1
|
Afshar N, Amini K, Mohajerani H, Saki S. Evaluation of probiotic bifidobacteria strains from Iranian traditional dairy products for their anti-hyperlipidemic potential. Folia Microbiol (Praha) 2024; 69:875-887. [PMID: 38198044 DOI: 10.1007/s12223-023-01124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
This study investigated the therapeutic potential of probiotic bifidobacteria, isolated from Iranian fermented dairy products, in a hyperlipidemic animal model. Bifidobacterium strains were extracted from traditional dairy samples and screened using physiological and phenotypic examinations, 16S rRNA analysis, and probiotic properties such as tolerance to gastrointestinal juice, antimicrobial activity, and antibiotic susceptibility. The ability of the screened bifidobacteria to reduce serum and liver lipids in vivo was tested using male Wistar rats. Six strains of bifidobacteria were isolated from traditional Iranian fermented dairy. These strains showed promising in vitro activity in lowering triglyceride and cholesterol, tolerance to simulated gastrointestinal juice, the ability to adhere to Caco-2 cells, acceptable antibiotic susceptibility, and a broad spectrum of antibacterial activity. The diet supplemented with isolated bifidobacteria significantly reduced serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), liver tissue lipid levels, and hepatic enzymes in animals when compared to a high-fat diet without strains (p < 0.01). Additionally, the potential probiotic-supplemented diet significantly increased bile acid excretion in the feces and upregulated hepatic CYP7A1 expression levels (p < 0.05), while NPC1L1, ACAT2, and MTP gene expressions in small intestinal cells were downregulated (p < 0.05). Bifidobacteria isolated from Iranian traditional dairy showed potential for use in the production of fermented foods that have hypolipemic activity in the host.
Collapse
Affiliation(s)
- Nasim Afshar
- Department of Microbiology, Faculty of Sciences, Arak Branch, Islamic Azad University, Arak, Iran
| | - Kumarss Amini
- Department of Microbiology, Faculty of Sciences, Saveh Branch, Islamic Azad University, Saveh, Iran.
| | | | - Sasan Saki
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
2
|
Hart TL, Petersen KS, Kris-Etherton PM. The effect of cottonseed oil on lipids/lipoproteins: a systematic review and plasma cholesterol predictive equations estimations. Nutr Rev 2024; 82:1079-1086. [PMID: 37695308 PMCID: PMC11233854 DOI: 10.1093/nutrit/nuad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
CONTEXT Cottonseed oil (CSO) is higher in polyunsaturated fatty acids (PUFA) and saturated fatty acids (SFAs) than many liquid plant oils. OBJECTIVES To conduct a systematic review of randomized controlled trials (RCTs) examining effects of CSO on markers of lipid metabolism and evaluate lipid and lipoprotein effects of incorporating CSO into a healthy dietary pattern using regression equations. DATA SOURCES A systematic search was conducted for RCTs comparing CSO with a non-CSO comparator in any population. DATA ANALYSES The Katan regression equation was used to predict lipid/lipoprotein changes when incorporating CSO into a US-style healthy eating pattern at 25 to 100% of the total oil allowance (ie, 27 g/2000 kcal) compared with average American intake (NHANES 2017 to 2020 pre-COVID pandemic). RESULTS In total, 3 eligible publications (n = 2 trials), with 58 participants that provided 44% and 30% of total energy as CSO, were included. Fasting low-density lipoprotein cholesterol (LDL-C; ≈ -7.7 mg/dL) and triglycerides (≈ -7.5 mg/dL) were lower after 5 days of a CSO-enriched diet vs olive oil (OO). In a 56-day trial, CSO lowered total cholesterol (TC; ≈ -14.8 mg/dL), LDL-C (≈ -14.0 mg/dL), and non-high-density lipoprotein cholesterol (≈ -14.2 mg/dL) vs OO. Postprandially, angiopoietin-like protein-3, -4, and -8 concentrations decreased with CSO and increased with OO intake. Compared with average American intake, a healthy eating pattern with 27 g of CSO was estimated to lower TC (-8.1 mg/dL) and LDL-C (-7.3 mg/dL) levels, with minimal reduction in high-density lipoprotein cholesterol (-1.1 mg/dL). Compared with the healthy eating pattern, incorporating 27 g of CSO was predicted to increase TC and LDL-C levels by 2.4 mg/dL. CONCLUSION Limited high-quality research suggests CSO may improve lipid/lipoprotein levels compared with OO. Cholesterol predictive equations suggest CSO can be incorporated into a healthy dietary pattern without significantly affecting lipids/lipoproteins.
Collapse
Affiliation(s)
- Tricia L Hart
- Department of Nutritional Sciences, Penn State University, University Park, PA, USA
| | - Kristina S Petersen
- Department of Nutritional Sciences, Penn State University, University Park, PA, USA
| | | |
Collapse
|
3
|
Pokushalov E, Ponomarenko A, Smith J, Johnson M, Garcia C, Pak I, Shrainer E, Kudlay D, Bayramova S, Miller R. Efficacy of AI-Guided (GenAIS TM) Dietary Supplement Prescriptions versus Traditional Methods for Lowering LDL Cholesterol: A Randomized Parallel-Group Pilot Study. Nutrients 2024; 16:2023. [PMID: 38999770 PMCID: PMC11243060 DOI: 10.3390/nu16132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Emerging evidence suggests that personalized dietary supplement regimens can significantly influence lipid metabolism and cardiovascular risk. The efficacy of AI-guided dietary supplement prescriptions, compared with standard physician-guided prescriptions, remains underexplored. In a randomized, parallel-group pilot study, 70 patients aged 40-75 years with LDL-C levels between 70 and 190 mg/dL were enrolled. Participants were randomized to receive either AI-guided dietary supplement prescriptions or standard physician-guided prescriptions for 90 days. The primary endpoint was the percent change in LDL-C levels. Secondary endpoints included changes in total cholesterol, HDL-C, triglycerides, and hsCRP. Supplement adherence and side effects were monitored. Sixty-seven participants completed the study. The AI-guided group experienced a 25.3% reduction in LDL-C levels (95% CI: -28.7% to -21.9%), significantly greater than the 15.2% reduction in the physician-guided group (95% CI: -18.5% to -11.9%; p < 0.01). Total cholesterol decreased by 15.4% (95% CI: -19.1% to -11.7%) in the AI-guided group compared with 8.1% (95% CI: -11.5% to -4.7%) in the physician-guided group (p < 0.05). Triglycerides were reduced by 22.1% (95% CI: -27.2% to -17.0%) in the AI-guided group versus 12.3% (95% CI: -16.7% to -7.9%) in the physician-guided group (p < 0.01). HDL-C and hsCRP changes were not significantly different between groups. The AI-guided group received a broader variety of supplements, including plant sterols, omega-3 fatty acids, red yeast rice, coenzyme Q10, niacin, and fiber supplements. Side effects were minimal and comparable between groups. AI-guided dietary supplement prescriptions significantly reduce LDL-C and triglycerides more effectively than standard physician-guided prescriptions, highlighting the potential for AI-driven personalization in managing hypercholesterolemia.
Collapse
Affiliation(s)
- Evgeny Pokushalov
- Center for New Medical Technologies, 630090 Novosibirsk, Russia; (A.P.); (I.P.); (E.S.); (S.B.)
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA (C.G.)
| | - Andrey Ponomarenko
- Center for New Medical Technologies, 630090 Novosibirsk, Russia; (A.P.); (I.P.); (E.S.); (S.B.)
| | - John Smith
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA (C.G.)
| | - Michael Johnson
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA (C.G.)
| | - Claire Garcia
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA (C.G.)
| | - Inessa Pak
- Center for New Medical Technologies, 630090 Novosibirsk, Russia; (A.P.); (I.P.); (E.S.); (S.B.)
| | - Evgenya Shrainer
- Center for New Medical Technologies, 630090 Novosibirsk, Russia; (A.P.); (I.P.); (E.S.); (S.B.)
| | - Dmitry Kudlay
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Sevda Bayramova
- Center for New Medical Technologies, 630090 Novosibirsk, Russia; (A.P.); (I.P.); (E.S.); (S.B.)
| | - Richard Miller
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA (C.G.)
| |
Collapse
|
4
|
Komai M, Takeno D, Fujii C, Nakano J, Ohsaki Y, Shirakawa H. Nailfold Capillaroscopy: A Comprehensive Review on Its Usefulness in Both Clinical Diagnosis and Improving Unhealthy Dietary Lifestyles. Nutrients 2024; 16:1914. [PMID: 38931269 PMCID: PMC11206784 DOI: 10.3390/nu16121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Since the 1970s, the utility of nailfold capillaroscopy (NFC) in diagnosing rheumatological disorders such as systemic sclerosis has been well established. Further studies have also shown that NFC can detect non-rheumatic diseases such as diabetes, glaucoma, dermatitis, and Alzheimer disease. In the past decade, nailfold capillary morphological changes have also been reported as symptoms of unhealthy lifestyle habits such as poor diet, smoking, sleep deprivation, and even psychological stress, all of which contribute to slow blood flow. Therefore, studying the relationships between the morphology of nailfold capillaries and lifestyle habits has a high potential to indicate unhealthy states or even pre-disease conditions. Simple, inexpensive, and non-invasive methods such as NFC are important and useful for routine medical examinations. The present study began with a systematic literature search of the PubMed database followed by a summary of studies reporting the assessment of morphological changes detected by NFC, and a comprehensive review of NFC's utility in clinical diagnosis and improving unhealthy dietary lifestyles. It culminates in a summary of dietary and lifestyle health promotion strategy, assessed based on NFC and other related measurements that indicate healthy microvascular blood flow and endothelial function.
Collapse
Affiliation(s)
- Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.O.); (H.S.)
| | - Dan Takeno
- At Co., Ltd., Osaka 541-0042, Japan; (D.T.); (C.F.); (J.N.)
| | - Chiharu Fujii
- At Co., Ltd., Osaka 541-0042, Japan; (D.T.); (C.F.); (J.N.)
| | - Joe Nakano
- At Co., Ltd., Osaka 541-0042, Japan; (D.T.); (C.F.); (J.N.)
| | - Yusuke Ohsaki
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.O.); (H.S.)
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (Y.O.); (H.S.)
| |
Collapse
|
5
|
Dogani M, Askari N, Hesari AK. A diet enriched with Pistacia atlantica fruits improves the female rats' reproductive system. J Tradit Complement Med 2024; 14:335-342. [PMID: 38707920 PMCID: PMC11068987 DOI: 10.1016/j.jtcme.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/09/2023] [Accepted: 09/30/2023] [Indexed: 05/07/2024] Open
Abstract
Background and aim Baneh (Pistacia atlantica) is a plant species that is commonly consumed as food and has a long-standing traditional use as a sexual enhancer. Despite its widespread use, a limited amount of academic and scientific literature is available regarding its potential impact on the reproductive system. The present research aimed to study the effect of a diet enriched with Baneh on the female rats' reproductive system. Experimental procedure Three groups of rats (n = 8) were subjected to the intended diet for six weeks. Subsequently, their histomorphometric parameters, sex hormone levels, as well as the expression of oxytocin (OXT) and oxytocin receptor (OXTR) genes were measured. The rats' serum vitamin D, zinc, and lipid profiles were also evaluated. Results and conclusion Results revealed that compared to the normal food, the diet containing 20 % Baneh significantly increased the progesterone and estradiol levels three and two times, respectively. It decreased the total body weight while increasing the ratio of ovary weight to the body weight. Furthermore, the Baneh-enriched diet raised HDL, zinc, and vitamin D levels, though it reduced the LDL and TG levels by 15 μg/dl and 24 μg/dl, respectively, and the concentration of ovary malondialdehyde decreased by 50 % in the treated group. Also, the diet increased the follicle graph, corpus luteum, the thickness of the epithelium, the number of endometrial glands, and the expression of both OXT and OXTR genes. Our findings suggested that P. atlantica could considerably improve the female sex hormone levels and their reproductive system.
Collapse
Affiliation(s)
- Manijeh Dogani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Nayere Askari
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Ali Kalantari Hesari
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
6
|
Mohammadi N, Farrell M, O'Sullivan L, Langan A, Franchin M, Azevedo L, Granato D. Effectiveness of anthocyanin-containing foods and nutraceuticals in mitigating oxidative stress, inflammation, and cardiovascular health-related biomarkers: a systematic review of animal and human interventions. Food Funct 2024; 15:3274-3299. [PMID: 38482946 DOI: 10.1039/d3fo04579j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cardiovascular diseases (CVDs) are a group of chronic health disorders prevalent worldwide that claim millions of lives yearly. Inflammation and oxidative stress are intricately associated with myocardial tissue damage, endothelial dysfunction, and increased odds of heart failure. Thus, dietary strategies aimed at decreasing the odds of CVDs are paramount. In this regard, the consumption of anthocyanins, natural pigments found in edible flowers, fruits, and vegetables, has attracted attention due to their potential to promote cardiovascular health. The main mechanisms of action linked with their protective effects on antioxidant and anti-inflammatory activities, serum lipid profile modulation, and other cardiovascular health parameters are explained and exemplified. However, little is known about the dose-dependency nature of the effects, which anthocyanin has better efficiency, and whether anthocyanin-containing foods display better in vivo efficacy than nutraceuticals (i.e., concentrated extracts containing higher levels of anthocyanins than foods). Thus, this systematic review focused on determining the effects of anthocyanin-containing foods and nutraceuticals on biomarkers associated with CVDs using animal studies and human interventions supported by in vitro mechanistic insights. Overall, the results showed that the regular consumption of anthocyanin-containing foods and nutraceuticals improved vascular function, lipid profile, and antioxidant and anti-inflammatory effects. The daily dosage, the participants' health status, and the duration of the intervention also significantly influenced the results.
Collapse
Affiliation(s)
- Nima Mohammadi
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Michelle Farrell
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Laura O'Sullivan
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Andrea Langan
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Marcelo Franchin
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
| | - Luciana Azevedo
- Federal University of Alfenas, In Vitro and In Vivo Nutritional and Toxicological Analysis Laboratory, Av. Jovino Fernandes Sales, 2600, Bairro Santa Clara - CEP 37133-840, Alfenas, Minas Gerais, Brazil
| | - Daniel Granato
- University of Limerick, School of Natural Sciences, Faculty of Science and Engineering, Department of Biological Sciences, Bioactivity and Applications Lab, V94 T9PX Limerick, Ireland.
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
7
|
Mohammadi S, Asbaghi O, Afrisham R, Farrokhi V, Jadidi Y, Mofidi F, Ashtary-Larky D. Impacts of Supplementation with Silymarin on Cardiovascular Risk Factors: A Systematic Review and Dose-Response Meta-Analysis. Antioxidants (Basel) 2024; 13:390. [PMID: 38671838 PMCID: PMC11047742 DOI: 10.3390/antiox13040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
It has been suggested that silymarin (SIL) supplementation has positive effects on cardiovascular health and reduces the risk of cardiometabolic syndrome (CMS). This systematic review and dose-response meta-analysis assessed the impacts of SIL administration on cardiovascular risk factors. A systematic search of multiple databases was performed to identify eligible controlled trials published up to January 2023. The analysis used a random-effects model and included 33 trials with 1943 participants. It was revealed that SIL supplementation led to a notable reduction in serum levels of fasting blood glucose (FBG) (weighted mean difference (WMD): -21.68 mg/dL, 95% CI: -31.37, -11.99; p < 0.001), diastolic blood pressure (DBP) (WMD: -1.25 mmHg; 95% CI: -2.25, -0.26; p = 0.013), total cholesterol (TC) (WMD: -13.97 mg/dL, 95% CI: -23.09, -4.85; p = 0.003), triglycerides (TG) (WMD: -26.22 mg/dL, 95% CI: -40.32, -12.12; p < 0.001), fasting insulin (WMD: -3.76 mU/mL, 95% CI: -4.80, -2.72; p < 0.001), low-density lipoprotein (LDL) (WMD: -17.13 mg/dL, 95% CI: -25.63, -8.63; p < 0.001), and hemoglobin A1C (HbA1c) (WMD: -0.85%, 95% CI: -1.27, -0.43; p < 0.001) in the SIL-treated groups compared to their untreated counterparts. In addition, there were no substantial differences in body mass index (BMI), systolic blood pressure (SBP), C-reactive protein (CRP), body weight, and high-density lipoprotein (HDL) between the two groups. These outcomes suggest that SIL consumption reduces certain CMS risk factors and has favorable impacts on lipid and glycemic profiles with potential hypotensive effects. These findings should be supported by additional trials with larger sample sizes and longer durations.
Collapse
Affiliation(s)
- Shooka Mohammadi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran; (R.A.); (Y.J.)
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Yasaman Jadidi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran 14176-13151, Iran; (R.A.); (Y.J.)
| | - Fatemeh Mofidi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| |
Collapse
|
8
|
Steinbauer S, König A, Neuhauser C, Schwarzinger B, Stangl H, Iken M, Weghuber J, Röhrl C. Elder (Sambucus nigra), identified by high-content screening, counteracts foam cell formation without promoting hepatic lipogenesis. Sci Rep 2024; 14:3547. [PMID: 38347122 PMCID: PMC10861454 DOI: 10.1038/s41598-024-54108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/08/2024] [Indexed: 02/15/2024] Open
Abstract
Cholesterol deposition in intimal macrophages leads to foam cell formation and atherosclerosis. Reverse cholesterol transport (RCT), initiated by efflux of excess cholesterol from foam cells, counteracts atherosclerosis. However, targeting RCT by enhancing cholesterol efflux was so far accompanied by adverse hepatic lipogenesis. Here, we aimed to identify novel natural enhancers of macrophage cholesterol efflux suitable for the prevention of atherosclerosis. Plant extracts of an open-access library were screened for their capacity to increase cholesterol efflux in RAW264.7 macrophages trace-labeled with fluorescent BODIPY-cholesterol. Incremental functional validation of hits yielded two final extracts, elder (Sambucus nigra) and bitter orange (Citrus aurantium L.) that induced ATP binding cassette transporter A1 (ABCA1) expression and reduced cholesteryl ester accumulation in aggregated LDL-induced foam cells. Aqueous elder extracts were subsequently prepared in-house and both, flower and leaf extracts increased ABCA1 mRNA and protein expression in human THP-1 macrophages, while lipogenic gene expression in hepatocyte-derived cells was not induced. Chlorogenic acid isomers and the quercetin glycoside rutin were identified as the main polyphenols in elder extracts with putative biological action. In summary, elder flower and leaf extracts increase macrophage ABCA1 expression and reduce foam cell formation without adversely affecting hepatic lipogenesis.
Collapse
Affiliation(s)
- Stefanie Steinbauer
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600, Wels, Austria
| | - Alice König
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600, Wels, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria
| | - Cathrina Neuhauser
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria
| | - Bettina Schwarzinger
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600, Wels, Austria
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria
| | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | | | - Julian Weghuber
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600, Wels, Austria.
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria.
| | - Clemens Röhrl
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, 4600, Wels, Austria.
| |
Collapse
|
9
|
Barkas F, Bathrellou E, Nomikos T, Panagiotakos D, Liberopoulos E, Kontogianni MD. Plant Sterols and Plant Stanols in Cholesterol Management and Cardiovascular Prevention. Nutrients 2023; 15:2845. [PMID: 37447172 DOI: 10.3390/nu15132845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the major mortality cause in developed countries with hypercholesterolaemia being one of the primary modifiable causes. Lifestyle intervention constitutes the first step in cholesterol management and includes dietary modifications along with the use of functional foods and supplements. Functional foods enriched with plant sterols/stanols have become the most widely used nonprescription cholesterol-lowering approach, despite the lack of randomized trials investigating their long-term safety and cardiovascular efficacy. The cholesterol-lowering effect of plant-sterol supplementation is well-established and a potential beneficial impact on other lipoproteins and glucose homeostasis has been described. Nevertheless, experimental and human observational studies investigating the association of phytosterol supplementation or circulating plant sterols with various markers of atherosclerosis and ASCVD events have demonstrated controversial results. Compelling evidence from recent genetic studies have also linked elevated plasma concentrations of circulating plant sterols with ASCVD presence, thus raising concerns about the safety of phytosterol supplementation. Thus, the aim of this review is to provide up-to-date data on the effect of plant sterols/stanols on lipid-modification and cardiovascular outcomes, as well as to discuss any safety issues and practical concerns.
Collapse
Affiliation(s)
- Fotios Barkas
- Department of Hygiene & Epidemiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eirini Bathrellou
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Kallithea, Greece
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Kallithea, Greece
| | - Demosthenes Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Kallithea, Greece
| | - Evangelos Liberopoulos
- 1st Propaedeutic Department of Medicine, General Hospital of Atherns 'Laiko', School of Medicine, National and Kapodistrιan University of Athens, 11527 Athens, Greece
| | - Meropi D Kontogianni
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Kallithea, Greece
| |
Collapse
|
10
|
Angelopoulos N, Paparodis RD, Androulakis I, Boniakos A, Argyrakopoulou G, Livadas S. Low Dose Monacolin K Combined with Coenzyme Q10, Grape Seed, and Olive Leaf Extracts Lowers LDL Cholesterol in Patients with Mild Dyslipidemia: A Multicenter, Randomized Controlled Trial. Nutrients 2023; 15:2682. [PMID: 37375586 DOI: 10.3390/nu15122682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 06/29/2023] Open
Abstract
Certain nutraceuticals, mainly containing red yeast rice, might be considered as an alternative therapy to statins in patients with dyslipidemia, although there is still insufficient evidence available with respect to long-term safety and effectiveness on cardiovascular disease prevention and treatment. The aim of this study was to assess the lipid-lowering activity and safety of a dietary supplement containing a low dose of monacolin K combined with coenzyme Q10, grape seed and olive tree leaf extracts in patients with mild hypercholesterolemia. In total, 105 subjects with mild hypercholesterolemia (low-density lipoprotein cholesterol LDL-C levels 140-180 mg/dL) and low CV risk were randomly assigned into three treatment groups: lifestyle modification (LM), LM plus a low dosage of monacolin K (3 mg), and LM plus a high dosage of monacolin K (10 mg) and treated for 8 weeks. The primary endpoint was the reduction of LDL-C and total cholesterol (TC). LDL-C decreased by 26.46% on average (p < 0.001) during treatment with 10 mg of monacolin and by 16.77% on average during treatment with 3 mg of monacolin (p < 0.001). We observed a slight but significant reduction of the triglyceride levels only in the high-dose-treated group (mean -4.25%; 95% CI of mean -11.11 to 2.61). No severe adverse events occurred during the study. Our results confirm the LDL-C-lowering properties of monacolin are clinically meaningful even in lower doses of 3 mg/day.
Collapse
Affiliation(s)
- Nicholas Angelopoulos
- Endocrine Unit, Athens Medical Centre, 65403 Athens, Greece
- Private Practice, Venizelou Str., 65302 Kavala, Greece
| | - Rodis D Paparodis
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Private Practice, Gerokostopoulou 24, 26221 Patra, Greece
| | - Ioannis Androulakis
- Endocrine Unit, Athens Medical Centre, 65403 Athens, Greece
- Private Practice, Tzanaki Emmanouil 17, 73134 Chania, Greece
| | | | | | | |
Collapse
|
11
|
Cicero AFG, Fogacci F, Stoian AP, Toth PP. Red Yeast Rice for the Improvement of Lipid Profiles in Mild-to-Moderate Hypercholesterolemia: A Narrative Review. Nutrients 2023; 15:nu15102288. [PMID: 37242171 DOI: 10.3390/nu15102288] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Reducing low-density lipoprotein cholesterol (LDL-C) levels is a key target for lowering cardiovascular risk and preventing atherosclerotic cardiovascular disease (ASCVD). Red yeast rice (RYR) is a nutraceutical widely used as a lipid-lowering dietary supplement. The main cholesterol-lowering components of RYR are monacolins, particularly monacolin K, which is structurally identical to lovastatin and targets the same key enzyme of cholesterol biosynthesis. RYR supplementation reduces LDL-C levels by approximately 15-34% versus placebo, with a similar effect to low-dose, first-generation statins in subjects with mild-to-moderate dyslipidemia. RYR has also demonstrated beneficial reductions of up to 45% versus placebo in the risk of ASCVD events in secondary prevention studies. RYR at a dose that provides about 3 mg/d of monacolin K is well tolerated, with an adverse event profile similar to that of low-dose statins. RYR is therefore a treatment option for lowering LDL-C levels and ASCVD risk for people with mild-to-moderate hypercholesterolemia who are ineligible for statin therapy, particularly those who are unable to implement lifestyle modifications, and also for people who are eligible for statin therapy but who are unwilling to take a pharmacologic therapy.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Center for the Study of Hypertension and Related Cardiovascular Risk Factors, Medical and Surgery Sciences Department (DIMEC), University of Bologna, 40126 Bologna, Italy
- IRCCS AOU S. Orsola di Bologna, 40138 Bologna, Italy
| | - Federica Fogacci
- Center for the Study of Hypertension and Related Cardiovascular Risk Factors, Medical and Surgery Sciences Department (DIMEC), University of Bologna, 40126 Bologna, Italy
- Department of Medicine and Surgery Sciences, University of Bologna, 40126 Bologna, Italy
| | - Anca Pantea Stoian
- Department of Diabetes, Faculty of Medicine, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Peter P Toth
- CGH Medical Center, Sterling, IL 61081, USA
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Barathikannan K, Chelliah R, Yeon SJ, Tyagi A, Elahi F, Vijayalakshmi S, Agastian P, Arockiasami V, Hawn Oh D. Untargeted metabolomics of fermented onion (Allium cepa L) using UHPLC Q-TOF MS/MS reveals anti-obesity metabolites and in vivo efficacy in Caenorhabditis elegans. Food Chem 2023; 404:134710. [DOI: 10.1016/j.foodchem.2022.134710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
|
13
|
Li H, Wang X, Li X, Zhou X, Wang X, Li T, Xiao R, Xi Y. Role of soy lecithin combined with soy isoflavone on cerebral blood flow in rats of cognitive impairment and the primary screening of its optimum combination. Nutr Res Pract 2023; 17:371-385. [PMID: 37009142 PMCID: PMC10042711 DOI: 10.4162/nrp.2023.17.2.371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 03/22/2023] Open
Abstract
BACKGROUND/OBJECTIVES Soy isoflavone (SIF) and soy lecithin (SL) have beneficial effects on many chronic diseases, including neurodegenerative diseases. Regretfully, there is little evidence to show the combined effects of these soy extractives on the impairment of cognition and abnormal cerebral blood flow (CBF). This study examined the optimal combination dose of SIF + SL to provide evidence for improving CBF and protecting cerebrovascular endothelial cells. MATERIALS/METHODS In vivo study, SIF50 + SL40, SIF50 + SL80 and SIF50 + SL160 groups were obtained. Morris water maze, laser speckle contrast imaging (LSCI), and hematoxylin-eosin staining were used to detect learning and memory impairment, CBF, and damage to the cerebrovascular tissue in rat. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the oxidized glutathione (GSSG) were detected. The anti-oxidative damage index of superoxide dismutase (SOD) and glutathione (GSH) in the serum of an animal model was also tested. In vitro study, an immortalized mouse brain endothelial cell line (bEND.3 cells) was used to confirm the cerebrovascular endothelial cell protection of SIF + SL. In this study, 50 μM of Gen were used, while the 25, 50, or 100 μM of SL for different incubation times were selected first. The intracellular levels of 8-OHdG, SOD, GSH, and GSSG were also detected in the cells. RESULTS In vivo study, SIF + SL could increase the target crossing times significantly and shorten the total swimming distance of rats. The CBF in the rats of the SIF50 + SL40 group and SIF50 + SL160 group was enhanced. Pathological changes, such as attenuation of the endothelium in cerebral vessels were much less in the SIF50 + SL40 group and SIF50 + SL160 group. The 8-OHdG was reduced in the SIF50 + SL40 group. The GSSG showed a significant decrease in all SIF + SL pretreatment groups, but the GSH showed an opposite result. SOD was upregulated by SIF + SL pretreatment. Different combinations of Genistein (Gen)+SL, the secondary proof of health benefits found in vivo study, showed they have effective anti-oxidation and less side reaction on protecting cerebrovascular endothelial cell. SIF50 + SL40 in rats experiment and Gen50 + SL25 in cell test were the optimum joint doses on alleviating cognitive impairment and regulating CBF through protecting cerebrovascular tissue by its antioxidant activity. CONCLUSIONS SIF+SL could significantly prevent cognitive defect induced by β-Amyloid through regulating CBF. This kind of effect might be attributed to its antioxidant activity on protecting cerebral vessels.
Collapse
Affiliation(s)
- Hongrui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xianyun Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaoying Li
- Cadre Department, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xueyang Zhou
- Medical Department, Beijing Shunyi Maternal and Child Health Hospital, Beijing 101300, China
| | - Xuan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Tiantian Li
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Rong Xiao
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yuandi Xi
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing 100069, China
| |
Collapse
|
14
|
Bachheti RK, Worku LA, Gonfa YH, Zebeaman M, Deepti, Pandey DP, Bachheti A. Prevention and Treatment of Cardiovascular Diseases with Plant Phytochemicals: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5741198. [PMID: 35832515 PMCID: PMC9273387 DOI: 10.1155/2022/5741198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022]
Abstract
Cardiovascular diseases (CVDs) are the world's leading killers, accounting for 30% deaths. According to the WHO report, CVDs kill 17.9 million people per year, and there will be 22.2 million deaths from CVD in 2030. The death rates rise as people get older. Regarding gender, the death rate of women by CVD (51%) is higher than that of men (42%). To decrease and prevent CVD, most people rely on traditional medicine originating from the plant (phytochemicals) in addition to or in preference to commercially available drugs to recover from their illness. The CVD therapy efficacy of 92 plants, including 15 terrestrial plants, is examined. Some medicinal plants well known to treat CVD are, Daucus carota, Nerium oleander, Amaranthus Viridis, Ginkgo biloba, Terminalia arjuna, Picrorhiza kurroa, Salvia miltiorrhiza, Tinospora cordifolia, Mucuna pruriens, Hydrocotyle asiatica, Bombax ceiba, and Andrographis paniculate. The active phytochemicals found in these plants are flavonoids, polyphenols, plant sterol, plant sulphur compounds, and terpenoids. A general flavonoid mechanism of action is to prevent low-density lipoprotein oxidation, which promotes vasodilatation. Plant sterols prevent CVD by decreasing cholesterol absorption in the blood. Plant sulphur compound also prevent CVD by activation of nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and inhibition of cholesterol synthesis. Quinone decreases the risk of CVD by increasing ATP production in mitochondria while terpenoids by decreasing atherosclerotic lesion in the aortic valve. Although several physiologically active compounds with recognized biological effects have been found in various plants because of the increased prevalence of CVD, appropriate CVD prevention and treatment measures are required. More research is needed to understand the mechanism and specific plants' phytochemicals responsible for treating CVD.
Collapse
Affiliation(s)
- Rakesh Kumar Bachheti
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Limenew Abate Worku
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Yilma Hunde Gonfa
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Chemistry, Faculty of Natural and Computational Science, Ambo University, Ambo, Ethiopia
| | - Meseret Zebeaman
- Bioprocess and Biotechnology Center of Excellence, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Sciences and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Deepti
- Department of Environment Science, Graphic Era University, Dehradun-248002, Uttarakhand, India
| | - D. P. Pandey
- Department of Chemistry, Government P. G. College, Uttarkashi, India
| | - Archana Bachheti
- Department of Environment Science, Graphic Era University, Dehradun-248002, Uttarakhand, India
| |
Collapse
|
15
|
A review on valorization of different byproducts of mango (Mangifera indica L.) for functional food and human health. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Kadoglou NPE, Panayiotou C, Vardas M, Balaskas N, Kostomitsopoulos NG, Tsaroucha AK, Valsami G. A Comprehensive Review of the Cardiovascular Protective Properties of Silibinin/Silymarin: A New Kid on the Block. Pharmaceuticals (Basel) 2022; 15:538. [PMID: 35631363 PMCID: PMC9145573 DOI: 10.3390/ph15050538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022] Open
Abstract
Silibinin/silymarin has been used in herbal medicine for thousands of years and it is well-known for its hepato-protective properties. The present comprehensive literature review aimed to critically summarize the pharmacological properties of silymarin extract and its main ingredient silibinin in relation to classical cardiovascular risk factors (e.g., diabetes mellitus, etc.). We also assessed their potential protective and/or therapeutic application in cardiovascular diseases (CVDs), based on experimental and clinical studies. Pre-clinical studies including in vitro tests or animal models have predominantly implicated the following effects of silymarin and its constituents: (1) antioxidant, (2) hypolipidemic, (3) hypoglycemic, (4) anti-hypertensive and (5) cardioprotective. On the other hand, a direct amelioration of atherosclerosis and endothelial dysfunction after silymarin administration seems weak based on scarce data. In clinical trials, the most important findings are improved (1) glycemic and (2) lipid profiles in patients with type 2 diabetes mellitus and/or hyperlipidemia, while (3) the anti-hypertensive effects of silibinin/silymarin seem very modest. Finally, the changes in clinical endpoints are not robust enough to draw a firm conclusion. There are significant limitations in clinical trial design, including the great variety in doses and cohorts, the underlying conditions, the small sample sizes, the short duration and the absence of pharmacokinetic/pharmacodynamic tests prior to study commitment. More data from well-designed and high-quality pre-clinical and clinical studies are required to firmly establish the clinical efficacy of silibinin/silymarin and its possible therapeutic application in cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Michail Vardas
- Medical School, University of Cyprus, Nicosia 2109, Cyprus; (C.P.); (M.V.); (N.B.)
| | - Nikolaos Balaskas
- Medical School, University of Cyprus, Nicosia 2109, Cyprus; (C.P.); (M.V.); (N.B.)
| | - Nikolaos G. Kostomitsopoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Alexandra K. Tsaroucha
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Laboratory of Bioethics, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece;
| |
Collapse
|
17
|
Comparative evaluation of pseudocereals peptides: A review of their nutritional contribution. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Röhrl C, Steinbauer S, Bauer R, Roitinger E, Otteneder K, Wallner M, Neuhauser C, Schwarzinger B, Schwarzinger C, Stangl H, Iken M, Weghuber J. Aqueous extracts of lingonberry and blackberry leaves identified by high-content screening beneficially act on cholesterol metabolism. Food Funct 2021; 12:10432-10442. [PMID: 34617546 DOI: 10.1039/d1fo01169c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Decreasing circulating low-density lipoprotein (LDL) cholesterol levels leads to decreased risk of cardiovascular diseases. Natural compounds are capable of lowering LDL-cholesterol even on top of lifestyle modification or medication. To identify novel plant-derived compounds to lower plasma LDL cholesterol levels, we performed high-content screening based on the transcriptional activation of the promoter of the LDL receptor (LDLR). The identified hits were thoroughly validated in human hepatic cell lines in terms of increasing LDLR mRNA and protein levels, lowering cellular cholesterol levels and increasing cellular LDL uptake. By means of this incremental validation process in vitro, aqueous extracts prepared from leaves of lingonberries (Vaccinium vitis-idaea) as well as blackberries (Rubus fruticosus) were found to have effects comparable to lovastatin, a prototypic cholesterol-lowering drug. When applied in vivo in mice, both extracts induced subtle increases in hepatic LDLR expression. In addition, a significant increase in high-density lipoprotein (HDL) cholesterol was observed. Taken together, aqueous extracts from lingonberry or blackberry leaves were identified and characterized as strong candidates to provide cardiovascular protection.
Collapse
Affiliation(s)
- Clemens Röhrl
- University of Applied Sciences Upper Austria, Wels, Austria.
| | | | - Raimund Bauer
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Vienna, Austria
| | - Eva Roitinger
- University of Applied Sciences Upper Austria, Wels, Austria.
| | | | - Melanie Wallner
- University of Applied Sciences Upper Austria, Wels, Austria.
| | | | - Bettina Schwarzinger
- University of Applied Sciences Upper Austria, Wels, Austria. .,Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria
| | - Clemens Schwarzinger
- Johannes Kepler University, Institute for Chemical Technology of Organic Materials, Linz, Austria
| | - Herbert Stangl
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Vienna, Austria
| | | | - Julian Weghuber
- University of Applied Sciences Upper Austria, Wels, Austria. .,Austrian Competence Center for Feed and Food Quality, Safety and Innovation, Wels, Austria
| |
Collapse
|
19
|
Tripathy S, Verma DK, Thakur M, Patel AR, Srivastav PP, Singh S, Gupta AK, Chávez-González ML, Aguilar CN, Chakravorty N, Verma HK, Utama GL. Curcumin Extraction, Isolation, Quantification and Its Application in Functional Foods: A Review With a Focus on Immune Enhancement Activities and COVID-19. Front Nutr 2021; 8:747956. [PMID: 34621776 PMCID: PMC8490651 DOI: 10.3389/fnut.2021.747956] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
An entirely unknown species of coronavirus (COVID-19) outbreak occurred in December 2019. COVID-19 has already affected more than 180 million people causing ~3.91 million deaths globally till the end of June 2021. During this emergency, the food nutraceuticals can be a potential therapeutic candidate. Curcumin is the natural and safe bioactive compound of the turmeric (Curcuma longa L.) plant and is known to possess potent anti-microbial and immuno-modulatory properties. This review paper covers the various extraction and quantification techniques of curcumin and its usage to produce functional food. The potential of curcumin in boosting the immune system has also been explored. The review will help develop insight and new knowledge about curcumin's role as an immune-booster and therapeutic agent against COVID-19. The manuscript will also encourage and assist the scientists and researchers who have an association with drug development, pharmacology, functional foods, and nutraceuticals to develop curcumin-based formulations.
Collapse
Affiliation(s)
- Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Ami R. Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Gujarat, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to Be) University, Dehradun, India
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh, India
| | - Alok Kumar Gupta
- Division of Post-Harvest Management, ICAR-Central Institute for Subtropical Horticulture (Ministry of Agriculture and Farmers Welfare, Government of India), Lucknow, India
| | - Mónica L. Chávez-González
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Henu Kumar Verma
- Department of Immunopathology, Comprehensive Pneumology Center, Institute of Lungs Biology and Disease, Munich, Germany
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
20
|
Kadoglou NPE, Christodoulou E, Kostomitsopoulos N, Valsami G. The cardiovascular-protective properties of saffron and its potential pharmaceutical applications: A critical appraisal of the literature. Phytother Res 2021; 35:6735-6753. [PMID: 34448254 DOI: 10.1002/ptr.7260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022]
Abstract
Saffron, the dried stigma of Crocus sativus L., is used in traditional medicine for its healing properties and the treatment of various pathological conditions. The present literature review aimed to summarize and evaluate the preclinical and clinical data regarding the protective effects and mechanisms of saffron and its main components (crocin, crocetin, safranal) on cardiovascular risk factors and diseases. Many in vitro and animal studies have been conducted implicating antioxidant, hypolipidemic, anti-diabetic, and antiinflammatory impact of saffron and its constituents. Notably, there is evidence of direct atherosclerosis regression and stabilization in valid atherosclerosis-prone animal models. However, current clinical trials have shown mostly weak effects of saffron and its constituents on cardiovascular risk factors: (a) Modest lowering of fasting blood glucose, without significant reduction of HbA1c in type 2 diabetic patients, (b) moderate/controversial hypolipidemic effects, (c) negligible hypotensive effect, and (d) inconsistent modification of metabolic syndrome parameters. There are important drawbacks in clinical trial design, including the absence of pharmacokinetic/pharmacodynamic tests, the wide variance of doses and cohorts' characteristics, the small number of patients, the short duration. Therefore, large, properly designed, high-quality clinical trials, focusing on specific conditions are required to evaluate the biological/pharmacological activities and firmly establish the clinical efficacy of saffron and its possible therapeutic uses in cardiovascular diseases.
Collapse
Affiliation(s)
| | - Eirini Christodoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Center of Clinical Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Poli A, Marangoni F, Corsini A, Manzato E, Marrocco W, Martini D, Medea G, Visioli F. Phytosterols, Cholesterol Control, and Cardiovascular Disease. Nutrients 2021; 13:nu13082810. [PMID: 34444970 PMCID: PMC8399210 DOI: 10.3390/nu13082810] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
The use of phytosterols (or plant sterols) for the control of plasma cholesterol concentrations has recently gained traction because their efficacy is acknowledged by scientific authorities and leading guidelines. Phytosterols, marketed as supplements or functional foods, are formally classified as food in the European Union, are freely available for purchase, and are frequently used without any health professional advice; therefore, they are often self-prescribed, either inappropriately or in situations in which no significant advantage can be obtained. For this reason, a panel of experts with diverse medical and scientific backgrounds was convened by NFI—Nutrition Foundation of Italy—to critically evaluate and summarize the literature available on the topic, with the goal of providing medical doctors and all health professionals useful information to actively govern the use of phytosterols in the context of plasma cholesterol control. Some practical indications to help professionals identify subjects who will most likely benefit from the use of these products, optimizing the therapeutic outcomes, are also provided. The panel concluded that the use of phytosterols as supplements or functional foods to control Low Density Lipoprotein (LDL) cholesterol levels should be preceded by the assessment of some relevant individual characteristics: cardiovascular risk, lipid profile, correct understanding of how to use these products, and willingness to pay for the treatment.
Collapse
Affiliation(s)
- Andrea Poli
- Nutrition Foundation of Italy, 20124 Milan, Italy;
- Correspondence: ; Tel.: +39-02-7600-6271
| | | | - Alberto Corsini
- Department of Pharmaceutical and Pharmacological Sciences, University of Milan, 20133 Milan, Italy;
- IRCCS MultiMedica, 20099 Sesto San Giovanni, Italy
| | - Enzo Manzato
- Department of Medicine (DIMED), University of Padova, 35128 Padova, Italy;
| | - Walter Marrocco
- FIMMG—Italian Federation of General Medicine Doctors and SIMPeSV–Italian Society of Preventive and Lifestyle Medicine, 00144 Rome, Italy;
| | - Daniela Martini
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy;
| | - Gerardo Medea
- SIMG—Italian Society of General Medicine, 50142 Firenze, Italy;
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy;
- IMDEA-Food, CEI UAM+CSIC, 28049 Madrid, Spain
| |
Collapse
|
22
|
Functionality of Bread and Beverage Added with Brosimum alicastrum Sw. Seed Flour on the Nutritional and Health Status of the Elderly. Foods 2021; 10:foods10081764. [PMID: 34441541 PMCID: PMC8394985 DOI: 10.3390/foods10081764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
Physiological changes in elderly individuals (EI) can contribute to nutritional deterioration and comorbidities that reduce their quality of life. Factors such as diet can modulate some of these effects. The aim was to evaluate the functionality of foods added with Brosimum alicastrum Sw. seed flour in EI. EI (n = 23) living in nursing home conditions agreed to participate. A control stage was carried out (30 days) and subsequently, an intervention stage (30 days) was realized in which a muffin and a beverage, designed for EI, were added to the participants’ their usual diet. In both stages, anthropometric parameters, body composition, nutritional status, dietary intake, sarcopenic status, cognitive and affective states, biometric parameters, and total phenolic compounds (TPC), and antioxidant capacity in foods and plasma of EI were determined. The results showed that the consumption of the foods improved the energy intake and preserved the muscle reserves of the EI. The EI gained body weight (+1.1 kg), increased their protein (+18.6 g/day; 1.5 g/kg BW/day), dietary fiber (+13.4 g/day), iron (+4.4 mg/day), zinc (+1.8 mg/day), folic acid (+83.4 µg/day) consumption while reducing their cholesterol (−66 mg/day) and sodium (−319.5 mg/day) consumption. LDL-C lipoproteins reduced (14.8%) and urea (33.1%) and BUN (33.3%) increased. The TPC increased (7.8%) in the plasma, particularly in women (10.7%). The foods improve the EI nutritional status, and this has a cardiovascular protective effect that can benefit the health of the EI.
Collapse
|
23
|
Raposo A, Saraiva A, Ramos F, Carrascosa C, Raheem D, Bárbara R, Silva H. The Role of Food Supplementation in Microcirculation-A Comprehensive Review. BIOLOGY 2021; 10:616. [PMID: 34356471 PMCID: PMC8301032 DOI: 10.3390/biology10070616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
(1) Background: Cardiovascular disease (CVD) is a major public health concern worldwide and a key cause of morbidity and mortality in developed countries. Accumulating evidence shows that several CVD forms are characterized by significant microcirculatory dysfunction, which may both cause and be caused by macrovascular disease, often preceding clinical manifestations by several years. Therefore, interest in exploring food supplements to prevent and restore microcirculation has grown. Given the continuous need to expand the available therapeutic arsenal for CVD, the food supplements market has recently grown and is expected to continue growing. (2) Methods: We provide an authoritative up-to-date comprehensive review of the impact of food supplementation on microcirculation by analyzing the European and American legal food supplements framework and the importance of food safety/food quality in this industry. We review the main literature about food bioactive compounds with a focus on microcirculation and some main food supplements with proven benefits. (3) Results: Despite a lack of scientific evidence, diet and microcirculatory function are clearly connected. The main food supplement examples in the literature with potential beneficial effects on microcirculation are: Ruscus aculeatus L., Centella asiatica L., Ginkgo biloba L., Salvia miltiorrhiza Bunge, Crataegus spp., Ginseng, Mangifera indica L., Aesculus hippocastanum L., Hamamelis virginiana L., and Vitis vinifera L. (4) Conclusions: Further clinical trials are necessary to better explore the effects of these food supplements.
Collapse
Affiliation(s)
- António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ariana Saraiva
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain; (A.S.); (C.C.)
| | - Fernando Ramos
- Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Rua Dom Manuel II, Apartado 55142, 4051-401 Oporto, Portugal
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain; (A.S.); (C.C.)
| | - Dele Raheem
- Northern Institute for Environmental and Minority Law (NIEM), Arctic Centre, University of Lapland, 96101 Rovaniemi, Finland;
| | - Rita Bárbara
- School of Sciences and Health Technologies, Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024 Lisbon, Portugal;
| | - Henrique Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
24
|
Diaconu CC, Iorga RA, Furtunescu F, Katsiki N, Stoian AP, Rizzo M. Statin intolerance: new data and further options for treatment. Curr Opin Cardiol 2021; 36:487-493. [PMID: 33929368 DOI: 10.1097/hco.0000000000000874] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Hypercholesterolemia is a major risk factor for cardiovascular diseases. Administration of statins represents the cornerstone of the prevention and treatment of cardiovascular disease, with demonstrated long-term safety and efficacy. This review aims to revisit statin intolerance mechanisms, as well as to discuss new data and therapeutic options. RECENT FINDINGS Although statins are well tolerated, myopathy and other adverse effects are a challenging problem, being the main reason for poor adherence to treatment and failure in lowering cardiovascular risk. Statin intolerance is the subject of ongoing research, as these drugs are widely used. There are alternative options of treatment if statin intolerance emerges, that is, lowering the dose, intermittent dosages, and/or combining a statin with other drugs, such as ezetimibe, proprotein convertase subtilisin-kexin type 9 inhibitors, bempedoic acid, angiopoietin-like 3 protein inhibitors, and nutraceuticals. If even the lowest statin dose cannot be tolerated, a nonstatin regimen is recommended to reduce LDL cholesterol levels. SUMMARY Treatment options in statin intolerance include combinations of a lower dose of statin with other lipid-lowering regimens or only nonstatin drugs in the presence of complete intolerance. New hypolipidemic therapies that address gene editing are emerging, and may prove useful in the future.
Collapse
Affiliation(s)
- Camelia C Diaconu
- Clinical Emergency Hospital of Bucharest
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | | | | | - Niki Katsiki
- Division of Endocrinology and Metabolism, First Department of Internal Medicine, Diabetes Center, AHEPA University Hospital, Thessaloniki, Greece
| | - Anca P Stoian
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Manfredi Rizzo
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
25
|
Tomlinson B, Patil NG, Fok M, Lam CWK. Managing dyslipidemia in patients with Type 2 diabetes. Expert Opin Pharmacother 2021; 22:2221-2234. [PMID: 33823719 DOI: 10.1080/14656566.2021.1912734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) is associated with increased risk for atherosclerotic cardiovascular disease (ASCVD) which is partly related to atherogenic dyslipidemia with raised triglycerides, reduced high-density lipoprotein cholesterol levels, and accompanying lipid changes. Treatment of this dyslipidemia is regarded as a priority to reduce the ASCVD risk in T2DM. AREAS COVERED This article reviews the relevant studies and guidelines from the publications related to this area. EXPERT OPINION Lifestyle modification should always be encouraged, and statin treatment is indicated in most patients with T2DM based on the outcome of randomized controlled trials. If LDL-C goals are not achieved, first, ezetimibe and subsequently proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors should be added. Patients with T2DM derive greater benefits from ezetimibe and PCSK9 inhibitors due to their higher absolute ASCVD risk compared to patients without T2DM. If triglyceride levels remain elevated, a high dose of eicosapentaenoic acid ethyl ester should be added. Fibrates should be used for severe hypertriglyceridemia to prevent acute pancreatitis. Novel treatments including pemafibrate and inclisiran are undergoing cardiovascular outcome trials, and RNA-based therapies may help to target residual hypertriglyceridemia and high lipoprotein(a) with the long acting treatments offering potential improved adherence to therapy.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau China
| | | | - Manson Fok
- Faculty of Medicine, Macau University of Science and Technology, Macau China
| | | |
Collapse
|
26
|
da Silva Campelo M, Neto JFC, Lima ABN, das Chagas Neto FC, da Costa Gonzaga ML, de Aguiar Soares S, Leal LKAM, Ribeiro MENP, Ricardo NMPS. Polysaccharides and extracts from Agaricus brasiliensis Murill - A comprehensive review. Int J Biol Macromol 2021; 183:1697-1714. [PMID: 34022313 DOI: 10.1016/j.ijbiomac.2021.05.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/28/2021] [Accepted: 05/16/2021] [Indexed: 12/25/2022]
Abstract
Edible mushrooms have been increasingly introduced into the human diet, which has driven research into their functional properties. Thus, Agaricus brasiliensis Murill or Agaricus blazei Murill (ABM) is a species native to the Brazilian biome, whose fruiting body has been used not only for dietary purposes, but also in the development of functional foods or as source of molecules of pharmacological interest. The bioactivity of ABM has been related to the presence of polysaccharides, although the contribution of other metabolites cannot be discharged. This work describes the polysaccharides isolation methodology and preparation of the extracts of ABM and their biological activities. Furthermore, it presents a general outline of its characterizations regarding composition, chemical structure and properties in solution. The ABM and its chemical constituents exhibit several biological activities that support their potential use for prevention or treatment of diseases with inflammatory background, such as cancer, diabetes and atherosclerosis. The mechanism of action of the extracts and polysaccharides from ABM is mainly related to a modulation of immune system response or reduction of inflammatory response. This review shows that the ABM has great potential in the pharmaceutical, biotechnological and food sectors that deserves additional research using standardized products.
Collapse
Affiliation(s)
- Matheus da Silva Campelo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil
| | - João Francisco Câmara Neto
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil
| | - Ana Beatriz Nogueira Lima
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil
| | - Francisco Cirineu das Chagas Neto
- Centro de Estudos Farmacêuticos e Cosméticos, Departamento de Farmácia, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60430-160, Brasil
| | - Maria Leônia da Costa Gonzaga
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil
| | - Sandra de Aguiar Soares
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil
| | - Luzia Kalyne Almeida Moreira Leal
- Centro de Estudos Farmacêuticos e Cosméticos, Departamento de Farmácia, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60430-160, Brasil.
| | - Maria Elenir Nobre Pinho Ribeiro
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil.
| | - Nágila Maria Pontes Silva Ricardo
- Laboratório de Polímeros e Inovação de Materiais, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza - CE, CEP: 60455-760, Brasil.
| |
Collapse
|