayed K, Osman AM, Elhennawy ES. Association between Apo B, LDL-R and PCSK9 gene polymorphisms with coronary artery diseases in Egyptians. Mol Biol Rep 2024; 51:752. [PMID: 38874786 DOI: 10.1007/s11033-024-09607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/02/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Many studies have focused on the significance of lipid regulatory genes in the pathophysiology of Coronary artery disease (CAD). ApoB XbaI (rs693) and EcoRI (rs1042031) single nucleoid polymorphisms (SNPs) were investigated to detect whether they are risk factors for CAD. Till now, this association remains uncertain. SMARCA4 (rs1122608) SNP has directly related to dyslipidemia. Loss of function mutations (LOF) in PCSK9 result in a reduction in LDL cholesterol and are associated with protection from the development of CAD. METHODS This study was conducted on 54 CAD patients who were admitted at Internal Medicine Specialized Hospital (Cardiology Department) and 47 healthy controls. Peripheral blood samples were taken from both groups. DNA was extracted from EDTA-blood samples, then PCR- RFLP for ApoB XbaI (rs693) and EcoRI (rs1042031), SMARCA4 (rs1122608) and PCSK9 (rs505151) SNPs was done. RESULTS No statistically significant difference was found between patients and controls as regard EcoRI SNP. XbaI (rs693) X + X + genotype was significantly higher in control group (P = 0.0355). SMARCA4 (TT, GT + TT) genotypes, and T allele (P < 0.001); PCSK9 AG genotype and G allele (P = 0.027 and 0.032 respectively) were more frequent in CAD patients than controls. CONCLUSION SMARCA4 (rs1122608) and PCSK9 (rs505151) SNPs are significantly accompanying with the risk of CAD development in the Egyptian population. X + X + genotype appeared to have a protective effect against CAD. However, no observed association between EcoRI (rs1042031) and the risk of CAD development was found.
Collapse
Affiliation(s)
- Nancy Mahsoub
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Almenshawy
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Nehal M Abdel Hay
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amany R Youssef
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Reham M El-Farahaty
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Kefaya El-Sayed
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Adel Mohamad Osman
- Department of Cardiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman S Elhennawy
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
4
|
Xiao Q, Wang J, Wang L, Ding H. APOA1/C3/A4/A5 Gene Cluster at 11q23.3 and Lipid Metabolism Disorders: From Epigenetic Mechanisms to Clinical Practices. Biomedicines 2024; 12:1224. [PMID: 38927431 PMCID: PMC11201263 DOI: 10.3390/biomedicines12061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The APOA1/C3/A4/A5 cluster is an essential component in regulating lipoprotein metabolism and maintaining plasma lipid homeostasis. A genome-wide association analysis and Mendelian randomization have revealed potential associations between genetic variants within this cluster and lipid metabolism disorders, including hyperlipidemia and cardiovascular events. An enhanced understanding of the complexity of gene regulation has led to growing recognition regarding the role of epigenetic variation in modulating APOA1/C3/A4/A5 gene expression. Intensive research into the epigenetic regulatory patterns of the APOA1/C3/A4/A5 cluster will help increase our understanding of the pathogenesis of lipid metabolism disorders and facilitate the development of new therapeutic approaches. This review discusses the biology of how the APOA1/C3/A4/A5 cluster affects circulating lipoproteins and the current progress in the epigenetic regulation of the APOA1/C3/A4/A5 cluster.
Collapse
Affiliation(s)
- Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| |
Collapse
|
5
|
Schreiner TG, Ignat BE, Grosu C, Costache AD, Leon MM, Mitu F. Lipid-Derived Biomarkers as Therapeutic Targets for Chronic Coronary Syndrome and Ischemic Stroke: An Updated Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:561. [PMID: 38674207 PMCID: PMC11052465 DOI: 10.3390/medicina60040561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
The incidence and prevalence of cardiac and cerebrovascular diseases are constantly increasing, with chronic coronary syndrome and ischemic stroke as the leading causes of morbidity and mortality worldwide. According to current knowledge, the heart-brain axis is more than a theoretical concept, with many common pathophysiological mechanisms involved in the onset and evolution of both coronary and cerebral ischemia. Moreover, the focus is on the prevention and early intervention of risk factors in searching for targeted and personalized medical treatment. In this context, this narrative review aims to offer, in a didactic and practice-oriented manner, an up-to-date overview of the role played by lipid-derived biomarkers (from low-density lipoprotein cholesterol to oxylipin and apolipoproteins) in chronic coronary syndrome and ischemic stroke. Firstly, the authors highlight, via relevant epidemiological data, the significant burden of chronic coronary syndrome and ischemic stroke in the general population, thus explaining the need for updated information on this topic. Subsequently, the most important lipid-derived biomarkers and their multiple roles in the pathogenesis of these two disorders are listed. Currently available and experimental targeted therapies based on these lipid-derived biomarkers are presented in the final part of this paper, representing this manuscript's original and novel input.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Department of Medical Specialties III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
- First Neurology Clinic, “Prof. Dr. N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
| | - Bogdan Emilian Ignat
- Department of Medical Specialties III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Neurology Department, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Cristina Grosu
- Department of Medical Specialties III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Neurology Department, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alexandru Dan Costache
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Medical Rehabilitation Department, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Maria Magdalena Leon
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Medical Rehabilitation Department, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Florin Mitu
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania
- Medical Rehabilitation Department, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
6
|
Li S, Huang P, Lai F, Zhang T, Guan J, Wan H, He Y. Mechanisms of Ferritinophagy and Ferroptosis in Diseases. Mol Neurobiol 2024; 61:1605-1626. [PMID: 37736794 DOI: 10.1007/s12035-023-03640-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
The discovery of the role of autophagy, particularly the selective form like ferritinophagy, in promoting cells to undergo ferroptosis has inspired us to investigate functional connections between diseases and cell death. Ferroptosis is a novel model of procedural cell death characterized by the accumulation of iron-dependent reactive oxygen species (ROS), mitochondrial dysfunction, and neuroinflammatory response. Based on ferroptosis, the study of ferritinophagy is particularly important. In recent years, extensive research has elucidated the role of ferroptosis and ferritinophagy in neurological diseases and anemia, suggesting their potential as therapeutic targets. Besides, the global emergence and rapid transmission of COVID-19, which is caused by SARS-CoV-2, represents a considerable risk to public health worldwide. The potential involvement of ferroptosis in the pathophysiology of brain injury associated with COVID-19 is still unclear. This review summarizes the pathophysiological changes of ferroptosis and ferritinophagy in neurological diseases, anemia, and COVID-19, and hypothesizes that ferritinophagy may be a potential mechanism of ferroptosis. Advancements in these fields will enhance our comprehension of methods to prevent and address neurological disorders, anemia, and COVID-19.
Collapse
Affiliation(s)
- Siqi Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Feifan Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ting Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiaqi Guan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
7
|
Arshad M, Iqbal R, Raza M, Bashir R, Ahmed T, Parveen A. Association of APO B gene polymorphisms with the development of myocardial infarction in Pakistani population. Gene 2024; 896:148052. [PMID: 38042210 DOI: 10.1016/j.gene.2023.148052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
Myocardial infarction (MI) is when a blood clot in the coronary artery obstructs blood flow to a specific part of the heart, leading to the death of myocardium in that area. The development of MI is influenced by various environmental factors, genetic components, and their interactions, even though the exact cause has not been fully established. This is the first case-control study examining the possible association between the human Apo B gene and MI in the Punjab region of Pakistan. The study included 100 patients and 50 healthy individuals. Genomic DNA was isolated from blood samples using manual extraction methods. Subsequently, primers were optimized, and genotyping was performed using PCR, followed by DNA sequencing and RFLP analysis. The research focused on two specific APO B gene SNPs, codon 4154 G/A (rs1801701) and codon 2488 G/A (rs1042031). Both SNPs involved the substitution of guanine with adenine. It was found that individuals carrying the minor allele A of SNP rs1801701 (p < 0.001) and the minor allele A of rs1042031 (p < 0.001) had a significantly higher risk of developing MI. Additionally, haplotype analysis revealed that the AA haplotype (comprising both rs1801701 and rs1042031 SNPs) was associated with a substantially increased risk of MI (OR = 3.845). In conclusion, the study provides evidence supporting the association between specific mutations in the APOB gene and the risk of myocardial infarction in the Pakistani population.
Collapse
Affiliation(s)
- Muhammad Arshad
- Department of Zoology, GC University Lahore, Pakistan; Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Riffat Iqbal
- Department of Zoology, GC University Lahore, Pakistan.
| | - Muzammal Raza
- Department of Zoology, GC University Lahore, Pakistan.
| | - Razia Bashir
- Department of Zoology, University of Education, Lahore, Pakistan.
| | - Tanveer Ahmed
- Department of Life Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Asia Parveen
- Department of Zoology, GC University Lahore, Pakistan.
| |
Collapse
|
8
|
Cui M, Chen F, Shao L, Wei C, Zhang W, Sun W, Wang J. Mesenchymal stem cells and ferroptosis: Clinical opportunities and challenges. Heliyon 2024; 10:e25251. [PMID: 38356500 PMCID: PMC10864896 DOI: 10.1016/j.heliyon.2024.e25251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Objective This review discusses recent experimental and clinical findings related to ferroptosis, with a focus on the role of MSCs. Therapeutic efficacy and current applications of MSC-based ferroptosis therapies are also discussed. Background Ferroptosis is a type of programmed cell death that differs from apoptosis, necrosis, and autophagy; it involves iron metabolism and is related to the pathogenesis of many diseases, such as Parkinson's disease, cancers, and liver diseases. In recent years, the use of mesenchymal stem cells (MSCs) and MSC-derived exosomes has become a trend in cell-free therapies. MSCs are a heterogeneous cell population isolated from a diverse range of human tissues that exhibit immunomodulatory functions, regulate cell growth, and repair damaged tissues. In addition, accumulating evidence indicates that MSC-derived exosomes play an important role, mainly by carrying a variety of bioactive substances that affect recipient cells. The potential mechanism by which MSC-derived exosomes mediate the effects of MSCs on ferroptosis has been previously demonstrated. This review provides the first overview of the current knowledge on ferroptosis, MSCs, and MSC-derived exosomes and highlights the potential application of MSCs exosomes in the treatment of ferroptotic conditions. It summarizes their mechanisms of action and techniques for enhancing MSC functionality. Results obtained from a large number of experimental studies revealed that both local and systemic administration of MSCs effectively suppressed ferroptosis in injured hepatocytes, neurons, cardiomyocytes, and nucleus pulposus cells and promoted the survival and regeneration of injured organs. Methods We reviewed the role of ferroptosis in related tissues and organs, focusing on its characteristics in different diseases. Additionally, the effects of MSCs and MSC-derived exosomes on ferroptosis-related pathways in various organs were reviewed, and the mechanism of action was elucidated. MSCs were shown to improve the disease course by regulating ferroptosis.
Collapse
Affiliation(s)
- Mengling Cui
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Fukun Chen
- Department of Radiology, Kunming Medical University & the Third Affiliated Hospital, Kunming, Yunnan, 650101, PR China
| | - Lishi Shao
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Chanyan Wei
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Weihu Zhang
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Wenmei Sun
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| | - Jiaping Wang
- Department of Radiology, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, PR China
| |
Collapse
|
9
|
Besin V, Yulianti T, Notopuro PB, Humardani FM. Genetic Polymorphisms of Ischemic Stroke in Asians. Clin Chim Acta 2023; 549:117527. [PMID: 37666385 DOI: 10.1016/j.cca.2023.117527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The increasing incidence of ischemic stroke emphasizes the necessity for early detection and preventive strategies. Diagnostic biomarkers currently available for ischemic stroke only become detectable shortly before the manifestation of stroke symptoms. Genetic variants associated with ischemic stroke offer a potential solution to address this diagnostic limitation. However, it is crucial to acknowledge that genetic variants cannot be modified in the same way as epigenetic changes. Nevertheless, individuals carrying risk or protective variants can modify their lifestyle to potentially influence the associated epigenetic factors. This study aims to summarize specific variants relevant to Asian populations that may aid in the early detection of ischemic stroke and explore their impact on the disease's pathophysiology. These variants give us important information about the genes that play a role in ischemic stroke by affecting things like atherosclerosis pathway, blood coagulation pathway, homocysteine metabolism, transporter function, transcription, and the activity of neurons regulation. It is important to recognize the variations in genetic variants among different ethnicities and avoid generalizing the pathogenesis of ischemic stroke.
Collapse
Affiliation(s)
- Valentinus Besin
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia
| | - Trilis Yulianti
- Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Paulus Budiono Notopuro
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Farizky Martriano Humardani
- Faculty of Medicine, University of Surabaya, Surabaya 60292, Indonesia; Magister in Biomedical Science Program, Faculty of Medicine Universitas Brawijaya, Malang 65112, Indonesia.
| |
Collapse
|
10
|
Zhao J, Wang J, Zhao D, Wang L, Luo X. Association Between ABCA1 R219K Variant and Alzheimer's Disease: An Updated Meta-Analysis and Systematic Review. Curr Alzheimer Res 2023; 19:734-741. [PMID: 36380407 DOI: 10.2174/1567205020666221114112838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Over a dozen studies have investigated the effect of the R219K variant in the ATP-binding cassette transporter A1 (ABCA1) gene on the risk of Alzheimer's disease (AD), but the results are conflicting. OBJECTIVE We performed a systematic review and meta-analysis to comprehensively assess the association between the ABCA1 R219K variant and the risk of AD. METHODS Studies included in the meta-analysis were obtained by searching PubMed, Web of Science and AlzGene. Review Manager 5.4 was used for meta-analysis. Both the odds ratio (OR) and its 95% confidence interval (CI) were used to evaluate the effect of ABCA1 R219K polymorphism on AD susceptibility. Heterogeneity between the included studies was assessed using I2 statistics and Cochran Qtest. Funnel plots were used to assess publication bias. RESULTS A total of 14 eligible studies involving 10084 subjects were retrieved from PubMed, Web of Science and AlzGene. Meta-analysis results showed that R219K polymorphism was significantly associated with a decreased risk of AD in Chinese under a recessive model (OR = 0.67; 95% CI = 0.51- 0.88; P = 0.004). CONCLUSION The present meta-analysis indicated that the KK genotype of R219K polymorphism may act as a protective factor for AD in the Chinese population. Additional studies with larger sample sizes are needed to further confirm this association.
Collapse
Affiliation(s)
- Jinrong Zhao
- Academy of Life Science, School of Medicine, Xi'an International University, Xi'an 710077, China.,Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi'an 710077, China
| | - Jinpei Wang
- Academy of Life Science, School of Medicine, Xi'an International University, Xi'an 710077, China.,Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi'an 710077, China
| | - Dong Zhao
- Academy of Life Science, School of Medicine, Xi'an International University, Xi'an 710077, China.,Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi'an 710077, China
| | - Lin Wang
- Academy of Life Science, School of Medicine, Xi'an International University, Xi'an 710077, China.,Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi'an 710077, China
| | - Xiaoe Luo
- Academy of Life Science, School of Medicine, Xi'an International University, Xi'an 710077, China.,Engineering Research Center of Personalized Anti-aging Health Product Development and Transformation, Universities of Shaanxi Province, Xi'an 710077, China
| |
Collapse
|
11
|
Wang YE, Kirschke CP, Woodhouse LR, Bonnel EL, Stephensen CB, Bennett BJ, Newman JW, Keim NL, Huang L. SNPs in apolipoproteins contribute to sex-dependent differences in blood lipids before and after a high-fat dietary challenge in healthy U.S. adults. BMC Nutr 2022; 8:95. [PMID: 36050800 PMCID: PMC9438272 DOI: 10.1186/s40795-022-00592-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background The effect of genetic polymorphisms on fasting blood lipid levels have been widely studied but the effects of these within the context of a high-fat meal challenge remain less characterized. The current study aimed to investigate the association of SNPs in lipoprotein-related genes with blood lipid profiles in healthy adults in the U.S. Methods Subjects (n = 393) between 18–66 years of age with BMIs ranging from 18.5–45 kg/m2 were enrolled the cross-sectional Nutritional Phenotyping Study. Among them, 349 subjects (men: 48%; women: 52%) gave consent for genotyping. SNPs in APOA5, APOB, APOC3, APOE, and LDLR were assessed. The association between lipid markers and genotypes was tested separately for each SNP with analysis of variance (ANOVA), adjusted for sex, age, and BMI. We also examined two-factor interactions between SNPs and sex, age, or BMI. Results Women carrying the C allele of rs3135506 in APOA5 or men carrying the C allele of rs429358 in APOE had reduced HDL-cholesterol levels during fasting and postprandially. The C allele in APOE was also correlated to increased LDL-C levels. The TT genotype of rs2854116 in APOC3 was associated with elevated total cholesterol. Additive effect of the risk alleles of APOA5 and APOE or APOC3 and APOE was detected. Nevertheless, the tested SNPs had little impact on the postprandial triglyceride responses to the high-fat challenge meal. We found no significant effects of SNPs in APOB (rs1042034) or LDLR (rs2228671) on triglycerides, cholesterol, or free fatty acid levels. Conclusions In healthy adults, fasting and postprandial cholesterol levels are strongly correlated with the tested APOA5, APOE, and APOC3 genotypes. Sex contributes to the genetic impact of the tested SNPs on lipid profiles. Trial registration ClinicalTrials.gov, NCT02367287. Registered February 20, 2015, https://clinicaltrials.gov/ct2/show/NCT02367287. Supplementary Information The online version contains supplementary material available at 10.1186/s40795-022-00592-x.
Collapse
Affiliation(s)
- Yining E Wang
- Integrative Genetics and Genomics, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Catherine P Kirschke
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA
| | - Leslie R Woodhouse
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA
| | - Ellen L Bonnel
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA
| | - Charles B Stephensen
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA.,Department of Nutrition, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Brian J Bennett
- Integrative Genetics and Genomics, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA.,USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA.,Department of Nutrition, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA
| | - John W Newman
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA.,Department of Nutrition, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Nancy L Keim
- USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA.,Department of Nutrition, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Liping Huang
- Integrative Genetics and Genomics, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA. .,USDA/ARS/Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA, 95616, USA. .,Department of Nutrition, University of California at Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Spectrum of Rare and Common Genetic Variants in Arrhythmogenic Cardiomyopathy Patients. Biomolecules 2022; 12:biom12081043. [PMID: 36008935 PMCID: PMC9405889 DOI: 10.3390/biom12081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a rare inherited disorder, whose genetic cause is elusive in about 50–70% of cases. ACM presents a variable disease course which could be influenced by genetics. We performed next-generation sequencing on a panel of 174 genes associated with inherited cardiovascular diseases on 82 ACM probands (i) to describe and classify the pathogenicity of rare variants according to the American College of Medical Genetics and Genomics both for ACM-associated genes and for genes linked to other cardiovascular genetic conditions; (ii) to assess, for the first time, the impact of common variants on the ACM clinical disease severity by genotype-phenotype correlation and survival analysis. We identified 15 (likely) pathogenic variants and 66 variants of uncertain significance in ACM-genes and 4 high-impact variants in genes never associated with ACM (ABCC9, APOB, DPP6, MIB1), which deserve future consideration. In addition, we found 69 significant genotype-phenotype associations between common variants and clinical parameters. Arrhythmia-associated polymorphisms resulted in an increased risk of arrhythmic events during patients’ follow-up. The description of the genetic framework of our population and the observed genotype-phenotype correlation constitutes the starting point to address the current lack of knowledge in the genetics of ACM.
Collapse
|
13
|
Lv M, He W, Liang T, Yang J, Huang X, Liu S, Liang X, Long J, Su L. Exploring biomarkers for ischemic stroke through integrated microarray data analysis. Brain Res 2022; 1790:147982. [PMID: 35691413 DOI: 10.1016/j.brainres.2022.147982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Stroke is the third leading cause of disability-adjusted life years worldwide, and drugs available for its treatment are limited. This study aimed to explore high-confidence candidate genes associated with ischemic stroke (IS) through bioinformatics analysis and identify potential diagnostic biomarkers and gene-drug interactions. Weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) were integrated to identify overlapping genes. Then, high-confidence candidate genes were screened by least absolute shrinkage and selection operator (LASSO) regression. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of high-confidence candidate genes as biomarkers for IS. The NetworkAnalyst database was used to construct the TF-gene network and miRNA-TF regulatory network of the high-confidence candidate genes. The DGIdb database was used to identified gene-drug interactions. Through the comprehensive analysis of GSE58294 and GSE16561, 10 high-confidence candidate genes were identified by LASSO regression: ARG1, LY96, ABCA1, SLC22A4, CD163, TPM2, SLC25A42, ID3, FAM102A and CD79B. FAM102A had the highest diagnostic value, and the area under curve (AUC), sensitivity and specificity values were 0.974, 0.919 and 0.936, respectively. The HPA database demonstrated that 10 high-confidence candidate genes were expressed in the brain and blood in normal humans. Finally, DGIdb database analysis identified 8 gene-drug interactions. We identified IS-related diagnostic biomarkers and gene-drug interactions that potentially provide new insights into the diagnosis and treatment of IS.
Collapse
Affiliation(s)
- Miao Lv
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Wanting He
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Tian Liang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jialei Yang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xiaolan Huang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Shengying Liu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xueying Liang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Jianxiong Long
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Li Su
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| |
Collapse
|
14
|
Lin H, Xuan L, Xiang J, Hou Y, Dai H, Wang T, Zhao Z, Wang S, Lu J, Xu Y, Chen Y, Wang W, Ning G, Bi Y, Li M, Xu M. Changes in adiposity modulate the APOA5 genetic effect on blood lipids: A longitudinal cohort study. Atherosclerosis 2022; 350:1-8. [DOI: 10.1016/j.atherosclerosis.2022.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/27/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
|
15
|
Marcos-Pasero H, Aguilar-Aguilar E, de la Iglesia R, Espinosa-Salinas I, Molina S, Colmenarejo G, Martínez JA, Ramírez de Molina A, Reglero G, Loria-Kohen V. "GENYAL" Study to Childhood Obesity Prevention: Methodology and Preliminary Results. Front Nutr 2022; 9:777384. [PMID: 35350411 PMCID: PMC8957940 DOI: 10.3389/fnut.2022.777384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This article describes the methodology and summarizes some preliminary results of the GENYAL study aiming to design and validate a predictive model, considering both environmental and genetic factors, that identifies children who would benefit most from actions aimed at reducing the risk of obesity and its complications. Design The study is a cluster randomized clinical trial with 5-year follow-up. The initial evaluation was carried out in 2017. The schools were randomly split into intervention (nutritional education) and control schools. Anthropometric measurements, social and health as well as dietary and physical activity data of schoolchildren and their families are annually collected. A total of 26 single nucleotide polymorphisms (SNPs) were assessed. Machine Learning models are being designed to predict obesity phenotypes after the 5-year follow-up. Settings Six schools in Madrid. Participants A total of 221 schoolchildren (6-8 years old). Results Collected results show that the prevalence of excess weight was 19.0, 25.4, and 32.2% (according to World Health Organization, International Obesity Task Force and Orbegozo Foundation criteria, respectively). Associations between the nutritional state of children with mother BMI [β = 0.21 (0.13-0.3), p (adjusted) <0.001], geographical location of the school [OR = 2.74 (1.24-6.22), p (adjusted) = 0.06], dairy servings per day [OR = 0.48 (0.29-0.75), p (adjusted) = 0.05] and 8 SNPs [rs1260326, rs780094, rs10913469, rs328, rs7647305, rs3101336, rs2568958, rs925946; p (not adjusted) <0.05] were found. Conclusions These baseline data support the evidence that environmental and genetic factors play a role in the development of childhood obesity. After 5-year follow-up, the GENYAL study pretends to validate the predictive model as a new strategy to fight against obesity. Clinical Trial Registration This study has been registered in ClinicalTrials.gov with the identifier NCT03419520, https://clinicaltrials.gov/ct2/show/NCT03419520.
Collapse
Affiliation(s)
- Helena Marcos-Pasero
- Nutrition and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
- Faculty of Health Sciences, Valencian International University (VIU), Valencia, Spain
| | - Elena Aguilar-Aguilar
- Nutrition and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Rocío de la Iglesia
- Departamento de Ciencias Farmaceúticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Isabel Espinosa-Salinas
- Nutritional Genomics and Health Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Susana Molina
- GenyalLab, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Gonzalo Colmenarejo
- Biostatistics and Bioinformatics Unit, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - J. Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
- IdisNA, Navarra Institute for Health Research, Pamplona, Spain
- Center of Biomedical Research in Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Guillermo Reglero
- Production and Development of Foods for Health, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), CEI UAM+CSIC, Madrid, Spain
| | - Viviana Loria-Kohen
- Nutrition and Clinical Trials Unit, GENYAL Platform, IMDEA-Food Institute, CEI UAM + CSIC, Madrid, Spain
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Grupo de Investigación VALORNUT-UCM, Madrid, Spain
| |
Collapse
|
16
|
Zhao W, Hu X, Hao J, Guo L, Zhang W, Liu J, Jin T, Gao D, Zhi J. Effect of PITX2 genetic variants on the susceptibility to stroke in the Chinese Han population. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105201. [PMID: 34990849 DOI: 10.1016/j.meegid.2021.105201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Stroke is a multifactorial and complex disease caused by the obstruction or rupture of cerebrovascular. To explore the influence of genetic factors on stroke susceptibility, we investigated the association between four single nucleotide polymorphisms (SNPs) in the paired-like homeodomain transcription factor 2 (PITX2) gene and stroke risk. METHODS A total of 977 volunteers including 476 stroke patients and 501 control individuals were recruited. The association between PITX2 polymorphisms and stroke risk was evaluated using genetic models and haplotype analyses. The strength of the association between each studied polymorphisms and stroke risk was evaluated by calculating odds ratios (ORs) and 95% confidence intervals (CIs). What's more, multifactor dimensionality reduction (MDR) was used to predict the interaction between SNPs. RESULTS Our study showed that rs6817105 in PITX2 was related to a significant increase in stroke susceptibility (OR = 1.42, 95% CI = 1.04-1.94, p = 0.028). Stratified analyses based on gender indicated that rs6817105, rs13143308, and rs6843082 polymorphisms were significantly associated with an increased risk of stroke in male (OR = 0.68, 95% CI = 0.47-0.99, p = 0.042; OR = 0.53, 95% CI = 0.30-0.96, p = 0.035; and OR = 0.55, 95% CI = 0.30-0.99, p = 0.047). Besides, SNP rs6817105 was significantly increased the risk of stroke in people at age over 65 years (OR = 1.87, 95% CI =1.12-3.11, p = 0.016). MDR showed that the interaction model of rs6817105 and rs3853445 emerged as the best predictor between the PITX2 gene and stroke susceptibility. CONCLUSIONS This study indicated that there was a significant association between the PITX2 gene and stroke risk, and provided some data as far as possible to support the prevention of stroke.
Collapse
Affiliation(s)
- Weiwei Zhao
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China; Quality Control Department, Internal Medicine-Neurology, Xi'an First Hospital, First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi province 710002, China
| | - Xiuxia Hu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Jie Hao
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Le Guo
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Wenjie Zhang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Jianfeng Liu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Tianbo Jin
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi province, 710069, China; Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an, Shaanxi province 710069, China
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jin Zhi
- College of Life Sciences, Northwest University, Xi'an, Shaanxi province 710069, China; Quality Control Department, Internal Medicine-Neurology, Xi'an First Hospital, First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi province 710002, China.
| |
Collapse
|
17
|
Cui J, Yang J, Zhang K, Xu G, Zhao R, Li X, Liu L, Zhu Y, Zhou L, Yu P, Xu L, Li T, Tian J, Zhao P, Yuan S, Wang Q, Guo L, Liu X. Machine Learning-Based Model for Predicting Incidence and Severity of Acute Ischemic Stroke in Anterior Circulation Large Vessel Occlusion. Front Neurol 2021; 12:749599. [PMID: 34925213 PMCID: PMC8675605 DOI: 10.3389/fneur.2021.749599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives: Patients with anterior circulation large vessel occlusion are at high risk of acute ischemic stroke, which could be disabling or fatal. In this study, we applied machine learning to develop and validate two prediction models for acute ischemic stroke (Model 1) and severity of neurological impairment (Model 2), both caused by anterior circulation large vessel occlusion (AC-LVO), based on medical history and neuroimaging data of patients on admission. Methods: A total of 1,100 patients with AC- LVO from the Second Hospital of Hebei Medical University in North China were enrolled, of which 713 patients presented with acute ischemic stroke (AIS) related to AC- LVO and 387 presented with the non-acute ischemic cerebrovascular event. Among patients with the non-acute ischemic cerebrovascular events, 173 with prior stroke or TIA were excluded. Finally, 927 patients with AC-LVO were entered into the derivation cohort. In the external validation cohort, 150 patients with AC-LVO from the Hebei Province People's Hospital, including 99 patients with AIS related to AC- LVO and 51 asymptomatic AC-LVO patients, were retrospectively reviewed. We developed four machine learning models [logistic regression (LR), regularized LR (RLR), support vector machine (SVM), and random forest (RF)], whose performance was internally validated using 5-fold cross-validation. The performance of each machine learning model for the area under the receiver operating characteristic curve (ROC-AUC) was compared and the variables of each algorithm were ranked. Results: In model 1, among the included patients with AC-LVO, 713 (76.9%) and 99 (66%) suffered an acute ischemic stroke in the derivation and external validation cohorts, respectively. The ROC-AUC of LR, RLR and SVM were significantly higher than that of the RF in the external validation cohorts [0.66 (95% CI 0.57–0.74) for LR, 0.66 (95% CI 0.57–0.74) for RLR, 0.55 (95% CI 0.45–0.64) for RF and 0.67 (95% CI 0.58–0.76) for SVM]. In model 2, 254 (53.9%) and 31 (37.8%) patients suffered disabling ischemic stroke in the derivation and external validation cohorts, respectively. There was no difference in AUC among the four machine learning algorithms in the external validation cohorts. Conclusions: Machine learning methods with multiple clinical variables have the ability to predict acute ischemic stroke and the severity of neurological impairment in patients with AC-LVO.
Collapse
Affiliation(s)
- Junzhao Cui
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingyi Yang
- Department of Information Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guodong Xu
- Department of Neurology, Hebei Province People's Hospital, Shijiazhuang, China
| | - Ruijie Zhao
- Department of Neurology, Xingtai People's Hospital, Xingtai, China
| | - Xipeng Li
- Department of Neurology, Xingtai People's Hospital, Xingtai, China
| | - Luji Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yipu Zhu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lixia Zhou
- Department of Medical Iconography, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ping Yu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Xu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pandi Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Si Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qisong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neuroscience Research Center, Medicine and Health Institute, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Nicchio IG, Cirelli T, Nepomuceno R, Hidalgo MAR, Rossa C, Cirelli JA, Orrico SRP, Barros SP, Theodoro LH, Scarel-Caminaga RM. Polymorphisms in Genes of Lipid Metabolism Are Associated with Type 2 Diabetes Mellitus and Periodontitis, as Comorbidities, and with the Subjects' Periodontal, Glycemic, and Lipid Profiles. J Diabetes Res 2021; 2021:1049307. [PMID: 34805411 PMCID: PMC8601849 DOI: 10.1155/2021/1049307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/25/2021] [Accepted: 10/19/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) and periodontitis (P) commonly occur as comorbidities, but the commonalities in the genetic makeup of affected individuals is largely unknown. Since dyslipidemia is a frequent condition in these individuals, we investigate the association of genomic variations in genes involved in lipid metabolism with periodontal, glycemic, lipid profiles, and the association with periodontitis and T2DM (as comorbidities). METHODS Based on clinical periodontal examination and biochemical evaluation, 893 subjects were divided into T2DM+P (T2DM subjects also affected by periodontitis, n = 205), periodontitis (n = 345), and healthy (n = 343). Fourteen single-nucleotide polymorphisms (SNPs) were investigated: LDLR gene (rs5925 and rs688), APOB (rs676210, rs1042031, and rs693), ABCC8 (rs6544718 and 6544713), LPL (rs28524, rs3735964, and rs1370225), HNF1A (rs2650000), APOE (rs429358 and rs7412), and HNF4A (rs1800961). Multiple linear and logistic regressions (adjusted for covariates) were made for all populations and stratified by sex and smoking habits. RESULTS Individuals carrying APOB-rs1042031-CT (mainly women and never smokers) had a lower risk of developing periodontitis and T2DM (T2DM+P); altogether, this genotype was related with healthier glycemic, lipid, and periodontal parameters. Significant disease-phenotype associations with gene-sex interaction were also found for carriers of APOB-rs1676210-AG, HNF4A-rs1800961-CT, ABCC8-rs6544718-CT, LPL-rs13702-CC, and LPL-rs285-CT. CONCLUSIONS Polymorphisms in lipid metabolism genes are associated with susceptibility to T2DM-periodontitis comorbidities, demonstrating gene-sex interaction. The APOB-rs1042031 was the most relevant gene marker related to glucose and lipid metabolism profiles, as well as with obesity and periodontitis.
Collapse
Affiliation(s)
- Ingra G. Nicchio
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Thamiris Cirelli
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Rafael Nepomuceno
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Marco A. R. Hidalgo
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Carlos Rossa
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Joni A. Cirelli
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| | - Silvana R. P. Orrico
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
- Advanced Research Center in Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José do Rio Preto, SP 15030-070, Brazil
| | - Silvana P. Barros
- Department of Periodontology, University of North Carolina at Chapel Hill-UNC, School of Dentistry, Chapel Hill, NC, USA
| | - Letícia H. Theodoro
- Department of Diagnosis and Surgery, São Paulo State University-UNESP, School of Dentistry at Araçatuba, Araçatuba, SP, Brazil
| | - Raquel M. Scarel-Caminaga
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University-UNESP, School of Dentistry at Araraquara, Araraquara, SP, Brazil
| |
Collapse
|
19
|
Huang F, Yang R, Xiao Z, Xie Y, Lin X, Zhu P, Zhou P, Lu J, Zheng S. Targeting Ferroptosis to Treat Cardiovascular Diseases: A New Continent to Be Explored. Front Cell Dev Biol 2021; 9:737971. [PMID: 34527678 PMCID: PMC8435746 DOI: 10.3389/fcell.2021.737971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, including cardiomyopathy, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, vascular injury, stroke, and arrhythmia, are correlated with cardiac and vascular cell death. Ferroptosis is a novel form of non-apoptotic regulated cell death which is characterized by an iron-driven accumulation of lethal lipid hydroperoxides. The initiation and execution of ferroptosis are under the control of several mechanisms, including iron metabolism, glutamine metabolism, and lipid peroxidation. Recently, emerging evidence has demonstrated that ferroptosis can play an essential role in the development of various cardiovascular diseases. Recent researches have shown the ferroptosis inhibitors, iron chelators, genetic manipulations, and antioxidants can alleviate myocardial injury by blocking ferroptosis pathway. In this review, we systematically described the mechanisms of ferroptosis and discussed the role of ferroptosis as a novel therapeutic strategy in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Fangze Huang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ronghua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Xie
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuefeng Lin
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Lu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Zago VHS, Scherrer DZ, Parra ES, Vieira IC, Marson FAL, de Faria EC. Effects of SNVs in ABCA1, ABCG1, ABCG5, ABCG8, and SCARB1 Genes on Plasma Lipids, Lipoproteins, and Adiposity Markers in a Brazilian Population. Biochem Genet 2021; 60:822-841. [PMID: 34505223 DOI: 10.1007/s10528-021-10131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Several proteins are involved in cholesterol homeostasis, as scavenger receptor class B type I and ATP-binding cassette (ABC) transporters including ABCA1, ABCG1, ABCG5, and ABCG8. This study aimed to determine the effects of single nucleotide variants (SNVs) rs2275543 (ABCA1), rs1893590 (ABCG1), rs6720173 (ABCG5), rs6544718 (ABCG8), and rs5888 (SCARB1) on plasma lipids, lipoproteins, and adiposity markers in an asymptomatic population and its sex-specific effects. Volunteers (n = 590) were selected and plasma lipids, lipoproteins, and adiposity markers (waist-to-hip and waist-to-height ratios, lipid accumulation product and body adiposity index) were measured. Genomic DNA was isolated from peripheral blood cells according to the method adapted from Gross-Bellard. SNVs were detected in the TaqMan® OpenArray® Real-Time polymerase chain reaction platform and data analyses were performed using the TaqMan® Genotyper Software. The rs2275543*C point to an increase of high-density lipoprotein size in females while in males very-low-density lipoprotein, cholesterol, and triglycerides were statistically lower (P value < 0.05). The rs1893590*C was statistically associated with lower apolipoprotein A-I levels and higher activities of paraoxonase-1 and cholesteryl ester transfer protein (P value < 0.05). The rs6720173 was statistically associated with an increase in cholesterol and low-density lipoprotein cholesterol in males; moreover, rs6544718*T reduced adiposity markers in females (P value < 0.05). Regarding the rs5888, a decreased adiposity marker in the total population and in females occurred (P value < 0.05). Multivariate analysis of variance showed that SNVs could influence components of high-density lipoprotein metabolism, mainly through ABCG1 (P value < 0.05). The ABCA1 and ABCG5 variants showed sex-specific effects on lipids and lipoproteins, while SCARB1 and ABCG8 variants might influence adiposity markers in females. Our data indicate a possible role of ABCG1 on HDL metabolism.
Collapse
Affiliation(s)
- Vanessa Helena Souza Zago
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil
| | - Daniel Zanetti Scherrer
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil
| | - Eliane Soler Parra
- Department of Cardiology, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil
| | - Isabela Calanca Vieira
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil
| | - Fernando Augusto Lima Marson
- Department of Pediatrics, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil. .,Department of Medical Genetics and Genomic Medicine, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil. .,Laboratory of Human and Medical Genetics and Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University, Avenida São Francisco de Assis, 218, Jardim São José, Bragança Paulista, São Paulo, 12916-900, Brazil.
| | - Eliana Cotta de Faria
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, Tessália Vieira de Camargo St, 126, Campinas, São Paulo, 13084-971, Brazil.
| |
Collapse
|
21
|
de Luis DA, Izaola O, Primo D, Aller R. APOA5 Variant rs662799, Role in Cardiovascular Traits and Serum Adipokine Levels in Caucasian Obese Subjects. ANNALS OF NUTRITION AND METABOLISM 2021; 77:299-306. [PMID: 34350864 DOI: 10.1159/000517500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/29/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS This ApoA5-1131C allele of rs662799 variant is related with a higher serum triglyceride levels, and it contributes to increase risk of cardiovascular disease. The aim of the present investigation was to evaluate single nucleotide polymorphism rs662799 in APOA5 gene and its associations with cardiovascular risk factors, MS, and serum adipokine levels. METHODS The study involved a population of 1,002 Caucasian obese subjects. Measurements of body weight, waist circumference, fat mass, arterial blood pressure, blood glucose, C-reactive protein, insulin levels, insulin resistance (HOMA-IR), lipid profile, and adipokines levels were recorded. Genotype of ApoA5 gene polymorphism (rs662799) and prevalence of metabolic syndrome (MS) were evaluated. RESULTS The distribution of the rs662799 polymorphism in this adult population (n = 1,002) was 88.3% (n = 885) (TT), 11.4% (n = 114) (TC), and 0.3% (n = 3) (CC). No significant differences were found between the 2 genotypes in the anthropometric data, MS, or blood pressure. Triglyceride levels were higher in C-allele carriers (delta total group: 19.7 ± 2.1 mg/dL: p = 0.02) than non C-allele carriers. HDL-cholesterol levels were lower in C-allele carriers (delta total group: -6.7 ± 1.1 mg/dL: p = 0.02) than non C-allele carriers. Adiponectin levels were lower in C-allele carriers (delta total group: -11.6 ± 1.0 mg/dL: p = 0.02) too. In C-allele carriers, logistic regression analysis showed an increased risk of hypertriglyceridemia (odds ratio [OR] = 2.1, 95% confidence interval [CI] = 1.2-3.4, p = 0.001) and percentage of low-HDL-C (OR = 2.2, 95% CI = 1.3-3.7, p = 0.002) after adjusting by body mass index and age. CONCLUSIONS C-allele carriers of rs662799 of APOA5 gene showed high rates of low levels of HDL and hypertriglyceridemia, with differences in triglyceride, HDL cholesterol, and adiponectin levels in Caucasian obese subjects.
Collapse
Affiliation(s)
- Daniel A de Luis
- Department of Endocrinology and Nutrition, Endocrinology and Nutrition Research Center, School of Medicine, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Olatz Izaola
- Department of Endocrinology and Nutrition, Endocrinology and Nutrition Research Center, School of Medicine, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - David Primo
- Department of Endocrinology and Nutrition, Endocrinology and Nutrition Research Center, School of Medicine, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Rocio Aller
- Department of Endocrinology and Nutrition, Endocrinology and Nutrition Research Center, School of Medicine, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| |
Collapse
|
22
|
Coto E, Lorca R, Rodríguez-Reguero J, Martín M, Pascual I, Avanzas P, Cuesta-Llavona E, Vázquez-Coto D, Díaz-Corte C, Tranche S, Alonso B, Iglesias S, Morís C, Gómez J. The APOB polymorphism rs1801701 A/G (p.R3638Q) is an independent risk factor for early-onset coronary artery disease: Data from a Spanish cohort. Nutr Metab Cardiovasc Dis 2021; 31:1564-1568. [PMID: 33810965 DOI: 10.1016/j.numecd.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Apoliprotein B (ApoB) has been associated with hypercholesterolemia and ischemic coronary disease. This study was aimed to determine the effect of two APOB gene variants in the risk of developing early-onset coronary artery disease (EO-CAD) in a Spanish population. The association of these polymorphisms with hypercholesterolemia was also analysed. METHODS AND RESULTS The study involved a total of 889 healthy population controls (397 male) and 790 EO-CAD cases (636 male; EO-CAD was defined as male <60 years and women <65 years). All the patients had at least one vessel with angiography documented atherosclerotic lesion. Patients and controls were genotyped for the APOB variants rs1801701 A/G (p.R3638Q) and rs1367117 C/T (p.T98I). Allele and genotype frequencies were compared between the groups (patients vs. controls, hyper-vs. normo-cholesterolemia) by logistic regression. The rs1801701 was significantly associated with EO-CAD in male (OR = 1.44, 95%CI = 1.05-1.99) and female (OR = 2.22, 95%CI = 1.58-3.14). This SNP was significantly associated with hypercholesterolemia in female, with a trend in male. The association with EO-CAD was independent of hypercholesterolemia (multiple logistic regression). CONCLUSION A common APOB polymorphism (rs1801701) was an independent risk factor for EO-CAD in our population. The risk-effect was more significant in female than in male.
Collapse
Affiliation(s)
- Eliecer Coto
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain; Departamento Medicina, Universidad de Oviedo, Oviedo, Spain; Red de Investigación Renal (REDINREN), Madrid, Spain.
| | - Rebeca Lorca
- Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | - Julián Rodríguez-Reguero
- Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | - María Martín
- Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | - Isaac Pascual
- Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | - Pablo Avanzas
- Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | - Elías Cuesta-Llavona
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
| | | | - Carmen Díaz-Corte
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain; Departamento Medicina, Universidad de Oviedo, Oviedo, Spain; Red de Investigación Renal (REDINREN), Madrid, Spain; Nefrología, Hospital Universitario Central Asturias, Oviedo, Spain
| | | | - Belén Alonso
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain; Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Sara Iglesias
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain; Red de Investigación Renal (REDINREN), Madrid, Spain
| | - César Morís
- Cardiología, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain; Departamento Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Juan Gómez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain; Red de Investigación Renal (REDINREN), Madrid, Spain
| |
Collapse
|
23
|
Zhao XY, Hu SY, Yang JL, Chen XM, Huang XL, Tang LJ, Gu L, Su L. A 3' Untranslated Region Polymorphism of CTNNB1 (Rs2953) Alters MiR-3161 Binding and Affects the Risk of Ischemic Stroke and Coronary Artery Disease in Chinese Han Population. Eur Neurol 2021; 84:85-95. [PMID: 33789307 DOI: 10.1159/000514543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/31/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND CTNNB1 is reported to be related to the pathological process of ischemic stroke (IS) and coronary artery disease (CAD). Polymorphism located in the 3' untranslated region (3'UTR) of a gene might affect gene expression by modifying binding sites for microRNAs (miRNAs). This study aimed to analyze the association between polymorphism rs2953, which locates in the 3'UTR of CTNNB1, and the risk of IS and CAD. METHODS The CTNNB1 messenger RNA (mRNA) expression level in peripheral venous blood was measured. In total, 533 patients with IS, 500 patients with CAD, and 531 healthy individuals were genotyped by Sequenom Mass-Array technology. The binding of miR-3161 to CTNNB1 was determined by dual-luciferase reporter assay. RESULTS The CTNNB1 mRNA expression level for the IS group was significantly lower than that for the control group. Rs2953 was significantly associated with both IS risk and CAD risk. Significant association was also found between polymorphism rs2953 and many conventional factors, such as serum lipid level, blood coagulation markers, blood glucose level, and homocysteine level in patients. Rs2953 T allele introduced a binding site to miRNA-3161 and thus decreased luciferase activity. CONCLUSION Polymorphism rs2953 is associated with the risk of both IS and CAD. Moreover, polymorphism rs2953 (T) introduces a binding site to miRNA-3161 and thus decreases luciferase activity in cell lines.
Collapse
Affiliation(s)
- Xin-Yi Zhao
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Shu-Yan Hu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jia-Lei Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xing-Mei Chen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Xian-Li Huang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Lue-Jun Tang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Lian Gu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Li Su
- School of Public Health, Guangxi Medical University, Nanning, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, China
| |
Collapse
|
24
|
Fan J, Saft M, Sadanandan N, Gonzales-Portillo B, Park YJ, Sanberg PR, Borlongan CV, Luo Y. LncRNAs Stand as Potent Biomarkers and Therapeutic Targets for Stroke. Front Aging Neurosci 2020; 12:594571. [PMID: 33192490 PMCID: PMC7604318 DOI: 10.3389/fnagi.2020.594571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is a major public health problem worldwide with a high burden of neurological disability and mortality. Long noncoding RNAs (lncRNAs) have attracted much attention in the past decades because of their newly discovered roles in pathophysiological processes in many diseases. The abundance of lncRNAs in the nervous system indicates that they may be part of a complex regulatory network governing physiology and pathology of the brain. In particular, lncRNAs have been shown to play pivotal roles in the pathogenesis of stroke. In this article, we provide a review of the multifaceted functions of lncRNAs in the pathogenesis of ischemic stroke and intracerebral hemorrhage, highlighting their promising use as stroke diagnostic biomarkers and therapeutics. To this end, we discuss the potential of stem cells in aiding lncRNA applications in stroke.
Collapse
Affiliation(s)
- Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Madeline Saft
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Paul R Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Li J, Wen M, Zhang Z, Qiu Z, Sun Y. The R219K Polymorphism of the ATP Binding Cassette Subfamily a Member 1 Gene and Susceptibility to Ischemic Stroke in Chinese Population. Open Med (Wars) 2020; 15:274-282. [PMID: 32292824 PMCID: PMC7147290 DOI: 10.1515/med-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Stroke is the major cause of death and disability worldwide. ABCA1 R219K has been suggested as a risk factor for ischemic stroke, but the results remain inconclusive in the Chinese population. This study aimed to assess the association between ABCA1 R219K and ischemic stroke using meta-analysis. A systematic literature search was conducted to select eligible studies and the pooled odds ratio (OR) with 95% confidence interval (CI) was used to evaluate the strength of association. Fourteen studies containing 2865 cases and 3227 controls were included in the meta-analysis and the results suggested that there is a strong association between ABCA1 R219K and the ischemic stroke risks (K vs. R: OR = 0.837, 95% CI: 0.735- 0.954, p=0.008; KK vs. RR: OR = 0.689, 95% CI: 0.520-0.912, p=0.009; KK+RK vs. RR: OR = 0.782, 95% CI: 0.691-0.885, p<0.001). Subgroup analysis revealed that significant association was found for the 4 genetic models (p<0.05) in the Southern population, while in the northern population significant association was only found under the dominant model (KK+RK vs. RR: OR = 0.744, 95% CI: 0.583- 0.949, p<0.017). This meta-analysis suggested that ABCA1 R219K polymorphism might be a protective factor against developing IS, indicating this SNP may contribute to the pathogenesis of ischemic stroke and might be potentially used as a biomarker to predict the susceptibility to ischemic stroke.
Collapse
Affiliation(s)
- Jianmin Li
- Department of Pharmacy, Karamay Central Hospital of Xinjiang, MM, Karamay City, Xinjiang Province, China, 834000
| | - Ming Wen
- Department of Neurosurgery, Wuhan Wuchang Hospital, MM, Wuhan City, Hubei Province, China, 430063
| | - Zhiping Zhang
- Department of Neurosurgery, Xiangya Hospital of Central South University, MD, Changsha City, Hunan Province, China, 410008
| | - Zhihua Qiu
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou City, Hunan Province, China, 412007
| | - Yiming Sun
- Department of Neurosurgery, Karamay Central Hospital of Xinjiang, Karamay City, Xinjiang Province, China, 834000
| |
Collapse
|
26
|
Quantitative proteomics to study aging in rabbit liver. Mech Ageing Dev 2020; 187:111227. [PMID: 32126221 DOI: 10.1016/j.mad.2020.111227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022]
Abstract
Aging globally effects cellular and organismal metabolism across a range of mammalian species, including humans and rabbits. Rabbits (Oryctolagus cuniculus are an attractive model system of aging due to their genetic similarity with humans and their short lifespans. This model can be used to understand metabolic changes in aging especially in major organs such as liver where we detected pronounced variations in fat metabolism, mitochondrial dysfunction, and protein degradation. Such changes in the liver are consistent across several mammalian species however in rabbits the downstream effects of these changes have not yet been explored. We have applied proteomics to study changes in the liver proteins from young, middle, and old age rabbits using a multiplexing cPILOT strategy. This resulted in the identification of 2,586 liver proteins, among which 45 proteins had significant p < 0.05) changes with aging. Seven proteins were differentially-expressed at all ages and include fatty acid binding protein, aldehyde dehydrogenase, enoyl-CoA hydratase, 3-hydroxyacyl CoA dehydrogenase, apolipoprotein C3, peroxisomal sarcosine oxidase, adhesion G-protein coupled receptor, and glutamate ionotropic receptor kinate. Insights to how alterations in metabolism affect protein expression in liver have been gained and demonstrate the utility of rabbit as a model of aging.
Collapse
|
27
|
Lorenzatti AJ, Toth PP. New Perspectives on Atherogenic Dyslipidaemia and Cardiovascular Disease. Eur Cardiol 2020; 15:1-9. [PMID: 32180834 PMCID: PMC7066832 DOI: 10.15420/ecr.2019.06] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, atherogenic dyslipidaemia has become one of the most common phenotypic presentations of lipid abnormalities, being strongly and unequivocally associated with an increased risk of cardiovascular (CV) disease. Despite the excellent results achieved from statin and non-statin management of LDL cholesterol and CV events prevention, there still remains a significant residual risk, associated with the prevalence of non-LDL cholesterol lipid patterns characterised by elevated triglyceride levels, low HDL cholesterol, a preponderance of small and dense LDL particles, accumulation of remnant lipoproteins and postprandial hyperlipidaemia. These qualitative and quantitative lipid modifications are largely associated with insulin resistance, type 2 diabetes and obesity, the prevalence of which has grown to epidemic proportions throughout the world. In this review, we analyse the pathophysiology of this particular dyslipidaemia, its relationship with the development of atherosclerotic CV disease and, finally, briefly describe the therapeutic approaches, including changes in lifestyle and current pharmacological interventions to manage these lipid alterations aimed at preventing CV events.
Collapse
Affiliation(s)
- Alberto J Lorenzatti
- DAMIC Medical Institute, Rusculleda Foundation for Research, Cordoba, Argentina.,Department of Cardiology, Cordoba Hospital, Cordoba, Argentina
| | - Peter P Toth
- CGH Medical Center, Sterling, IL, US.,Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, US
| |
Collapse
|
28
|
Xing H, Chen J, Peng M, Wang Z, Liu F, Li S, Teng X. Identification of signal pathways for immunotoxicity in the spleen of common carp exposed to chlorpyrifos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109464. [PMID: 31398777 DOI: 10.1016/j.ecoenv.2019.109464] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Chlorpyrifos (CPF) is an environmental pollutant due to its high toxicity to aquatic animals. Because CPF was detected in aquatic environments in many countries, it has been widely concerned by researchers. Although the immunotoxicity of CPF to fish had been reported, the immunotoxicity mechanism is still not clear. Recently, transcriptome analysis has become a major method to study the toxic mechanism of pollutants in environmental toxicology. However, the immunotoxicity identification of CPF on fish had not been reported by transcriptome analysis. In the present study, we examined the effects of CPF on organismal system in the spleen of common carp by transcriptome analysis. We have successfully constructed a database of transcriptome analysis of carp spleens under exposure to CPF and found 773 differentially expressed genes (DEGs) (including 498 up-regulated DEGs and 275 down-regulated DEGs) and 4 branches (containing 33 known KEGG pathways). Some genes associated with the 4 pathways (Complement and coagulation cascades, PPAR signaling pathway, Fat digestion and absorption, and Collecting duct acid secretion) contained in organismal system were validated by quantitative real-time PCR and showed significant improvement compared with the control group. Our results indicated that exposure to CPF caused a change in the signal pathways of organismal system in carp spleens. The present study provides new insights into the immunotoxicity mechanism and risk assessment of CPF, as well as references for comparative medicine.
Collapse
Affiliation(s)
- Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianqing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Muqiao Peng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhilei Wang
- Centre for Animal Disease Prevention and Control of Heilongjiang Province, 243 Haping Road, Xiangfang District, Harbin, 150069, PR China
| | - Feng Liu
- Centre for Animal Disease Prevention and Control of Heilongjiang Province, 243 Haping Road, Xiangfang District, Harbin, 150069, PR China
| | - Shu Li
- Department of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
29
|
Wei LK, Quan LS. Biomarkers for ischemic stroke subtypes: A protein-protein interaction analysis. Comput Biol Chem 2019; 83:107116. [PMID: 31561071 DOI: 10.1016/j.compbiolchem.2019.107116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/10/2019] [Accepted: 08/26/2019] [Indexed: 01/21/2023]
Abstract
According to the Trial of Org 10172 in Acute Stroke Treatment, ischemic stroke is classified into five subtypes. However, the predictive biomarkers of ischemic stroke subtypes are still largely unknown. The utmost objective of this study is to map, construct and analyze protein-protein interaction (PPI) networks for all subtypes of ischemic stroke, and to suggest the predominant biological pathways for each subtypes. Through 6285 protein data retrieved from PolySearch2 and STRING database, the first PPI networks for all subtypes of ischemic stroke were constructed. Notably, F2 and PLG were identified as the critical proteins for large artery atherosclerosis (LAA), lacunar, cardioembolic, stroke of other determined etiology (SOE) and stroke of undetermined etiology (SUE). Gene ontology and DAVID analysis revealed that GO:0030193 regulation of blood coagulation and GO:0051917 regulation of fibrinolysis were the important functional clusters for all the subtypes. In addition, inflammatory pathway was the key etiology for LAA and lacunar, while FOS and JAK2/STAT3 signaling pathways might contribute to cardioembolic stroke. Due to many risk factors associated with SOE and SUE, the precise etiology for these two subtypes remained to be concluded.
Collapse
Affiliation(s)
- Loo Keat Wei
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia.
| | - Leong Shi Quan
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
30
|
Keat Wei L, Griffiths LR, Irene L, Kooi CW. Association of NOTCH3 Gene Polymorphisms with Ischemic Stroke and its Subtypes: A Meta-Analysis. ACTA ACUST UNITED AC 2019; 55:medicina55070351. [PMID: 31288479 PMCID: PMC6681102 DOI: 10.3390/medicina55070351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/03/2022]
Abstract
Background and objectives: NOTCH3 gene variations play a significant role in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, the role of NOTCH3 gene polymorphisms in the risk of ischemic stroke, and its subtypes such as atherothrombotic or lacunar strokes, remains unclear. Aims: Hence, we carried out a meta-analysis to examine whether the NOTCH3 rs1043994, rs1044009 and rs3815188 polymorphisms are associated with ischemic stroke and its major subtypes. Materials and Methods: All relevant studies were systematically screened and meta-analyzed using Review Manager (Revman) version 5.3. The strength of the association between NOTCH3 polymorphisms and ischemic stroke risk and its subtypes were measured as odds ratios and 95% confidence intervals, under different genetic models. Results: A total of ten studies were identified, five of which considered NOTCH3 rs1043994 (2077 cases/2147 controls), five of which considered NOTCH3 rs1044009 (2315 cases/3053 controls), and nine of which considered NOTCH3 rs3815188 (2819 cases/2769 controls). These studies were meta-analyzed for their association with ischemic stroke risk. Four studies (874 cases/2002 controls) of the NOTCH3 rs3815188 polymorphism and three studies of the NOTCH3 rs1043994 (643 cases/1552 controls) polymorphism were meta-analyzed for lacunar stroke risk. Three studies (1013 cases/1972 controls) of the NOTCH3 rs3815188 polymorphism were meta-analyzed for atherothrombotic stroke risk. The meta-analysis results showed a lack of association between all of the studied polymorphisms and the risk of ischemic stroke and its major subtypes (i.e., atherothrombotic and lacunar). Conclusions: NOTCH3 polymorphisms are not significantly associated with the risk of ischemic stroke and its subtypes (p < 0.05).
Collapse
Affiliation(s)
- Loo Keat Wei
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Perak, Malaysia.
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Looi Irene
- Department of Medicine and Clinical Research Centre, Seberang Jaya Hospital, Jalan Tun Hussein Onn, 13700 Seberang Jaya, Pulau Pinang, Malaysia
| | - Cheah Wee Kooi
- Department of Medicine and Clinical Research Centre, Taiping Hospital, Jalan Tamingsari, Taiping 34000, Perak, Malaysia
| |
Collapse
|
31
|
Khlebus E, Kutsenko V, Meshkov A, Ershova A, Kiseleva A, Shevtsov A, Shcherbakova N, Zharikova A, Lankin V, Tikhaze A, Chazova I, Yarovaya E, Drapkina O, Boytsov S. Multiple rare and common variants in APOB gene locus associated with oxidatively modified low-density lipoprotein levels. PLoS One 2019; 14:e0217620. [PMID: 31150472 PMCID: PMC6544350 DOI: 10.1371/journal.pone.0217620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/15/2019] [Indexed: 01/17/2023] Open
Abstract
Oxidatively modified low-density lipoproteins (oxLDL) play an important role in the occurrence and progression of atherosclerosis. To identify the genetic factors influencing the oxLDL levels, we have genotyped 776 DNA samples of Russian individuals for 196,725 single-nucleotide polymorphisms (SNPs) using the Cardio-MetaboChip (Illumina, USA) and conducted genome-wide association study (GWAS). Fourteen common variants in the locus including APOB gene were significantly associated with the oxLDL levels (P < 2.18 × 10−7). These variants explained only 6% of the variation in the oxLDL levels. Then, we assessed the contribution of rare coding variants of APOB gene to the oxLDL levels. Individuals with the extreme oxLDL levels (48 with the lowest and 48 with the highest values) were selected for targeted sequencing of the region including APOB gene. To evaluate the contribution of the SNPs to the oxLDL levels we used various statistical methods for the association analysis of rare variants: WST, SKAT, and SKAT-O. We revealed that both synonymous and nonsynonymous SNPs affected the oxLDL levels. For the joint analysis of the rare and common variants, we conducted the SKAT-C testing and found a group of 15 SNPs significantly associated with the oxLDL levels (P = 2.14 × 10−9). Our results indicate that the oxLDL levels depend on both common and rare variants of the APOB gene.
Collapse
Affiliation(s)
- Eleonora Khlebus
- Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
- Moscow Institute of Physics and Technology (State University), Moscow, Russia
- * E-mail:
| | - Vladimir Kutsenko
- Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Meshkov
- Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Alexandra Ershova
- Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Anna Kiseleva
- Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | | | - Natalia Shcherbakova
- Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Anastasiia Zharikova
- Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vadim Lankin
- Federal State Budget Organization National Medical Research Center of Cardiology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Alla Tikhaze
- Federal State Budget Organization National Medical Research Center of Cardiology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Irina Chazova
- Federal State Budget Organization National Medical Research Center of Cardiology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | | | - Oksana Drapkina
- Federal State Institution National Medical Research Center for Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Sergey Boytsov
- Federal State Budget Organization National Medical Research Center of Cardiology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
32
|
Zhao W, Wang L, Haller V, Ritsch A. A Novel Candidate for Prevention and Treatment of Atherosclerosis: Urolithin B Decreases Lipid Plaque Deposition in apoE -/- Mice and Increases Early Stages of Reverse Cholesterol Transport in ox-LDL Treated Macrophages Cells. Mol Nutr Food Res 2019; 63:e1800887. [PMID: 30762936 DOI: 10.1002/mnfr.201800887] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/20/2019] [Indexed: 12/13/2022]
Abstract
SCOPE HDL cholesterol is inversely related to the incidence of atherosclerosis. Polyphenols including ellagitannins have been shown to exert antiatherogenic properties. Urolithin B is formed from ellagitannins by components of the gut microbiota, and urolithins might be involved in beneficial effects against cardiovascular diseases in vitro. In this study, the influence of urolithin B on several parameters involved in the lipid plaque deposition and the reverse cholesterol transport is investigated. METHODS AND RESULTS In apoE-/- mice and two different macrophage cell lines, the influence of urolithin B and its phase II conjugated metabolite on lipid plaque deposition, cholesterol uptake, and expression of ABCA1 and SR-BI is tested. It is shown that urolithin B decreases lipid plaque deposition, both urolithin B and urolithin B sulfate modulate expression of SR-BI and ABCA1, and cholesterol efflux increases from cholesterol laden macrophages to HDL particles as well as to reverse lipid uptake by stimulated THP-1 macrophages. CONCLUSIONS Urolithin B can decrease lipid plaque deposition, and urolithin B and urolithin B sulfate are able to induce reverse cholesterol transport by influencing expression of key proteins of this pathway. Urolithin B may represent the basis for development of new drugs for prevention and treatment of atherosclerosis in humans.
Collapse
Affiliation(s)
- Wenhua Zhao
- College of Pharmaceutical Sciences, Capital Medical University, 10 Xitoutiao,You An Men, Beijing, 100069, P. R. China
| | - Lixue Wang
- College of Pharmaceutical Sciences, Capital Medical University, 10 Xitoutiao,You An Men, Beijing, 100069, P. R. China
| | - Viktoria Haller
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstraße 35, A-6020, Innsbruck, Austria
| | - Andreas Ritsch
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstraße 35, A-6020, Innsbruck, Austria
| |
Collapse
|
33
|
Wei LK, Griffiths LR, Kooi CW, Irene L. Meta-Analysis of Factor V, Factor VII, Factor XII, and Factor XIII-A Gene Polymorphisms and Ischemic Stroke. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E101. [PMID: 30979054 PMCID: PMC6524011 DOI: 10.3390/medicina55040101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/29/2022]
Abstract
Numerous studies examined the association between factors FV, FVII, FXII, and FXIII-A gene polymorphisms and ischemic stroke, but conclusive evidence is yet to be obtained. Thus, this meta-analysis aimed to investigate the novel association of FV rs1800595, FVII rs5742910, FXII rs1801020, and FXIII-A rs5982 and rs3024477 polymorphisms with ischemic stroke risk. A systematic review was performed on articles retrieved before June 2018. Relevant data were extracted from eligible studies and meta-analyzed using RevMan version 5.3. The strength of association between studied polymorphisms and ischemic stroke risk was calculated as odds ratios and 95% confidence intervals, by applying both fixed- and random-effect models. A total of 25 studies involving 6100 ischemic stroke patients and 9249 healthy controls were incorporated in the final meta-analysis model. Specifically, rs1800595, rs5742910, rs1801020, rs5982, and rs3024477 consisted of 673, 3668, 922, 433, and 404 cases, as well as 995, 4331, 1285, 1321, and 1317 controls, respectively. The pooled analysis indicated that there was no significant association of FV rs1800595, FVII rs5742910, FXII rs1801020, FXIII-A rs5982, and FXIII-A rs3024477 polymorphisms with ischemic stroke risk, under any genetic models (dominant, recessive, over-dominant, and allelic). The present meta-analysis concluded that FV rs1800595, FVII rs5742910, FXII rs1801020, and FXIII-A rs5982 and rs3024477 polymorphisms are not associated with ischemic stroke risk.
Collapse
Affiliation(s)
- Loo Keat Wei
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Perak, Malaysia.
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove QLD 4059, Australia.
| | - Cheah Wee Kooi
- Department of Medicine and Clinical Research Centre, Hospital Taiping, Jalan Tamingsari, Taiping 34000, Perak, Malaysia.
| | - Looi Irene
- Department of Medicine and Clinical Research Centre, Hospital Seberang Jaya, Jalan Tun Hussein Onn, Seberang Jaya 13700, Pulau Pinang, Malaysia.
| |
Collapse
|
34
|
Song J, Jiang X, Cao Y, Juan J, Wu T, Hu Y. Interaction between an ATP-Binding Cassette A1 (ABCA1) Variant and Egg Consumption for the Risk of Ischemic Stroke and Carotid Atherosclerosis: a Family-Based Study in the Chinese Population. J Atheroscler Thromb 2019; 26:835-845. [PMID: 30828007 PMCID: PMC6753237 DOI: 10.5551/jat.46615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims: ATP-binding cassette A1 (ABCA1) plays an important role in reducing the risk of stroke. Egg is the major source of dietary cholesterol and is known to be associated with the risk of stroke and atherosclerosis. We aimed to assess the effects of interaction between an ABCA1 variant (rs2066715) and egg consumption on the risk of ischemic stroke (IS), carotid plaque, and carotid-intima media thickness (CIMT) in the Chinese population. Methods: In total, 5869 subjects (including 1213 IS cases) across 1128 families were enrolled and divided into two groups based on the median egg consumption (4 eggs per week). In the analyses for the presence of carotid plaque and CIMT, 3171 out of 4656 IS-free controls without self-reported history of coronary heart disease and lipid-lowering medications were included. Multilevel logistic regression models were used to model the genetic association of rs2066715 with the risk of IS, and mixed-effect linear regression for the genetic association of rs2066715 with carotid plaque, and CIMT. The gene-by-egg cross-product term was included in the regression model for interaction analysis. Results: We found that rs2066715 was associated with the increased risk of carotid plaque among those who consumed < 4 eggs per week after adjustment (odds ratio [95% confidence interval]: 1.61 [1.08, 2.39], P = 0.019). A significant effect of interaction between rs2066715 and egg consumption on the risk of carotid plaque was identified (P = 0.011). Conclusion: rs2066715 was found to interact with egg consumption in modifying the risk of carotid plaque in the Chinese population.
Collapse
Affiliation(s)
- Jing Song
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University
| | - Xia Jiang
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health.,Unit of Cardiovascular Epidemiology, Institute of Environmental Health, Karolinska Institute
| | - Yaying Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University
| | - Juan Juan
- Department of Obstetrics and Gynecology, Peking University First Hospital
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University
| |
Collapse
|
35
|
Hsu LC, Hsu LS, Lee TH. Association of apolipoprotein A1 and A5 polymorphisms with stroke subtypes in Han Chinese people in Taiwan. Gene 2019; 684:76-81. [PMID: 30367981 DOI: 10.1016/j.gene.2018.10.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSES Stroke is a leading cause of death and serious disability worldwide. Now, evidences indicate that dyslipidemia may play an important role in stroke. APOA1 and APOA5 involve in lipid metabolism. In this study, we investigated the association of APOA1 rs670 and APOA5 rs662799 with different stroke subtypes in the Han Chinese population of Taiwan. METHODS A total of 1751 participants, including 459 control subjects, 606 large artery atherosclerosis (LAA), 339 small vessel occlusion (SVO), and 347 hypertensive intracranial hemorrhage (HICH), were enrolled. The presence of rs670 and rs662799 was analyzed through polymerase chain react ion and matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry. RESULTS Notably, the frequency of the rs662799 C allele was significantly lower in the SVO patients than in the controls (24.36% vs. 29.74%, P = 0.024). The frequencies of heterozygote TC [odd ratio (OR) = 0.732, 95% confidence interval (CI) = 0.544-0.984, P = 0.038] and TC + CC (OR = 0.719, 95% CI = 0.542-0.953, P = 0.022) genotypes were significantly lower in the SVO patients than in the controls. In addition, triglyceride levels in individuals carrying the rs662799 TC + CC genotype were significantly higher than in those carrying the TT genotype, especially in older age, female, and body mass index (BMI) ≥ 25 groups. On the contrary, the low-density lipoprotein-cholesterol (LDL-C) was significantly lower in rs662799 TC + CC genotype than TT genotype. The BMI was significantly lower in subjects with rs662799 TC + CC genotype than those with TT genotype, especially in older age and female. High-density lipoprotein-cholesterol (HDL-C) levels were higher in individuals carrying the rs670 GG genotype than in those carrying the AG + AA genotype, especially in BMI < 25 group. Logistic regression analysis showed that the rs662799 C allele (TC + CC) was an independent protective factor for SVO after adjustment for conventional risk factors (OR = 0.709, 95% CI = 0.526-0.956; P = 0.024). CONCLUSION GG genotype of rs670 is correlated with high serum HDL-C levels, whereas TC + CC genotype of rs662799 is associated with high serum triglyceride and low LDL and BMI levels. In addition, the rs662799 C allele (TC + CC) is an independent protective factor for SVO in the Han Chinese population in Taiwan.
Collapse
Affiliation(s)
- Li-Chi Hsu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan; National Yang-Ming University school of Medicine, Taipei, Taiwan
| | - Li-Sung Hsu
- Institutes of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tsong-Hai Lee
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Stroke Center and Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
36
|
Suzuki R, Warita T, Nakamura Y, Kitamura Y, Aoyama Y, Ogawa Y, Kawada H, Ando K. A case of double-refractory multiple myeloma with both the IgH-MMSET fusion protein and the congenital abnormality t(11;22). Int J Hematol 2019; 109:731-736. [PMID: 30680670 DOI: 10.1007/s12185-019-02603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
A 67-year-old female was referred to our hospital with a sternal fracture in March 2008. She received a diagnosis of multiple myeloma (MM) BJP-κ type (ISS stage III). G-banding karyotype revealed 46, XX, t(11;22)(q23.3;q11.2) (Hubacek, Gene 592:193-9, 2016), which was later confirmed to be congenital. After repeated rounds of chemotherapy with bortezomib and lenalidomide, she obtained a very good partial response in August 2014, and she was followed up with no treatment. However, she relapsed in February 2016. At that time, fluorescence in situ hybridization identified del(13q) and t(4;14)(p16;q32), which are associated with a poor prognosis. Furthermore, PCR analysis showed that the chromosome 11 breakpoint was at the APOA5/APOA4 locus at 11q23.3, which is associated with malignancy, and that the chromosome 22 breakpoint was at the SEPT5 intron 1 locus, which also plays a role in leukemogenesis through formation of a fusion gene with MLL. Although she was treated with three further lines of therapy, she died from disease progression in August 2017. Synergism between t(11;22) and t(4;14) may have induced the double-refractory phenotype to proteasome inhibitor and lenalidomide, at least during the chemorefractory phase. We present a biological analysis of this case and a review of the literature.
Collapse
Affiliation(s)
- Rikio Suzuki
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan.
| | - Takayuki Warita
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshihiko Nakamura
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yuka Kitamura
- Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yasuyuki Aoyama
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Yoshiaki Ogawa
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Hiroshi Kawada
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kiyoshi Ando
- Department of Hematology/Oncology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan. .,Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| |
Collapse
|
37
|
Khasanova LT, Stakhovskaya LV, Koltsova EA, Shamalov NA. [Genetic characteristics of stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:65-72. [PMID: 32207720 DOI: 10.17116/jnevro201911912265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the recent years there is a growing interest in identification of additional genetic factors of stroke. A growing body of evidence supports the role of genetic factors in determining the risk of both hemorrhagic and ischemic stroke. The article considers the main genes associated with susceptibility to stroke and genetic polymorphisms associated with the disease. Genetic factors, modulating inflammation process, coagulation, lipid metabolism, NO formation, renin-angiotensin-aldosterone system and homeostasis play a significant role in stroke development. A comprehensive analysis of different genes associated with stroke may help to detect individuals with extremely high risk of stroke and implement timely preventive measures to decrease stroke burden.
Collapse
Affiliation(s)
- L T Khasanova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - L V Stakhovskaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - E A Koltsova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N A Shamalov
- Federal Center for Cerebrovascular Pathology and Stroke, Moscow, Russia
| |
Collapse
|
38
|
Han X, Zheng Z, Wang C, Wang L. Association between MEG3/miR-181b polymorphisms and risk of ischemic stroke. Lipids Health Dis 2018; 17:292. [PMID: 30579356 PMCID: PMC6303848 DOI: 10.1186/s12944-018-0941-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Recent evidence suggests that long non-coding RNAs (lncRNAs) are key regulators in the pathological process of ischemic stroke (IS). Maternally expressed gene 3 (MEG3) was observed to be up-regulated in IS, acting as a competing endogenous RNA for miR-181b to regulate ischemic brain injury. The purpose of this study was to evaluate the association of tagSNPs in MEG3 (i.e., rs7158663 and rs4081134) and miR-181b rs322931 with IS risk. METHODS Genomic DNA was extracted from blood samples of 509 patients with IS and 668 healthy controls. Genotyping of MEG3 rs7158663, rs4081134, and miR-181b rs322931 was performed by TaqMan assay. The transcriptional activity was measured using the Dual-Luciferase Reporter Assay kit. RESULTS Single-site analysis revealed a significantly higher risk of IS being associated with miR-181b rs322931 CT and CT/TT genotypes (CT vs. CC: adjusted OR = 1.48, 95% CI: 1.13-1.95, P = 0.005; CT/TT vs. CC: adjusted OR = 1.52, 95% CI: 1.17-1.97, P = 0.002). Combined analyses revealed that combined genotypes (rs7158663 GG + rs322931 CT/TT and rs7158663 AG/AA + rs322931 CT/TT) increased IS risk compared to genotypes of rs7158663 GG + rs322931 CC. Stratification analyses showed that patients carrying miR-181b rs322931 CT/TT genotypes had higher levels of low-density lipoprotein cholesterol (LDL_C) (P = 0.01). Moreover, results from logistic regression analysis showed that rs322931 CT/TT genotypes were risk factors besides hypertension, total cholesterol, triglyceride, and LDL_C. Further dual-luciferase reporter assay showed that the rs322931 T allele had lower levels of luciferase activity than the rs322931 C allele. CONCLUSION These findings indicate that miR-181b rs322931 may singly or jointly contribute to the risk of IS.
Collapse
Affiliation(s)
- Xuemei Han
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, People's Republic of China
| | - Zhaoshi Zheng
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, People's Republic of China
| | - Chunhui Wang
- Department of Neurosurgery, the Hospital of Jilin Province, Changchun, Jilin, 130031, People's Republic of China
| | - Libo Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, People's Republic of China.
| |
Collapse
|
39
|
Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, Wang J. Ferroptosis and Its Role in Diverse Brain Diseases. Mol Neurobiol 2018; 56:4880-4893. [PMID: 30406908 DOI: 10.1007/s12035-018-1403-3] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a recently identified, iron-regulated, non-apoptotic form of cell death. It is characterized by cellular accumulation of lipid reactive oxygen species that ultimately leads to oxidative stress and cell death. Although first identified in cancer cells, ferroptosis has been shown to have significant implications in several neurologic diseases, such as ischemic and hemorrhagic stroke, Alzheimer's disease, and Parkinson's disease. This review summarizes current research on ferroptosis, its underlying mechanisms, and its role in the progression of different neurologic diseases. Understanding the role of ferroptosis could provide valuable information regarding treatment and prevention of these devastating diseases.
Collapse
Affiliation(s)
- Abigail Weiland
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yamei Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qian Li
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Advanced Innovation Center for Human Brain Protection, Captical Medical University, Beijing, 100069, China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
40
|
Griessenauer CJ, Farrell S, Sarkar A, Zand R, Abedi V, Holland N, Michael A, Cummings CL, Metpally R, Carey DJ, Goren O, Martin N, Hendrix P, Schirmer CM. Genetic susceptibility to cerebrovascular disease: A systematic review. J Cereb Blood Flow Metab 2018; 38:1853-1871. [PMID: 30182779 PMCID: PMC6259318 DOI: 10.1177/0271678x18797958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Investigation of genetic susceptibility to cerebrovascular disease has been of growing interest. A systematic review of human studies assessing neurogenomic aspects of cerebrovascular disease was performed according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. Any association study exploring genetic variants located in the exome associated with one of the major cerebrovascular diseases with at least 500 subjects was eligible for inclusion. Of 6874 manuscripts identified, 35 studies met the inclusion criteria. Most studies of interest focused on ischemic stroke and cerebrovascular occlusive disease. Large cohort genetic association studies on hemorrhagic cerebrovascular disease were less common. In addition to rare, well-established monogenic conditions with significant risk for cerebrovascular disease, a number of genetic variants are also relevant to cerebrovascular pathogenesis as part of a multifactorial process. The 45 polymorphisms identified were located in genes involved in processes related to endothelial and vascular health (15 (33.4%) variants), plasma lipid metabolism (10 (22.2%) variants), inflammation (9 (20%) variants), coagulation (3 (6.7%) variants), and blood pressure modulation (2 (4.4%) variants), and other (6 (13.3%) variants). This work represents a comprehensive overview of genetic variants in the exome relevant to ischemic and hemorrhagic stroke pathophysiology.
Collapse
Affiliation(s)
- Christoph J Griessenauer
- 1 Department of Neurosurgery, Geisinger Commonwealth School of Medicine, Geisinger, Danville, PA, USA.,2 Research Institute of Neurointervention, Paracelsus Medical University, Salzburg, Austria
| | - Sean Farrell
- 3 Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| | - Atom Sarkar
- 1 Department of Neurosurgery, Geisinger Commonwealth School of Medicine, Geisinger, Danville, PA, USA
| | - Ramin Zand
- 4 Department of Neurology, Geisinger Commonwealth School of Medicine, Geisinger, Danville, PA, USA
| | - Vida Abedi
- 5 Biomedical and Translational Informatics Institute, Geisinger, Danville, PA, USA
| | - Neil Holland
- 4 Department of Neurology, Geisinger Commonwealth School of Medicine, Geisinger, Danville, PA, USA
| | - Andrew Michael
- 6 Neuroimaging Analytics Laboratory, Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Christopher L Cummings
- 4 Department of Neurology, Geisinger Commonwealth School of Medicine, Geisinger, Danville, PA, USA
| | | | | | - Oded Goren
- 1 Department of Neurosurgery, Geisinger Commonwealth School of Medicine, Geisinger, Danville, PA, USA
| | - Neil Martin
- 1 Department of Neurosurgery, Geisinger Commonwealth School of Medicine, Geisinger, Danville, PA, USA
| | - Philipp Hendrix
- 8 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | - Clemens M Schirmer
- 1 Department of Neurosurgery, Geisinger Commonwealth School of Medicine, Geisinger, Danville, PA, USA
| |
Collapse
|
41
|
Zheng Z, Liu S, Wang C, Han X. A Functional Polymorphism rs145204276 in the Promoter of Long Noncoding RNA GAS5 Is Associated with an Increased Risk of Ischemic Stroke. J Stroke Cerebrovasc Dis 2018; 27:3535-3541. [PMID: 30197169 DOI: 10.1016/j.jstrokecerebrovasdis.2018.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/26/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in the regulation of pathological process of ischemic stroke (IS) via affecting cell apoptosis, inflammation, cell death, and angiogenesis. LncRNA growth arrest-specific 5 (GAS5) was observed to be up-regulated in IS, acting as a competing endogenous RNA for miR-137 to mediate the Notch1 signaling pathway. In this study, we aimed to whether an insertion/deletion polymorphism (rs145204276) in the promoter of GAS5 was related to the risk of IS. The rs145204276 was genotyped using polymerase chain reaction (PCR)-polyacrylamide gel electrophoresis in 509 patients with IS and 668 healthy controls with frequencies matched to cases regarding age, gender, living area, and ethnicity. The GAS5 expression levels were determined using qPCR and relative luciferase activity was measured using the Dual Luciferase assay system. The presence of del/del genotype and del allele was associated with an increased risk of IS [del/del versus ins/ins: adjusted odds ratio (OR) = 2.06, 95% confidence interval (CI): 1.37-3.11; recessive model: adjusted OR = 2.07, 95% CI: 1.41-3.04; del versus ins: adjusted OR = 1.31, 95% CI: 1.08-1.57]. Results from logistic regression analysis identified risk factors for IS, including hypertension, total cholesterol, triglyceride, low-density lipoprotein cholesterol, and rs145204276 del/del genotype. Furthermore, patients carrying rs145204276 del/del genotype had significantly higher levels of GAS5 and cells transfected with rs145204276 del allele exhibited a larger increase in luciferase activity. These findings indicate that rs145204276 del allele exhibited a significant association with an increased IS susceptibility by elevating the transcriptional activity and subsequently enhancing the expression of lncRNA GAS5.
Collapse
Affiliation(s)
- Zhaoshi Zheng
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Songyan Liu
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Chunhui Wang
- Department of Neurosurgery, The Hospital of Jilin Province, Changchun, Jilin, PR China
| | - Xuemei Han
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
42
|
Sathiyakumar V, Kapoor K, Jones SR, Banach M, Martin SS, Toth PP. Novel Therapeutic Targets for Managing Dyslipidemia. Trends Pharmacol Sci 2018; 39:733-747. [PMID: 29970260 DOI: 10.1016/j.tips.2018.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 11/16/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of morbidity and mortality in developed nations. Therapeutic modulation of dyslipidemia by inhibiting 3'-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is standard practice throughout the world. However, based on findings from Mendelian studies and genetic sequencing in prospective longitudinal cohorts from around the world, novel therapeutic targets regulating lipid and lipoprotein metabolism, such as apoprotein C3, angiopoietin-like proteins 3 and 4, and lipoprotein(a), have been identified. These targets may provide additional avenues to prevent and treat atherosclerotic disease. We therefore review these novel molecular targets by addressing available Mendelian and observational data, therapeutic agents in development, and early outcomes results.
Collapse
Affiliation(s)
- Vasanth Sathiyakumar
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karan Kapoor
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven R Jones
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland
| | - Seth S Martin
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Peter P Toth
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Medicine, CGH Medical Center, Sterling, IL, USA.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Apolipoprotein (apo) C-III is a key player in triglyceride-rich lipoprotein metabolism and strongly associated with elevated plasma triglyceride levels. Several new studies added important insights on apoC-III and its physiological function confirming its promise as a valid therapeutic target. RECENT FINDINGS APOC3 is expressed in liver and intestine and regulates triglyceride-rich lipoprotein (TRL) catabolism and anabolism. The transcriptional regulation in both organs requires different regulatory elements. Clinical and preclinical studies established that apoC-III raises plasma triglyceride levels predominantly by inhibiting hepatic TRL clearance. Mechanistic insights into missense variants indicate accelerated renal clearance of apoC-III variants resulting in enhanced TRL catabolism. In contrast, an APOC3 gain-of-function variant enhances de novo lipogenesis and hepatic TRL production. Multiple studies confirmed the correlation between increased apoC-III levels and cardiovascular disease. This has opened up new therapeutic avenues allowing targeting of specific apoC-III properties in triglyceride metabolism. SUMMARY Novel in vivo models and APOC3 missense variants revealed unique mechanisms by which apoC-III inhibits TRL catabolism. Clinical trials with Volanesorsen, an APOC3 antisense oligonucleotide, report very promising lipid-lowering outcomes. However, future studies will need to address if acute apoC-III lowering will have the same clinical benefits as a life-long reduction.
Collapse
Affiliation(s)
- Bastian Ramms
- Department of Cellular and Molecular Medicine
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, San Diego, California, USA
- Department of Chemistry, Biochemistry I, Bielefeld University, Bielefeld, Germany
| | - Philip L S M Gordts
- Department of Cellular and Molecular Medicine
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, San Diego, California, USA
| |
Collapse
|
44
|
Abstract
Ischemic stroke is a sudden loss of brain function due to the reduction of blood flow. Brain tissues cease to function with subsequent activation of the ischemic cascade. Metabolomics and lipidomics are modern disciplines that characterize the metabolites and lipid components of a biological system, respectively. Because the pathogenesis of ischemic stroke is heterogeneous and multifactorial, it is crucial to establish comprehensive metabolomic and lipidomic approaches to elucidate these alterations in this disease. Fortunately, metabolomic and lipidomic studies have the distinct advantages of identifying tissue/mechanism-specific biomarkers, predicting treatment and clinical outcome, and improving our understanding of the pathophysiologic basis of disease states. Therefore, recent applications of these analytical approaches in the early diagnosis of ischemic stroke were discussed. In addition, the emerging roles of metabolomics and lipidomics on ischemic stroke were summarized, in order to gain new insights into the mechanisms underlying ischemic stroke and in the search for novel metabolite biomarkers and their related pathways.
Collapse
|
45
|
Ghaznavi H, Aali E, Soltanpour MS. Association Study of the ATP - Binding Cassette Transporter A1 (ABCA1) Rs2230806 Genetic Variation with Lipid Profile and Coronary Artery Disease Risk in an Iranian Population. Open Access Maced J Med Sci 2018. [PMID: 29531587 PMCID: PMC5839431 DOI: 10.3889/oamjms.2018.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND: ATP - binding cassette transporter A1 (ABCA1) plays essential roles in the biogenesis of high -density lipoprotein - cholesterol. Variations in the ABCA1 gene may influence the risk of coronary artery disease (CAD). AIM: Present study aimed to investigate the association of rs2230806 (R219K) polymorphism of ABCA1 gene with the development and severity of CAD in an Iranian population. MATERIALS AND METHODS: Our study population consisted of 100 patients with angiographically confirmed CAD and 100 controls. The genotyping of R219K mutation of ABCA1 gene was determined by PCR - RFLP method. Lipid profile was determined using routine colourimetric assays. Statistical analysis was done by SPSS - 16. RESULTS: The genotypic (P = 0.024) and allelic (P = 0.001) distribution of the ABCA1 R219K polymorphism were significantly different between the two groups. In a univariate analysis (with genotype RR as the reference), the RK genotype (OR = 0.46, 95%CI = 0.25-0.86, P = 0.020) and KK genotype (OR = 0.27, 95%CI = 0.11 – 0.66, P = 0.005) was significantly associated with a decreased risk of CAD. A multiple logistic regression analysis revealed that smoking (0.008), diabetes (P = 0.023), triglyceride (P = 0.001), HDL - cholesterol (P = 0.002) and ABCA1 KK genotype (P = 0.009) were significantly and independently associated with the risk of CAD. The association between different genotypes of R219K polymorphism with lipid profile was not significant in both groups (P > 0.05). The R219K polymorphism was significantly associated with severity of CAD (P < 0.05). CONCLUSION: The carriage of K allele of ABCA1 R219K polymorphism has a protective effect on CAD risk and correlates with a decreased severity of CAD. This protective effect seems to be mediated independently of plasma lipid levels.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ehsan Aali
- Department of Pharmacology, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohammad Soleiman Soltanpour
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
46
|
Kim OY, Moon J, Jo G, Kwak SY, Kim JY, Shin MJ. Apolipoprotein A5 3'-UTR variants and cardiometabolic traits in Koreans: results from the Korean genome and epidemiology study and the Korea National Health and Nutrition Examination Survey. Nutr Res Pract 2018; 12:61-68. [PMID: 29399298 PMCID: PMC5792258 DOI: 10.4162/nrp.2018.12.1.61] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/OBJECTIVES This study aimed to test the association between APOA5 3'-UTR variants (rs662799) and cardiometabolic traits in Koreans. SUBJECTS/METHODS For this study, epidemiological data, Apolipoprotein A5 (APOA5) genotype information, and lymphoblastoid cell line (LCL) biospecimens from a subset of the Ansung-Ansan cohort within the Korean Genome and Epidemiology study (KoGES-ASAS; n = 7,704) as well as epidemiological data along with genomic DNA biospecimens of participants from a subset of the Korea National Health and Nutrition Examination Survey (KNHANES 2011-12; n = 2,235) were obtained. APOA5 mRNA expression was also measured. RESULTS APOA5 rs662799 genotype distributions in both the KoGES-ASAS and KNHANES groups were 50.6% for TT, 41.3% for TC, and 8.1% for CC, which are similar to those in previous reports. In both groups, minor C allele carriers, particularly subjects with CC homozygosity, had lower high-density lipoprotein (HDL) cholesterol and higher triglyceride levels than TT homozygotes. Linear regression analysis showed that the minor C allele significantly contributed to reduction of circulating HDL cholesterol levels [β = −2.048, P < 0.001; β = −2.199, P < 0.001] as well as elevation of circulating triglyceride levels [β = 0.053, P < 0.001; β = 0.066, P < 0.001] in both the KoGES-ASAS and KNHANES groups. In addition, higher expression levels of APOA5 in LCLs of 64 healthy individuals were negatively associated with body mass index (r = −0.277, P = 0.027) and circulating triglyceride level (r = −0.340, P = 0.006) but not significantly correlated with circulating HDL cholesterol level. On the other hand, we observed no significant difference in the mRNA level of APOA5 according to APOA5 rs662799 polymorphisms. CONCLUSIONS The C allele of APOA5 rs662799 was found to be significantly associated with cardiometabolic traits in a large Korean population from the KoGES-ASAS and KNHANES. The effect of this genotype may be associated with post-transcriptional regulation, which deserves further experimental confirmation.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea
| | - Jiyoung Moon
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Garam Jo
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - So-Young Kwak
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Ji Young Kim
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Min-Jeong Shin
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
47
|
Franzago M, Fraticelli F, Di Nicola M, Bianco F, Marchetti D, Celentano C, Liberati M, De Caterina R, Stuppia L, Vitacolonna E. Early Subclinical Atherosclerosis in Gestational Diabetes: The Predictive Role of Routine Biomarkers and Nutrigenetic Variants. J Diabetes Res 2018; 2018:9242579. [PMID: 30671483 PMCID: PMC6323479 DOI: 10.1155/2018/9242579] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/17/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
Gestational diabetes mellitus (GDM) can be considered a silent risk for out-of-pregnancy diabetes mellitus (DM) and cardiovascular disease (CVD) later in life. We aimed to assess the predictive role of 3rd trimester lipid profile during pregnancy for the susceptibility to markers of subclinical atherosclerosis (CVD susceptibility) at 3 years in a cohort of women with history of GDM. A secondary aim is to evaluate the usefulness of novel nutrigenetic markers, in addition to traditional parameters, for predicting early subclinical atherosclerosis in such women in order to plan adequate early prevention interventions. We assessed 28 consecutive GDM women in whom we collected socio-demographic characteristics and clinical and anthropometric parameters at the 3rd trimester of pregnancy. In a single blood sample, from each patient, we assessed 9 single nucleotide polymorphisms (SNPs) from 9 genes related to nutrients and metabolism, which were genotyped by High Resolution Melting analysis. All women then attended a 3-year-postpartum follow-up and on that occasion performed an oral glucose tolerance test (OGTT, with 75 g oral glucose), the measurement of carotid artery intima-media thickness (cIMT), and analyses of metabolic parameters. In addition, we evaluated the physical activity level and the adherence to Mediterranean diet (MedDiet) using the International Physical Activity Questionnaire (IPAQ-short version) and PREDIMED questionnaires. We found an association between 3rd trimester triglycerides and cIMT (p = 0.014). We also found significant associations between the APOA5 CC genotype and cIMT after adjustments for age and body mass index (p = 0.045) and between the interaction CC APOA5/CC LDLR and cIMT (p = 0.010). At the follow-up, the cohort also featured a mean BMI in the overweight range and a high mean waist circumference. We found no difference in the MedDiet adherence, physical activity, and smoking but an inverse correlation between the PREDIMED and the IPAQ scores with the IMT. In conclusion, this preliminary study provides insight into the predictive role of lipid profile during pregnancy and of some genetic variants on cIMT taken as a parameter of subclinical CVD susceptibility in GDM.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Federica Fraticelli
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Marta Di Nicola
- Laboratory of Biostatistics, Department of Medical, Oral and Biotechnological Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Francesco Bianco
- Institute of Cardiology, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Daniela Marchetti
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Claudio Celentano
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Marco Liberati
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Raffaele De Caterina
- Institute of Cardiology, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti-Pescara, Chieti, Italy
| |
Collapse
|