1
|
Luo H, Zhao S, Zi J, Hu Y, Yao Y, Xiong J. Benzo[b]fluoranthene damages coronary artery and affects atherosclerosis markers in mice and umbilical vein endothelial cells. Toxicol Lett 2024; 401:150-157. [PMID: 39395681 DOI: 10.1016/j.toxlet.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/03/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) exposure is associated with cardiovascular diseases. Toxic effects of PAHs are diverse, while cardiovascular consequences of benzo[b]fluoranthene (B[b]F) are unclear. Here, we reported the impacts of B[b]F on coronary artery and atherosclerosis markers both in mice and umbilical vein endothelial EAhy.926 cells. In mice, we found that B[b]F decreases heart-to-body weight ratio, affects aortic physiology, elevates serum low-density lipoprotein and total cholesterol, increases aortic levels of collagen fiber and atherosclerotic marker vascular cell adhesion molecule-1 (VCAM-1), and downregulates oxidative stress related nuclear factor erythroid 2-related factor 2 (Nrf2). In EAhy.926 cells, we showed that B[b]F inhibits cell proliferation and migration in a dose-dependent manner, induces cell cycle arrest and apoptosis, increases reactive oxygen species, upregulates VCAM-1 level, and suppresses expression of Nrf2. Taken together, our findings reveal that B[b]F exposure may contribute to coronary artery damage and potentially induce atherosclerosis, possibly via the Nrf2-related signaling pathways.
Collapse
Affiliation(s)
- Hang Luo
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Zhao
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Fucheng Center for Disease Control and Prevention, Mianyang 621000, China
| | - Jing Zi
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yifan Hu
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqin Yao
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Jingyuan Xiong
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu 610041, China.
| |
Collapse
|
2
|
Schwartz KS, Stanhewicz AE. Maternal Microvascular Dysfunction During and After Preeclamptic Pregnancy. Compr Physiol 2024; 14:5703-5727. [PMID: 39382165 DOI: 10.1002/cphy.c240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Preeclampsia, a pregnancy disorder characterized by de novo hypertension and maternal multisystem organ dysfunction, is the leading cause of maternal mortality worldwide and is associated with a fourfold greater risk of cardiovascular disease throughout the lifespan. Current understanding of the etiology of preeclampsia remains unclear, due in part to the varying phenotypical presentations of the disease, which has hindered the development of effective and mechanism-specific treatment or prevention strategies both during and after the affected pregnancy. These maternal sequelae of preeclampsia are symptoms of systemic vascular dysfunction in the maternal nonreproductive microvascular beds that drives the development and progression of adverse cardiovascular outcomes during preeclampsia. Despite normalization of vascular disturbances after delivery, subclinical dysfunction persists in the nonreproductive microvascular beds, contributing to an increased lifetime risk of cardiovascular and metabolic diseases and all-cause mortality. Given that women with a history of preeclampsia demonstrate vascular dysfunction despite an absence of traditional CVD risk factors, an understanding of the underlying mechanisms of microvascular dysfunction during and after preeclampsia is essential to identify potential therapeutic avenues to mitigate or reverse the development of overt disease. This article aims to provide a summary of the existing literature on the pathophysiology of maternal microvascular dysfunction during preeclampsia, the mechanisms underlying the residual dysfunction that remains after delivery, and current and potential treatments both during and after the affected pregnancy that may reduce microvascular dysfunction in these high-risk women. © 2024 American Physiological Society. Compr Physiol 14:5703-5727, 2024.
Collapse
Affiliation(s)
- Kelsey S Schwartz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| | - Anna E Stanhewicz
- Department of Health and Human Physiology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Xu S, Huang X, Wang Y, Liu J, Zhang W. The effect of dual antioxidant modification on oxidative stress resistance and anti-dysfunction of non-split HDL and recombinant HDL. Int J Biol Macromol 2024; 278:134632. [PMID: 39128757 DOI: 10.1016/j.ijbiomac.2024.134632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Recombinant high-density lipoprotein (rHDL) as anti-atherosclerosis (AS) vehicle has unique advantages including multiple anti-atherogenic functions and homing features to plaques. However, rHDL may be converted into dysfunctional forms due to complex treatment during preparation. Herein, oxidation-induced dysfunction of non-split HDL and rHDL was initially investigated. It was found that although both non-split HDL and rHDL showed oxidative dysfunction behavior, non-split HDL demonstrated superior oxidation defense compared to rHDL due to its intact composition and avoidance of overprocessing such as split and recombination. Unfortunately, in vivo oxidative stress could compromise the functionality of HDL. Therefore, surface engineering of non-split HDL and rHDL with cascade antioxidant enzyme analogues Ebselen and mitochondrial-targeted TPGS-Tempo was conducted to construct a dual-line defense HDL nano system (i.e., T@E-HDLs/rHDL), aiming to restore plaque redox balance and preserving the physiological function of HDL. Results indicated that both T@E-HDLs and rHDLs performed without distinction and exhibited greater resistance to oxidative stress damage as well as better functions than unmodified HDLs in macrophage foam cells. Overall, the modification of dual antioxidants strategy bridges the gap between non-split HDL and rHDL, and provides a promising resolution for the dilemmas of oxidative stress in plaques and HDL self dysfunction.
Collapse
Affiliation(s)
- Siyuan Xu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Xinya Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Yanyan Wang
- Henan university Joint national laboratory for antibody drug engineering, PR China
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
4
|
Atzeni F, Rodríguez-Pintó I, Cervera R. Cardiovascular disease risk in systemic lupus erythematous: Certainties and controversies. Autoimmun Rev 2024; 23:103646. [PMID: 39321952 DOI: 10.1016/j.autrev.2024.103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Patients with systemic lupus erythematosus (SLE) experience greater cardiovascular morbidity and mortality compared to the general population. It is known that endothelial dysfunction, an early indicator of atherosclerosis development, can arise even without the presence of conventional cardiovascular risk factors. In fact, the risk factors contributing to cardiovascular disease can be classified into traditional risk factors and those uniquely associated with SLE such as disease activity, autoantibodies, etc.Furthermore, the pathogenesis of cardiovascular disease in SLE is linked to the activation of both the innate and adaptive immune systems. Given these findings, it is essential for clinicians to acknowledge the heightened CVD risk in SLE patients, perform comprehensive screenings for cardiovascular risk factors, and implement aggressive treatment strategies for those who exhibit signs of clinical CVD. The aim of this review is to summarize the findings on cardiovascular disease in SLE and to examine potential screening and therapeutic strategies for clinical practice.
Collapse
Affiliation(s)
- Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Messina, Italy
| | - Ignasi Rodríguez-Pintó
- Department of Autoimmune Diseases, Reference Centre for Systemic Autoimmune Diseases (UEC/CSUR) of the Catalan and Spanish Health Systems-Member of ERNReCONNET, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
| | - Ricard Cervera
- Department of Autoimmune Diseases, Reference Centre for Systemic Autoimmune Diseases (UEC/CSUR) of the Catalan and Spanish Health Systems-Member of ERNReCONNET, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
| |
Collapse
|
5
|
Hou Y, Wu X, Shi Y, Xu X, Zhang Y, Jiang L, Wang W, Yang Y, Hu L. METS-IR as an important predictor of neurological impairment severity in patients with severe cerebral infarction: a multicenter study based on the Chinese population. Front Neurol 2024; 15:1450825. [PMID: 39385817 PMCID: PMC11461195 DOI: 10.3389/fneur.2024.1450825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Background Insulin resistance (IR) is linked to an increased risk of neurological impairment following a stroke and may contribute to poor neurological prognosis in affected patients. The metabolic score for the insulin resistance index, shortened as the METS-IR, generally serves as a surrogate index for IR. However, its association with the severity of neurological impairment in patients with severe cerebral infarction (CI) in neurological intensive care units (ICU) has not been fully established. Methods Patients with a diagnosis of CI, admitted to the neurological ICUs of Yangzhou University's Affiliated Hospital and Xuzhou Medical University's Affiliated Hospital, were included in the study. A multivariate logistic regression model and restricted cubic splines (RCS) were employed to explore the relationship between the METS-IR index and the severity of neurological impairment in these patients. The predictive capabilities of the METS-IR index and the triglyceride-glucose (TyG) index for outcome measures were compared through the ROC curve. Furthermore, a decision curve analysis was executed, and the integrated discrimination improvement (IDI) index was computed to evaluate the enhancements in predictive performance and clinical utility of various scoring systems with the inclusion of the METS-IR index. Subgroup analysis was conducted regarding age, BMI, and smoking status. Results The study ultimately included 504 participants. Adjusted logistic regression and RCS results showed that as the METS-IR index increases, the risk of neurological impairment in patients with severe CI consistently grows (P for overall = 0.0146, P-nonlinear: 0.0689). The METS-IR index's predictive capability for neurological impairment (AUC = 0.669) was superior to that of the TyG index (AUC = 0.519). Conclusion From the study results, the METS-IR index can serve as an important predictor for neurological impairment in ICU patients with severe CI. It can aid in the identification and early intervention of neurological impairment in these patients.
Collapse
Affiliation(s)
- Yaqi Hou
- School of Nursing, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaohua Wu
- Department of Endocrinology and Hematology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yiheng Shi
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Jiangsu, China
| | - Xiaotian Xu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yu Zhang
- School of Nursing, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lei Jiang
- School of Nursing, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wei Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Yan Yang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| | - Lanying Hu
- Department of Nursing, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Wai KW, Low LE, Goh BH, Yap WH. Nrf2 Connects Cellular Autophagy and Vascular Senescence in Atherosclerosis: A Mini-Review. J Lipid Atheroscler 2024; 13:292-305. [PMID: 39355399 PMCID: PMC11439754 DOI: 10.12997/jla.2024.13.3.292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 10/03/2024] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcriptional factor that maintains intracellular redox equilibrium, modulates the expression of antioxidant genes, scavenger receptors, and cholesterol efflux transporters, all of which contribute significantly to foam cell development and plaque formation. Nrf2 has recently emerged as a key regulator that connects autophagy and vascular senescence in atherosclerosis. Autophagy, a cellular mechanism involved in the breakdown and recycling of damaged proteins and organelles, and cellular senescence, a state of irreversible growth arrest, are both processes implicated in the pathogenesis of atherosclerosis. The intricate interplay of these processes has received increasing attention, shedding light on their cumulative role in driving the development of atherosclerosis. Recent studies have revealed that Nrf2 plays a critical role in mediating autophagy and senescence in atherosclerosis progression. Nrf2 activation promotes autophagy, which increases lipid clearance and prevents the development of foam cells. Meanwhile, the activation of Nrf2 also inhibits cellular senescence by regulating the expression of senescence markers to preserve cellular homeostasis and function and delay the progression of atherosclerosis. This review provides an overview of the molecular mechanisms through which Nrf2 connects cellular autophagy and vascular senescence in atherosclerosis. Understanding these mechanisms can provide insights into potential therapeutic strategies targeting Nrf2 to modulate cellular autophagy and vascular senescence, thereby preventing the progression of atherosclerosis.
Collapse
Affiliation(s)
- Kai Wen Wai
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Liang Ee Low
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, Malaysia
- Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, Malaysia
- Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, Selangor, Malaysia
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, No.5 Jalan Universiti, Bandar Sunway, Subang Jaya, Selangor Darul Ehsan, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wei Hsum Yap
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
7
|
Kiełbowski K, Skórka P, Plewa P, Bakinowska E, Pawlik A. The Role of Alarmins in the Pathogenesis of Atherosclerosis and Myocardial Infarction. Curr Issues Mol Biol 2024; 46:8995-9015. [PMID: 39194749 DOI: 10.3390/cimb46080532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Atherosclerosis is a condition that is associated with lipid accumulation in the arterial intima. Consequently, the enlarging lesion, which is also known as an atherosclerotic plaque, may close the blood vessel lumen, thus leading to organ ischaemia. Furthermore, the plaque may rupture and initiate the formation of a thrombus, which can cause acute ischaemia. Atherosclerosis is a background pathological condition that can eventually lead to major cardiovascular diseases such as acute coronary syndrome or ischaemic stroke. The disorder is associated with an altered profile of alarmins, stress response molecules that are secreted due to cell injury or death and that induce inflammatory responses. High-mobility group box 1 (HMGB1), S100 proteins, interleukin-33, and heat shock proteins (HSPs) also affect the behaviour of endothelial cells and vascular smooth muscle cells (VSMCs). Thus, alarmins control the inflammatory responses of endothelial cells and proliferation of VSMCs, two important processes implicated in the pathogenesis of atherosclerosis. In this review, we will discuss the role of alarmins in the pathophysiology of atherosclerosis and myocardial infarction.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
8
|
Liu Y, Wu Z, Li Y, Chen Y, Zhao X, Wu M, Xia Y. Metabolic reprogramming and interventions in angiogenesis. J Adv Res 2024:S2090-1232(24)00178-4. [PMID: 38704087 DOI: 10.1016/j.jare.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Endothelial cell (EC) metabolism plays a crucial role in the process of angiogenesis. Intrinsic metabolic events such as glycolysis, fatty acid oxidation, and glutamine metabolism, support secure vascular migration and proliferation, energy and biomass production, as well as redox homeostasis maintenance during vessel formation. Nevertheless, perturbation of EC metabolism instigates vascular dysregulation-associated diseases, especially cancer. AIM OF REVIEW In this review, we aim to discuss the metabolic regulation of angiogenesis by EC metabolites and metabolic enzymes, as well as prospect the possible therapeutic opportunities and strategies targeting EC metabolism. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we discuss various aspects of EC metabolism considering normal and diseased vasculature. Of relevance, we highlight that the implications of EC metabolism-targeted intervention (chiefly by metabolic enzymes or metabolites) could be harnessed in orchestrating a spectrum of pathological angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Yun Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yating Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Toprak K, Inanır M, Memioğlu T, Palice A, Kaplangoray M, Yesilay AB, Tascanov MB, Altıparmak İH, Demirbağ R. Effect of Hand Dominance on Radial Artery Spasm and Occlusion: A Prospective Observational Study. Angiology 2024; 75:340-348. [PMID: 36745059 DOI: 10.1177/00033197231155599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transradial access has become the most commonly used method for cardiac catheterization. Many medical and technical applications have been proposed to reduce TRA complications. The aim of this study is to examine the effect of hand dominance on radial artery spasm and radial artery occlusionin subjects undergoing CC via TRA. Between April 2020 and August 2022, 1713 subjects who underwent CC via TRA were included in the study. Patient data were obtained in terms of hand dominance of the catheterized side and RAS and RAO during a 1-month follow-up period. RAS was seen in 9.6% of the subjects. The RAS in patients catheterized by the dominant hand was significantly higher than that performed by the non-dominant hand (12 vs 7.8%; P = .004). RAO was seen in 1% of the subjects. RAO was significantly higher in the spasm side than in the no-spasm side (3 vs .8%; P = .009). Hand dominance was determined as an independent predictor of radial artery spasm (P = .006). In our study, RAS and RAO were more common on the dominant hand side than on the non-dominant side. Choosing the non-dominant hand for TRA for CC may reduce the incidence of RAS and RAO.
Collapse
Affiliation(s)
- Kenan Toprak
- Department of Cardiology, Harran University Faculty of Medicine, Sanliurfa, Turkey
| | - Mehmet Inanır
- Cardiology Department, Bolu Abant Izzet Baysal University Faculty of Medicine, Bolu, Turkey
| | - Tolga Memioğlu
- Cardiology Department, Bolu Abant Izzet Baysal University Faculty of Medicine, Bolu, Turkey
| | - Ali Palice
- Sanliurfa Mehmet Akif İnan Training and Research Hospital, Sanlıurfa, Turkey
| | - Mustafa Kaplangoray
- Sanliurfa Mehmet Akif İnan Training and Research Hospital, Sanlıurfa, Turkey
| | - Asuman Biçer Yesilay
- Department of Cardiology, Harran University Faculty of Medicine, Sanliurfa, Turkey
| | | | | | - Recep Demirbağ
- Department of Cardiology, Harran University Faculty of Medicine, Sanliurfa, Turkey
| |
Collapse
|
10
|
Li Z, Zhu H, Liu H, Liu D, Liu J, Zhang Y, Qin Z, Xu Y, Peng Y, Ruan L, Li J, He Y, Liu B, Long Y. Synergistic dual cell therapy for atherosclerosis regression: ROS-responsive Bio-liposomes co-loaded with Geniposide and Emodin. J Nanobiotechnology 2024; 22:129. [PMID: 38528554 DOI: 10.1186/s12951-024-02389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
The development of nanomaterials for delivering natural compounds has emerged as a promising approach for atherosclerosis therapy. However, premature drug release remains a challenge. Here, we present a ROS-responsive biomimetic nanocomplex co-loaded with Geniposide (GP) and Emodin (EM) in nanoliposome particles (LP NPs) for targeted atherosclerosis therapy. The nanocomplex, hybridized with the macrophage membrane (Møm), effectively evades immune system clearance and targets atherosclerotic plaques. A modified thioketal (TK) system responds to ROS-rich plaque regions, triggering controlled drug release. In vitro, the nanocomplex inhibits endothelial cell apoptosis and macrophage lipid accumulation, restores endothelial cell function, and promotes cholesterol effluxion. In vivo, it targets ROS-rich atherosclerotic plaques, reducing plaque area ROS levels and restoring endothelial cell function, consequently promoting cholesterol outflow. Our study demonstrates that ROS-responsive biomimetic nanocomplexes co-delivering GP and EM exert a synergistic effect against endothelial cell apoptosis and lipid deposition in macrophages, offering a promising dual-cell therapy modality for atherosclerosis regression.
Collapse
Affiliation(s)
- Zhenxian Li
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Haimei Zhu
- Department of Pain, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Hao Liu
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Dayue Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianhe Liu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yi Zhang
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Zhang Qin
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yijia Xu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yuan Peng
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Lihua Ruan
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Jintao Li
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yao He
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Yun Long
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| |
Collapse
|
11
|
Tegg NL, Myburgh C, O'Donnell E, Kennedy M, Norris CM. Impact of Secondary Amenorrhea on Cardiovascular Disease Risk in Physically Active Women: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2024; 13:e033154. [PMID: 38497482 PMCID: PMC11010010 DOI: 10.1161/jaha.123.033154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Exercise-associated secondary amenorrhea results in estrogen deficiency, which may lead to dysfunction in estrogen's normal cardioprotective pathways. Estrogen may be essential in a woman's endothelial adaptations to exercise. The objective of this review was to assess the association between secondary amenorrhea in physically active women and cardiovascular disease (CVD) risk. METHODS AND RESULTS A literature search was performed in January 2023 and updated in August 2023 of the Cumulative Index to Nursing and Allied Health Literature (EBSCOhost), Cochrane Library, Embase (Ovid), MEDLINE (Ovid), SPORTDiscus (EBSCOhost), and Scopus from inception to present with no date or language limitations. Citation chaining was done to screen for additional studies. Eight sources were searched for gray literature. Studies that compared physically active women with amenorrhea to physically active women with eumenorrhea aged 18 to 35 years with evidence of CVD, alterations to cardiovascular physiology, or CVD risks were included. Eighteen observational studies from 3 countries were included. Overall, the quality of evidence was good. A meta-analysis was performed. Physically active women with secondary amenorrhea had significantly lower estradiol, flow-mediated dilation, resting heart rate, systolic blood pressure, and diastolic blood pressure and higher total cholesterol, triglycerides, high-density lipoprotein, and low-density lipoprotein cholesterol. CONCLUSIONS Estrogen deficiency resulting from exercise-associated secondary amenorrhea in physically active women may impact cardiovascular physiology and certain CVD risk factors. The research in this area is observational; therefore, findings should be interpreted cautiously. However, as exercise-associated secondary amenorrhea is reversible and the primary prevention of CVD is important for public health, it may be important to treat secondary amenorrhea and restore estrogen levels.
Collapse
Affiliation(s)
- Nicole L. Tegg
- Faculty of NursingUniversity of AlbertaEdmontonAlbertaCanada
| | - Caitlynd Myburgh
- Faculty of NursingUniversity of AlbertaEdmontonAlbertaCanada
- Faculty of Natural SciencesThe Kings UniversityEdmontonAlbertaCanada
| | | | | | - Colleen M. Norris
- Faculty of NursingUniversity of AlbertaEdmontonAlbertaCanada
- Cavarzan Chair in Mature Women’s Research, WCHRIEdmontonAlbertaCanada
- Faculty of Medicine, School of Public Health SciencesUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
12
|
Wu G, Nong Y, Hong S, Wang S, Dai C, He C, Li C, Ma T, Yang Z, Zhang B, Gao Y, Ma G. Management of intervenable factors to reduce vascular complications in patients with internal carotid artery occlusion treated by non-emergency endovascular treatment. Front Neurol 2024; 15:1332940. [PMID: 38497036 PMCID: PMC10940403 DOI: 10.3389/fneur.2024.1332940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Objective This study aims to identify risk factors for vascular complications during non-emergency endovascular treatment in patients with internal carotid artery occlusion (ICAO) and to propose potential interventions. Method A retrospective analysis of 92 patients with ICAO who received non-emergency endovascular treatment in our center from 1 January 2018 to 31 June 2023, was conducted. The correlation between intraoperative vascular complications and potential risk factors was studied, and interaction analysis was performed. Results Our findings revealed that the use of non-neurology guide wires to open vessels (adjusted OR: 4.1, 95%CI: 1.3-12.8; p = 0.014) and glycosylated hemoglobin (HbA1c) ≥ 6.5 mmol/L (adjusted OR: 3.2, 95%CI: 1.2-8.9; p = 0.023) was significantly associated with vascular complications in non-emergency endovascular treatment of ICAO patients. The restricted cubic spline (RCS) showed that the higher the HbA1c level, the higher the risk of vascular complications. Conclusion The use of non-neurology guide wires for vessel opening during non-emergency endovascular treatment in patients with ICAO increases the risk of vascular complications. Preoperative assessment and management of HbA1c levels can reduce the incidence of intraoperative vascular complications.
Collapse
Affiliation(s)
- Guangyu Wu
- Department of Neurology, Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Neuroscience Institute, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuxin Nong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shaorui Hong
- Shantou University Medical College, Shantou, China
| | - Shuo Wang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Chengbo Dai
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Chizhong He
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Changmao Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Tengyun Ma
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhexian Yang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Guixian Ma
- Department of Neurology, Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Neuroscience Institute, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Chen L, Qiu H, Chen Q, Xiang P, Lei J, Zhang J, Lu Y, Wang X, Wu S, Yu C, Ma L. N-acetylneuraminic acid modulates SQSTM1/p62 sialyation-mediated ubiquitination degradation contributing to vascular endothelium dysfunction in experimental atherosclerosis mice. IUBMB Life 2024; 76:161-178. [PMID: 37818680 DOI: 10.1002/iub.2788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Sialic acid (SIA) has been reported to be a risk factor for atherosclerosis (AS) due to its high plasma levels in such patients. However, the effect of increasing SIA in circulation on endothelial function during AS progression remains unclear. In the present study, ApoE-/- mice and endothelial cells line (HUVEC cells) were applied to investigate the effect of SIA on AS progression and its potential molecular mechanism. In vivo, mice were injected intraperitoneally with Neu5Ac (main form of SIA) to keep high-level SIA in circulation. ORO, H&E, and Masson staining were applied to detect the plaque progression. In vitro, HUVECs were treated with Neu5Ac at different times, CCK-8, RT-PCR, western blot, and immunoprecipitation methods were used to analyze its effects on endothelial function and the potential involved mechanism. Results from the present study showed that high plasma levels of Neu5Ac in ApoE-/- mice could aggravate the plaque areas as well as increase necrotic core areas and collagen fiber contents. Remarkably, Neu5Ac levels in circulation displayed a positive correlation with AS plaque areas. Furthermore, results from HUVECs showed that Neu5Ac inhibited cells viability in a time/dose-dependent manner, by then induced the activation of inflammation makers such as ICAM-1 and IL-1β. Mechanism study showed that the activation of excessive autophagy medicated by SQSTM1/p62 displayed an important role in endothelium inflammatory injury. Neu5Ac could modify SQSTM1/p62 as a sialylation protein, and then increase its level with ubiquitin binding, further inducing ubiquitination degradation and being involved in the excessive autophagy pathway. Inhibition of sialylation by P-3Fax-Neu5Ac, a sialyltransferase inhibitor, reduced the binding of SQSTM1/p62 to ubiquitin. Together, these findings indicated that Neu5Ac increased SQSTM1/p62-ubiquitin binding through sialylation modification, thereby inducing excessive autophagy and subsequent endothelial injury. Inhibition of SQSTM1/p62 sialylation might be a potential strategy for preventing such disease with high levels of Neu5Ac in circulation.
Collapse
Affiliation(s)
- Le Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Hongmei Qiu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Qingqiu Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Peng Xiang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Jin Lei
- Xi'an No.1 Hospital, The First Affiliated Hospital of Northwest University, Xi'an, China
| | - Jun Zhang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Yining Lu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Xianmin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| | - Limei Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing, China
| |
Collapse
|
14
|
Kaneko T, Yoshioka M, Kawahara F, Nishitani N, Mori S, Park J, Tarumi T, Kosaki K, Maeda S. Effects of plant- and animal-based-protein meals for a day on serum nitric oxide and peroxynitrite levels in healthy young men. Endocr J 2024; 71:119-127. [PMID: 38220201 DOI: 10.1507/endocrj.ej23-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Plant-based diets that replace animal-based proteins with plant-based proteins have received increased attention for cardiovascular protection. Nitric oxide (NO) plays an essential role in the maintenance of endothelial function. However, under higher oxidative stress, NO generation produces peroxynitrite, a powerful oxidant and vasoconstrictor. Diet-replaced protein sources has been reported to decrease oxidative stress. However, the effects of plant-based protein on NO and peroxynitrite have not yet been clarified. Therefore, this study aimed to compare the effects of plant- and animal-based-protein meals for a day on NO, peroxynitrite, and NO/peroxynitrite balance. A crossover trial of two meal conditions involving nine healthy men was performed. Participants ate standard meals during day 1. On day 2, baseline measurements were performed and the participants were provided with plant-based-protein meals or animal-based-protein meals. The standard and test meals consisted of breakfast, lunch, and dinner and were designed to be isocaloric. Plant-based-protein meals contained no animal protein. Blood samples were collected in the morning after overnight fasting before and after the test meals consumption. In the plant-based-protein meal condition, serum NOx levels (the sum of serum nitrite and nitrate) significantly increased, while serum peroxynitrite levels did not change significantly. Animal-based-protein meals significantly increased serum peroxynitrite levels but showed a trend of reduction in the serum NOx levels. Furthermore, serum NO/peroxynitrite balance significantly increased after plant-based-protein meals consumption, but significantly decreased after animal-based-protein meals consumption. These results suggest that, compared with animal-based-protein meals, plant-based-protein meals increase NO levels and NO/peroxynitrite balance, which reflects increased endothelial function.
Collapse
Affiliation(s)
- Tomoko Kaneko
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Masaki Yoshioka
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Futo Kawahara
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Natsumi Nishitani
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Shoya Mori
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Jiyeon Park
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Takashi Tarumi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Keisei Kosaki
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Seiji Maeda
- Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan
| |
Collapse
|
15
|
Kulovic-Sissawo A, Tocantins C, Diniz MS, Weiss E, Steiner A, Tokic S, Madreiter-Sokolowski CT, Pereira SP, Hiden U. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. BIOLOGY 2024; 13:70. [PMID: 38392289 PMCID: PMC10886154 DOI: 10.3390/biology13020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.
Collapse
Affiliation(s)
- Azra Kulovic-Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana S Diniz
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Andreas Steiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
16
|
Martínez-Alvarado MDR, Torres-Tamayo M, Juárez-Rojas JG, Medina-Urrutia AX, Cardoso-Saldaña GC, López-Uribe ÁR, Reyes-Barrera J, Jorge-Galarza E. Impact of Lipids and Vascular Damage on Early Atherosclerosis in Adolescents with Parental Premature Coronary Artery Disease. High Blood Press Cardiovasc Prev 2024; 31:31-41. [PMID: 38252333 DOI: 10.1007/s40292-023-00617-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
AIM To assess the relationship of cardiovascular risk factors (CRFs) with carotid intima media thickness (IMT) in adolescents with a parental history of premature coronary artery disease (PCAD). METHODS This cross-sectional study included 50 healthy adolescents, aged 14-18 years, both sexes, with a parental history of PCAD, that were compared to 50 controls without this history. Questionnaires regarding information of CRFs were applied. Blood chemistry analyses, included lipid profile, lipoprotein (a), low density lipoprotein (LDL) susceptibility to oxidation, and inflammatory cytokine levels. The IMT was evaluated by ultrasound. RESULTS The mean age of all participants was 15.9 years. Anthropometric measurements, blood pressure, and lipid profile were similar in both groups. However, the parental history of PCAD group exhibited lower high density lipoprotein cholesterol concentrations, shorter LDL particle oxidation time, and higher lipoprotein (a) levels compared to the control group. IMT was significantly higher in adolescents with a parental history of PCAD compared to controls, (0.53 ± 0.04 mm vs 0.47 ± 0.02 mm, p = 0.001). Among adolescents with a parental history of PCAD, those with ≥ 3 CRFs had significantly higher IMT values (0.56 mm) than those with < 3 CRFs (0.52 mm) and controls (0.48 mm). Multivariable analyses identified that systolic blood pressure and parental history of PCAD explained 26.8% and 16.1% of the variation in IMT. Furthermore, body mass index, LDL-C, ApoB-100, triglycerides and lipoprotein (a) interact with blood pressure levels to explain the IMT values. CONCLUSION Adolescents with a parental history of PCAD had higher IMT values than the control group, primary explained by systolic blood pressure and the parental inheritance. Adolescents with parental history of PCAD and ≥ 3 CRFs exhibited the highest IMT values. Notably, lipids and systolic blood pressure jointly contribute to explain IMT in these adolescents.
Collapse
Affiliation(s)
- María Del Rocío Martínez-Alvarado
- Dysautonomic Clinic, Department of Outpatients Care, National Institute of Cardiology, Juan Badiano No. 1, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Margarita Torres-Tamayo
- Department of Endocrinology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Juan Gabriel Juárez-Rojas
- Department of Phamacology, National Institute of Cardiology, Juan Badiano No. 1, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Aida X Medina-Urrutia
- Department of Endocrinology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Guillermo C Cardoso-Saldaña
- Department of Endocrinology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Ángel Rene López-Uribe
- Department of Endocrinology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Juan Reyes-Barrera
- Department of Endocrinology, National Institute of Cardiology Ignacio Chávez, Juan Badiano No. 1, Col. Sección XVI, 14080, Mexico City, Mexico
| | - Esteban Jorge-Galarza
- Department of Outpatients Care, National Institute of Cardiology, Juan Badiano No. 1, Col. Sección XVI, 14080, Mexico City, Mexico.
| |
Collapse
|
17
|
Lv N, Zhang Y, Wang L, Suo Y, Zeng W, Yu Q, Yu B, Jiang X. LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress. Curr Pharm Biotechnol 2024; 25:1021-1040. [PMID: 37842894 DOI: 10.2174/0113892010267577231005102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
18
|
Wen SY, Zhi X, Liu HX, Wang X, Chen YY, Wang L. Is the suppression of CD36 a promising way for atherosclerosis therapy? Biochem Pharmacol 2024; 219:115965. [PMID: 38043719 DOI: 10.1016/j.bcp.2023.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Atherosclerosis is the main underlying pathology of many cardiovascular diseases and is marked by plaque formation in the artery wall. It has posed a serious threat to the health of people all over the world. CD36 acts as a significant regulator of lipid homeostasis, which is closely associated with the onset and progression of atherosclerosis and may be a new therapeutic target. The abnormal overexpression of CD36 facilitates lipid accumulation, foam cell formation, inflammation, endothelial apoptosis, and thrombosis. Numerous natural products and lipid-lowering agents are found to target the suppression of CD36 or inhibit the upregulation of CD36 to prevent and treat atherosclerosis. Here, the structure, expression regulation and function of CD36 in atherosclerosis and its related pharmacological therapies are reviewed. This review highlights the importance of drugs targeting CD36 suppression in the treatment and prevention of atherosclerosis, in order to develop new therapeutic strategies and potential anti-atherosclerotic drugs both preclinically and clinically.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhi
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Hai-Xin Liu
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
19
|
Chakraborty S, Verma A, Garg R, Singh J, Verma H. Cardiometabolic Risk Factors Associated With Type 2 Diabetes Mellitus: A Mechanistic Insight. Clin Med Insights Endocrinol Diabetes 2023; 16:11795514231220780. [PMID: 38148756 PMCID: PMC10750528 DOI: 10.1177/11795514231220780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
A complex metabolic condition referred to as Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance (IR) and decreased insulin production. Obesity, dyslipidemia, hypertension, and chronic inflammation are just a few of the cardiometabolic illnesses that people with T2DM are more likely to acquire and results in cardiovascular issues. It is essential to comprehend the mechanistic insights into these risk variables in order to prevent and manage cardiovascular problems in T2DM effectively. Impaired glycemic control leads to upregulation of De novo lipogenesis (DNL), promote hepatic triglyceride (TG) synthesis, worsening dyslipidemia that is accompanied by low levels of high density lipoprotein cholesterol (HDL-C) and high amounts of small, dense low-density lipoprotein cholesterol (LDL-C) further developing atherosclerosis. By causing endothelial dysfunction, oxidative stress, and chronic inflammation, chronic hyperglycemia worsens already existing cardiometabolic risk factors. Vasoconstriction, inflammation, and platelet aggregation are caused by endothelial dysfunction, which is characterized by decreased nitric oxide production, increased release of vasoconstrictors, proinflammatory cytokines, and adhesion molecules. The loop of IR and endothelial dysfunction is sustained by chronic inflammation fueled by inflammatory mediators produced in adipose tissue. Infiltrating inflammatory cells exacerbate inflammation and the development of plaque in the artery wall. In addition, the combination of chronic inflammation, dyslipidemia, and IR contributes to the emergence of hypertension, a prevalent comorbidity in T2DM. The ability to target therapies and management techniques is made possible by improvements in our knowledge of these mechanistic insights. Aim of present review is to enhance our current understanding of the mechanistic insights into the cardiometabolic risk factors related to T2DM provides important details into the interaction of pathophysiological processes resulting in cardiovascular problems. Understanding these pathways will enable us to create efficient plans for the prevention, detection, and treatment of cardiovascular problems in T2DM patients, ultimately leading to better overall health outcomes.
Collapse
Affiliation(s)
- Snigdha Chakraborty
- Overseas R & D Centre, Overseas HealthCare Pvt Ltd., Phillaur, Punjab, India
| | - Anjali Verma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Rajeev Garg
- IKG Punjab Technical University, Kapurthala, India
- Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
- Guru Nanak Institute of Pharmacy, Dalewal, Hoshiarpur, Punjab, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Hitesh Verma
- Overseas R & D Centre, Overseas HealthCare Pvt Ltd., Phillaur, Punjab, India
- IKG Punjab Technical University, Kapurthala, India
- Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, Bela, Ropar, Punjab, India
- Biofern Life Sciences Pvt Ltd, Karnataka, India
| |
Collapse
|
20
|
Qi W, Ma H, Wu X, Wei K, Li Y. The optimal puncture time point of prolonged occlusion flow-mediated dilatation in radial artery catheterization: a prospective observational study. Sci Rep 2023; 13:21752. [PMID: 38066251 PMCID: PMC10709304 DOI: 10.1038/s41598-023-49122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Previous studies have demonstrated prolonged occlusion flow-mediated dilatation (PO-FMD) could reduce cannulation failure rates and decrease radial artery pulsation loss during trans-radial coronary angiography. However, the time and degree of radial artery dilatation induced after PO-FMD were unclear. This study aimed to evaluate the degree and duration of the radial artery dilation after PO-FMD, and the time point at which the radial artery diameter is expanded to the maximum. This was a prospective observational study. According to the Chinese guideline on the primary prevention of cardiovascular diseases, 142 patients awaking from general anesthesia were divided into two groups: low-risk (LR) group and high-risk (HR) group. Firstly, the baseline radial artery diameter was measured on the left wrist using ultrasound in both groups. Subsequently, the radial artery diameters were obtained continuously at the same location for 5 min after PO-FMD. The baseline radial artery diameter, the maximum radial artery diameter, and the duration of radial artery dilation in the two groups were recorded. The time point at which the radial artery diameter is expanded to the maximum in the LR group and HR group was 26.49 ± 11.69 s and 46.27 ± 12.03 s, respectively (P < 0.01). The time of radial artery dilation and the percentage changes in arterial diameter in HR group were significantly lower than LR group (duration time: mean [mean ± standard]: 136.65 ± 31.55 s vs. 168.98 ± 33.27 s; percentage changes: median [interquartile range] 10.5 [8.6, 12.9] % vs. 15.2 [12.4, 19.0] %). In this study, the optimal puncture time point of PO-FMD in the LR group was 26 s, and in the HR group was 46 s. It would be helpful to guide the time point in radial artery catheterization after PO-FMD.Chinese Clinical Trial Registry identifier: ChiCTR2200066214.
Collapse
Affiliation(s)
- Wensheng Qi
- Department of Anesthesiology, First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, China
| | - Haichun Ma
- Department of Anesthesiology, First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, China
| | - Xuehan Wu
- Department of Anesthesiology, First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, China
| | - Kun Wei
- Department of Rehabilitation, Second Hospital of Shandong University, Jinan, China
| | - Yanhui Li
- Department of Anesthesiology, First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, China.
| |
Collapse
|
21
|
Angeloudi E, Anyfanti P, Dara A, Pagkopoulou E, Bekiari E, Sgouropoulou V, Garyfallos A, Doumas M, Kitas GD, Dimitroulas T. Peripheral nailfold capillary microscopic abnormalities in rheumatoid arthritis are associated with arterial stiffness: Results from a cross-sectional study. Microvasc Res 2023; 150:104576. [PMID: 37414357 DOI: 10.1016/j.mvr.2023.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Vascular injury eventually resulting in the establishment of cardiovascular disease is a serious complication in rheumatoid arthritis (RA). Nailfold videocapillaroscopy (NVC) is a non-invasive imaging modality that enables the quantitative and qualitative assessment of the peripheral microvasculature. Nevertheless, capillaroscopic patterns remain inadequately defined in RA, especially regarding their clinical significance as potential markers of systemic vascular impairment. Consecutive RA patients underwent NVC using a standardized protocol, to assess the following parameters: capillary density, avascular areas, capillary dimensions, microhemorrhages, subpapillary venous plexus, and presence of ramified, bushy, crossed and tortuous capillaries. Carotid-femoral pulse wave velocity (PWV) and pulse pressure were measured as well-acknowledged markers of large artery stiffening. The vast majority of our cohort (n = 44) presented a combination of non-specific and abnormal capillaroscopic parameters. Capillary ramification was associated with both PWV and pulse pressure, even after adjustment for cardiovascular risk factors and systemic inflammation. Our study highlights the high prevalence of a wide range of capillaroscopic deviations from the normal patterns in RA. Furthermore, it provides for the first time evidence of an association between structural disorders of the microcirculation and markers of macrovascular dysfunction, suggesting that NVC might have a role as an index of generalised vascular impairment in RA.
Collapse
Affiliation(s)
- Elena Angeloudi
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Anyfanti
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasia Dara
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Pagkopoulou
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Bekiari
- Second Medical Department, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Sgouropoulou
- 1st Department of Paediatrics, Hippokration Hospital, Aristotle University of Thessaloniki, Greece
| | - Alexandros Garyfallos
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Michael Doumas
- 2nd Propedeutic Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George D Kitas
- Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Dudley, UK; School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Theodoros Dimitroulas
- Fourth Department of Internal Medicine, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
22
|
Zhou Y, Cai H, Huang L, Wang M, Liu R, Wang S, Qin Y, Yao C, Hu Z. Microarray Expression Profile and Bioinformatic Analysis of Circular RNA in Human Arteriosclerosis Obliterans. Pharmgenomics Pers Med 2023; 16:913-924. [PMID: 37899885 PMCID: PMC10612483 DOI: 10.2147/pgpm.s424359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023] Open
Abstract
Background Arteriosclerosis obliterans (ASO) is the leading cause of nontraumatic lower-extremity amputations. Multiple researches have suggested that circular RNAs (circRNAs) played vital regulatory functions in cancer and cardiovascular disease. Nevertheless, the underlying effect and pathological mechanism of circRNAs in the formation and progression of ASO are still indistinct. Methods and Results This study used microarray analysis to investigate the expression portrait of circRNAs in normal lower extremity arteries and ASO arteries. Bioinformatics analysis was conducted using the KEGG database to study the enrichment of differentially expressed circRNAs (DE circRNAs) and predict their functions. The accuracy of microarray assay was verified by evaluating expression of the top 5 upregulated and 5 downregulated circRNAs (raw density of normal group ≥200) using RT-qPCR. A circRNA-miRNA-mRNA interaction network was further predicted using software. Compared to the normal lower extremity group, the ASO arteries with HE and EVG staining presented hyperplastic fibrous membrane and luminal stenosis. A total of 12,735 circRNAs were identified, including 1196 DE circRNAs with 276 upregulated and 920 downregulated in ASO group based on |log2(FC)| > 1 and padj < 0.05. Among selected 10 circRNAs, RT-qPCR confirmed that hsa_circ_0003266, hsa_circ_0118936 and hsa_circ_0067161 were upregulated while hsa_circ_0091934 and hsa_circ_0092022 were downregulated in ASO group (p < 0.05). GO analysis presented that the DE circRNAs were primarily enriched in protein binding, intracellular part and organelle organization. KEGG pathway analysis indicated that MAPK signaling pathway, human T-cell leukemia virus 1 infection, proteoglycans in cancer were associated with the DE circRNAs. The circRNA-miRNA-mRNA interactive network revealed that both mRNAs and miRNAs linked to circRNAs played an indispensable role in ASO. Conclusion This study described the expression portrait of circRNAs in human ASO arteries, and revealed the molecular background for further investigations of the circRNA regulatory mechanism in the formation and progression of ASO.
Collapse
Affiliation(s)
- Yu Zhou
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Huoying Cai
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lin Huang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Mingshan Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ruiming Liu
- Laboratory of Department of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Siwen Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuansen Qin
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chen Yao
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zuojun Hu
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
23
|
Huda K, Lawrence DJ, Thompson W, Lindsey SH, Bayer CL. In vivo noninvasive systemic myography of acute systemic vasoactivity in female pregnant mice. Nat Commun 2023; 14:6286. [PMID: 37813833 PMCID: PMC10562381 DOI: 10.1038/s41467-023-42041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
Altered vasoactivity is a major characteristic of cardiovascular and oncological diseases, and many therapies are therefore targeted to the vasculature. Therapeutics which are selective for the diseased vasculature are ideal, but whole-body selectivity of a therapeutic is challenging to assess in practice. Vessel myography is used to determine the functional mechanisms and evaluate pharmacological responses of vascularly-targeted therapeutics. However, myography can only be performed on ex vivo sections of individual arteries. We have developed methods for implementation of spherical-view photoacoustic tomography for non-invasive and in vivo myography. Using photoacoustic tomography, we demonstrate the measurement of acute vascular reactivity in the systemic vasculature and the placenta of female pregnant mice in response to two vasodilators. Photoacoustic tomography simultaneously captures the significant acute vasodilation of major arteries and detects selective vasoactivity of the maternal-fetal vasculature. Photoacoustic tomography has the potential to provide invaluable preclinical information on vascular response that cannot be obtained by other established methods.
Collapse
Affiliation(s)
- Kristie Huda
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Dylan J Lawrence
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
- Photosound Technologies Inc., Houston, TX, USA
| | | | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
24
|
Lu LQ, Li NS, Li MR, Peng JY, Tang LJ, Luo XJ, Peng J. DL-3-n-butylphthalide improves the endothelium-dependent vasodilation in high-fat diet-fed ApoE -/- mice via suppressing inflammation, endothelial necroptosis and apoptosis. Eur J Pharmacol 2023; 956:175938. [PMID: 37536623 DOI: 10.1016/j.ejphar.2023.175938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Impaired endothelium-dependent vasodilation in atherosclerosis is a high-risk factor for myocardial infarction and ischemic stroke, and inflammation, necroptosis and apoptosis contribute to endothelial dysfunction in atherosclerosis. Although DL-3-n-butylphthalide (NBP) has been widely used in treating ischemic stroke, its effect on endothelium-dependent vasodilation remains unknown. This study aims to explore whether NBP is able to improve endothelium-dependent vasodilation in atherosclerosis and the underlying mechanisms. Male ApoE-/- mice were fed with a high-fat diet (HFD) for 9-16 weeks to establish a model of atherosclerosis. NBP were given to the mice after eating HFD for 6 weeks and atorvastatin served as a positive control. The endothelium-dependent vasodilation, the blood flow velocity, the atherosclerotic lesion area, the serum levels of lipids, inflammatory cytokines and necroptosis-relevant proteins (RIPK1, RIPK3 and MLKL), and the endothelial necroptosis and apoptosis within the aorta were measured. Human umbilical vein endothelial cells (HUVECs) were incubated with oxidized low-density lipoprotein (ox-LDL) for 48 h to mimic endothelial injury in atherosclerosis, lactate dehydrogenase release, the ratio of necroptosis and apoptosis and the expression of necroptosis-relevant proteins were examined. Similar to atorvastatin, NBP improves endothelium-dependent vasodilation, decreases aortic flow velocity and reduces atherosclerotic lesion area in HFD-fed ApoE-/- mice, concomitant with a reduction in serum lipids, inflammatory cytokines and necroptosis-relevant proteins, and endothelial necroptosis and apoptosis. Consistently, NBP inhibited necroptosis and apoptosis in ox-LDL-treated HUVECs. Based on these observations, we conclude that NBP exerts beneficial effects on improving the endothelium-dependent vasodilation in atherosclerosis via suppressing inflammation, endothelial necroptosis and apoptosis.
Collapse
Affiliation(s)
- Li-Qun Lu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Nian-Sheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Ming-Rui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jiao-Yang Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Li-Jing Tang
- Department of Pharmacy, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
25
|
You Q, Shao X, Wang J, Chen X. Progress on Physical Field-Regulated Micro/Nanomotors for Cardiovascular and Cerebrovascular Disease Treatment. SMALL METHODS 2023; 7:e2300426. [PMID: 37391275 DOI: 10.1002/smtd.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) are two major vasculature-related diseases that seriously affect public health worldwide, which can cause serious death and disability. Lack of targeting effect of the traditional CCVD treatment drugs may damage other tissues and organs, thus more specific methods are needed to solve this dilemma. Micro/nanomotors are new materials that can convert external energy into driving force for autonomous movement, which can not only enhance the penetration depth and retention rates, but also increase the contact areas with the lesion sites (such as thrombus and inflammation sites of blood vessels). Physical field-regulated micro/nanomotors using the physical energy sources with deep tissue penetration and controllable performance, such as magnetic field, light, and ultrasound, etc. are considered as the emerging patient-friendly and effective therapeutic tools to overcome the limitations of conventional CCVD treatments. Recent efforts have suggested that physical field-regulated micro/nanomotors on CCVD treatments could simultaneously provide efficient therapeutic effect and intelligent control. In this review, various physical field-driven micro/nanomotors are mainly introduced and their latest advances for CCVDs are highlighted. Last, the remaining challenges and future perspectives regarding the physical field-regulated micro/nanomotors for CCVD treatments are discussed and outlined.
Collapse
Affiliation(s)
- Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xinyue Shao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| |
Collapse
|
26
|
Held M, Sestan M, Kifer N, Jelusic M. Cerebrovascular involvement in systemic childhood vasculitides. Clin Rheumatol 2023; 42:2733-2746. [PMID: 36884156 DOI: 10.1007/s10067-023-06552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
Pediatric vasculitides sometimes involve central nervous system (CNS). The manifestations are diverse, ranging from headache, seizures, vertigo, ataxia, behavioral changes, neuropsychiatric symptoms, consciousness disorders, and even cerebrovascular (CV) accidents that may lead to irreversible impairment and even death. Stroke, on the other hand despite the great progress in prevention and treatment, is still one of the leading causes of morbidity and mortality in the general population. The aim of this article was to summarize CNS manifestations and CV issues observed in primary pediatric vasculitides and the current knowledge of etiology and CV risk factors, preventive strategies, and therapeutic options in this target patient population. Pathophysiological links reveal similar immunological mechanisms involved in both pediatric vasculitides and CV events with endothelial injury and damage being the central point. From the clinical point of view, CV events in pediatric vasculitides were associated with increased morbidity and poor prognosis. If damage has already occurred, the therapeutic approach consists of good management of the vasculitis itself, antiplatelet and anticoagulation therapy, and early rehabilitation. Risk factors for acquiring cerebrovascular disease (CVD) and stroke, particularly hypertension and early atherosclerotic changes, already begin in childhood, with vessel wall inflammation contributing itself, once more emphasizing that appropriate preventive measures are certainly necessary in pediatric vasculitis population to improve their long-term outcome.
Collapse
Affiliation(s)
- Martina Held
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mario Sestan
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nastasia Kifer
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marija Jelusic
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.
- Division of Clinical Immunology, Rheumatology and Allergology, Centre of Reference for Paediatric and Adolescent Rheumatology of Ministry of Health of the Republic Croatia, University Hospital Centre Zagreb, Kispaticeva 12, 10 000, Zagreb, Croatia.
| |
Collapse
|
27
|
Montazeri Z, Hashemi-Madani N, Iraji H, Sohrabi M, Alaei-Shahmiri F, Emami Z, Babaei MR, Malek M, Khamseh ME. Non-alcoholic fatty liver disease and compromised endothelial function in people with type 2 diabetes. BMC Endocr Disord 2023; 23:202. [PMID: 37749528 PMCID: PMC10518908 DOI: 10.1186/s12902-023-01460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) frequently coexists with type 2 diabetes mellitus (T2DM) and synergistically contributes to the development of atherosclerosis. Flow-mediated dilation (FMD) is a commonly used noninvasive test for assessing endothelial function. The main objective of this study was to explore FMD in patients with T2DM with and without NAFLD. METHODS In this cross-sectional study, conducted on people with T2DM, NAFLD was defined as controlled attenuation parameter (CAP) score > 302 dB/m. Endothelial dysfunction was detected when arterial FMD of brachial artery was equal or less than 0.7%. Regression analyses were applied to assess factors associated with impaired FMD. RESULT A total of 147 patients (72 with NAFLD and 75 without NAFLD) were included in the final analysis. Patients with NAFLD were more likely to develop FMD ≤ 7% (77.8% vs. 58.7%, P = 0.01). In multivariate analysis, NAFLD (OR = 2.581, 95% CI (1.18-5.62), P = 0.017) and hypertension (HTN) (OR = 3.114, 95% CI (1.31-7.35), P = 0.010) were associated with an increased risk of impaired FMD. However, female sex was associated with a decreased risk of impaired FMD (OR = 0.371, 95% CI (0.15-0.87), P = 0.024). CONCLUSION NAFLD is associated with endothelial dysfunction in people with T2DM. This risk is comparable with the risk imposed by HTN, highlighting the importance of screening and management of NAFLD in these patients.
Collapse
Affiliation(s)
- Zeinab Montazeri
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Nahid Hashemi-Madani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, No. 10, Firoozeh St., Vali-asr Ave., Vali-asr Sq, Tehran, Iran
| | - Hamed Iraji
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Masoudreza Sohrabi
- Gastrointestinal and liver diseases research center, Iran University of Medical Sciences, Tehran, Iran
| | - Fariba Alaei-Shahmiri
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, No. 10, Firoozeh St., Vali-asr Ave., Vali-asr Sq, Tehran, Iran
| | - Zahra Emami
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, No. 10, Firoozeh St., Vali-asr Ave., Vali-asr Sq, Tehran, Iran
| | - Mohammad Reza Babaei
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Mojtaba Malek
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Mohammad E Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, No. 10, Firoozeh St., Vali-asr Ave., Vali-asr Sq, Tehran, Iran.
| |
Collapse
|
28
|
Zhang Y, Zhu Z, Cao Y, Xiong Z, Duan Y, Lin J, Zhang X, Jiang M, Liu Y, Man W, Jia T, Feng J, Chen Y, Li C, Guo B, Sun D. Rnd3 suppresses endothelial cell pyroptosis in atherosclerosis through regulation of ubiquitination of TRAF6. Clin Transl Med 2023; 13:e1406. [PMID: 37743632 PMCID: PMC10518494 DOI: 10.1002/ctm2.1406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND As the main pathological basis for various cardiovascular and cerebrovascular diseases, atherosclerosis has become one of the leading causes of death and disability worldwide. Emerging evidence has suggested that Rho GTPase Rnd3 plays an indisputable role in cardiovascular diseases, although its function in atherosclerosis remains unclear. Here, we found a significant correlation between Rnd3 and pyroptosis of aortic endothelial cells (ECs). METHODS ApoeKO mice were utilized as a model for atherosclerosis. Endothelium-specific transgenic mice were employed to disrupt the expression level of Rnd3 in vivo. Mechanistic investigation of the impact of Rnd3 on endothelial cell pyroptosis was carried out using liquid chromatography tandem mass spectrometry (LC-MS/MS), co-immunoprecipitation (Co-IP) assays, and molecular docking. RESULTS Evidence from gain-of-function and loss-of-function studies denoted a protective role for Rnd3 against ECs pyroptosis. Downregulation of Rnd3 sensitized ECs to pyroptosis under oxidized low density lipoprotein (oxLDL) challenge and exacerbated atherosclerosis, while overexpression of Rnd3 effectively prevented these effects. LC-MS/MS, Co-IP assay, and molecular docking revealed that Rnd3 negatively regulated pyroptosis signaling by direct interaction with the ring finger domain of tumor necrosis factor receptor-associated factor 6 (TRAF6). This leads to the suppression of K63-linked TRAF6 ubiquitination and the promotion of K48-linked TRAF6 ubiquitination, inhibiting the activation of NF-κB and promoting the degradation of TRAF6. Moreover, TRAF6 knockdown countered Rnd3 knockout-evoked exacerbation of EC pyroptosis in vivo and vitro. CONCLUSIONS These findings establish a critical functional connection between Rnd3 and the TRAF6/NF-κB/NLRP3 signaling pathway in ECs, indicating the essential role of Rnd3 in preventing pyroptosis of ECs.
Collapse
Affiliation(s)
- Yan Zhang
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Zhengru Zhu
- Department of OtolaryngologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Yang Cao
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Zhenyu Xiong
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Yu Duan
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Jie Lin
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Xuebin Zhang
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Mengyuan Jiang
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Yue Liu
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Wanrong Man
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Tengfei Jia
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Jiaxu Feng
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Yanyan Chen
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Congye Li
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Baolin Guo
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| | - Dongdong Sun
- Department of CardiologyXijing Hospital, Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
29
|
Koca N, Seferoğlu M. Effects of disease-modifying therapies on lipid parameters in patients with multiple sclerosis. Mult Scler Relat Disord 2023; 77:104876. [PMID: 37423049 DOI: 10.1016/j.msard.2023.104876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Cholesterol and lipids are essential components of nerve cells. Myelin synthesis and stabilization is a cholesterol-dependent process. It has been shown in several studies that high plasma cholesterol levels may be associated with clinical deterioration in Multiple Sclerosis (MS). There is scarce information about the effects of disease-modifying treatment (DMTs) on lipid profile. In this study, we aimed to investigate the effect of DMTs on plasma lipid profiles in MS patients. METHOD The records of 380 MS patients who were still under follow-up were analyzed in terms of age, sex, disease duration, EDSS scores, serum lipid levels, and used DMTs. The data of patients receiving Interferon (n = 53), Glatiramer acetate (n = 25), Fingolimod (n = 44), Teriflunomide (n = 24), Dimethyl fumarate (n = 7) and Ocrelizumab (n = 14) were compared with the data of control group (n = 53). RESULTS A total of 220 patients, 157 women, and 63 men, were included in the study. The average age of the participants in the study was 39.83 ± 10.21 years, mean disease duration was 8.45 ± 6.56 years, and the EDSS score was 2.25 ± 1.97. Although, Lipid parameters were higher in MS patients using Fingolimod the difference cannot reach the statistical significance. CONCLUSION No significant relationship was found between the DMTs that MS patients had been using for the last six months and their cholesterol levels.
Collapse
Affiliation(s)
- Nizameddin Koca
- University of Health Sciences, Bursa Sehir Training & Research Hospital, Department of Internal Medicine, Bursa, Turkey
| | - Meral Seferoğlu
- University of Health Sciences, Bursa Yuksek Ihtisas Training and Research Hospital, Department of Neurology, Bursa, Turkey
| |
Collapse
|
30
|
Schönberger E, Mihaljević V, Steiner K, Šarić S, Kurevija T, Majnarić LT, Bilić Ćurčić I, Canecki-Varžić S. Immunomodulatory Effects of SGLT2 Inhibitors-Targeting Inflammation and Oxidative Stress in Aging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6671. [PMID: 37681811 PMCID: PMC10487537 DOI: 10.3390/ijerph20176671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Given that the increase in the aging population has grown into one of the largest public health issues, inflammation and oxidative stress, which are closely associated with the aging process, became a focus of recent research. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, a group of drugs initially developed as oral antidiabetics, have shown many beneficial effects over time, including improvement in renal function and cardioprotective effects. It has been shown that SGLT2 inhibitors, as a drug class, have an immunomodulatory and antioxidative effect, affecting endothelial function as well as metabolic parameters. Therefore, it is not surprising that various studies have investigated the potential mechanisms of action of SGLT2 inhibitors in age-related diseases. The proposed mechanisms by which SGLT2 inhibitors can achieve their anti-inflammatory effects include influence on AMPK/SIRT1/PGC-1α signaling, various cytokines, and the NLRP3 inflammasome. The antioxidative effect is related to their action on mitochondria and their influence on the signaling pathways of transforming growth factor β and nuclear erythroid 2-related factor 2/antioxidant response element. Also, SGLT2 inhibitors achieve their anti-inflammatory and antioxidative effects by affecting metabolic parameters, such as uric acid reduction, stimulation of ketogenesis, reduction of body weight, lipolysis, and epicardial fat tissue. Finally, SGLT2 inhibitors display anti-atherosclerotic effects that modulate inflammatory reactions, potentially resulting in improvement in endothelial function. This narrative review offers a complete and comprehensive overview of the possible pathophysiologic mechanisms of the SGLT2 inhibitors involved in the aging process and development of age-related disease. However, in order to use SGLT2 inhibitor drugs as an anti-aging therapy, further basic and clinical research is needed to elucidate the potential effects and complex mechanisms they have on inflammation processes.
Collapse
Affiliation(s)
- Ema Schönberger
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vjera Mihaljević
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Kristina Steiner
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
| | - Sandra Šarić
- Department for Cardiovascular Disease, University Hospital Osijek, 31000 Osijek, Croatia;
- Department of Internal Medicine and History of Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Tomislav Kurevija
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (T.K.); (L.T.M.)
- Health Center Osjecko-Baranjska County, 31000 Osijek, Croatia
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (T.K.); (L.T.M.)
| | - Ines Bilić Ćurčić
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Silvija Canecki-Varžić
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
- Department of Pathophysiology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
31
|
Pan C, Xu J, Gao Q, Li W, Sun T, Lu J, Shi Q, Han Y, Gao G, Li J. Sequentially suspended 3D bioprinting of multiple-layered vascular models with tunable geometries for in vitromodeling of arterial disorders initiation. Biofabrication 2023; 15:045017. [PMID: 37579751 DOI: 10.1088/1758-5090/aceffa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
As the main precursor of arterial disorders, endothelial dysfunction preferentially occurs in regions of arteries prone to generating turbulent flow, particularly in branched regions of vasculatures. Although various diseased models have been engineered to investigate arterial pathology, producing a multiple-layered vascular model with branched geometries that can recapitulate the critical physiological environments of human arteries, such as intercellular communications and local turbulent flows, remains challenging. This study develops a sequentially suspended three-dimensional bioprinting (SSB) strategy and a visible-light-curable decellularized extracellular matrix bioink (abbreviated as 'VCD bioink') to construct a biomimetic human arterial model with tunable geometries. The engineered multiple-layered arterial models with compartmentalized vascular cells can exhibit physiological functionality and pathological performance under defined physiological flows specified by computational fluid dynamics simulation. Using different configurations of the vascular models, we investigated the independent and synergetic effects of cellular crosstalk and abnormal hemodynamics on the initiation of endothelial dysfunction, a hallmark event of arterial disorder. The results suggest that the arterial model constructed using the SSB strategy and VCD bioinks has promise in establishing diagnostic/analytic platforms for understanding the pathophysiology of human arterial disorders and relevant abnormalities, such as atherosclerosis, aneurysms, and ischemic diseases.
Collapse
Affiliation(s)
- Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jingwen Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, People's Republic of China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Qiqi Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Tao Sun
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, People's Republic of China
| | - Jiping Lu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qing Shi
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, People's Republic of China
| | - Yafeng Han
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
32
|
Huang J, Wang F, Tang X. Uncovering the shared molecule and mechanism between ulcerative colitis and atherosclerosis: an integrative genomic analysis. Front Immunol 2023; 14:1219457. [PMID: 37638002 PMCID: PMC10450151 DOI: 10.3389/fimmu.2023.1219457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background Ulcerative colitis (UC) and atherosclerosis (AS) are closely related. However, the pathologic mechanisms underlying the co-occurrence of UC and AS are not well understood. Objects To reveal the hub molecule and mechanism involved in the co-occurrence of UC and AS. Methods Differentially expressed genes (DEGs) of UC and AS were obtained, and the shared DEGs of UC and AS were explored for biological function. Next, the hub genes were explored using the cytoHubba plugin. The predictive ability of the hub genes was measured by constructing the receiver operating characteristic curve. Analyses of immune infiltration and the single-gene gene set enrichment analysis (GSEA) for the hub genes were further carried out. Results Identification of 59 DEGs (55 were upregulated and four were downregulated) shared by both UC and AS was performed. Enriched pathways of the shared DEGs were mainly related to immunity and inflammation. Protein tyrosine phosphatase, receptor type, C (PTPRC) was identified as the hub crosstalk gene for the comorbidity of UC and AS. The upregulation of PTPRC was correlated with mast cells resting, T cells CD4 memory resting, macrophages M0, and macrophages M1. Pathways of immune and inflammatory processes, including NF-kappa B, viral protein interaction with cytokine and cytokine receptor, and cytokine-cytokine receptor interaction, were significantly correlated with high expression of PTPRC in UC and AS. Conclusion At the transcriptional level, our study reveals that imbalanced inflammatory and immune responses are the key pathological mechanisms underlying the comorbidity of UC and AS and that PTPRC is a key biomarker for the comorbidity of UC and AS.
Collapse
Affiliation(s)
- Jinke Huang
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengyun Wang
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Das D, Shruthi NR, Banerjee A, Jothimani G, Duttaroy AK, Pathak S. Endothelial dysfunction, platelet hyperactivity, hypertension, and the metabolic syndrome: molecular insights and combating strategies. Front Nutr 2023; 10:1221438. [PMID: 37614749 PMCID: PMC10442661 DOI: 10.3389/fnut.2023.1221438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 08/25/2023] Open
Abstract
Metabolic syndrome (MetS) is a multifaceted condition that increases the possibility of developing atherosclerotic cardiovascular disease. MetS includes obesity, hypertension, dyslipidemia, hyperglycemia, endothelial dysfunction, and platelet hyperactivity. There is a concerning rise in the occurrence and frequency of MetS globally. The rising incidence and severity of MetS need a proactive, multipronged strategy for identifying and treating those affected. For many MetS patients, achieving recommended goals for healthy fat intake, blood pressure control, and blood glucose management may require a combination of medicine therapy, lifestyles, nutraceuticals, and others. However, it is essential to note that lifestyle modification should be the first-line therapy for MetS. In addition, MetS requires pharmacological, nutraceutical, or other interventions. This review aimed to bring together the etiology, molecular mechanisms, and dietary strategies to combat hypertension, endothelial dysfunction, and platelet dysfunction in individuals with MetS.
Collapse
Affiliation(s)
- Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Nagainallur Ravichandran Shruthi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Ganesan Jothimani
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Asim K. Duttaroy
- Faculty of Medicine, Department of Nutrition, Institute of Medical Sciences, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
34
|
Kim DR, Martin S, Desai K. The effects of a comparatively higher dose of 1000 mg/kg/d of oral L- or D-arginine on the L-arginine metabolic pathways in male Sprague-Dawley rats. PLoS One 2023; 18:e0289476. [PMID: 37527267 PMCID: PMC10393177 DOI: 10.1371/journal.pone.0289476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
Oral L-arginine supplements are popular mainly for their nitric oxide mediated vasodilation, but their physiological impact is not fully known. L-arginine is a substrate of several enzymes including arginase, nitric oxide synthase, arginine decarboxylase, and arginine: glycine amidinotransferase (AGAT). We have published a study on the physiological impact of oral L- and D-arginine at 500 mg/kg/day for 4 wks in male Sprague-Dawley rats. We investigated the effects of oral L-arginine and D-arginine at a higher dose of 1000 mg/kg/d for a longer treatment duration of 16 wks in 9-week-old male Sprague-Dawley rats. We measured the expression and activity of L-arginine metabolizing enzymes, and levels of their metabolites in the plasma and various organs. L-arginine did not affect the levels of L-arginine and L-lysine in the plasma and various organs. L-arginine decreased arginase protein expression in the upper small intestine, and arginase activity in the plasma. It also decreased AGAT protein expression in the liver, and creatinine levels in the urine. L-arginine altered arginine decarboxylase protein expression in the upper small intestine and liver, with increased total polyamines plasma levels. Endothelial nitric oxide synthase protein was increased with D-arginine, the presumed metabolically inert isomer, but not L-arginine. In conclusion, oral L-arginine and D-arginine at a higher dose and longer treatment duration significantly altered various enzymes and metabolites in the arginine metabolic pathways, which differed from alterations produced by a lower dose shorter duration treatment published earlier. Further studies with differing doses and duration would allow for a better understanding of oral L-arginine uses, and evidence based safe and effective dose range and duration.
Collapse
Affiliation(s)
- Dain Raina Kim
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sarah Martin
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kaushik Desai
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
35
|
Wang Y, Yixiong Z, Wang L, Huang X, Xin HB, Fu M, Qian Y. E3 Ubiquitin Ligases in Endothelial Dysfunction and Vascular Diseases: Roles and Potential Therapies. J Cardiovasc Pharmacol 2023; 82:93-103. [PMID: 37314134 PMCID: PMC10527814 DOI: 10.1097/fjc.0000000000001441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023]
Abstract
ABSTRACT Ubiquitin E3 ligases are a structurally conserved family of enzymes that exert a variety of regulatory functions in immunity, cell death, and tumorigenesis through the ubiquitination of target proteins. Emerging evidence has shown that E3 ubiquitin ligases play crucial roles in the pathogenesis of endothelial dysfunction and related vascular diseases. Here, we reviewed the new findings of E3 ubiquitin ligases in regulating endothelial dysfunction, including endothelial junctions and vascular integrity, endothelial activation, and endothelial apoptosis. The critical role and potential mechanism of E3 ubiquitin ligases in vascular diseases, such as atherosclerosis, diabetes, hypertension, pulmonary hypertension, and acute lung injury, were summarized. Finally, the clinical significance and potential therapeutic strategies associated with the regulation of E3 ubiquitin ligases were also proposed.
Collapse
Affiliation(s)
- Yihan Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhan Yixiong
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| | - Linsiqi Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xuan Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Mingui Fu
- Department of Biomedical Sciences and Shock/Trauma Research Center, School of Medicine, University of Missouri Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | - Yisong Qian
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
- Chongqing Research Institute, Nanchang University, Chongqing, 402660, China
| |
Collapse
|
36
|
Brinholi FF, Michelin AP, Matsumoto AK, de O Semeão L, Almulla AF, Supasitthumrong T, Tunvirachaisakul C, Barbosa DS, Maes M. Paraoxonase 1 status is a major Janus-faced component of mild and moderate acute ischemic stroke and consequent disabilities. Metab Brain Dis 2023; 38:2115-2131. [PMID: 37204661 DOI: 10.1007/s11011-023-01232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
AIMS This study aims to examine the associations between paraoxonase 1 (PON)1 status and acute ischemic stroke (AIS) and consequent disabilities. METHODS This study recruited 122 patients with AIS and 40 healthy controls and assessed the Q192R gene variants, arylesterase (AREase) and chloromethyl phenylacetate (CMPAase) activities, and high-density lipoprotein cholesterol (HDLc) in baseline conditions. AREase and CMPAase were measured 3 months later. The National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin score (mRS) were assessed at baseline and 3 and 6 months later. RESULTS Reduced CMPAase and increased AREase activities are significantly associated with AIS and mRS and NIHSS scores (baseline and 3 and 6 months later). The best predictor of AIS/disabilities was a decrease in the z-unit-based composite zCMPAase-zAREase score. Serum high density lipoprotein cholsterol (HDLc) was significantly correlated with CMPAase, but not AREase, activity and a lowered zCMPAase + zHDLc score was the second best predictor of AIS/disabilities. Regression analysis showed that 34.7% of the variance in baseline NIHSS was explained by zCMPAase-zAREase and zCMPAase + zHDLc composites, HDLc, and hypertension. Neural network analysis showed that stroke was differentiated from controls with an area under the ROC curve of 0.975 using both new composite scores, PON1 status, hypertension, dyslipidemia, previous stroke as body mass index. The PON1 Q192R genotype has many significant direct and mediated effects on AIS/disabilities, however, its overall effect was not significant. DISCUSSION PON1 status and the CMPAase-HDLc complex play key roles in AIS and its disabilities at baseline and 3 and 6 months later.
Collapse
Affiliation(s)
- Francis F Brinholi
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Ana Paula Michelin
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Andressa K Matsumoto
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Laura de O Semeão
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd., Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Thitiporn Supasitthumrong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd., Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd., Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Décio S Barbosa
- Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd., Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
| |
Collapse
|
37
|
Chen Z, Liang W, Liang J, Dou J, Guo F, Zhang D, Xu Z, Wang T. Probiotics: functional food ingredients with the potential to reduce hypertension. Front Cell Infect Microbiol 2023; 13:1220877. [PMID: 37465757 PMCID: PMC10351019 DOI: 10.3389/fcimb.2023.1220877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
Hypertension is an increasingly pressing public health concern across the globe. It can be triggered by a variety of factors such as age and diet, as well as the stress of modern life. The traditional treatment of hypertension includes calcium ion blockers, angiotensin II receptor inhibitors and β-receptor blockers, but these drugs have at least some side effects. Recent studies have revealed that intestinal flora plays a vital role in maintaining and promoting human health. This is due to the type and amount of probiotics present in the flora. Probiotics can reduce hypertension symptoms through four mechanisms: regulating vascular oxidative stress, producing short-chain fatty acids, restoring endothelial cell function, and reducing inflammation. It has been reported that certain functional foods, using probiotics as their raw material, can modify the composition of intestinal flora, thus regulating hypertension symptoms. Consequently, utilizing the probiotic function of probiotics in conjunction with the properties of functional foods to treat hypertension is a novel, side-effect-free treatment method. This study seeks to summarize the various factors that contribute to hypertension, the mechanism of probiotics in mitigating hypertension, and the fermented functional foods with probiotic strains, in order to provide a basis for the development of functional foods which utilize probiotics as their raw material and may have the potential to reduce hypertension.
Collapse
Affiliation(s)
- Zouquan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Wanjie Liang
- Research and Development Department(R&D), Shandong Ande Healthcare Apparatus Co., Ltd., Zibo, China
| | - Jie Liang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Jiaxin Dou
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Daolei Zhang
- School of Bioengineering, Shandong Polytechnic, Jinan, China
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China
| |
Collapse
|
38
|
Hou LY, Li X, Zhang GQ, Xi C, Shen CT, Song HJ, Bai WK, Qiu ZL, Luo QY. Transiently impaired endothelial function during thyroid hormone withdrawal in differentiated thyroid cancer patients. Front Endocrinol (Lausanne) 2023; 14:1164789. [PMID: 37424871 PMCID: PMC10327818 DOI: 10.3389/fendo.2023.1164789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose Endothelial dysfunction, which was associated with chronic hypothyroidism, was an early event in atherosclerosis. Whether short-term hypothyroidism following thyroxine withdrawal during radioiodine (RAI) therapy was associated with endothelial dysfunction in patients with differentiated thyroid cancer (DTC) was unclear. Aim of the study was to assess whether short-term hypothyroidism could impair endothelial function and the accompanied metabolic changes in the whole process of RAI therapy. Methods We recruited fifty-one patients who underwent total thyroidectomy surgery and would accept RAI therapy for DTC. We analyzed thyroid function, endothelial function and serum lipids levels of the patients at three time points: the day before thyroxine withdrawal(P1), the day before 131I administration(P2) and 4-6 weeks after RAI therapy(P3). A high-resolution ultrasound named flow-mediated dilation (FMD) was used to measure endothelial function of the patients. Results We analyzed the changes of FMD, thyroid function and lipids at three time points. FMD(P2) decreased significantly compared to FMD(P1) (P1vsP2, 8.05 ± 1.55vs 7.26 ± 1.50, p<0.001). There was no significant difference between FMD(P3) and FMD(P1) after restoring TSH (thyroid stimulating hormone) suppression therapy (P1 vs P3, 8.05 ± 1.55 vs 7.79 ± 1.38, p=0.146). Among all parameters, the change of low-density lipoprotein (ΔLDL) was the only factor correlated negatively with the change of FMD (ΔFMD) throughout the RAI therapy process (P1-2, r=-0.326, p=0.020; P2-3, r=-0.306, p=0.029). Conclusion Endothelial function was transiently impaired in DTC patients at short-term hypothyroidism state during the RAI therapy, and immediately returned to the initial state after restoring TSH suppression therapy.
Collapse
Affiliation(s)
- Li-ying Hou
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Li
- Department of Ultrasound in Medicine, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Guo-qiang Zhang
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuang Xi
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-tian Shen
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-jun Song
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-kun Bai
- Department of Ultrasound in Medicine, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Ultrasound in Medicine, Shanghai, China
| | - Zhong-ling Qiu
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan-yong Luo
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Liu S, Zheng Z, Zhao Y, Yao H, Zhang L, Chen C, Jin S. DRP1 knockdown and atorvastatin alleviate ox-LDL-induced vascular endothelial cells injury: DRP1 is a potential target for preventing atherosclerosis. Exp Cell Res 2023:113688. [PMID: 37315759 DOI: 10.1016/j.yexcr.2023.113688] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
Vascular endothelial cells (VECs) injury is the first step in the pathogenesis of atherosclerosis (AS). Mitochondrial dysfunction plays a significant role in VECs injury, but the underlying mechanisms are still unclear. Here, the human umbilical vein endothelial cells were exposed to 100 μg/mL oxidized low-density lipoprotein for 24 h to establish AS model in vitro. We reported that mitochondrial dynamics disorder is a prominent feature of VECs in AS models and associated with mitochondrial dysfunction. Moreover, the knockdown of dynamin-related protein 1 (DRP1) in AS model significantly alleviated the mitochondrial dynamics disorder and VECs injury. On the contrary, DRP1 overexpression significantly aggravated this injury. Interestingly, atorvastatin (ATV), a classical anti-atherosclerotic drug, prominently inhibited the expression of DRP1 in AS models and similarly alleviated the mitochondrial dynamics disorder and VECs injury in vitro and in vivo. At the same time, we found that ATV alleviated VECs damage but did not significantly reduce lipid concentration in vivo. Our findings provide a potential therapeutic target of AS and a new mechanism of the anti-atherosclerotic effect of ATV.
Collapse
Affiliation(s)
- Shengnan Liu
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Zhinan Zheng
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Yingyin Zhao
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Hanming Yao
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Lizhen Zhang
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Cui Chen
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Sanqing Jin
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|
40
|
Fasipe B, Li S, Laher I. Exercise and vascular function in sedentary lifestyles in humans. Pflugers Arch 2023:10.1007/s00424-023-02828-6. [PMID: 37272982 DOI: 10.1007/s00424-023-02828-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
People with sedentary lifestyles engage in minimal or no physical activity. A sedentary lifestyle promotes dysregulation of cellular redox balance, diminishes mitochondrial function, and increases NADPH oxidase activity. These changes collectively increase cellular oxidative stress, which alters endothelial function by oxidizing LDL-C, reducing NO production, and causing eNOS uncoupling. Reduced levels of nitric oxide (NO) leads to vasoconstriction, vascular remodeling, and vascular inflammation. Exercise modulates reactive oxygen species (ROS) to modify NRF2-KEAP signaling, leading to the activation of NRF2 to alleviate oxidative stress. While regular moderate exercise activates NRF2 through ROS production, high-intensity intermittent exercise stimulates NRF2 activation to a greater degree by reducing KEAP levels, which can be more beneficial for sedentary individuals. We review the damaging effects of a sedentary lifestyle on the vascular system and the health benefits of regular and intermittent exercise.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, Canada.
| |
Collapse
|
41
|
Gou T, Hu M, Xu M, Chen Y, Chen R, Zhou T, Liu J, Guo L, Ao H, Ye Q. Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases. J Pharm Anal 2023; 13:563-589. [PMID: 37440909 PMCID: PMC10334359 DOI: 10.1016/j.jpha.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) frequently results in sudden death and poses a serious threat to public health worldwide. The drugs approved for the prevention and treatment of ASCVD are usually used in combination but are inefficient owing to their side effects and single therapeutic targets. Therefore, the use of natural products in developing drugs for the prevention and treatment of ASCVD has received great scholarly attention. Andrographolide (AG) is a diterpenoid lactone compound extracted from Andrographis paniculata. In addition to its use in conditions such as sore throat, AG can be used to prevent and treat ASCVD. It is different from drugs that are commonly used in the prevention and treatment of ASCVD and can not only treat obesity, diabetes, hyperlipidaemia and ASCVD but also inhibit the pathological process of atherosclerosis (AS) including lipid accumulation, inflammation, oxidative stress and cellular abnormalities by regulating various targets and pathways. However, the pharmacological mechanisms of AG underlying the prevention and treatment of ASCVD have not been corroborated, which may hinder its clinical development and application. Therefore, this review summarizes the physiological and pathological mechanisms underlying the development of ASCVD and the in vivo and in vitro pharmacological effects of AG on the relative risk factors of AS and ASCVD. The findings support the use of the old pharmacological compound ('old bottle') as a novel drug ('novel wine') for the prevention and treatment of ASCVD. Additionally, this review summarizes studies on the availability as well as pharmaceutical and pharmacokinetic properties of AG, aiming to provide more information regarding the clinical application and further research and development of AG.
Collapse
Affiliation(s)
- Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junjing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
42
|
Kakimoto M, Fujii M, Sato I, Honma K, Nakayama H, Kirihara S, Fukuoka T, Ran S, Hirohata S, Kitamori K, Yamamoto S, Watanabe S. Antioxidant action of xanthine oxidase inhibitor febuxostat protects the liver and blood vasculature in SHRSP5/Dmcr rats. J Appl Biomed 2023; 21:80-90. [PMID: 37376883 DOI: 10.32725/jab.2023.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/25/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Xanthine oxidase (XO) generates reactive oxygen species during uric acid production. Therefore, XO inhibitors, which suppress oxidative stress, may effectively treat non-alcoholic steatohepatitis (NASH) and atherosclerosis via uric acid reduction. In this study, we examined the antioxidant effect of the XO inhibitor febuxostat on NASH and atherosclerosis in stroke-prone spontaneously hypertensive 5 (SHRSP5/Dmcr) rats. METHODS SHRSP5/Dmcr rats were divided into three groups: SHRSP5/Dmcr + high-fat and high-cholesterol (HFC) diet [control group, n = 5], SHRSP5/Dmcr + HFC diet + 10% fructose (40 ml/day) [fructose group, n = 5], and SHRSP5/Dmcr + HFC diet + 10% fructose (40 ml/day) + febuxostat (1.0 mg/kg/day) [febuxostat group, n = 5]. Glucose and insulin resistance, blood biochemistry, histopathological staining, endothelial function, and oxidative stress markers were evaluated. RESULTS Febuxostat reduced the plasma uric acid levels. Oxidative stress-related genes were downregulated, whereas antioxidant factor-related genes were upregulated in the febuxostat group compared with those in the fructose group. Febuxostat also ameliorated inflammation, fibrosis, and lipid accumulation in the liver. Mesenteric lipid deposition decreased in the arteries, and aortic endothelial function improved in the febuxostat group. CONCLUSIONS Overall, the XO inhibitor febuxostat exerted protective effects against NASH and atherosclerosis in SHRSP5/Dmcr rats.
Collapse
Affiliation(s)
- Mai Kakimoto
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Moe Fujii
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Ikumi Sato
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Koki Honma
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Hinako Nakayama
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Sora Kirihara
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Taketo Fukuoka
- Okayama University, Faculty of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Shang Ran
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Satoshi Hirohata
- Okayama University, Academic Field of Health Science, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Kazuya Kitamori
- Kinjo Gakuin University, College of Human Life and Environment, 2-1723, Omori, Moriyama-ku, Nagoya-shi, Aichi, 463-8521, Japan
| | - Shusei Yamamoto
- Okayama University, Graduate School of Health Sciences, Department of Medical Technology, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Okayama University, Academic Field of Health Science, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| | - Shogo Watanabe
- Okayama University, Academic Field of Health Science, 2-5-1, Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan
| |
Collapse
|
43
|
Manilall A, Mokotedi L, Gunter S, Le Roux R, Fourie S, Flanagan CA, Millen AME. Tumor Necrosis Factor-α Mediates Inflammation-induced Early-Stage Left Ventricular Systolic Dysfunction. J Cardiovasc Pharmacol 2023; 81:411-422. [PMID: 37078863 DOI: 10.1097/fjc.0000000000001428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/28/2023] [Indexed: 04/21/2023]
Abstract
ABSTRACT Elevated systemic inflammation contributes to pathogenesis of heart failure with preserved ejection fraction (HFpEF), but molecular mechanisms are poorly understood. Although left ventricular (LV) diastolic dysfunction is the main cause of HFpEF, subclinical systolic dysfunction also contributes. We have previously shown that rats with collagen-induced arthritis (CIA) have systemic inflammation, LV diastolic dysfunction, and that increased circulating TNF-α contributes to inflammation-induced HFpEF pathogenesis, but does not mediate LV diastolic dysfunction in CIA rats. Contribution of systemic inflammation to dysfunction of the active process of LV diastolic and systolic function are unknown. In the present study, we used the CIA rat model to investigate the effects of systemic inflammation and TNF-α blockade on systolic function, and mRNA expression of genes involved in active diastolic relaxation and of myosin heavy chain (MyHC) isoforms. Collagen inoculation and TNF-α blockade did not affect LV mRNA expression of genes that mediate active LV diastolic function. Collagen-induced inflammation impaired LV global longitudinal strain ( P = 0.03) and velocity ( P = 0.04). This impairment of systolic function was prevented by TNF-α blockade. Collagen inoculation decreased mRNA expression of α-MyHC ( Myh6, P = 0.03) and increased expression of β-MyHC ( Myh7, P = 0.0002), a marker, which is upregulated in failing hearts. TNF-α blockade prevented this MyHC isoform-switch. These results show that increased circulating TNF-α changes the relative expression of MyHC isoforms, favoring β-MyHC, which may underlie changes in contractile function that impair systolic function. Our results indicate that TNF-α initiates early-stage LV systolic, rather than LV diastolic dysfunction.
Collapse
Affiliation(s)
- Ashmeetha Manilall
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | | | | |
Collapse
|
44
|
Li J, Zhang F, Lan X, Li F, Tan C, Cao W. Novel risk prediction models for deep vein thrombosis after thoracotomy and thoracoscopic lung cancer resections, involving coagulation and immune function. Open Life Sci 2023; 18:20220617. [PMID: 37250843 PMCID: PMC10224613 DOI: 10.1515/biol-2022-0617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
The main focus of this study was to compare the predictive value of coagulation, fibrinolysis, thromboelastography, stress response, and immune function in predicting the incidence of deep venous thrombosis (DVT) in lung cancer (LC) patients undergoing thoracoscopic LC resection vs thoracotomy LC resection. To do that, a prospective, single-center, case-control study involving 460 LC patients was conducted. The risk indicators affecting patients with DVT after LC resection in the testing cohort were determined using logistic regression and receiver operator characteristic (ROC) analyses. One validation cohort was used to assess the risk prediction models. DVT incidence was higher in the thoracoscopic group (18.7%) than in the thoracotomy group (11.2%) in the testing cohort (χ 2 = 4.116, P = 0.042). The final model to predict the incidence of DVT after thoracoscopic LC excision (1 day after surgery) was as follows: Logit(P) = 9.378 - 0.061(R-value) - 0.109(K value) + 0.374(α angle) + 0.403(MA) + 0.298(FIB) + 0.406(D-D) + 0.190(MDA) - 0.097(CD4+/CD8+). For thoracotomy LC resection, the final model (3 days after operation) was: Logit(P) = -2.463 - 0.026(R-value) - 0.143(K value) + 0.402(α angle) + 0.198(D-D) + 0.237(MDA) + 0.409(SOD). In the validation cohort, this risk prediction model continued to demonstrate good predictive performance. As a result, the predictive accuracy of postoperative DVT in patients who underwent thoracoscopic LC resection and thoracotomy LC resection was improved by risk prediction models.
Collapse
Affiliation(s)
- Jianhua Li
- Department of Thoracic Surgery, Chengyang District People’s Hospital, Qingdao, Shandong, China
| | - Futao Zhang
- Department of Thoracic Surgery, Chengyang District People’s Hospital, Qingdao, Shandong, China
| | - Xinyan Lan
- Department of Thoracic Surgery, Chengyang District People’s Hospital, Qingdao, Shandong, China
| | - Feifei Li
- Weifang Second People’s Hospital, Weifang, Shandong, China
| | - Chunrui Tan
- People’s Hospital of Jimo District, Qingdao, Shandong, China
| | - Wangkai Cao
- Weifang Second People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
45
|
Wiedmann MK, Steinsvåg IV, Dinh T, Vigeland MD, Larsson PG, Hjorthaug H, Sheng Y, Mero IL, Selmer KK. Whole-exome sequencing in moyamoya patients of Northern-European origin identifies gene variants involved in Nitric Oxide metabolism: A pilot study. BRAIN & SPINE 2023; 3:101745. [PMID: 37383439 PMCID: PMC10293314 DOI: 10.1016/j.bas.2023.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 06/30/2023]
Abstract
Introduction Moyamoya disease (MMD) is a chronic cerebrovascular steno-occlusive disease of largely unknown etiology. Variants in the RNF213 gene are strongly associated with MMD in East-Asia. In MMD patients of Northern-European origin, no predominant susceptibility variants have been identified so far. Research question Are there specific candidate genes associated with MMD of Northern-European origin, including the known RNF213 gene? Can we establish a hypothesis for MMD phenotype and associated genetic variants identified for further research? Material and methods Adult patients of Northern-European origin, treated surgically for MMD at Oslo University Hospital between October 2018 to January 2019 were asked to participate. WES was performed, with subsequent bioinformatic analysis and variant filtering. The selected candidate genes were either previously reported in MMD or known to be involved in angiogenesis. The variant filtering was based on variant type, location, population frequency, and predicted impact on protein function. Results Analysis of WES data revealed nine variants of interest in eight genes. Five of those encode proteins involved in nitric oxide (NO) metabolism: NOS3, NR4A3, ITGAV, GRB7 and AGXT2. In the AGXT2 gene, a de novo variant was detected, not previously described in MMD. None harboured the p.R4810K missense variant in the RNF213 gene known to be associated with MMD in East-Asian patients. Discussion and conclusion Our findings suggest a role for NO regulation pathways in Northern-European MMD and introduce AGXT2 as a new susceptibility gene. This pilot study warrants replication in larger patient cohorts and further functional investigations.
Collapse
Affiliation(s)
- Markus K.H. Wiedmann
- Department of Neurosurgery, The National Hospital, Oslo University Hospital, Oslo, Norway
| | - Ingunn V. Steinsvåg
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Tovy Dinh
- Department of Neurosurgery, The National Hospital, Oslo University Hospital, Oslo, Norway
| | - Magnus D. Vigeland
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Pål G. Larsson
- Department of Neurosurgery, The National Hospital, Oslo University Hospital, Oslo, Norway
| | - Hanne Hjorthaug
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Kaja K. Selmer
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
46
|
Assessment of Vascular Function in Response to High-Fat and Low-Fat Ground Beef Consumption in Men. Nutrients 2023; 15:nu15061410. [PMID: 36986140 PMCID: PMC10052947 DOI: 10.3390/nu15061410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Red meat is stigmatized as an unhealthy protein choice; however, its impacts on vascular function have not been evaluated. We aimed to measure the vascular impact of adding either low-fat (~5% fat) ground beef (LFB) or high-fat (~25% fat) ground beef (HFB) to a habitual diet in free-living men. Twenty-three males (39.9 ± 10.8 years, 177.5 ± 6.7 cm, 97.3 ± 25.0 kg) participated in this double-blind crossover study. Assessment of vascular function and aerobic capacity were measured at entry and in the last week of each intervention and washout period. Participants then completed two 5-week dietary interventions (LFB or HFB; 5 patties/week) in a randomized order with a 4-week washout. Data were analyzed via 2 × 2 repeated-measures ANOVA (p < 0.05). The HFB intervention improved FMD relative to all other time points, while lowering systolic (SBP) and diastolic blood pressure (DBP) relative to entry. Neither the HFB nor the LFB altered pulse wave velocity. The addition of either low- or high-fat ground beef did not negatively alter vascular function. In fact, consuming HFB improved FMD and BP values, which may be mediated by lowering LDL-C concentrations.
Collapse
|
47
|
Differential Impact of IL-32 Isoforms on the Functions of Coronary Artery Endothelial Cells: A Potential Link with Arterial Stiffness and Atherosclerosis. Viruses 2023; 15:v15030700. [PMID: 36992409 PMCID: PMC10052544 DOI: 10.3390/v15030700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Chronic inflammation is associated with higher risk of cardiovascular disease (CVD) in people living with HIV (PLWH). We have previously shown that interleukin-32 (IL-32), a multi-isoform proinflammatory cytokine, is chronically upregulated in PLWH and is linked with CVD. However, the mechanistic role of the different IL-32 isoforms in CVD are yet to be identified. In this study, we aimed to investigate the potential impact of IL-32 isoforms on coronary artery endothelial cells (CAEC), whose dysfunction represents a major factor for atherosclerosis. Our results demonstrated that the predominantly expressed IL-32 isoforms (IL-32β and IL-32γ) have a selective impact on the production of the proinflammatory cytokine IL-6 by CAEC. Furthermore, these two isoforms induced endothelial cell dysfunction by upregulating the expression of the adhesion molecules ICAM-I and VCAM-I and the chemoattractants CCL-2, CXCL-8 and CXCL-1. IL-32-mediated expression of these chemokines was sufficient to drive monocyte transmigration in vitro. Finally, we demonstrate that IL-32 expression in both PLWH and controls correlates with the carotid artery stiffness, measured by the cumulated lateral translation. These results suggest a role for IL-32-mediated endothelial cell dysfunction in dysregulation of the blood vessel wall and that IL-32 may represent a therapeutic target to prevent CVD in PLWH.
Collapse
|
48
|
Zamani M, Rezaiian F, Saadati S, Naseri K, Ashtary-Larky D, Yousefi M, Golalipour E, Clark CCT, Rastgoo S, Asbaghi O. The effects of folic acid supplementation on endothelial function in adults: a systematic review and dose-response meta-analysis of randomized controlled trials. Nutr J 2023; 22:12. [PMID: 36829207 PMCID: PMC9951414 DOI: 10.1186/s12937-023-00843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Endothelial dysfunction serves as an early marker for the risk of cardiovascular disease (CVD); therefore, it is an attractive site of therapeutic interventions to reduce the risk of CVD. This study was conducted to investigate the effect of folic acid supplementation on endothelial function markers in randomized controlled trials (RCTs). METHODS PubMed, ISI web of science, and Scopus databases were searched up to July 2022 for detecting eligible studies. A random-effects model was used for meta-analysis, and linear Meta-regression and non-linear dose-response analysis were performed to assess whether the effect of folic acid supplementation was affected by the dose and duration of intervention. Cochrane tools were also used to assess the risk of bias in the included studies. RESULTS Twenty-one studies, including 2025 participants (1010 cases and 1015 controls), were included in the present meta-analysis. Folic acid supplementation significantly affected the percentage of flow-mediated dilation (FMD%) (WMD: 2.59%; 95% CI: 1.51, 3.67; P < 0.001) and flow-mediated dilation (FMD) (WMD: 24.38 μm; 95% CI: 3.08, 45.68; P = 0.025), but not end-diastolic diameter (EDD) (WMD: 0.21 mm; 95% CI: - 0.09, 0.52; P = 0.176), and intercellular adhesion molecule (ICAM) (WMD: 0.18 ng/ml; 95% CI: - 10.02, 13.81; P = 0.755). CONCLUSIONS These findings suggest that folic acid supplementation may improve endothelial function by increasing FMD and FMD% levels. TRIAL REGISTRATION PROSPERO registration cod: CRD42021289744.
Collapse
Affiliation(s)
- Mohammad Zamani
- grid.411705.60000 0001 0166 0922Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Rezaiian
- grid.411600.2National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeede Saadati
- grid.1002.30000 0004 1936 7857Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Kaveh Naseri
- grid.411600.2Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Damoon Ashtary-Larky
- grid.411230.50000 0000 9296 6873Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Yousefi
- grid.411600.2Faculty of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Elnaz Golalipour
- grid.411600.2Faculty of Medicine, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Cain C. T. Clark
- grid.8096.70000000106754565Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB UK
| | - Samira Rastgoo
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Omid Asbaghi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Kralj L, Lenasi H. Wavelet analysis of laser Doppler microcirculatory signals: Current applications and limitations. Front Physiol 2023; 13:1076445. [PMID: 36741808 PMCID: PMC9895103 DOI: 10.3389/fphys.2022.1076445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/28/2022] [Indexed: 01/21/2023] Open
Abstract
Laser Doppler flowmetry (LDF) has long been considered a gold standard for non-invasive assessment of skin microvascular function. Due to the laser Doppler (LD) microcirculatory signal's complex biological and physiological context, using spectral analysis is advisable to extract as many of the signal's properties as feasible. Spectral analysis can be performed using either a classical Fourier transform (FT) technique, which has the disadvantage of not being able to localize a signal in time, or wavelet analysis (WA), which provides both the time and frequency localization of the inspected signal. So far, WA of LD microcirculatory signals has revealed five characteristic frequency intervals, ranging from 0.005 to 2 Hz, each of which being related to a specific physiological influence modulating skin microcirculatory response, providing for a more thorough analysis of the signals measured in healthy and diseased individuals. Even though WA is a valuable tool for analyzing and evaluating LDF-measured microcirculatory signals, limitations remain, resulting in a lack of analytical standardization. As a more accurate assessment of human skin microcirculation may better enhance the prognosis of diseases marked by microvascular dysfunction, searching for improvements to the WA method is crucial from the clinical point of view. Accordingly, we have summarized and discussed WA application and its limitations when evaluating LD microcirculatory signals, and presented insight into possible future improvements. We adopted a novel strategy when presenting the findings of recent studies using WA by focusing on frequency intervals to contrast the findings of the various studies undertaken thus far and highlight their disparities.
Collapse
Affiliation(s)
- Lana Kralj
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Helena Lenasi
- Institute of Physiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,*Correspondence: Helena Lenasi,
| |
Collapse
|
50
|
Busnatu ȘS, Andronic O, Pană MA, Stoian AP, Scafa-Udriște A, Păun N, Stanciu S. Oral Arginine Supplementation in Healthy Individuals Performing Regular Resistance Training. Healthcare (Basel) 2023; 11:healthcare11020182. [PMID: 36673550 PMCID: PMC9891176 DOI: 10.3390/healthcare11020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Resistance exercise training is well documented as having cardiovascular benefits, but paradoxically, it seems to increase arterial stiffness, favoring the development of high blood pressure. The present study investigates the potential effects of oral supplementation with arginine in healthy individuals performing exercise resistance training. We studied 70 non-smoking male subjects between the ages of 30 and 45 with normal or mildly increased blood pressure on ambulatory monitoring (for 24 h) and normal blood samples and echocardiography, who performed regular resistance exercise training for at least five years with a minimum of three workouts per week. They were divided into two groups in a random manner: 35 males were placed in the arginine group (AG) that followed a 6-month supplementation of their regular diets with 5 g of oral arginine powder taken before their exercise workout, and the control (non-arginine) group (NAG) consisted of 35 males. All subjects underwent body composition analysis, 24 h blood pressure monitoring and pulse wave analysis at enrollment and at six months. After six months of supplementation, blood pressure values did not change in the NAG, while in the AG, we found a decrease of 5.6 mmHg (p < 0.05) in mean systolic blood pressure and a decrease of 4.5 mmHg (p < 0.05) in diastolic values. There was also a 0.62% increase in muscle mass in the AG vs. the NAG (p < 0.05), while the body fat decreased by 1% (p < 0.05 in AG vs. NAG). Overall, the AG gained twice the amount of muscle mass and lost twice as much body fat as the NAG. No effects on the mean weighted average heart rate were recorded in the subjects. The results suggest that oral supplementation with arginine can improve blood pressure and body composition, potentially counteracting the stress induced by resistance exercise training. Supplementation with arginine can be a suitable adjuvant for these health benefits in individuals undertaking regular resistance training.
Collapse
Affiliation(s)
- Ștefan-Sebastian Busnatu
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania
| | - Octavian Andronic
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Maria-Alexandra Pană
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Bagdasar-Arseni Emergency Hospital, 050474 Bucharest, Romania
- Correspondence:
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandru Scafa-Udriște
- Department of Cardio-Thoracic, Carol Davila University of Medicine and Pharmacy, Emergency Clinical Hospital, 014461 Bucharest, Romania
| | - Nicolae Păun
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Theodor Burghele Clinical Hospital, 020021 Bucharest, Romania
| | - Silviu Stanciu
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, Central Military Hospital, 010825 Bucharest, Romania
| |
Collapse
|