1
|
Playford M, Li H, Dey A, Florida E, Teague H, Gordon S, Mehta N. HDL-associated vitamin D binding protein levels are inversely associated with necrotic plaque burden in psoriasis. ATHEROSCLEROSIS PLUS 2025; 59:32-38. [PMID: 39811778 PMCID: PMC11732513 DOI: 10.1016/j.athplu.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 01/16/2025]
Abstract
Background and aims Vitamin D binding protein (DBP) serves a dual function as a vitamin D carrier and actin scavenger. Free DBP is present in high concentrations in serum, while a smaller pool is bound to lipoproteins like HDL and VLDL. The role of DBP's interaction with lipoproteins remains unclear. Given that HDL has been proposed to have both atheroprotective and anti-inflammatory properties, we sought to compare whether HDL-associated DBP and/or total serum DBP could serve as useful biomarkers for assessing disease severity in psoriasis and cardiovascular disease. Methods Psoriasis (PSO) patients (N = 83), which were part of a prospective, observational cohort and non-psoriasis (non-PSO) subjects (n = 35) underwent blood collection for HDL purification by liquid chromatography and CCTA scans to assess coronary plaque burden. Serum and HDL-bound DBP levels were measured by ELISA. Results The psoriasis cohort was middle-aged (mean ± IQR: 50 (38-59), predominantly male (n = 55, 66 %) and had moderate-to-severe skin disease [psoriasis area severity index score, PASI score, med (IQR): 9.6 (6-18.3)]. Consistent with our previous reports, PSO patients had significantly higher Framingham Risk Score (FRS), high sensitivity C-reactive protein (hs-CRP), Body Mass Index (BMI), insulin resistance (HOMA-IR) and total coronary plaque burden, driven by the rupture-prone non-calcified necrotic core. However, while the concentration of serum DBP (S-DBP) between PSO and non-PSO was unchanged (PSO: 177.80 (125.77-250.99) vs non-PSO: 177.74 (104.32-254.04), the concentration of DBP associated with HDL (HDL-DBP) was decreased in psoriatics (PSO μg/ml: 1.38 (0.64-2.75) vs non-PSO: 1.72 (1.18-3.90). Although both S-DBP and HDL-DBP levels showed inverse correlations with a measure of skin disease severity (PASI) (S-DBP, Rho = -0.022 vs HDL-DBP, Rho = -113), only HDL-DBP exhibited an inverse relationship with necrotic plaque burden [Rho -0.226, p = 0.085 vs S-DBP (0.041, p = 0.76)]. This relationship was strengthened after adjusting for traditional cardiovascular risk factors such as age and sex (β = -0.237, p = 0.045), FRS (β = -0.295, p = 0.033) and including biological treatment and HDL-cholesterol (β = -0.213, p = 0.048). Conclusions In conclusion, we found HDL-DBP levels may better capture the severity of psoriatic disease and association with cardiovascular risk factors than S-DBP.
Collapse
Affiliation(s)
- M.P. Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - H. Li
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - A.K. Dey
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - E.M. Florida
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - H.L. Teague
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - S.M. Gordon
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - N.N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Heusch G, Kleinbongard P. The spleen in ischaemic heart disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01114-x. [PMID: 39743566 DOI: 10.1038/s41569-024-01114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Abstract
Ischaemic heart disease is a consequence of coronary atherosclerosis, and atherosclerosis is a systemic inflammatory disease. The spleen releases various immune cells in temporally distinct patterns. Neutrophils, monocytes, macrophages, B cells and T cells execute innate and adaptive immune processes in the coronary atherosclerotic plaque and in the ischaemic myocardium. Prolonged inflammation contributes to ischaemic heart failure. The spleen is also a target of neuromodulation through vagal, sympathetic and sensory nerve activation. Efferent vagal activation and subsequent activation of the noradrenergic splenic nerve activate β2-adrenergic receptors on splenic T cells, which release acetylcholine that ultimately results in attenuation of cytokine secretion from splenic macrophages. Coeliac vagal nerve activation increases splenic sympathetic nerve activity and drives the release of T cells, a process that depends on placental growth factor. Activation of the vagosplenic axis protects acutely from ischaemia-reperfusion injury during auricular tragus vagal stimulation and remote ischaemic conditioning. Splenectomy abrogates all these deleterious and beneficial actions on the cardiovascular system. The aggregate effect of splenectomy in humans is a long-term increase in mortality from ischaemic heart disease. The spleen has been appreciated as an important immune organ for inflammatory processes in atherosclerosis, myocardial infarction and heart failure, whereas its complex interaction with circulating blood factors and with the autonomic and somatic nervous systems, as well as its role in cardioprotection, have emerged only in the past decade. In this Review, we describe this newly identified cardioprotective function of the spleen and highlight the potential for translating the findings to patients with ischaemic heart disease.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Maier A, Teunissen AJP, Nauta SA, Lutgens E, Fayad ZA, van Leent MMT. Uncovering atherosclerotic cardiovascular disease by PET imaging. Nat Rev Cardiol 2024; 21:632-651. [PMID: 38575752 PMCID: PMC11324396 DOI: 10.1038/s41569-024-01009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Assessing atherosclerosis severity is essential for precise patient stratification. Specifically, there is a need to identify patients with residual inflammation because these patients remain at high risk of cardiovascular events despite optimal management of cardiovascular risk factors. Molecular imaging techniques, such as PET, can have an essential role in this context. PET imaging can indicate tissue-based disease status, detect early molecular changes and provide whole-body information. Advances in molecular biology and bioinformatics continue to help to decipher the complex pathogenesis of atherosclerosis and inform the development of imaging tracers. Concomitant advances in tracer synthesis methods and PET imaging technology provide future possibilities for atherosclerosis imaging. In this Review, we summarize the latest developments in PET imaging techniques and technologies for assessment of atherosclerotic cardiovascular disease and discuss the relationship between imaging readouts and transcriptomics-based plaque phenotyping.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheqouia A Nauta
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Experimental Cardiovascular Immunology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Zubirán R, Neufeld EB, Dasseux A, Remaley AT, Sorokin AV. Recent Advances in Targeted Management of Inflammation In Atherosclerosis: A Narrative Review. Cardiol Ther 2024; 13:465-491. [PMID: 39031302 PMCID: PMC11333429 DOI: 10.1007/s40119-024-00376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and mortality despite effective low-density lipoprotein cholesterol-targeted therapies. This review explores the crucial role of inflammation in the residual risk of ASCVD, emphasizing its impact on atherosclerosis progression and plaque stability. Evidence suggests that high-sensitivity C-reactive protein (hsCRP), and potentially other inflammatory biomarkers, can be used to identify the inflammatory residual ASCVD risk phenotype and may serve as future targets for the development of more efficacious therapeutic approaches. We review the biological basis for the association of inflammation with ASCVD, propose new therapeutic strategies for the use of inflammation-targeted treatments, and discuss current challenges in the implementation of this new treatment paradigm for ASCVD.
Collapse
Affiliation(s)
- Rafael Zubirán
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Edward B Neufeld
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amaury Dasseux
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander V Sorokin
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Section of Inflammation and Cardiometabolic Diseases, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Section of Lipoprotein Metabolism, Clinical Research Center, National Heart, Lung and Blood Institute, 9000 Rockville Pike, Bldg 10, Room 5-5150, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Ji T, Zan C, Li L, Cao J, Su Y, Wang H, Wu Z, Yang MF, Dou K, Li S. Molecular Imaging of Fibroblast Activation in Rabbit Atherosclerotic Plaques: a Preclinical PET/CT Study. Mol Imaging Biol 2024; 26:680-692. [PMID: 38664355 DOI: 10.1007/s11307-024-01919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 07/28/2024]
Abstract
AIM Atherosclerosis remains the pathological basis of myocardial infarction and ischemic stroke. Early and accurate identification of plauqes is crucial to improve clinical outcomes of atherosclerosis patients. Our study aims to evaluate the potential value of fibroblast activation protein inhibitor (FAPI)-04 PET/CT in identifying plaques via a preclinical rabbit model of atherosclerosis. METHODS New Zealand white rabbits were fed high-fat diet (HFD), and randomly divided into the model group injured by the balloon, and the sham group only with incisions. Ultrasound was performed to detect plaques, and FAPI-avid was determined through Al18F-NOTA-FAPI-04 PET/CT. Mean standardized uptake values (SUVmean) in lesions were compared, and biodistribution of Al18F-NOTA-FAPI-04 and target-to-background ratios (TBRs) were calculated. Histological staining was performed to display arterial plaques, and autoradiography (ARG) was employed to measure the in vitro intensity of Al18F-NOTA-FAPI-04. At last, the correlation among FAP levels, plaque area, SUVmean values and fibrous cap thickness was assessed. RESULTS The rabbit carotid and abdominal atherosclerosis model was established. Al18F-NOTA-FAPI-04 showed a higher uptake in carotid plaques (SUVmean 1.32 ± 0.11) and abdominal plaques (SUVmean 0.73 ± 0.13) compared to corresponding controls (SUVmean 1.07 ± 0.06; 0.46 ± 0.03) (P < 0.05). Biodistribution analysis of Al18F-NOTA-FAPI-04 revealed that the bigger plaques were delineated with higher TBRs. Pathological staining showed the formation of arterial plaques, and ARG staining exhibited a higher intensity of Al18F-NOTA-FAPI-04 in the bigger plaques. Lastly, plaque area was found to be positively correlated to FAP expression and SUVmean, while FAP expression was negatively correlated to fibrous cap thickness of plaques. CONCLUSIONS We successfully achieve molecular imaging of fibroblast activation in atherosclerotic lesions of rabbits, suggesting Al18F-NOTA-FAPI-04 PET/CT may be a potentially valuable tool to identify plaques.
Collapse
Affiliation(s)
- Tianxiong Ji
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Chunfang Zan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Lina Li
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jianbo Cao
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Yao Su
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hongliang Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| | - Min-Fu Yang
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China.
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Kefei Dou
- State Key Laboratory of Cardiovascular Disease, Beijing, 100037, China.
- Cardiometabolic Medicine Center, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China.
- Shanxi Key Laboratory of Molecular Imaging, Shanxi Medical University, Taiyuan, 030001, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
6
|
Gharios C, van Leent MMT, Chang HL, Abohashem S, O’Connor D, Osborne MT, Tang CY, Kaufman AE, Robson PM, Ramachandran S, Calcagno C, Mani V, Trivieri MG, Seligowski AV, Dekel S, Mulder WJM, Murrough JW, Shin LM, Tawakol A, Fayad ZA. Cortico-limbic interactions and carotid atherosclerotic burden during chronic stress exposure. Eur Heart J 2024; 45:1753-1764. [PMID: 38753456 PMCID: PMC11107120 DOI: 10.1093/eurheartj/ehae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND AND AIMS Chronic stress associates with cardiovascular disease, but mechanisms remain incompletely defined. Advanced imaging was used to identify stress-related neural imaging phenotypes associated with atherosclerosis. METHODS Twenty-seven individuals with post-traumatic stress disorder (PTSD), 45 trauma-exposed controls without PTSD, and 22 healthy controls underwent 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI). Atherosclerotic inflammation and burden were assessed using 18F-FDG PET (as maximal target-to-background ratio, TBR max) and MRI, respectively. Inflammation was assessed using high-sensitivity C-reactive protein (hsCRP) and leucopoietic imaging (18F-FDG PET uptake in spleen and bone marrow). Stress-associated neural network activity (SNA) was assessed on 18F-FDG PET as amygdala relative to ventromedial prefrontal cortex (vmPFC) activity. MRI diffusion tensor imaging assessed the axonal integrity (AI) of the uncinate fasciculus (major white matter tract connecting vmPFC and amygdala). RESULTS Median age was 37 years old and 54% of participants were female. There were no significant differences in atherosclerotic inflammation between participants with PTSD and controls; adjusted mean difference in TBR max (95% confidence interval) of the aorta 0.020 (-0.098, 0.138), and of the carotids 0.014 (-0.091, 0.119). Participants with PTSD had higher hsCRP, spleen activity, and aorta atherosclerotic burden (normalized wall index). Participants with PTSD also had higher SNA and lower AI. Across the cohort, carotid atherosclerotic burden (standard deviation of wall thickness) associated positively with SNA and negatively with AI independent of Framingham risk score. CONCLUSIONS In this study of limited size, participants with PTSD did not have higher atherosclerotic inflammation than controls. Notably, impaired cortico-limbic interactions (higher amygdala relative to vmPFC activity or disruption of their intercommunication) associated with carotid atherosclerotic burden. Larger studies are needed to refine these findings.
Collapse
Affiliation(s)
- Charbel Gharios
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 02114-2750, USA
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helena L Chang
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shady Abohashem
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 02114-2750, USA
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 10029-6574, USA
| | - David O’Connor
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 02114-2750, USA
- Division of Cardiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 10029-6574, USA
| | - Cheuk Y Tang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Audrey E Kaufman
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Philip M Robson
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Sarayu Ramachandran
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Venkatesh Mani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| | - Maria Giovanna Trivieri
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Antonia V Seligowski
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 02114-2750, USA
| | - Sharon Dekel
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Willem J M Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - James W Murrough
- Depression and Anxiety Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa M Shin
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychology, Tufts University, Medford, MA, USA
| | - Ahmed Tawakol
- Cardiovascular Imaging Research Center, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 5E, Boston, MA 02114-2750, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1234, New York, NY 10029-6574, USA
| |
Collapse
|
7
|
Ricci M, Scriffignano S, Perrotta FM, Carabellese B, Grivet Fojaja MR, Cimini A, Lubrano E. PET imaging in the psoriasis and psoriatic arthritis field: un update. Clin Transl Imaging 2024; 12:473-484. [DOI: 10.1007/s40336-024-00630-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/23/2024] [Indexed: 01/03/2025]
|
8
|
Lin G, Hsieh CY, Lai YC, Wang CC, Lin Y, Lu KY, Chai WY, Chen AP, Yen TC, Ng SH, Lai CH. Hyperpolarized [1- 13C]-pyruvate MRS evaluates immune potential and predicts response to radiotherapy in cervical cancer. Eur Radiol Exp 2024; 8:46. [PMID: 38594558 PMCID: PMC11003947 DOI: 10.1186/s41747-024-00445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/23/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Monitoring pyruvate metabolism in the spleen is important for assessing immune activity and achieving successful radiotherapy for cervical cancer due to the significance of the abscopal effect. We aimed to explore the feasibility of utilizing hyperpolarized (HP) [1-13C]-pyruvate magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) to evaluate pyruvate metabolism in the human spleen, with the aim of identifying potential candidates for radiotherapy in cervical cancer. METHODS This prospective study recruited six female patients with cervical cancer (median age 55 years; range 39-60) evaluated using HP [1-13C]-pyruvate MRI/MRS at baseline and 2 weeks after radiotherapy. Proton (1H) diffusion-weighted MRI was performed in parallel to estimate splenic cellularity. The primary outcome was defined as tumor response to radiotherapy. The Student t-test was used for comparing 13C data between the groups. RESULTS The splenic HP [1-13C]-lactate-to-total carbon (tC) ratio was 5.6-fold lower in the responders than in the non-responders at baseline (p = 0.009). The splenic [1-13C]-lactate-to-tC ratio revealed a 1.7-fold increase (p = 0.415) and the splenic [1-13C]-alanine-to-tC ratio revealed a 1.8-fold increase after radiotherapy (p = 0.482). The blood leukocyte differential count revealed an increased proportion of neutrophils two weeks following treatment, indicating enhanced immune activity (p = 0.013). The splenic apparent diffusion coefficient values between the groups were not significantly different. CONCLUSIONS This exploratory study revealed the feasibility of HP [1-13C]-pyruvate MRS of the spleen for evaluating baseline immune potential, which was associated with clinical outcomes of cervical cancer after radiotherapy. TRIAL REGISTRATION ClinicalTrials.gov NCT04951921 , registered 7 July 2021. RELEVANCE STATEMENT This prospective study revealed the feasibility of using HP 13C MRI/MRS for assessing pyruvate metabolism of the spleen to evaluate the patients' immune potential that is associated with radiotherapeutic clinical outcomes in cervical cancer. KEY POINTS • Effective radiotherapy induces abscopal effect via altering immune metabolism. • Hyperpolarized 13C MRS evaluates patients' immune potential non-invasively. • Pyruvate-to-lactate conversion in the spleen is elevated following radiotherapy.
Collapse
Affiliation(s)
- Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan.
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan.
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Ching-Yi Hsieh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Chieh Lai
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chun-Chieh Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Research Center for Radiation Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yenpo Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuan-Ying Lu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wen-Yen Chai
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | | | - Tzu-Chen Yen
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St, Guishan, 33382, Taoyuan, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chyong-Huey Lai
- Division of Gynecologic Oncology, Gynecologic Oncology Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
9
|
Marchal E, Palard-Novello X, Lhomme F, Meyer ME, Manson G, Devillers A, Marolleau JP, Houot R, Girard A. Baseline [ 18F]FDG PET features are associated with survival and toxicity in patients treated with CAR T cells for large B cell lymphoma. Eur J Nucl Med Mol Imaging 2024; 51:481-489. [PMID: 37721580 DOI: 10.1007/s00259-023-06427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE Chimeric antigen receptor (CAR) T cells have established themselves as an effective treatment for refractory or relapsed large B cell lymphoma (LBCL). Recently, the sDmax, which corresponds to the distance separating the two farthest lesions standardized by the patient's body surface area, has appeared as a prognostic factor in LBCL. This study aimed to identify [18F]FDG-PET biomarkers associated with prognosis and predictive of adverse events in patients treated with CAR T cells. METHODS Patients were retrospectively included from two different university hospitals. They were being treated with CAR T cells for LBCL and underwent [18F]FDG-PET just before CAR T cell infusion. Lesions were segmented semi-automatically with a threshold of 41% of the maximal uptake. In addition to clinico-biological features, sDmax, total metabolic tumor volume (TMTV), SUVmax, and uptake intensity of healthy lymphoid organs and liver were collected. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method. The occurrence of adverse events, such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), was reported. RESULTS Fifty-six patients were included. The median follow-up was 9.7 months. Multivariate analysis showed that TMTV (cut-off of 36 mL) was an independent prognostic factor for PFS (p < 0.001) and that sDmax (cut-off of 0.15 m-1) was an independent prognostic factor for OS (p = 0.008). Concerning the occurrence of adverse events, a C-reactive protein level > 35 mg/L (p = 0.006) and a liver SUVmean > 2.5 (p = 0.027) before CAR T cells were associated with grade 2 to 4 CRS and a spleen SUVmean > 1.9 with grade 2 to 4 ICANS. CONCLUSION TMTV and sDmax had independent prognostic values, respectively, on PFS and OS. Regarding adverse events, the mean liver and spleen uptakes were associated with the occurrence of grade 2 to 4 CRS and ICANS, respectively. Integrating these biomarkers into the clinical workflow could be useful for early adaptation of patients management.
Collapse
Affiliation(s)
- E Marchal
- Department of Nuclear Medicine, Amiens-Picardie University Hospital, Amiens, France.
| | - X Palard-Novello
- Department of Nuclear Medicine, University Rennes, CLCC Eugène Marquis, INSERM, LTSI-UMR 1099, Rennes, France
| | - F Lhomme
- Department of Clinical Hematology, Rennes University Hospital, Rennes, France
| | - M E Meyer
- Department of Nuclear Medicine, Amiens-Picardie University Hospital, Amiens, France
| | - G Manson
- Department of Clinical Hematology, Rennes University Hospital, Rennes, France
| | - A Devillers
- Department of Nuclear Medicine, CLCC Eugène Marquis, Rennes, France
| | - J P Marolleau
- Department of Hematology, Amiens-Picardie University Hospital, Amiens, France
| | - R Houot
- Department of Clinical Hematology, Rennes University Hospital, Rennes, France
| | - A Girard
- Department of Nuclear Medicine, Amiens-Picardie University Hospital, Amiens, France
| |
Collapse
|
10
|
Dondi F, Albano D, Ferrarini G, Camoni L, Bellini P, Treglia G, Bertagna F. Role of splenic and bone marrow uptake at 18 F-FDG PET/CT for the assessment of large vessels vasculitis and the influence of glucocorticoids therapy on their values. J Med Imaging Radiat Oncol 2023; 67:717-725. [PMID: 37469123 DOI: 10.1111/1754-9485.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION To assess the relationship between splenic and bone marrow (BM) uptake with the presence of large vessel vasculitis (LVV) at 18 F-FDG PET/CT and to evaluate the influence of glucocorticoid (GC) therapy on these uptakes. METHODS One hundred and one subjects with LVV and 18 F-FDG PET/CT were included in the study. Clinical features, including blood samples and duration of GC therapy, were collected. Standardized uptake value body weight max (SUVmax) of the spleen, BM, liver and arterial walls were extracted; spleen/liver (SL) and BM/liver (BML) ratios were calculated. Chi-square and T-test were used to assess the relationship between PET/CT parameters and clinical features with the presence of LVV. Rank correlation was used to evaluate the correlation between PET/CT parameters and clinical parameters. Receiver operating curve (ROC) analysis was used to find the best parameter able to discriminate between positive and negative PET/CT. All analyses were performed considering the duration of GC therapy. RESULTS Significant correlation for PET/CT results with spleen uptake (P-value = 0.001), SL (P-value < 0.001) and BML (P-value = 0.005) were reported in patients with no more than 3 days of therapy; the correlation with SL was confirmed in the total cohort of patients. A value of 0.92 for SL had an AUC of 0.959, a sensitivity of 92.6% and a specificity of 96.6% (P-value < 0.001) in predicting PET/CT results. CONCLUSION Higher splenic and BM uptake in patients with positive PET/CT for LVV were reported. A long duration of GC therapy is able to reduce such uptakes.
Collapse
Affiliation(s)
- Francesco Dondi
- Nuclear Medicine, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Domenico Albano
- Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Giovanni Ferrarini
- Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Luca Camoni
- Nuclear Medicine, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Pietro Bellini
- Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Francesco Bertagna
- Nuclear Medicine, Università degli Studi di Brescia and ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
11
|
Lu Y, Meng J, Yun M, Hacker M, Li X, Zhang X. Reduced hematopoietic-inflammatory response and worse outcomes in patients with recurrent myocardial infarction in comparison with primary myocardial infarction. EJNMMI Res 2023; 13:85. [PMID: 37749412 PMCID: PMC10519922 DOI: 10.1186/s13550-023-01035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Recurrent myocardial infarction (RMI) portends an unfavorable outcome, which might be related to diminished hematopoietic-inflammatory activation. We aimed to investigate the hematopoietic-inflammatory activation and the outcome in categorized patients with primary myocardial infarction (PMI) versus RMI as well as chronic stable angina (CSA) by 18F-FDG PET. RESULTS A total of 105 patients (88 males; 60.1 ± 9.7 years) were included. Target-to-background ratio of bone marrow (TBRBM) was highest in the PMI group (n = 45), intermediate in the RMI group (n = 30), and lowest in the CSA group (n = 30) (P < 0.001). RMI group exhibited larger scar, significantly reduced left ventricular ejection fraction, and enlarged end systolic volume in comparison with the PMI and CSA groups, respectively (P < 0.05). Additionally, there was a significantly positive correlation between TBRBM and TBRaorta (P < 0.001). The cumulative major adverse cardiac events free survival of patients in the RMI group was lower than that in the PMI and CSA groups during a median follow-up of 16.6 months (P = 0.026). CONCLUSIONS RMI conferred relatively decreased hematopoietic-inflammatory activation compared with PMI. Patients with RMI presented subsequent enlarged myocardial scar, worsened cardiac dysfunction, aggravated remodeling, and worse outcomes than that in PMI patients.
Collapse
Affiliation(s)
- Yao Lu
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jingjing Meng
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingkai Yun
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
| | - Xiaoli Zhang
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Kommoss KS, Enk A, Heikenwälder M, Waisman A, Karbach S, Wild J. Cardiovascular comorbidity in psoriasis - psoriatic inflammation is more than just skin deep. J Dtsch Dermatol Ges 2023. [PMID: 37186503 DOI: 10.1111/ddg.15071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/24/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND There is a growing understanding of inflammation in psoriasis beyond its dermatological manifestation, towards systemic inflammation. Management of possible comorbidities encompassing psychological, metabolic and cardiovascular disease is recommended in national and international dermatology guidelines for treatment of psoriasis patients. Vice versa, psoriasis is being recognized as a new risk factor for cardiovascular inflammation within the cardiological community. METHODS A review of the literature was conducted. Key points regarding epidemiological, mechanistic and management aspects were summarized and put into context for physicians treating psoriasis patients. RESULTS Efforts are currently being made to better understand the mechanistic underpinnings of systemic inflammation within psoriatic inflammation. Studies looking to "hit two birds with one stone" regarding specifically cardiovascular comorbidities of psoriasis patients using established systemic dermatological therapies have so far provided heterogeneous data. The diagnosis of psoriasis entails preventive and therapeutic consequences regarding concomitant diseases for the individual patient. CONCLUSIONS The knowledge of comorbidities in psoriasis calls for pronounced interdisciplinary care of psoriasis patients, to which this article highlights efforts regarding vascular inflammation and cardiovascular disease.
Collapse
Affiliation(s)
- Katharina S Kommoss
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Enk
- Department of Dermatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne Karbach
- Center for Cardiology - Cardiology I, University Medical Center Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner site RheinMain, Germany
| | - Johannes Wild
- Center for Cardiology - Cardiology I, University Medical Center Mainz, Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK) - Partner site RheinMain, Germany
| |
Collapse
|
13
|
Zhang T, Zhang J, Wang H, Li P. Correlations between glucose metabolism of bone marrow on 18 F-fluoro-D-glucose PET/computed tomography and hematopoietic cell populations in autoimmune diseases. Nucl Med Commun 2023; 44:212-218. [PMID: 36597726 PMCID: PMC9907693 DOI: 10.1097/mnm.0000000000001657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE This study aims to investigate which hematopoieticcell populations, clinical factors, and laboratory values are associated with FDG uptake in bone marrow (BM) on FDG PET/CT in patients with autoimmune diseases. METHODS Forty-six patients with autoimmune disease who underwent FDG PET/CT and BM aspiration (BMA) between 2017 and 2022 were enrolled. The max and mean standard uptake values (SUVmax and SUVmean, SUVs) of FDG in BM, liver, and spleen were measured, and the bone marrow-to-liver SUVs ratios (BLRmax and BLRmean, BLRs) and spleen-to-liver SUVs ratios (SLRmax and SLRmean, SLRs) were calculated. BMA and clinical and laboratory parameters were collected and evaluated for association with BLRs and SLRs. RESULTS The patients were divided into the Grade II group (20; 43.5%) and Grade III groups (26; 56.5%) according to hemopoietic activity. The BLRmax ( P = 0.021), proportion of granulocytes ( P = 0.011), metamyelocytes ( P = 0.009), myelocytes ( P = 0.024), and monocytes ( P = 0.037) in BM were significantly higher in the Grade II group. Multivariate (stepwise) linear regression analyses showed that the proportion of granulocytes in BM was the strongest and only independent factor ( P < 0.0001) associated with BLRmax with an adjusted R2 of 0.431 in model 1. In model 2, ferritin ( P = 0.018), CRP ( P = 0.025), and the proportion of metamyelocytes ( P = 0.043) in BM were correlated with BLRmax with an adjusted R2 of 0.414. CONCLUSION The FDG uptake in BM is associated with hemopoietic activity and is regulated by hyperplastic granulocytes, particularly immature metamyelocytes, in patients with autoimmune diseases. Glucose metabolism in the BM correlates with the severity of systemic inflammation.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jifeng Zhang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongjia Wang
- Department of Nuclear Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ping Li
- Department of Nuclear Medicine, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Hileman CO, Durieux JC, Janus SE, Bowman E, Kettelhut A, Nguyen TT, Avery AK, Funderburg N, Sullivan C, McComsey GA. Heroin Use Is Associated With Vascular Inflammation in Human Immunodeficiency Virus. Clin Infect Dis 2023; 76:375-381. [PMID: 36208157 PMCID: PMC10169434 DOI: 10.1093/cid/ciac812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Heroin use may work synergistically with human immunodeficiency virus (HIV) infection to cause greater immune dysregulation than either factor alone. Unraveling how this affects end-organ disease is key as it may play a role in the excess mortality seen in people with HIV (PWH) who use heroin despite access to care and antiretroviral therapy. METHODS This is a prospectively enrolled, cross-sectional study of adults with and without HIV who use and do not use heroin using (18)F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) to compare tissue-specific inflammation including aortic (target-to-background ratio [TBR]), splenic, and bone marrow (standardized uptake value [SUV]). RESULTS A total of 120 participants were enrolled. The unadjusted mean difference in aortic TBR was 0.43 between HIV-positive [HIV+] heroin+ and HIV+ heroin-negative [heroin-] (P = .02); however, among HIV-, aortic TBR was similar regardless of heroin-use status. Further, HIV-by-heroin-use status interaction was significant (P = .02), indicating that the relationship between heroin use and higher aortic TBR depended on HIV status. On the other hand, both HIV (1.54 vs 1.68; P = .04, unadjusted estimated means for HIV+ vs HIV-) and heroin use were associated with lower bone marrow SUV, although the effect of heroin depended on sex (heroin-use-by-sex interaction, P = .03). HIV-by-heroin-use interaction was not significant for splenic or bone marrow SUV. CONCLUSIONS Aortic inflammation was greatest in PWH who use heroin, but paradoxically, bone marrow activity was the least in this group, suggesting complex and possibly divergent pathophysiology within these different end organs.
Collapse
Affiliation(s)
- Corrilynn O Hileman
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center, Cleveland, Ohio, USA
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jared C Durieux
- Department of Medicine and Pediatrics, Division of Infectious Disease, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Scott E Janus
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Emily Bowman
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, The Ohio State University, Columbus, Ohio, USA
| | - Aaren Kettelhut
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, The Ohio State University, Columbus, Ohio, USA
| | - Trong-Tuong Nguyen
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center, Cleveland, Ohio, USA
| | - Ann K Avery
- Department of Medicine, Division of Infectious Disease, MetroHealth Medical Center, Cleveland, Ohio, USA
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nicholas Funderburg
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, The Ohio State University, Columbus, Ohio, USA
| | - Claire Sullivan
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Grace A McComsey
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine and Pediatrics, Division of Infectious Disease, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Zan C, An J, Wu Z, Li S. Engineering molecular nanoprobes to target early atherosclerosis: Precise diagnostic tools and promising therapeutic carriers. Nanotheranostics 2023; 7:327-344. [PMID: 37064609 PMCID: PMC10093416 DOI: 10.7150/ntno.82654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 04/18/2023] Open
Abstract
Atherosclerosis, an inflammation-driven chronic blood vessel disease, is a major contributor to devastating cardiovascular events, bringing serious social and economic burdens. Currently, non-invasive diagnostic and therapeutic techniques in combination with novel nanosized materials as well as established molecular targets are under active investigation to develop integrated molecular imaging approaches, precisely visualizing and/or even effectively reversing early-stage plaques. Besides, mechanistic investigation in the past decades provides many potent candidates extensively involved in the initiation and progression of atherosclerosis. Recent hotly-studied imaging nanoprobes for detecting early plaques mainly including optical nanoprobes, photoacoustic nanoprobes, magnetic resonance nanoprobes, positron emission tomography nanoprobes, and other dual- and multi-modality imaging nanoprobes, have been proven to be surface functionalized with important molecular targets, which occupy tailored physical and biological properties for atherogenesis. Of note, these engineering nanoprobes provide long blood-pool residence and specific molecular targeting, which allows efficient recognition of early-stage atherosclerotic plaques and thereby function as a novel type of precise diagnostic tools as well as potential therapeutic carriers of anti-atherosclerosis drugs. There have been no available nanoprobes applied in the clinics so far, although many newly emerged nanoprobes, as exemplified by aggregation-induced emission nanoprobes and TiO2 nanoprobes, have been tested for cell lines in vitro and atherogenic animal models in vivo, achieving good experimental effects. Therefore, there is an urgent call to translate these preclinical results for nanoprobes into clinical trials. For this reason, this review aims to give an overview of currently investigated nanoprobes in the context of atherosclerosis, summarize relevant published studies showing applications of different kinds of formulated nanoprobes in early detection and reverse of plaques, discuss recent advances and some limitations thereof, and provide some insights into the development of the new generation of more precise and efficient molecular nanoprobes, with a critical property of specifically targeting early atherosclerosis.
Collapse
Affiliation(s)
- Chunfang Zan
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Jie An
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
- ✉ Corresponding authors: Prof. Zhifang Wu, E-mail: . Prof. Sijin Li, E-mail:
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, China
- ✉ Corresponding authors: Prof. Zhifang Wu, E-mail: . Prof. Sijin Li, E-mail:
| |
Collapse
|
16
|
Tustumi F, Albenda DG, Perrotta FS, Sallum RAA, Ribeiro Junior U, Buchpiguel CA, Duarte PS. Prognostic Value of Bone Marrow Uptake Using 18F-FDG PET/CT Scans in Solid Neoplasms. J Imaging 2022; 8:297. [PMID: 36354870 PMCID: PMC9692285 DOI: 10.3390/jimaging8110297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/27/2022] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Fluorine-18-fluorodeoxyglucose positron emission tomography/computerized tomography (18F-FDG PET/CT) uptake is known to increase in infective and inflammatory conditions. Systemic inflammation plays a role in oncologic prognosis. Consequently, bone marrow increased uptake in oncology patients could potentially depict the systemic cancer burden. METHODS A single institute cohort analysis and a systematic review were performed, evaluating the prognostic role of 18F-FDG uptake in the bone marrow in solid neoplasms before treatment. The cohort included 113 esophageal cancer patients (adenocarcinoma or squamous cell carcinoma). The systematic review was based on 18 studies evaluating solid neoplasms, including gynecological, lung, pleura, breast, pancreas, head and neck, esophagus, stomach, colorectal, and anus. RESULTS Bone marrow 18F-FDG uptake in esophageal cancer was not correlated with staging, pathological response, and survival. High bone marrow uptake was related to advanced staging in colorectal, head and neck, and breast cancer, but not in lung cancer. Bone marrow 18F-FDG uptake was significantly associated with survival rates for lung, head and neck, breast, gastric, colorectal, pancreatic, and gynecological neoplasms but was not significantly associated with survival in pediatric neuroblastoma and esophageal cancer. CONCLUSION 18F-FDG bone marrow uptake in PET/CT has prognostic value in several solid neoplasms, including lung, gastric, colorectal, head and neck, breast, pancreas, and gynecological cancers. However, future studies are still needed to define the role of bone marrow role in cancer prognostication.
Collapse
Affiliation(s)
- Francisco Tustumi
- Department of Gastroenterology, Digestive Surgery Division, Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo 05403-000, SP, Brazil
| | - David Gutiérrez Albenda
- Department of Radiology and Oncology, Nuclear Medicine Division, Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo 05403-000, SP, Brazil
| | - Fernando Simionato Perrotta
- Department of Gastroenterology, Digestive Surgery Division, Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo 05403-000, SP, Brazil
| | - Rubens Antonio Aissar Sallum
- Department of Gastroenterology, Digestive Surgery Division, Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo 05403-000, SP, Brazil
| | - Ulysses Ribeiro Junior
- Department of Gastroenterology, Digestive Surgery Division, Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo 05403-000, SP, Brazil
| | - Carlos Alberto Buchpiguel
- Department of Radiology and Oncology, Nuclear Medicine Division, Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo 05403-000, SP, Brazil
| | - Paulo Schiavom Duarte
- Department of Radiology and Oncology, Nuclear Medicine Division, Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo 05403-000, SP, Brazil
| |
Collapse
|
17
|
O’Hagan R, Berg AR, Hong CG, Parel PM, Mehta NN, Teague HL. Systemic consequences of abnormal cholesterol handling: Interdependent pathways of inflammation and dyslipidemia. Front Immunol 2022; 13:972140. [PMID: 36091062 PMCID: PMC9459038 DOI: 10.3389/fimmu.2022.972140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic conditions such as obesity and associated comorbidities are increasing in prevalence worldwide. In chronically inflamed pathologies, metabolic conditions are linked to early onset cardiovascular disease, which remains the leading cause of death despite decades of research. In recent years, studies focused on the interdependent pathways connecting metabolism and the immune response have highlighted that dysregulated cholesterol trafficking instigates an overactive, systemic inflammatory response, thereby perpetuating early development of cardiovascular disease. In this review, we will discuss the overlapping pathways connecting cholesterol trafficking with innate immunity and present evidence that cholesterol accumulation in the bone marrow may drive systemic inflammation in chronically inflamed pathologies. Lastly, we will review the current therapeutic strategies that target both inflammation and cholesterol transport, and how biologic therapy restores lipoprotein function and mitigates the immune response.
Collapse
|
18
|
Mehta NN, Patel NH. Potential Markers of Coronary Artery Plaque and Future Events: Are They Right Under Our Nose? JACC. CARDIOVASCULAR IMAGING 2022; 15:1439-1441. [PMID: 35926902 DOI: 10.1016/j.jcmg.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 10/16/2022]
Affiliation(s)
- Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Nidhi H Patel
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Chen W, Liu L, Li Y, Li S, Li Z, Zhang W, Zhang X, Wu R, Hu D, Sun H, Zhou Y, Fan W, Zhao Y, Zhang Y, Hu Y. Evaluation of pediatric malignancies using total-body PET/CT with half-dose [ 18F]-FDG. Eur J Nucl Med Mol Imaging 2022; 49:4145-4155. [PMID: 35788704 DOI: 10.1007/s00259-022-05893-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To explore the impact of a true half dose of [18F]-FDG on image quality in pediatric oncological patients undergoing total-body PET/CT and investigate short acquisition times with half-dose injected activity. METHODS One hundred pediatric oncological patients who underwent total-body PET/CT using the uEXPLORER scanner after receiving a true half dose of [18F]-FDG (1.85 MBq/kg) were retrospectively enrolled. The PET images were first reconstructed using complete 600-s data and then split into 300-s, 180-s, 60-s, 40-s, and 20-s duration groups (G600 to G20). The subjective analysis was performed using 5-point Likert scales. Objective quantitative metrics included the maximum standard uptake value (SUVmax), SUVmean, standard deviation (SD), signal-to-noise ratio (SNR), and SNRnorm of the background. The variabilities in lesion SUVmean, SUVmax, and tumor-to-background ratio (TBR) were also calculated. RESULTS The overall image quality scores in the G600, G300, G180, and G60 groups were 4.9 ± 0.2, 4.9 ± 0.3, 4.4 ± 0.5, and 3.5 ± 0.5 points, respectively. All the lesions identified in the half-dose images were localized in the G60 images, while 56% of the lesions could be clearly identified in the G20 images. With reduced acquisition time, the SUVmax and SD of the backgrounds were gradually increased, while the TBR values showed no statistically significant differences among the groups (all p > 0.1). Using the half-dose images as a reference, the variability in the lesion SUVmax gradually increased from the G180 to G20 images, while the lesion SUVmean remained stable across all age groups. SNRnorm was highly negatively correlated with age. CONCLUSION Total-body PET/CT with a half dose of [18F]-FDG (1.85 MBq/kg, estimated whole-body effective dose: 1.76-2.57 mSv) achieved good performance in pediatric patients, with sufficient image quality and good lesion conspicuity. Sufficient image quality and lesion conspicuity could be maintained at a fast scanning time of 60 s with half-dose activity.
Collapse
Affiliation(s)
- Wanqi Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Lei Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yinghe Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shatong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhijian Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Weiguang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xu Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Runze Wu
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Debin Hu
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Hongyan Sun
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yumo Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yizhuo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yingying Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfengdong Road, Guangzhou, 510060, Guangdong, China.
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Berg AR, Hong CG, Svirydava M, Li H, Parel PM, Florida E, O'Hagan R, Pantoja CJ, Lateef SS, Anzenberg P, Harrington CL, Ward G, Zhou W, Sorokin AV, Chen MY, Teague HL, Buckler AJ, Playford MP, Gelfand JM, Mehta NN. Association of S100A8/A9 with lipid-rich necrotic core and treatment with biologic therapy in patients with psoriasis: results from an observational cohort study. J Invest Dermatol 2022; 142:2909-2919. [PMID: 35750149 DOI: 10.1016/j.jid.2022.05.1085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
Psoriasis is a systemic inflammatory disease with increased risk of atherosclerotic events and premature cardiovascular disease. S100A7, A8/A9, and A12 are protein complexes that are produced by activated neutrophils, monocytes, and keratinocytes in psoriasis. Lipid-rich necrotic core (LRNC) is a high-risk coronary plaque feature previously found to be associated with cardiovascular risk factors and psoriasis severity. LRNC can decrease with biologic therapy, but how this occurs remains unknown. We investigated the relationship between S100 proteins, LRNC, and biologic therapy in psoriasis. S100A8/A9 associated with LRNC in fully adjusted models (β = 0.27, P = 0.009, n=125 psoriasis patients with available coronary CT angiography scans, LRNC analyses, and serum S100A7, S100A8, S100A9, S100A12, and S100A8/A9 levels). At one year, in patients receiving biologic therapy (36 of 73 patients had 1-year CCTA scans available), a 79% reduction in S100A8/A9 levels (-172 (-291.7-26.4) vs -29.9 (-137.9- 50.5) P = 0.04) and a 0.6 mm2 reduction in average LRNC area (0.04 (-0.48-0.77) vs -0.56 (-1.8- 0.13); P = 0.02) were noted. These results highlight the potential role of S100A8/A9 in the development of high-risk coronary plaque in psoriasis.
Collapse
Affiliation(s)
- Alexander R Berg
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Christin G Hong
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Maryia Svirydava
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Haiou Li
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Philip M Parel
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Elizabeth Florida
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ross O'Hagan
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Carla J Pantoja
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sundus S Lateef
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Paula Anzenberg
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Charlotte L Harrington
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Grace Ward
- St. Jude's Research Hospital, Memphis, TN
| | - Wunan Zhou
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Alexander V Sorokin
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Marcus Y Chen
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Heather L Teague
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Martin P Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Joel M Gelfand
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
21
|
Lu Y, Tian Y, Mou T, Zhou Y, Tian J, Yun M, Kiss A, Podesser BK, Hacker M, Zhang X, Li X. Transient cardioprotective effects of remote ischemic postconditioning on non-reperfused myocardial infarction: longitudinal evaluation study in pigs. Int J Cardiol 2022; 355:37-43. [DOI: 10.1016/j.ijcard.2022.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 11/25/2022]
|