1
|
Chao M, Hua Z, Zhu J, Wu G, Fan L, Tang R, Chen H, Gao F. Hyaluronic acid modified prussian blue analogs/TiO₂ janus nanostructures through efficient charge separation to enhance photocatalytic-driven dual gas for achieve multimodal treatment of rheumatoid arthritis. Int J Biol Macromol 2024; 281:136567. [PMID: 39419160 DOI: 10.1016/j.ijbiomac.2024.136567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the abnormal proliferation of fibroblast-like synoviocytes and changes in the joint synovium, including elevated reactive oxygen species, decreased pH, and reduced oxygen content. In this study, we synthesized a novel nanocomposite material, namely HA-PBA-TiO2 Janus nanocomposite, by in situ etching in prussian blue analogs doped with Co and Ni, followed by the growth of TiO2 nano-flowers and encapsulation in hyaluronic acid. When these janus nanoparticles diffused to the inflammatory sites of RA, they exhibited outstanding photocatalytic water-splitting ability under 660 nm laser irradiation, generating H2 and O2. This capability helps ameliorate the hypoxic microenvironment at RA inflammatory sites by eliminating reactive oxygen species (ROS) and enhancing antioxidation and oxygenation. Furthermore, owing to the doping of Co and Ni, HA-PBA-TiO2 exhibits photothermal conversion capability, which significant damage to FLS upon exposure to 660 nm laser irradiation, thereby controlling their aberrant proliferation. Through a series of in vitro and in vivo experiments, we validated the significant therapeutic efficacy of HA-PBA-TiO2 in treating RA, highlighting its broad prospects for application.
Collapse
Affiliation(s)
- Minghao Chao
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| | - Zhiyuan Hua
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jun Zhu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China
| | - Guoquan Wu
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Liying Fan
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Rongze Tang
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Hongliang Chen
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
2
|
Sam NB, Tabiri S, Amofa E. Plasma/Serum Oxidant Parameters in Systemic Lupus Erythematosus Patients: A Systematic Review and Meta-Analysis. Autoimmune Dis 2024; 2024:9948612. [PMID: 39104552 PMCID: PMC11300099 DOI: 10.1155/2024/9948612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 08/07/2024] Open
Abstract
Most published results have revealed variations in the association of serum/plasma levels of malondialdehyde (MDA), apolipoprotein B (ApoB), and oxidized low-density lipoprotein (OxLDL) and systemic lupus erythematosus (SLE). This study was performed to establish MDA, ApoB, and OxLDL levels in systemic lupus erythematosus (SLE) patients. Electronic databases were searched for the included articles up to 27th February 2023. The meta-analysis included 48 articles with 2358 SLE patients and 2126 healthy controls considered for MDA, ApoB, and OxLDL levels. There were significantly higher MDA, ApoB, and OxLDL levels in SLE patients than those in the control groups. Subgroup analysis indicated that European/American SLE patients and patients of both ages <36 and ≥36 exhibited higher MDA, ApoB, and OxLDL levels. Arab and Asian SLE patients had higher ApoB and MDA/OxLDL levels. African SLE patients recorded higher OxLDL levels than the control groups. SLE patients with a body mass index (BMI) of ≥23 and a disease duration of <10 recorded significantly higher MDA, ApoB, and OxLDL levels. Patients with systemic lupus erythematosus disease activity index (SLEDAI) ≥8 of SLE had higher MDA and ApoB levels, whereas SLE patients with SLEDAI <8 showed significantly higher ApoB levels. Patients with BMI <23 of SLE had higher MDA and OxLDL levels. This study established significantly higher MDA, ApoB, and OxLDL levels in SLE patients, suggesting a possible role of MDA, ApoB, and OxLDL in the disease.
Collapse
Affiliation(s)
- Napoleon Bellua Sam
- Department of Medical Research and InnovationSchool of MedicineUniversity for Development Studies, Tamale, Northern Region, Ghana
| | - Stephen Tabiri
- Department of SurgerySchool of MedicineUniversity for Development Studies, Tamale, Northern Region, Ghana
| | - Ebenezer Amofa
- Department of PhysiologySchool of MedicineUniversity for Development Studies, Tamale, Northern Region, Ghana
| |
Collapse
|
3
|
Abad C, Pinal-Fernandez I, Guillou C, Bourdenet G, Drouot L, Cosette P, Giannini M, Debrut L, Jean L, Bernard S, Genty D, Zoubairi R, Remy-Jouet I, Geny B, Boitard C, Mammen A, Meyer A, Boyer O. IFNγ causes mitochondrial dysfunction and oxidative stress in myositis. Nat Commun 2024; 15:5403. [PMID: 38926363 PMCID: PMC11208592 DOI: 10.1038/s41467-024-49460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) are severe autoimmune diseases with poorly understood pathogenesis and unmet medical needs. Here, we examine the role of interferon γ (IFNγ) using NOD female mice deficient in the inducible T cell co-stimulator (Icos), which have previously been shown to develop spontaneous IFNγ-driven myositis mimicking human disease. Using muscle proteomic and spatial transcriptomic analyses we reveal profound myofiber metabolic dysregulation in these mice. In addition, we report muscle mitochondrial abnormalities and oxidative stress in diseased mice. Supporting a pathogenic role for oxidative stress, treatment with a reactive oxygen species (ROS) buffer compound alleviated myositis, preserved muscle mitochondrial ultrastructure and respiration, and reduced inflammation. Mitochondrial anomalies and oxidative stress were diminished following anti-IFNγ treatment. Further transcriptomic analysis in IIMs patients and human myoblast in vitro studies supported the link between IFNγ and mitochondrial dysfunction observed in mice. These results suggest that mitochondrial dysfunction, ROS and inflammation are interconnected in a self-maintenance loop, opening perspectives for mitochondria therapy and/or ROS targeting drugs in myositis.
Collapse
Affiliation(s)
- Catalina Abad
- Univ Rouen Normandie, Inserm, UMR1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - Iago Pinal-Fernandez
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clement Guillou
- Univ Rouen Normandie, Inserm US 51, CNRS UAR 2026, HeRacLeS PISSARO, F-76000, Rouen, France
| | - Gwladys Bourdenet
- Univ Rouen Normandie, Inserm, UMR1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - Laurent Drouot
- Univ Rouen Normandie, Inserm, UMR1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - Pascal Cosette
- Univ Rouen Normandie, Inserm US 51, CNRS UAR 2026, HeRacLeS PISSARO, F-76000, Rouen, France
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Margherita Giannini
- Translational Medicine Federation of Strasbourg, Team 3072, Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Unité exploration fonctionnelle musculaire-service de physiologie, Centre National de Référence des Maladies Auto-Immunes Systémiques Rares de l'Est et du Sud-Ouest -Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Lea Debrut
- Translational Medicine Federation of Strasbourg, Team 3072, Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Laetitia Jean
- Univ Rouen Normandie, Inserm, UMR1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - Sophie Bernard
- Univ Rouen Normandie, Inserm US51, CNRS UAR2026, HeRacLeS PRIMACEN, F-76000, Rouen, France
| | - Damien Genty
- CHU Rouen, Department of Pathology, F-76000, Rouen, France
| | - Rachid Zoubairi
- Univ Rouen Normandie, Inserm, UMR1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France
| | - Isabelle Remy-Jouet
- Univ Rouen Normandie, Inserm, UMR1096, BOSS facility, F-76000, Rouen, France
| | - Bernard Geny
- Translational Medicine Federation of Strasbourg, Team 3072, Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Unité exploration fonctionnelle musculaire-service de physiologie, Centre National de Référence des Maladies Auto-Immunes Systémiques Rares de l'Est et du Sud-Ouest -Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Christian Boitard
- Cochin Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Andrew Mammen
- Muscle Disease Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alain Meyer
- Translational Medicine Federation of Strasbourg, Team 3072, Faculty of Medicine, University of Strasbourg, Strasbourg, France
- Unité exploration fonctionnelle musculaire-service de physiologie, Centre National de Référence des Maladies Auto-Immunes Systémiques Rares de l'Est et du Sud-Ouest -Service de rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Boyer
- Univ Rouen Normandie, Inserm, UMR1234, FOCIS Center of Excellence PAn'THER, F-76000, Rouen, France.
- CHU Rouen, Department of Immunology and Biotherapy, F-76000, Rouen, France.
| |
Collapse
|
4
|
Malekpour M, Khanmohammadi S, Meybodi MJE, Shekouh D, Rahmanian MR, Kardeh S, Azarpira N. COVID-19 as a trigger of Guillain-Barré syndrome: A review of the molecular mechanism. Immun Inflamm Dis 2023; 11:e875. [PMID: 37249286 DOI: 10.1002/iid3.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a pandemic with serious complications. After coronavirus disease 2019 (COVID-19), several post-acute COVID-19 syndromes (PACSs) and long-COVID sequels were reported. PACSs involve many organs, including the nervous, gustatory, and immune systems. One of the PACSs after SARS-CoV-2 infection and vaccination is Guillain-Barré syndrome (GBS). The incidence rate of GBS after SARS-CoV-2 infection or vaccination is low. However, the high prevalence of COVID-19 and severe complications of GBS, for example, autonomic dysfunction and respiratory failure, highlight the importance of post-COVID-19 GBS. It is while patients with simultaneous COVID-19 and GBS seem to have higher admission rates to the intensive care unit, and demyelination is more aggressive in post-COVID-19 GBS patients. SARS-CoV-2 can trigger GBS via several pathways like direct neurotropism and neurovirulence, microvascular dysfunction and oxidative stress, immune system disruption, molecular mimicry, and autoantibody production. Although there are few molecular studies on the molecular and cellular mechanisms of GBS occurrence after SARS-CoV-2 infection and vaccination, we aimed to discuss the possible pathomechanism of post-COVID-19 GBS by gathering the most recent molecular evidence.
Collapse
Affiliation(s)
- Mahdi Malekpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaghayegh Khanmohammadi
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Entezari Meybodi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dorsa Shekouh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Rahmanian
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Kardeh
- Central Clinical School, Monash University, Melbourne, Australia
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Zhang J, Zhang J, Lai R, Peng C, Guo Z, Wang C. Risk-associated single nucleotide polymorphisms of mitochondrial D-loop mediate imbalance of cytokines and redox in rheumatoid arthritis. Int J Rheum Dis 2023; 26:124-131. [PMID: 36253082 DOI: 10.1111/1756-185x.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND We have identified rheumatoid arthritis (RA) risk-associated single nucleotide polymorphisms (SNPs) in the mitochondrial displacement loop (D-loop) including the major alleles of nucleotides 195T/C, 16260C/T, and 16519C/T as well as the minor alleles of nucleotides 146T/C and 150C/T previously. OBJECTIVE We evaluated the potential relationships of these SNPs with status for oxidative stress and inflammation cytokines. METHODS The DNA was extracted from blood samples of RA patients, and the SNPs of DNA D-loop were verified by polymerase chain reaction amplification and sequence analysis. Serum levels of inflammatory cytokines including interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-6, IL-10, and tumor necrosis factor-α (TNF-α) were determined by cytometric bead array. Plasma reactive oxygen species (ROS) levels were measured by fluorescent probe technology. RESULTS The RA risk-related allele 16519C was significantly associated with high IFN-γ levels (100.576 ± 11.769 vs 64.268 ± 8.199, 95% confidence interval [CI] -66.317 to -6.299, P = 0.018). This allele also associated with ROS at borderline statistics level (619.295 ± 36.687 vs 526.979 ± 25.896, 95% CI -186.145 to -1.513, P = 0.054). The subsequent analysis also showed that the ROS levels were positively correlated with IFN-γ levels (R = 0.291, P = 0.002). Further analysis showed that RA patients with high C-reactive protein levels displayed a higher ROS level (P = 0.001). CONCLUSION Our results imply that the 16519C allele of the mtDNA D-loop might promote ROS and IFN-γ levels by altering the replication and transcription of mtDNA, thereby modifying RA development. REMARK The potential relationships of RA-associated SNPs in the mitochondrial D-loop with status for oxidative stress and inflammation were evaluated. The 16519C allele of the mtDNA D-loop might promote ROS and IFN-γ levels by altering the replication and transcription of mtDNA to modify RA development.
Collapse
Affiliation(s)
- Jingnan Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingjing Zhang
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ruixue Lai
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chenxing Peng
- Department of Immunology and Rheumatology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhanjun Guo
- Department of Immunology and Rheumatology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cuiju Wang
- Department of Gynecology Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Manda G, Milanesi E, Genc S, Niculite CM, Neagoe IV, Tastan B, Dragnea EM, Cuadrado A. Pros and cons of NRF2 activation as adjunctive therapy in rheumatoid arthritis. Free Radic Biol Med 2022; 190:179-201. [PMID: 35964840 DOI: 10.1016/j.freeradbiomed.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with an important inflammatory component accompanied by deregulated redox-dependent signaling pathways that are feeding back into inflammation. In this context, we bring into focus the transcription factor NRF2, a master redox regulator that exerts exquisite antioxidant and anti-inflammatory effects. The review does not intend to be exhaustive, but to point out arguments sustaining the rationale for applying an NRF2-directed co-treatment in RA as well as its potential limitations. The involvement of NRF2 in RA is emphasized through an analysis of publicly available transcriptomic data on NRF2 target genes and the findings from NRF2-knockout mice. The impact of NRF2 on concurrent pathologic mechanisms in RA is explained by its crosstalk with major redox-sensitive inflammatory and cell death-related pathways, in the context of the increased survival of pathologic cells in RA. The proposed adjunctive therapy targeted to NRF2 is further sustained by the existence of promising NRF2 activators that are in various stages of drug development. The interference of NRF2 with conventional anti-rheumatic therapies is discussed, including the cytoprotective effects of NRF2 for alleviating drug toxicity. From another perspective, the review presents how NRF2 activation would be decreasing the efficacy of synthetic anti-rheumatic drugs by increasing drug efflux. Future perspectives regarding pharmacologic NRF2 activation in RA are finally proposed.
Collapse
Affiliation(s)
- Gina Manda
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Elena Milanesi
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Sermin Genc
- Neurodegeneration and Neuroprotection Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey; Department of Neuroscience, Health Science Institute, Dokuz Eylul University, Izmir, Turkey
| | - Cristina Mariana Niculite
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania; Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ionela Victoria Neagoe
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Bora Tastan
- Neurodegeneration and Neuroprotection Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Elena Mihaela Dragnea
- Radiobiology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
7
|
Wang X, Fan D, Cao X, Ye Q, Wang Q, Zhang M, Xiao C. The Role of Reactive Oxygen Species in the Rheumatoid Arthritis-Associated Synovial Microenvironment. Antioxidants (Basel) 2022; 11:antiox11061153. [PMID: 35740050 PMCID: PMC9220354 DOI: 10.3390/antiox11061153] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that begins with a loss of tolerance to modified self-antigens and immune system abnormalities, eventually leading to synovitis and bone and cartilage degradation. Reactive oxygen species (ROS) are commonly used as destructive or modifying agents of cellular components or they act as signaling molecules in the immune system. During the development of RA, a hypoxic and inflammatory situation in the synovium maintains ROS generation, which can be sustained by increased DNA damage and malfunctioning mitochondria in a feedback loop. Oxidative stress caused by abundant ROS production has also been shown to be associated with synovitis in RA. The goal of this review is to examine the functions of ROS and related molecular mechanisms in diverse cells in the synovial microenvironment of RA. The strategies relying on regulating ROS to treat RA are also reviewed.
Collapse
Affiliation(s)
- Xing Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qinbin Ye
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Qiong Wang
- School of Clinical Medicine, China-Japan Friendship Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; (X.W.); (Q.Y.); (Q.W.)
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; (D.F.); (X.C.); (M.Z.)
- Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China
- Correspondence: or
| |
Collapse
|
8
|
Matuz-Mares D, Riveros-Rosas H, Vilchis-Landeros MM, Vázquez-Meza H. Glutathione Participation in the Prevention of Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:1220. [PMID: 34439468 PMCID: PMC8389000 DOI: 10.3390/antiox10081220] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 01/31/2023] Open
Abstract
Cardiovascular diseases (CVD) (such as occlusion of the coronary arteries, hypertensive heart diseases and strokes) are diseases that generate thousands of patients with a high mortality rate worldwide. Many of these cardiovascular pathologies, during their development, generate a state of oxidative stress that leads to a deterioration in the patient's conditions associated with the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Within these reactive species we find superoxide anion (O2•-), hydroxyl radical (•OH), nitric oxide (NO•), as well as other species of non-free radicals such as hydrogen peroxide (H2O2), hypochlorous acid (HClO) and peroxynitrite (ONOO-). A molecule that actively participates in counteracting the oxidizing effect of reactive species is reduced glutathione (GSH), a tripeptide that is present in all tissues and that its synthesis and/or regeneration is very important to be able to respond to the increase in oxidizing agents. In this review, we will address the role of glutathione, its synthesis in both the heart and the liver, and its importance in preventing or reducing deleterious ROS effects in cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (H.R.-R.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (D.M.-M.); (H.R.-R.)
| |
Collapse
|
9
|
ROS Cocktails as an Adjuvant for Personalized Antitumor Vaccination? Vaccines (Basel) 2021; 9:vaccines9050527. [PMID: 34069708 PMCID: PMC8161309 DOI: 10.3390/vaccines9050527] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. Today, the critical role of the immune system in tumor control is undisputed. Checkpoint antibody immunotherapy augments existing antitumor T cell activity with durable clinical responses in many tumor entities. Despite the presence of tumor-associated antigens and neoantigens, many patients have an insufficient repertoires of antitumor T cells. Autologous tumor vaccinations aim at alleviating this defect, but clinical success is modest. Loading tumor material into autologous dendritic cells followed by their laboratory expansion and therapeutic vaccination is promising, both conceptually and clinically. However, this process is laborious, time-consuming, costly, and hence less likely to solve the global cancer crisis. Therefore, it is proposed to re-focus on personalized anticancer vaccinations to enhance the immunogenicity of autologous therapeutic tumor vaccines. Recent work re-established the idea of using the alarming agents of the immune system, oxidative modifications, as an intrinsic adjuvant to broaden the antitumor T cell receptor repertoire in cancer patients. The key novelty is the use of gas plasma, a multi-reactive oxygen and nitrogen species-generating technology, for diversifying oxidative protein modifications in a, so far, unparalleled manner. This significant innovation has been successfully used in proof-of-concept studies and awaits broader recognition and implementation to explore its chances and limitations of providing affordable personalized anticancer vaccines in the future. Such multidisciplinary advance is timely, as the current COVID-19 crisis is inexorably reflecting the utmost importance of innovative and effective vaccinations in modern times.
Collapse
|
10
|
López-Pedrera C, Villalba JM, Patiño-Trives AM, Luque-Tévar M, Barbarroja N, Aguirre MÁ, Escudero-Contreras A, Pérez-Sánchez C. Therapeutic Potential and Immunomodulatory Role of Coenzyme Q 10 and Its Analogues in Systemic Autoimmune Diseases. Antioxidants (Basel) 2021; 10:antiox10040600. [PMID: 33924642 PMCID: PMC8069673 DOI: 10.3390/antiox10040600] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a mitochondrial electron carrier and a powerful lipophilic antioxidant located in membranes and plasma lipoproteins. CoQ10 is endogenously synthesized and obtained from the diet, which has raised interest in its therapeutic potential against pathologies related to mitochondrial dysfunction and enhanced oxidative stress. Novel formulations of solubilized CoQ10 and the stabilization of reduced CoQ10 (ubiquinol) have improved its bioavailability and efficacy. Synthetic analogues with increased solubility, such as idebenone, or accumulated selectively in mitochondria, such as MitoQ, have also demonstrated promising properties. CoQ10 has shown beneficial effects in autoimmune diseases. Leukocytes from antiphospholipid syndrome (APS) patients exhibit an oxidative perturbation closely related to the prothrombotic status. In vivo ubiquinol supplementation in APS modulated the overexpression of inflammatory and thrombotic risk-markers. Mitochondrial abnormalities also contribute to immune dysregulation and organ damage in systemic lupus erythematosus (SLE). Idebenone and MitoQ improved clinical and immunological features of lupus-like disease in mice. Clinical trials and experimental models have further demonstrated a therapeutic role for CoQ10 in Rheumatoid Arthritis, multiple sclerosis and type 1 diabetes. This review summarizes the effects of CoQ10 and its analogs in modulating processes involved in autoimmune disorders, highlighting the potential of these therapeutic approaches for patients with immune-mediated diseases.
Collapse
Affiliation(s)
- Chary López-Pedrera
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
- Correspondence: ; Tel.: +34-957-213795
| | - José Manuel Villalba
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, 14014 Córdoba, Spain; (J.M.V.); (C.P.-S.)
| | - Alejandra Mª Patiño-Trives
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Maria Luque-Tévar
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Nuria Barbarroja
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Mª Ángeles Aguirre
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Alejandro Escudero-Contreras
- Rheumatology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Córdoba (IMIBIC), University of Córdoba, 14004 Córdoba, Spain; (A.M.P.-T.); (M.L.-T.); (N.B.); (M.Á.A.); (A.E.-C.)
| | - Carlos Pérez-Sánchez
- Department of Cell Biology, Immunology and Physiology, Agrifood Campus of International Excellence, University of Córdoba, ceiA3, 14014 Córdoba, Spain; (J.M.V.); (C.P.-S.)
| |
Collapse
|
11
|
On the irrationality of rational design of an HIV vaccine in light of protein intrinsic disorder. Arch Virol 2021; 166:1283-1296. [PMID: 33606110 PMCID: PMC7892713 DOI: 10.1007/s00705-021-04984-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/19/2020] [Indexed: 12/18/2022]
Abstract
The lack of progress in finding an efficient vaccine for a human immunodeficiency virus (HIV) is daunting. In fact, this search has spanned nearly four decades without much success. There are several objective reasons for such a failure, which include the highly glycosylated nature of HIV-1, the presence of neotopes, and high mutation rates. This article argues that the presence of highly flexible and intrinsically disordered regions in both human anti-HIV-1 antibodies and the major HIV-1immunogen, its surface glycoprotein gp120, represent one of the major causes for the lack of success in utilization of structure-based reverse vaccinology.
Collapse
|
12
|
Liu H, Zhu Y, Gao Y, Qi D, Zhao L, Zhao L, Liu C, Tao T, Zhou C, Sun X, Guo F, Xiao J. NR1D1 modulates synovial inflammation and bone destruction in rheumatoid arthritis. Cell Death Dis 2020; 11:129. [PMID: 32071294 PMCID: PMC7028921 DOI: 10.1038/s41419-020-2314-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial hyperplasia, pannus formation, and cartilage and bone destruction. Nuclear receptor subfamily 1 group D member 1 (NR1D1) functions as a transcriptional repressor and plays a vital role in inflammatory reactions. However, whether NR1D1 is involved in synovial inflammation and joint destruction during the pathogenesis of RA is unknown. In this study, we found that NR1D1 expression was increased in synovial tissues from patients with RA and decreased in RA Fibroblast-like synoviocytes (FLSs) stimulated with IL-1β in vitro. We showed that NR1D1 activation decreased the expression of proinflammatory cytokines and matrix metalloproteinases (MMPs), while NR1D1 silencing exerted the opposite effect. Furthermore, NR1D1 activation reduced reactive oxygen species (ROS) generation and increased the production of nuclear transcription factor E2-related factor 2 (Nrf2)-associated enzymes. Mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways were blocked by the NR1D1 agonist SR9009 but activated by NR1D1 silencing. NR1D1 activation also inhibited M1 macrophage polarization and suppressed osteoclastogenesis and osteoclast-related genes expression. Treatment with NR1D1 agonist SR9009 in collagen-induced arthritis (CIA) mouse significantly suppressed the hyperplasia of synovial, infiltration of inflammatory cell and destruction of cartilage and bone. Our findings demonstrate an important role for NR1D1 in RA and suggest its therapeutic potential.
Collapse
Affiliation(s)
- Hui Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanli Zhu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yutong Gao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dahu Qi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liming Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Libo Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Changyu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tenghui Tao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuankun Zhou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuying Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Pan L, Yang S, Wang J, Xu M, Wang S, Yi H. Inducible nitric oxide synthase and systemic lupus erythematosus: a systematic review and meta-analysis. BMC Immunol 2020; 21:6. [PMID: 32066371 PMCID: PMC7027241 DOI: 10.1186/s12865-020-0335-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/29/2020] [Indexed: 01/01/2023] Open
Abstract
Background There is a growing body of evidences indicating iNOS has involved in the pathogenesis of SLE. However, the role of iNOS in SLE is inconsistency. This systematic review was designed to evaluate the association between iNOS and SLE. Results Six studies were included, reporting on a total of 277 patients with SLE. The meta-analysis showed that SLE patients had higher expression of iNOS at mRNA level than control subjects (SMD = 2.671, 95%CI = 0.446–4.897, z = 2.35, p = 0.019), and a similar trend was noted at the protein level (SMD = 3.602, 95%CI = 1.144–6.059, z = 2.87, p = 0.004) and positive rate of iNOS (OR = 9.515, 95%CI = 1.915–47.281, z = 2.76, p = 0.006) were significantly higher in SLE group compared with control group. No significant difference was observed on serum nitrite level between SLE patients and control subjects (SMD = 2.203, 95%CI = -0.386–4.793, z = 1.64, p = 0.095). The results did not modify from different sensitivity analysis, representing the robustness of this study. No significant publication bias was detected from Egger’s test. Conclusions There was a positive correlation between increasing iNOS and SLE. However, the source of iNOS is unknown. Besides NO pathway, other pathways also should be considered. More prospective random studies are needed in order to certify our results.
Collapse
Affiliation(s)
- Lu Pan
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Sirui Yang
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Jinghua Wang
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Meng Xu
- Department of Pediatric Rheumatology and Allergy, The First Hospital of Jilin University, Changchun, China
| | - Shaofeng Wang
- The Institute of Epigenetic Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
14
|
Ji H, Wu G, Li Y, Wang K, Xue X, You S, Wu S, Ren T, He B, Shi X. Self-Albumin Camouflage of Carrier Protein Prevents Nontarget Antibody Production for Enhanced LDL-C Immunotherapy. Adv Healthc Mater 2020; 9:e1901203. [PMID: 31814301 DOI: 10.1002/adhm.201901203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/07/2019] [Indexed: 11/05/2022]
Abstract
Elevated low-density lipoprotein cholesterol (LDL-C) increases the risk of atherosclerotic cardiovascular disease. Peptide-based PCSK9 vaccines have shown a promising prospect of reducing LDL-C. In peptide vaccine (pVax) design, the peptide antigens need to conjugate with carrier protein (CP). However, CP incorporation can induce undesirable anti-CP antibodies, which sterically mask peptide epitopes from being recognized by specific B cells and impair subsequent therapeutically antibody production. This epitopic suppression has posed a barrier in clinical translation of conjugate vaccines all along. A model CP (keyhole limpet hemocyanin, KLH) is herein camouflaged with serum albumin (SA) into hybrid nanocarriers (SA@N), with PCSK9 peptide being anchored onto the surface to form nanovaccine (SA@NVax). Such camouflage of KLH via high "self" SA coverage is able to inhibit KLH from extracellular immune recognition and prevent detectable anti-KLH antibody production. Furthermore, the nanovaccine around 70 nm stabilized by intermolecular disulfide network is ideal for internalization and biodegradation by antigen presenting cells as well as better retention in draining lymph nodes and spleen. As expected, the SA@NVax efficiently primes higher anti-PCSK9 IgG antibody titer than PCSK9 pVax.
Collapse
Affiliation(s)
- Haiying Ji
- Department of Anesthesiology and SICUXinhua HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200092 China
| | - Guangxi Wu
- Department of Anesthesiology and SICUXinhua HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200092 China
| | - Yongyong Li
- Institute for Biomedical Engineering and Nano ScienceShanghai East HospitalTongji University School of Medicine Shanghai 200092 China
| | - Kun Wang
- Institute for Biomedical Engineering and Nano ScienceShanghai East HospitalTongji University School of Medicine Shanghai 200092 China
| | - Xiaomei Xue
- Department of Anesthesiology and SICUXinhua HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200092 China
| | - Shasha You
- Department of Anesthesiology and SICUXinhua HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200092 China
| | - Shengming Wu
- Institute for Biomedical Engineering and Nano ScienceShanghai East HospitalTongji University School of Medicine Shanghai 200092 China
| | - Tianbin Ren
- School of Materials Science and EngineeringTongji University Shanghai 200092 China
| | - Bin He
- Department of Anesthesiology and SICUXinhua HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200092 China
| | - Xueyin Shi
- Department of Anesthesiology and SICUXinhua HospitalSchool of MedicineShanghai Jiao Tong University Shanghai 200092 China
| |
Collapse
|
15
|
Abstract
Objective The objective of this analysis was to explore associations between paraoxonase-1 levels, gene polymorphisms and systemic lupus erythematosus. Methods Meta-analyses of paraoxonase-1 levels and Q192R and L55M and polymorphisms in systemic lupus erythematosus were conducted. Results Nine articles were incorporated in our meta-analysis, which uncovered that the paraoxonase-1 level was decreased in systemic lupus erythematosus compared to control (standard mean difference = −1.626, 95% confidence interval = −2.829–−0.424, p = 0.008). Ethnicity-specific meta-analysis demonstrated a relation tendency between decreased paraoxonase-1 activity and lupus in Europeans (standard mean difference = −1.236, 95% confidence interval = −2.634–0.163, p = 0.083). Paraoxonase-1 activity was reduced in systemic lupus erythematosus in a single Arab and African population. Decreased paraoxonase-1 activity was found in a small sample of systemic lupus erythematosus patients (standard mean difference = −1.642, 95% confidence interval = −3.076–−0.247, p = 0.021). Ethnicity-specific analysis indicated a relationship between the paraoxonase-1 55 M allele in the Arab systemic lupus erythematosus population. However, a lack of association with systemic lupus erythematosus and the paraoxonase-1 192 R allele was observed. Conclusions Meta-analyses revealed reduced paraoxonase-1 activity in patients with systemic lupus erythematosus and found possible associations between systemic lupus erythematosus and paraoxonase-1 L55M polymorphism in a specific ethnic group.
Collapse
Affiliation(s)
- S -C Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Y H Lee
- Division of Rheumatology, Korea University Medical Center, Seoul, Korea
| |
Collapse
|
16
|
Barańska M, Rychlik‐Sych M, Skrętkowicz J, Dudarewicz M, Dziankowska‐Bartkowiak B, Owczarek J, Orszulak–Michalak D, Waszczykowska E. Analysis of genetic polymorphisms of glutathione
S
‐transferase (GSTP1, GSTM1, and GSTT1) in Polish patients with systemic sclerosis. Int J Rheum Dis 2019; 22:2119-2124. [DOI: 10.1111/1756-185x.13712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | - Michał Dudarewicz
- Department of Pharmacogenetics Medical University of Łódź Łódź Poland
| | | | - Jacek Owczarek
- Department of Pharmacogenetics Medical University of Łódź Łódź Poland
| | | | | |
Collapse
|
17
|
Teleanu RI, Chircov C, Grumezescu AM, Volceanov A, Teleanu DM. Antioxidant Therapies for Neuroprotection-A Review. J Clin Med 2019; 8:E1659. [PMID: 31614572 PMCID: PMC6832623 DOI: 10.3390/jcm8101659] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022] Open
Abstract
Although moderate concentrations of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are crucial for various physiological processes within the human body, their overproduction leads to oxidative stress, defined as the imbalance between the production and accumulation of ROS and the ability of the body to neutralize and eliminate them. In the brain, oxidative stress exhibits significant effects, due to its increased metabolical activity and limited cellular regeneration. Thus, oxidative stress is a major factor in the progressive loss of neurons structures and functions, leading to the development of severe neurodegenerative disorders. In this context, recent years have witnessed tremendous advancements in the field of antioxidant therapies, with a special emphasis for neuroprotection. The aim of this paper is to provide an overview of the oxidative stress and antioxidant defense mechanisms and to present the most recent studies on antioxidant therapies for neuroprotection.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- "Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Adrian Volceanov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
18
|
Khan MA, Ahmed RS, Chandra N, Arora VK, Ali A. In vivo, Extract from Withania somnifera Root Ameliorates Arthritis via Regulation of Key Immune Mediators of Inflammation in Experimental Model of Arthritis. Antiinflamm Antiallergy Agents Med Chem 2019; 18:55-70. [PMID: 30444203 PMCID: PMC6446523 DOI: 10.2174/1871523017666181116092934] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Rheumatoid Arthritis (RA) is a devastating disease characterized by continual addition of leukocytes and T cells within the articular cavity causing inflammation and cartilage destruction. Withania somnifera is one of the most precious medicinal herbs, reported to have antioxidant, anti-inflammatory, and immunomodulatory properties. OBJECTIVE The purpose of this study was to evaluate anti-inflammatory activity of aqueous extract of Withania somnifera roots (WSAq) in Collagen Induced Arthritic (CIA) rats. METHODS To achieve this, we assessed the level of inflammatory cytokines such as Tumor Necrosis Factor (TNF)-α, IL-1β, IL-6 and IL-10 in CIA rats. Further, transcription factor, oxidative stress parameters and CD+8 expressions were also analyzed in CIA rats. RESULTS Arthritic rats showed a greater increase in the levels of pro inflammatory cytokines such as TNF-α, IL-1β, IL-6, transcription factor NF-κB and a decrease in IL-10 concentration than controls rats. Oral administration of WSAq at a dose of 300mg/kg.wt. (WSAq300) appreciably attenuated the production of these pro inflammatory cytokines. This anti-inflammatory activity of WSAq300 might be partly mediated through an increase in the secretion of IL-10 and inhibition of NF-κB activity. Further, arthritic rats also show increased oxidative stress as compared to control rats. This increased oxidative stress in the arthritic rats appears to be the outcome of both an activated pro-oxidant and a poor antioxidant defense system. Treatment with WSAq300 strongly ameliorates all these ROS parameters significantly to near normal. Additional, metalloproteinase MMP-8 levels were also measured and found to be increased in CIA rats, which after treatment with WSAq300 came down to near normal. CONCLUSION From the above results, it can be concluded that the use of WSAq300 may be a valuable supplement which can improve human arthritis.
Collapse
Affiliation(s)
- Mahmood Ahmad Khan
- Address correspondence to this author at the Department of Biochemistry, University College of Medical Sciences and GTB Hospital, Dilshad Garden, Delhi, India; E-mail:
| | | | | | | | | |
Collapse
|
19
|
Hoffmann MH, Griffiths HR. The dual role of Reactive Oxygen Species in autoimmune and inflammatory diseases: evidence from preclinical models. Free Radic Biol Med 2018; 125:62-71. [PMID: 29550327 DOI: 10.1016/j.freeradbiomed.2018.03.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are created in cells during oxidative phosphorylation by the respiratory chain in the mitochondria or by the family of NADPH oxidase (NOX) complexes. The first discovered and most studied of these complexes, NOX2, mediates the oxidative burst in phagocytes. ROS generated by NOX2 are dreadful weapons: while being essential to kill ingested pathogens they can also cause degenerative changes on tissue if production and release are not balanced by sufficient detoxification. In the last fifteen years evidence has been accumulating that ROS are also integral signaling molecules and are important for regulating autoimmunity and immune-mediated inflammatory diseases. It seems that an accurate redox balance is necessary to sustain an immune state that both prevents the development of overt autoimmunity (the bright side of ROS) and minimizes collateral tissue damage (the dark side of ROS). Herein, we review studies from rodent models of arthritis, lupus, and neurodegenerative diseases that show that low NOX2-derived ROS production is linked to disease and elaborate on the underlying cellular and molecular mechanisms and the translation of these results to disease in humans.
Collapse
Affiliation(s)
- Markus H Hoffmann
- Department of Medicine 3, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsklinikum Erlangen, Germany.
| | | |
Collapse
|
20
|
Smallwood MJ, Nissim A, Knight AR, Whiteman M, Haigh R, Winyard PG. Oxidative stress in autoimmune rheumatic diseases. Free Radic Biol Med 2018; 125:3-14. [PMID: 29859343 DOI: 10.1016/j.freeradbiomed.2018.05.086] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/15/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
The management of patients with autoimmune rheumatic diseases such as rheumatoid arthritis (RA) remains a significant challenge. Often the rheumatologist is restricted to treating and relieving the symptoms and consequences and not the underlying cause of the disease. Oxidative stress occurs in many autoimmune diseases, along with the excess production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The sources of such reactive species include NADPH oxidases (NOXs), the mitochondrial electron transport chain, nitric oxide synthases, nitrite reductases, and the hydrogen sulfide producing enzymes cystathionine-β synthase and cystathionine-γ lyase. Superoxide undergoes a dismutation reaction to generate hydrogen peroxide which, in the presence of transition metal ions (e.g. ferrous ions), forms the hydroxyl radical. The enzyme myeloperoxidase, present in inflammatory cells, produces hypochlorous acid, and in healthy individuals ROS and RNS production by phagocytic cells is important in microbial killing. Both low molecular weight antioxidant molecules and antioxidant enzymes, such as superoxide dismutase, catalase, glutathione peroxidase, and peroxiredoxin remove ROS. However, when ROS production exceeds the antioxidant protection, oxidative stress occurs. Oxidative post-translational modifications of proteins then occur. Sometimes protein modifications may give rise to neoepitopes that are recognized by the immune system as 'non-self' and result in the formation of autoantibodies. The detection of autoantibodies against specific antigens, might improve both early diagnosis and monitoring of disease activity. Promising diagnostic autoantibodies include anti-carbamylated proteins and anti-oxidized type II collagen antibodies. Some of the most promising future strategies for redox-based therapeutic compounds are the activation of endogenous cellular antioxidant systems (e.g. Nrf2-dependent pathways), inhibition of disease-relevant sources of ROS/RNS (e.g. isoform-specific NOX inhibitors), or perhaps specifically scavenging disease-related ROS/RNS via site-specific antioxidants.
Collapse
Affiliation(s)
- Miranda J Smallwood
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
| | - Ahuva Nissim
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Annie R Knight
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
| | - Matthew Whiteman
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
| | - Richard Haigh
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK; Department of Rheumatology, Princess Elizabeth Orthopaedic Centre, Royal Devon and Exeter NHS Foundation Trust (Wonford), Exeter EX2 5DW, UK
| | - Paul G Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK.
| |
Collapse
|
21
|
Redox-Dependent Circuits Regulating B Lymphocyte Physiology. Immunology 2018. [DOI: 10.1016/b978-0-12-809819-6.00013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Niemeyer BA. The STIM-Orai Pathway: Regulation of STIM and Orai by Thiol Modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:99-116. [PMID: 28900911 DOI: 10.1007/978-3-319-57732-6_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cysteines are among the least abundant amino acids found in proteins. Due to their unique nucleophilic thiol group, they are able to undergo a broad range of chemical modifications besides their known role in disulfide formation, such as S-sulfenylation (-SOH), S-sulfinylation (-SO(2)H), S-sufonylation (-SO(3)H), S-glutathionylation (-SSG), and S-sulfhydration (-SSH), among others. These posttranslational modifications can be irreversible and act as transitional modifiers or as reversible on-off switches for the function of proteins. Disturbances of the redox homeostasis, for example, in situations of increased oxidative stress, can contribute to a range of diseases. Because Ca2+ signaling mediated by store-operated calcium entry (SOCE) is involved in a plethora of cellular responses, the cross-talk between reactive oxygen species (ROS) and Ca2+ is critical for homeostatic control. Identification of calcium regulatory protein targets of thiol redox modifications is needed to understand their role in biology and disease.
Collapse
Affiliation(s)
- Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
23
|
Kavian N, Mehlal S, Marut W, Servettaz A, Giessner C, Bourges C, Nicco C, Chéreau C, Lemaréchal H, Dutilh MF, Cerles O, Guilpain P, Vuiblet V, Chouzenoux S, Galland F, Quere I, Weill B, Naquet P, Batteux F. Imbalance of the Vanin-1 Pathway in Systemic Sclerosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:3326-3335. [DOI: 10.4049/jimmunol.1502511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/21/2016] [Indexed: 02/01/2023]
|
24
|
Arfat MY, Arif Z, Chaturvedi SK, Moinuddin, Alam K. Peroxynitrite-induced structural perturbations in human IgG: A physicochemical study. Arch Biochem Biophys 2016; 603:72-80. [DOI: 10.1016/j.abb.2016.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/20/2016] [Accepted: 05/16/2016] [Indexed: 02/08/2023]
|
25
|
López-Pedrera C, Barbarroja N, Jimenez-Gomez Y, Collantes-Estevez E, Aguirre MA, Cuadrado MJ. Oxidative stress in the pathogenesis of atherothrombosis associated with anti-phospholipid syndrome and systemic lupus erythematosus: new therapeutic approaches. Rheumatology (Oxford) 2016; 55:2096-2108. [PMID: 27018059 DOI: 10.1093/rheumatology/kew054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/18/2016] [Indexed: 12/25/2022] Open
Abstract
Atherothrombosis is a recurrent complication in APS and SLE patients. Oxidative stress has been suggested as a key player underlying this process. Autoantibodies have been pointed to as the main contributors to abnormality in the oxidative status observed in APS and SLE patients, promoting the increased production of oxidant species and the reduction of antioxidant molecules. This imbalance causes vascular damage through the activation of immune cells, including monocytes, lymphocytes and neutrophils, causing the expression of pro-inflammatory and procoagulant molecules, the formation of neutrophil extracellular traps and the adhesion of these cells to the endothelium; the induction of cellular apoptosis and impaired cell clearance, which in turn enhances autoantibody neogeneration; and cytotoxicity of endothelial cells. This review describes the mechanisms underlying the role of oxidative stress in the pathogenesis of atherothrombosis associated with APS and SLE, focused on the effect of autoantibodies, the different cell types involved and the diverse effectors, including cytokines, procoagulant proteins and their main modulators, such as oxidant/antioxidant species and intracellular pathways in each pathology. We further discuss new therapies aimed at restoring the oxidative stress balance and subsequently to tackle atherothrombosis in APS and SLE.
Collapse
Affiliation(s)
- Chary López-Pedrera
- Maimonides Institute for Research in Biomedicine of Cordoba, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Nuria Barbarroja
- Maimonides Institute for Research in Biomedicine of Cordoba, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Yolanda Jimenez-Gomez
- Maimonides Institute for Research in Biomedicine of Cordoba, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Eduardo Collantes-Estevez
- Maimonides Institute for Research in Biomedicine of Cordoba, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ma Angeles Aguirre
- Maimonides Institute for Research in Biomedicine of Cordoba, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ma Jose Cuadrado
- Rheumatology Service, St Thomas Hospital, Lupus Research Unit, London, UK
| |
Collapse
|
26
|
Khan MA, Subramaneyaan M, Arora VK, Banerjee BD, Ahmed RS. Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2016; 12:117-25. [PMID: 25803089 DOI: 10.1515/jcim-2014-0075] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/25/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Rheumatoid arthritis is an inflammatory autoimmune disorder. Withania somnifera Dunal (Solanaceae) (WS), is a common medicinal plant used in traditional systems of medicine for the treatment of arthritis, and is an ingredient of anti-arthritic polyherbal formulations such as Habb-e-Asgand® and Arthritin™. In the present study, we evaluated the antioxidant and anti-arthritic activity of aqueous extract of WS root (WSAq) in collagen-induced arthritic (CIA) rats. METHODS CIA rats were treated by using three doses of WSAq (100, 200, 300 mg/kg b. wt., orally) and methotrexate (MTX, 0.25 mg/kg b. wt. i.p.) as a standard reference drug for 20 days. The anti-arthritic effect was assayed by measuring the arthritic index, autoantibodies such as rheumatoid factor (RF), anti-cyclic citrullinated peptide antibody (a-CCP), anti-nuclear antibody (ANA), anti-collagen type II antibody (a-CII) and inflammatory marker like C-reactive protein (CRP). The oxidative stress parameters were also measured. RESULTS Treatment with WSAq resulted in a dose-dependent reduction in arthritic index, autoantibodies and CRP (p < 0.05) with maximum effect at dose of 300 mg/kg b. wt. and the results were comparable to that of MTX-treated rats. Similarly, oxidative stress in CIA rats was ameliorated by treatment with different doses of WSAq, as evidenced by a decrease in lipid peroxidation and glutathione-S-transferase activity and an increase in the glutathione content and ferric-reducing ability of plasma (p < 0.05). CONCLUSIONS The results showed that WSAq exhibited antioxidant and anti-arthritic activity and reduced inflammation in CIA rats and suggests the potential use of this plant in the treatment of arthritis.
Collapse
|
27
|
Wang G, Wakamiya M, Wang J, Ansari GAS, Firoze Khan M. iNOS null MRL+/+ mice show attenuation of trichloroethene-mediated autoimmunity: contribution of reactive nitrogen species and lipid-derived reactive aldehydes. Free Radic Biol Med 2015; 89:770-6. [PMID: 26472195 PMCID: PMC4684749 DOI: 10.1016/j.freeradbiomed.2015.10.402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/23/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022]
Abstract
Earlier studies from our laboratory in MRL+/+ mice suggest that free radicals, especially overproduction of reactive nitrogen species (RNS) and lipid-derived reactive aldehydes (LDRAs), are associated with trichloroethene (TCE)-mediated autoimmune response. The current study was undertaken to further assess the contribution of RNS and LDRAs in TCE-mediated autoimmunity by using iNOS-null MRL+/+ mice. iNOS-null MRL+/+ mice were obtained by backcrossing iNOS-null mice (B6.129P2-Nos2(tm1Lau)/J) to MRL +/+ mice. Female MRL+/+ and iNOS-null MRL+/+ mice were given TCE (10 mmol/kg, i.p., every 4(th) day) for 6 weeks; their respective controls received corn oil only. TCE exposure led to significantly increased iNOS mRNA in livers, iNOS protein in livers and sera, increased nitrotyrosine (NT) formation in both livers and sera, induction of MDA-/HNE-protein adducts in livers and their respective antibodies in sera along with significant increases in serum antinuclear antibodies (ANA) and anti-dsDNA in MRL+/+ mice. Even though in iNOS-null MRL+/+ mice, the iNOS and NT levels were negligible in both TCE-treated and untreated groups, TCE treatment still led to significant increases in MDA-/HNE-protein adducts and their respective antibodies along with increases in serum ANA and anti-dsDNA compared to controls. Most remarkably, the increases in serum ANA and anti-dsDNA induced by TCE in the iNOS-null MRL+/+ mice were significantly less pronounced compared to that in MRL+/+ mice. Our results provide further evidence that both RNS and LDRAs contribute to TCE-induced autoimmunity in MRL+/+ mice, and iNOS deficiency attenuates this autoimmune response.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Maki Wakamiya
- Transgenic Mouse Core Facility, Institute for Translational Sciences and Animal Resource Center
| | - Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - G A S Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - M Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555.
| |
Collapse
|
28
|
Cantagrel A, Degboé Y. New autoantibodies associated with rheumatoid arthritis recognize posttranslationally modified self-proteins. Joint Bone Spine 2015; 83:11-7. [PMID: 26639222 DOI: 10.1016/j.jbspin.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2015] [Indexed: 10/22/2022]
Abstract
Citrullination, carbamylation and oxidation are posttranslational modifications of proteins that produce neoepitopes. Rheumatoid arthritis (RA) is an autoimmune disease of which one distinctive feature is the development of B-cell-mediated immunity against these neoepitopes. Antibodies to citrullinated proteins (ACPAs) were identified nearly two decades ago and are now widely used in clinical practice. The identification of additional citrullinated proteins as potential autoantibody targets has suggested new pathophysiological hypotheses and prompted studies of potential associations with disease severity or specific disease patterns. Carbamylation is a nonenzymatic posttranslational modification that produces homocitrullines, against which newly identified autoantibodies different from ACPAs have been found in over 15% of patients with RA. Finally, the development of antibodies to oxidized type II collagen reflects immunization against collagen modified by oxidation in relation to intraarticular oxidative stress. These new autoantibodies are both sensitive and specific and may therefore serve as early disease markers and as useful tools for therapeutic monitoring.
Collapse
Affiliation(s)
- Alain Cantagrel
- Centre de rhumatologie, hôpital Purpan, bâtiment Pierre-Paul-Riquet, place du Docteur-Baylac, 31059 Toulouse, France.
| | - Yannick Degboé
- Centre de rhumatologie, hôpital Purpan, bâtiment Pierre-Paul-Riquet, place du Docteur-Baylac, 31059 Toulouse, France
| |
Collapse
|
29
|
Dunston CR, Herbert R, Griffiths HR. Improving T cell-induced response to subunit vaccines: opportunities for a proteomic systems approach. ACTA ACUST UNITED AC 2015; 67:290-9. [PMID: 25708693 DOI: 10.1111/jphp.12383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 11/23/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED Prophylactic vaccines are an effective strategy to prevent development of many infectious diseases. With new and re-emerging infections posing increasing risks to food stocks and the health of the population in general, there is a need to improve the rationale of vaccine development. One key challenge lies in development of an effective T cell-induced response to subunit vaccines at specific sites and in different populations. OBJECTIVES In this review, we consider how a proteomic systems-based approach can be used to identify putative novel vaccine targets, may be adopted to characterise subunit vaccines and adjuvants fully. KEY FINDINGS Despite the extensive potential for proteomics to aid our understanding of subunit vaccine nature, little work has been reported on identifying MHC 1-binding peptides for subunit vaccines generating T cell responses in the literature to date. SUMMARY In combination with predictive and structural biology approaches to mapping antigen presentation, proteomics offers a powerful and as yet un-tapped addition to the armoury of vaccine discovery to predict T-cell subset responses and improve vaccine design strategies.
Collapse
Affiliation(s)
- Christopher R Dunston
- Life & Health Sciences, Aston University, Birmingham, West Midlands, UK; Mologic, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP
| | | | | |
Collapse
|
30
|
Gutiérrez-Rebolledo GA, Galar-Martínez M, García-Rodríguez RV, Chamorro-Cevallos GA, Hernández-Reyes AG, Martínez-Galero E. Antioxidant Effect of Spirulina (Arthrospira) maxima on Chronic Inflammation Induced by Freund's Complete Adjuvant in Rats. J Med Food 2015; 18:865-71. [PMID: 25599112 DOI: 10.1089/jmf.2014.0117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity.
Collapse
Affiliation(s)
| | - Marcela Galar-Martínez
- 1 Department of Pharmacy, ENCB-IPN, Zacatenco Unity of Professional Studies, Del. GAM, Mexico City, Mexico
| | | | - Germán A Chamorro-Cevallos
- 1 Department of Pharmacy, ENCB-IPN, Zacatenco Unity of Professional Studies, Del. GAM, Mexico City, Mexico
| | | | - Elizdath Martínez-Galero
- 1 Department of Pharmacy, ENCB-IPN, Zacatenco Unity of Professional Studies, Del. GAM, Mexico City, Mexico
| |
Collapse
|
31
|
Byun JK, Moon SJ, Jhun JY, Kim EK, Park JS, Youn J, Min JK, Park SH, Kim HY, Cho ML. Rebamipide attenuates autoimmune arthritis severity in SKG mice via regulation of B cell and antibody production. Clin Exp Immunol 2014; 178:9-19. [PMID: 24749771 DOI: 10.1111/cei.12355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2014] [Indexed: 02/05/2023] Open
Abstract
Oxidative stress is involved in the pathophysiology of rheumatoid arthritis (RA). We investigated the therapeutic potential of rebamipide, a gastroprotective agent with a property of reactive oxygen species scavenger, on the development of inflammatory polyarthritis and the pathophysiological mechanisms by which rebamipide might confer anti-arthritic effects in SKG mice, an animal model of RA. Intraperitoneal (i.p.) injection of rebamipide attenuated the severity of clinical and histological arthritis. Rebampide treatment reduced the number of T helper type 1 (Th1), Th2, Th17, inducible T cell co-stimulator (ICOS)(+) follicular helper T (Tfh) transitional type (T2) and mature B cells in the spleen, but increased the number of regulatory T (Treg ), CD19(+) CD1d(high) CD5(high) , CD19(+) CD25(high) forkhead box protein 3 (FoxP3)(+) regulatory B (Breg ) cells, memory B cells, and transitional type 1 (T1) B cells. In addition, flow cytometric analysis revealed significantly decreased populations of FAS(+) GL-7(+) germinal centre B cells and B220(-) CD138(+) plasma cells in the spleens of rebamipide-treated SKG mice compared to controls. Rebamipide decreased germinal centre B cells and reciprocally induced Breg cells in a dose-dependent manner in vitro. Rebamipide-induced Breg cells had more suppressive capacity in relation to T cell proliferation and also inhibited Th17 differentiation from murine CD4(+) T cells. Together, these data show that i.p. administration of rebamipide suppresses arthritis severity by inducing Breg and Treg cells and suppressing Tfh and Th17 cells in a murine model of RA.
Collapse
Affiliation(s)
- J-K Byun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, Korea; Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kirabo A, Fontana V, de Faria APC, Loperena R, Galindo CL, Wu J, Bikineyeva AT, Dikalov S, Xiao L, Chen W, Saleh MA, Trott DW, Itani HA, Vinh A, Amarnath V, Amarnath K, Guzik TJ, Bernstein KE, Shen XZ, Shyr Y, Chen SC, Mernaugh RL, Laffer CL, Elijovich F, Davies SS, Moreno H, Madhur MS, Roberts J, Harrison DG. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest 2014; 124:4642-56. [PMID: 25244096 DOI: 10.1172/jci74084] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 08/04/2014] [Indexed: 12/21/2022] Open
Abstract
Oxidative damage and inflammation are both implicated in the genesis of hypertension; however, the mechanisms by which these stimuli promote hypertension are not fully understood. Here, we have described a pathway in which hypertensive stimuli promote dendritic cell (DC) activation of T cells, ultimately leading to hypertension. Using multiple murine models of hypertension, we determined that proteins oxidatively modified by highly reactive γ-ketoaldehydes (isoketals) are formed in hypertension and accumulate in DCs. Isoketal accumulation was associated with DC production of IL-6, IL-1β, and IL-23 and an increase in costimulatory proteins CD80 and CD86. These activated DCs promoted T cell, particularly CD8+ T cell, proliferation; production of IFN-γ and IL-17A; and hypertension. Moreover, isoketal scavengers prevented these hypertension-associated events. Plasma F2-isoprostanes, which are formed in concert with isoketals, were found to be elevated in humans with treated hypertension and were markedly elevated in patients with resistant hypertension. Isoketal-modified proteins were also markedly elevated in circulating monocytes and DCs from humans with hypertension. Our data reveal that hypertension activates DCs, in large part by promoting the formation of isoketals, and suggest that reducing isoketals has potential as a treatment strategy for this disease.
Collapse
|
33
|
Rogowska-Wrzesinska A, Wojdyla K, Nedić O, Baron CP, Griffiths HR. Analysis of protein carbonylation--pitfalls and promise in commonly used methods. Free Radic Res 2014; 48:1145-62. [PMID: 25072785 DOI: 10.3109/10715762.2014.944868] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidation of proteins has received a lot of attention in the last decades due to the fact that they have been shown to accumulate and to be implicated in the progression and the pathophysiology of several diseases such as Alzheimer, coronary heart diseases, etc. This has also resulted in the fact that research scientists are becoming more eager to be able to measure accurately the level of oxidized protein in biological materials, and to determine the precise site of the oxidative attack on the protein, in order to get insights into the molecular mechanisms involved in the progression of diseases. Several methods for measuring protein carbonylation have been implemented in different laboratories around the world. However, to date no methods prevail as the most accurate, reliable, and robust. The present paper aims at giving an overview of the common methods used to determine protein carbonylation in biological material as well as to highlight the limitations and the potential. The ultimate goal is to give quick tips for a rapid decision making when a method has to be selected and taking into consideration the advantage and drawback of the methods.
Collapse
Affiliation(s)
- A Rogowska-Wrzesinska
- Institute of Biochemistry and Molecular Biology, University of Southern Denmark , Odense , Denmark
| | | | | | | | | |
Collapse
|
34
|
Ortona E, Maselli A, Delunardo F, Colasanti T, Giovannetti A, Pierdominici M. Relationship between redox status and cell fate in immunity and autoimmunity. Antioxid Redox Signal 2014; 21:103-22. [PMID: 24359147 DOI: 10.1089/ars.2013.5752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE The signaling function of redox molecules is essential for an efficient and proper execution of a large number of cellular processes, contributing to the maintenance of cell homeostasis. Excessive oxidative stress is considered as playing an important role in the pathogenesis of autoimmune diseases by enhancing inflammation and breaking down the immunological tolerance through protein structural modifications that induce the appearance of neo/cryptic epitopes. RECENT ADVANCES There is a complex reciprocal relationship between oxidative stress and both apoptosis and autophagy, which is essential to determine cell fate. This is especially relevant in the context of autoimmune disorders in which apoptosis and autophagy play a crucial pathogenic role. CRITICAL ISSUES In this review, we describe the latest developments with regard to the involvement of redox molecules in the initiation and progression of autoimmune disorders, focusing on their role in cell fate regulation. We also discuss new therapeutic approaches that target oxidative stress in the treatment of these disorders. The administration of antioxidants is scarcely studied in autoimmunity, and future analyses are needed to assess its beneficial effects in preventing or ameliorating these diseases. FUTURE DIRECTIONS Deciphering the intricate relationships between oxidative stress and both apoptosis and autophagy in the context of autoimmunity could be critical in elucidating key pathogenic mechanisms and could lead to novel interventions for the clinical management of autoimmune diseases.
Collapse
Affiliation(s)
- Elena Ortona
- 1 Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Glesse N, Rohr P, Monticielo OA, Rech TF, Brenol JCT, Xavier RM, Kvitko K, Chies JAB. Genetic polymorphisms of glutathione S-transferases and cytochrome P450 enzymes as susceptibility factors to systemic lupus erythematosus in southern Brazilian patients. Mol Biol Rep 2014; 41:6167-79. [DOI: 10.1007/s11033-014-3496-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/17/2014] [Indexed: 01/05/2023]
|
36
|
Wang G, Wang J, Luo X, Ansari GAS, Khan MF. Nitrosative stress and nitrated proteins in trichloroethene-mediated autoimmunity. PLoS One 2014; 9:e98660. [PMID: 24892995 PMCID: PMC4043737 DOI: 10.1371/journal.pone.0098660] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/04/2014] [Indexed: 01/05/2023] Open
Abstract
Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, has been linked to a variety of autoimmune diseases (ADs) including SLE, scleroderma and hepatitis. Mechanisms involved in the pathogenesis of ADs are largely unknown. Earlier studies from our laboratory in MRL+/+ mice suggested the contribution of oxidative/nitrosative stress in TCE-induced autoimmunity, and N-acetylcysteine (NAC) supplementation provided protection by attenuating oxidative stress. This study was undertaken to further evaluate the contribution of nitrosative stress in TCE-mediated autoimmunity and to identify proteins susceptible to nitrosative stress. Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, ∼250 mg/kg/day via drinking water). TCE exposure led to significant increases in serum anti-nuclear and anti-histone antibodies together with significant induction of iNOS and increased formation of nitrotyrosine (NT) in sera and livers. Proteomic analysis identified 14 additional nitrated proteins in the livers of TCE-treated mice. Furthermore, TCE exposure led to decreased GSH levels and increased activation of NF-κB. Remarkably, NAC supplementation not only ameliorated TCE-induced nitrosative stress as evident from decreased iNOS, NT, nitrated proteins, NF-κB p65 activation and increased GSH levels, but also the markers of autoimmunity, as evident from decreased levels of autoantibodies in the sera. These findings provide support to the role of nitrosative stress in TCE-mediated autoimmune response and identify specific nitrated proteins which could have autoimmune potential. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for designing therapeutic strategies.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jianling Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xuemei Luo
- Biomolecular Resource Facility, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - G. A. Shakeel Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Ishibashi T. Molecular hydrogen: new antioxidant and anti-inflammatory therapy for rheumatoid arthritis and related diseases. Curr Pharm Des 2014; 19:6375-81. [PMID: 23859555 PMCID: PMC3788323 DOI: 10.2174/13816128113199990507] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/09/2013] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease in which the progressive destruction of joint causes morbidity. It is also associated with an increased risk of atherosclerosis, which can result in cardiovascular disease and mortality. The therapeutic goal is to control the systemic inflammation to obtain not only the remission of symptoms, but also improve general state of health. Although recent biologic immunosuppressive therapies targeting pro-inflammatory cytokines have spawned a paradigm shift regarding the prognosis of RA, these therapies possess inherent side effects. Also, early diagnosis of the disease remains confounded by uncertainty. While the mechanisms responsible for the onset of RA remain unclear, reactive oxygen species (ROS) play a significant role in the pathogenesis of RA. ROS play a central role both upstream and downstream of NF-κB and TNFα pathways, which are located at the center of the inflammatory response. Among the ROS, the hydroxyl radical is the most harmful, and molecular hydrogen (H2) is a selective scavenger for this species. Recently, it has been shown that H2 is useful when administered along with the conventional therapy in RA as it acts to reduce oxidative stress in the patients. Especially in the early stage, H2 showed significant therapeutic potential, which also seemed to assist diagnosis and treatment decisions of RA. The possible expectations regarding the potential benefits of H2 by reducing the oxidative stress, resulting from inflammatory factors, are raised and discussed here. They include prevention of RA and related atherosclerosis, as well as therapeutic validity for RA
Collapse
Affiliation(s)
- Toru Ishibashi
- Haradoi Hospital, Department of Rheumatology and Orthopaedic Surgery, 6-40-8 Aoba, Higashi-ku, Fukuoka 813-8588, Japan.
| |
Collapse
|
38
|
Song W, Yuan J, Zhang Z, Li L, Hu L. Altered glutamate cysteine ligase activity in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Exp Ther Med 2014; 8:195-200. [PMID: 24944621 PMCID: PMC4061188 DOI: 10.3892/etm.2014.1689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/01/2014] [Indexed: 12/20/2022] Open
Abstract
Reductions in glutathione (GSH) levels have been shown to be associated with aging and the pathogenesis of a variety of diseases, including systemic lupus erythematosus (SLE). Glutamate cysteine ligase (GCL) catalyzes the first and rate-limiting step of GSH synthesis. In order to appraise the correlation between oxidative stress and the severity and activity of SLE, GSH, oxidized GSH (GSSG) and thioredoxin (TRX) concentrations and the enzymatic activity levels of GCL in peripheral blood mononuclear cells (PBMCs) from patients with SLE and healthy controls were studied. In patients with SLE, the levels of GCL activity and GSH decreased, while TRX and GSSG levels increased when compared with those in the healthy controls. GSH concentrations and GCL activity levels negatively correlated with the SLE disease activity index and erythrocyte sedimentation rate. Furthermore, patients with SLE and nephritis had lower levels of GSH and GCL activity and higher levels of TRX and GSSG compared with those in SLE patients without nephritis. Therefore, the results of the present study indicate that insufficient levels of GSH and GCL activity in PBMCs may contribute to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Weiqing Song
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China ; Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Jiangshui Yuan
- Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Zongliang Zhang
- Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Li Li
- Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Lihua Hu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
39
|
Autoantibodies to posttranslational modifications in rheumatoid arthritis. Mediators Inflamm 2014; 2014:492873. [PMID: 24782594 PMCID: PMC3981057 DOI: 10.1155/2014/492873] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/10/2014] [Indexed: 12/11/2022] Open
Abstract
Autoantibodies have been associated with human pathologies for a long time, particularly with autoimmune diseases (AIDs). Rheumatoid factor (RF) is known since the late 1930s to be associated with rheumatoid arthritis (RA). The discovery of anticitrullinated protein antibodies in the last century has changed this and other posttranslational modifications (PTM) relevant to RA have since been described. Such PTM introduce neoepitopes in proteins that can generate novel autoantibody specificities. The recent recognition of these novel specificities in RA provides a unique opportunity to understand human B-cell development in vivo. In this paper, we will review the three of the main classes of PTMs already associated with RA: citrullination, carbamylation, and oxidation. With the advancement of research methodologies it should be expected that other autoantibodies against PTM proteins could be discovered in patients with autoimmune diseases. Many of such autoantibodies may provide significant biomarker potential.
Collapse
|
40
|
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by increased platelet destruction or decreased platelet production. The mechanism of the disease has been extensively studied so that we now have a much improved understanding of the pathophysiology; however, the trigger of the autoimmunity remains unclear. More recently, oxidative stress was identified to be involved in the pathogenesis of ITP and provides a new hypothesis for the initiation of autoimmunity in patients with ITP. In this review, oxidative stress and its impact on autoimmunity, particularly ITP, will be covered.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
41
|
Abstract
Autoimmune disease manifests in numerous forms, but as a disease group is relatively common in the population. It is complex in aetiology, with genetic and environmental determinants. The involvement of gene variants in autoimmune disease is well established, and evidence for significant involvement of the environment in various disease forms is growing. These factors may act independently, or they may interact, with the effect of one factor influenced by the presence of another. Identifying combinations of genetic and environmental factors that interact in autoimmune disease has the capacity to more fully explain disease risk profile, and to uncover underlying molecular mechanisms contributing to disease pathogenesis. In turn, such knowledge is likely to contribute significantly to the development of personalised medicine, and targeted preventative approaches. In this review, we consider the current evidence for gene-environment (G-E) interaction in autoimmune disease. Large-scale G-E interaction research efforts, while well-justified, face significant practical and methodological challenges. However, it is clear from the evidence that has already been generated that knowledge on how genes and environment interact at a biological level will be crucial in fully understanding the processes that manifest as autoimmunity.
Collapse
|
42
|
Washio M, Fujii T, Kuwana M, Kawaguchi Y, Mimori A, Horiuchi T, Tada Y, Takahashi H, Mimori T. Lifestyle and other related factors for the development of mixed connective tissue disease among Japanese females in comparison with systemic lupus erythematosus. Mod Rheumatol 2014; 24:788-92. [DOI: 10.3109/14397595.2013.863442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Griffiths HR, Dias IHK, Willetts RS, Devitt A. Redox regulation of protein damage in plasma. Redox Biol 2014; 2:430-5. [PMID: 24624332 PMCID: PMC3949090 DOI: 10.1016/j.redox.2014.01.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/11/2014] [Indexed: 01/12/2023] Open
Abstract
The presence and concentrations of modified proteins circulating in plasma depend on rates of protein synthesis, modification and clearance. In early studies, the proteins most frequently analysed for damage were those which were more abundant in plasma (e.g. albumin and immunoglobulins) which exist at up to 10 orders of magnitude higher concentrations than other plasma proteins e.g. cytokines. However, advances in analytical techniques using mass spectrometry and immuno-affinity purification methods, have facilitated analysis of less abundant, modified proteins and the nature of modifications at specific sites is now being characterised. The damaging reactive species that cause protein modifications in plasma principally arise from reactive oxygen species (ROS) produced by NADPH oxidases (NOX), nitric oxide synthases (NOS) and oxygenase activities; reactive nitrogen species (RNS) from myeloperoxidase (MPO) and NOS activities; and hypochlorous acid from MPO. Secondary damage to proteins may be caused by oxidized lipids and glucose autooxidation. In this review, we focus on redox regulatory control of those enzymes and processes which control protein maturation during synthesis, produce reactive species, repair and remove damaged plasma proteins. We have highlighted the potential for alterations in the extracellular redox compartment to regulate intracellular redox state and, conversely, for intracellular oxidative stress to alter the cellular secretome and composition of extracellular vesicles. Through secreted, redox-active regulatory molecules, changes in redox state may be transmitted to distant sites. Loss of redox homeostasis may affect the secretome content and protein concentration, transmitting redox signals to distant cells through extracellular vesicles. Damaged glycoforms may arise from oxidants or aberrant biosynthetic regulation. Reactive species generation by NOX and NOS is controlled through redox regulation. Cell surface and plasma thiol-oxidised proteins can be reduced and their activity modulated by thioredoxin, protein disulphide isomerase and reductases.
Collapse
Key Words
- Ageing
- BH4, tetrahydrobiopterin
- COX, cyclo-oxygenase
- CRP, C-reactive protein
- ER, endoplasmic reticulum
- ERO1, endoplasmic reticulum oxidoreductin 1
- EV, extracellular vesicles
- FX1, factor XI
- GPI, glycoprotein 1
- GPX, glutathione peroxidase
- GRX, glutaredoxin
- GSH, glutathione
- Glycosylation
- MIRNA, microRNA
- MPO, myeloperoxidase
- NO, nitric oxide
- NOS, nitric oxide synthase
- NOX, NADPH oxidase
- Nitration
- O2•−, superoxide anion radical
- ONOO-, peroxynitrite
- Oxidation
- PDI, protein disulphide isomerase
- Peroxiredoxin
- Prx, peroxiredoxin
- RNS, reactive nitrogen species
- ROS, reactive nitrogen species
- Thioredoxin
- Trx, thioredoxin
- VWF, von Willebrand factor
- XO, xanthine oxidase
Collapse
Affiliation(s)
- Helen R Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Rachel S Willetts
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Andrew Devitt
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
44
|
Takahashi H, Washio M, Kiyohara C, Tada Y, Asami T, Ide S, Atsumi T, Kobashi G, Yamamoto M, Horiuchi T. Psychological stress in a Japanese population with systemic lupus erythematosus: Finding from KYSS study. Mod Rheumatol 2013; 24:448-52. [DOI: 10.3109/14397595.2013.843745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Oates JC, Mashmoushi AK, Shaftman SR, Gilkeson GS. NADPH oxidase and nitric oxide synthase-dependent superoxide production is increased in proliferative lupus nephritis. Lupus 2013; 22:1361-70. [PMID: 24106214 PMCID: PMC3839955 DOI: 10.1177/0961203313507988] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Lupus nephritis (LN) is an immune complex-mediated glomerulonephritis. Proliferative LN (PLN, ISN/RPS classes III and IV)) often leads to renal injury or failure despite traditional induction and maintenance therapy. Successful targeted therapeutic development requires insight into mediators of inflammation in PLN. Superoxide (SO) and its metabolites are mediators of the innate immune response through their ability to mediate reduction-oxidation signaling. Endothelial nitric oxide synthase (eNOS) modulates inflammatory responses in endothelial cells. We hypothesized that markers of SO production would be increased in active PLN and that SO production would be dependent on the activity of select enzymes in the renal cortex. METHODS Patients with systemic lupus erythematosus were enrolled at the time of renal biopsy for active LN of all classes. Serum collected at baseline was analyzed by HPLC with electrochemical detection for markers of SO production (durable modifications of serum protein Tyr ultimately requiring SO as a substrate). Renal cortex from MRL/MpJ-FAS(lpr) (MRL/lpr) mice with and without functional eNOS was analyzed during active disease for superoxide (SO) production with and without inhibitors of SO-producing enzymes. RESULTS Serum protein modifications indicative of total SO production were significantly higher in patients with PLN. These markers were increased in association with more active, inflammatory PLN. Mice lacking functional eNOS had 80% higher levels of renal cortical SO during active disease, and inhibitors of nitric oxide synthase and NADPH oxidase reduced these levels by 60% and 77%, respectively. CONCLUSION These studies demonstrate that SO production is unique to active PLN in a NOS and NADPH oxidase-dependent fashion. These findings suggest the emulating or augmenting eNOS activity or inhibiting NADPH oxidase SO production may be targets of therapy in patients with PLN. The markers of SO production used in this study could rationally be used to select SO-modulating therapies and serve as pharmacodynamic indicators for dose titration.
Collapse
Affiliation(s)
- Jim C. Oates
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC and Medical Service, Ralph H. Johnson VA Medical Center, Charleston, SC
| | - Ahmad K. Mashmoushi
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC
| | - Stephanie R. Shaftman
- Department of Biostatistics, Bioinformatics & Epidemiology, Medical University of South Carolina, Charleston, SC
| | - Gary S. Gilkeson
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC and Medical Service, Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
46
|
Maes M, Kubera M, Mihaylova I, Geffard M, Galecki P, Leunis JC, Berk M. Increased autoimmune responses against auto-epitopes modified by oxidative and nitrosative damage in depression: implications for the pathways to chronic depression and neuroprogression. J Affect Disord 2013; 149:23-9. [PMID: 22898471 DOI: 10.1016/j.jad.2012.06.039] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 01/08/2023]
Abstract
OBJECTIVE There is evidence that major depression is characterized by oxidative and nitrosative stress (O&NS). The aim of this study is to examine IgM-mediated autoimmune responses against a variety of modified neo-epitopes formed by O&NS damage to self-epitopes in chronic depression. METHODS Serum IgM antibodies directed against conjugated oleic and azelaic acid, malondialdehyde (MDA), phosphatidyl inositol (Pi), and conjugated nitric-oxide (NO) adducts, i.e., NO-tryptophan, NO-tyrosine, NO-arginine, and NO-cysteinyl, were determined in 33 healthy controls and 74 depressed patients subdivided into 28 patients with chronic (duration >2 year) and 46 without chronic depression. RESULTS Serum IgM levels against all neoepitopes were significantly higher in depressed patients than in healthy controls. Moreover, the IgM levels were significantly higher, except Pi, in chronically depressed patients than in non-chronically depressed patients. CONCLUSIONS Depression is characterized by IgM-related autoimmune responses directed against neo-epitopes that are normally hidden from the immune system but that became immunogenic secondary to damage by O&NS. The results show that the generation of neoantigenic determinants that lead to (auto)immune responses is strongly associated with chronic depression. DISCUSSION The damage caused by O&NS to auto-epitopes and the consequent formation of O&NS modified neoantigenic determinants may increase the risk to develop depression and in particular chronic depression through transition to autoimmune reactions. This has implications for understanding the immuno-inflammatory and oxidative-autoimmune pathways that lead to chronic depression and neuroprogression in that illness.
Collapse
|
47
|
Ramos PS, Oates JC, Kamen DL, Williams AH, Gaffney PM, Kelly JA, Kaufman KM, Kimberly RP, Niewold TB, Jacob CO, Tsao BP, Alarcón GS, Brown EE, Edberg JC, Petri MA, Ramsey-Goldman R, Reveille JD, Vilá LM, James JA, Guthridge JM, Merrill JT, Boackle SA, Freedman BI, Scofield RH, Stevens AM, Vyse TJ, Criswell LA, Moser KL, Alarcón-Riquelme ME, Langefeld CD, Harley JB, Gilkeson GS. Variable association of reactive intermediate genes with systemic lupus erythematosus in populations with different African ancestry. J Rheumatol 2013; 40:842-9. [PMID: 23637325 PMCID: PMC3735344 DOI: 10.3899/jrheum.120989] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Little is known about the genetic etiology of systemic lupus erythematosus (SLE) in individuals of African ancestry, despite its higher prevalence and greater disease severity. Overproduction of nitric oxide (NO) and reactive oxygen species are implicated in the pathogenesis and severity of SLE, making NO synthases and other reactive intermediate-related genes biological candidates for disease susceptibility. We analyzed variation in reactive intermediate genes for association with SLE in 2 populations with African ancestry. METHODS A total of 244 single-nucleotide polymorphisms (SNP) from 53 regions were analyzed in non-Gullah African Americans (AA; 1432 cases and 1687 controls) and the genetically more homogeneous Gullah of the Sea Islands of South Carolina (133 cases and 112 controls). Single-marker, haplotype, and 2-locus interaction tests were computed for these populations. RESULTS The glutathione reductase gene GSR (rs2253409; p = 0.0014, OR 1.26, 95% CI 1.09-1.44) was the most significant single SNP association in AA. In the Gullah, the NADH dehydrogenase NDUFS4 (rs381575; p = 0.0065, OR 2.10, 95% CI 1.23-3.59) and NO synthase gene NOS1 (rs561712; p = 0.0072, OR 0.62, 95% CI 0.44-0.88) were most strongly associated with SLE. When both populations were analyzed together, GSR remained the most significant effect (rs2253409; p = 0.00072, OR 1.26, 95% CI 1.10-1.44). Haplotype and 2-locus interaction analyses also uncovered different loci in each population. CONCLUSION These results suggest distinct patterns of association with SLE in African-derived populations; specific loci may be more strongly associated within select population groups.
Collapse
Affiliation(s)
- Paula S Ramos
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Eggleton P, Nissim A, Ryan BJ, Whiteman M, Winyard PG. Detection and isolation of human serum autoantibodies that recognize oxidatively modified autoantigens. Free Radic Biol Med 2013; 57:79-91. [PMID: 23246567 DOI: 10.1016/j.freeradbiomed.2012.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 10/05/2012] [Accepted: 11/10/2012] [Indexed: 12/13/2022]
Abstract
The breakdown of human immune tolerance to self-proteins occurs by a number of mechanisms, including posttranslational modifications of host molecules by reactive oxygen, nitrogen, or chlorine species. This has led to great interest in detecting serum autoantibodies raised against small quantities of oxidatively modified host proteins in patients with autoimmune inflammatory diseases, such as rheumatoid arthritis. Here, we provide protocols for the preparation and chemical characterization of oxidatively modified protein antigens and procedures for their use in immunoblotting and ELISAs that detect autoantibodies against these antigens in clinical samples. These gel electrophoresis- and plate reader-based immunochemical methods sometimes suffer from low analytical specificity and/or sensitivity when used for serum autoantibody detection. This is often because a single solid-phase protein (antigen) is exposed to a complex mixture of serum proteins that undergo nonspecific binding. Therefore more sensitive/specific techniques are required to detect autoantibodies specifically directed against oxidatively modified proteins. To address this, we describe novel affinity chromatography protocols by which purified autoantibodies are isolated from small volumes (<1 ml) of serum. We have also developed strategies to conjugate submilligram amounts of isolated immunoglobulins and other proteins to fluorophores. This set of methods will help facilitate the discovery of novel diagnostic autoantibodies in patients.
Collapse
Affiliation(s)
- Paul Eggleton
- University of Exeter Medical School, St Luke's Campus, Exeter, Devon EX1 2LU, UK
| | | | | | | | | |
Collapse
|
49
|
Elsalakawy WA, Ali MAM, Hegazy MGA, Farweez BAT. Value of vanin-1 assessment in adult patients with primary immune thrombocytopenia. Platelets 2013; 25:86-92. [PMID: 23534352 DOI: 10.3109/09537104.2013.782484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The diagnosis of primary immune thrombocytopenia (ITP) is clinical and cannot be established by any specific laboratory assay. Perhaps the best diagnostic study is assessment of the patient's response to ITP therapy. Oxidative stress-related pathways were among the most significant chronic ITP-associated pathways. Overexpression of VNN1 gene, an oxidative stress sensor in epithelial cells, was most strongly associated with progression to chronic ITP. To address this issue, we tested the hypothesis that blood vanin-1 protein level could distinguish between chronic responders and non-responders ITP patients as well as between ITP patients and healthy controls. Vanin-1 protein levels were determined in peripheral blood leukocytes of 80 adult subjects (16 newly diagnosed ITP patients, 24 chronic responders ITP patients, 24 chronic non-responders ITP patients and 16 healthy controls) by enzyme-linked immunesorbent assay (ELISA). Blood vanin-1 protein levels were lower in controls (median = 18.39 ng) than in ITP patients (median = 58.78 ng) with a highly significant p value (p < 0.001). Vanin-1 levels were highly significantly elevated in newly diagnosed ITP patients (median = 188.62 ng) in comparison to chronic responders (median= 26.90 ng) and chronic non-responders (median = 73.87 ng). Vanin-1 level at a cut-off value of >20.73 ng was found to be 100% sensitive and 93.7% specific in discriminating between newly diagnosed ITP patients and healthy controls. Vanin-1 level was found to be 100% sensitive and 100% specific in differentiating between responders and non-responders with a cut-off value of ≤ 34.5 ng. Our results suggest that vanin-1 can distinguish between chronic responders and non-responders ITP patients as well as between newly diagnosed ITP patients and healthy controls. These findings demonstrate that vanin-1 may contribute to the pathogenesis of ITP, indicating that vanin-1 is an important target for further investigation.
Collapse
Affiliation(s)
- Walaa Ali Elsalakawy
- Clinical Hematology and Bone Marrow Transplant Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University , Cairo , Egypt
| | | | | | | |
Collapse
|
50
|
Association between the polymorphisms of glutathione S-transferase genes and rheumatoid arthritis: a meta-analysis. Gene 2013; 521:155-9. [PMID: 23537991 DOI: 10.1016/j.gene.2013.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/07/2013] [Indexed: 01/16/2023]
Abstract
The glutathione S-transferases (GSTs) are a family of phase II xenobiotic metabolizing enzymes known to be involved in the detoxification and elimination of reactive oxygen species (ROS), thus defending tissues against oxidative stress. Recently, several studies have examined the potential contributions of GSTM1 and GSTT1 gene polymorphisms toward susceptibility to rheumatoid arthritis (RA), but these studies have produced diverse results. To verify the association between GSTM1 and GSTT1 gene polymorphisms and susceptibility to RA, we conducted a meta-analysis of all relevant reports cited in MEDLINE/PubMed before April 2012. A meta-analysis on the association between the GSTM1 polymorphism and RA was performed for 4636 patients with RA and 3916 controls from 8 published studies. In addition, a total of 5 studies involving 3174 RA patients and 2958 controls were considered in the meta-analysis of the association between the GSTT1 polymorphism and RA. No significant association was found between the GSTM1 null genotype and RA susceptibility in all subjects; however, a significant increased risk was found in East Asians. The GSTT1 null genotype was not associated with susceptibility to RA in any study subject. No apparent effect of smoking was found in stratified analysis. The results of our meta-analysis indicated that the GSTM1 null genotype is significantly associated with RA in East Asians alone, indicating that GSTM1 is another non-human leukocyte antigen (non-HLA) susceptibility gene for RA in East Asian populations.
Collapse
|