1
|
Wang Y, Lu L, Ye S, Fu Q. CAR-based cell therapies for systemic lupus erythematosus. Chin Med J (Engl) 2024:00029330-990000000-01362. [PMID: 39682021 DOI: 10.1097/cm9.0000000000003406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 12/18/2024] Open
Abstract
ABSTRACT The remarkable efficacy of chimeric antigen receptor (CAR) T cell therapy in hematological malignancies has provided a solid basis for the therapeutic concept, wherein specific pathogenic cell populations can be eradicated by means of targeted recognition. During the past few years, CAR-based cell therapies have been extensively investigated in preclinical and clinical research across various non-tumor diseases, with particular emphasis in the treatment of autoimmune diseases (ADs), yielding significant advancements. The recent deployment of CD19-directed CAR T cells has induced long-lasting, drug-free remission in patients with systemic lupus erythematosus (SLE) and other systemic AD, alongside a more profound immune reconstruction of B cell repertoire compared with conventional immunosuppressive agents and B cell-targeting biologics. Despite the initial success achieved by CAR T cell therapy, it is critical to acknowledge the divergences in its application between cancer and AD. Through examining recent clinical studies and ongoing research, we highlight the transformative potential of this therapeutic approach in the treatment of SLE, while also addressing the challenges and future directions necessary to enhance the long-term efficacy and safety of CAR-based cell therapies in clinical practice.
Collapse
Affiliation(s)
- Yiyang Wang
- Department of Rheumatology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200127, China
| | - Liangjing Lu
- Department of Rheumatology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200127, China
| | - Shuang Ye
- Department of Rheumatology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200127, China
| | - Qiong Fu
- Department of Rheumatology, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200127, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200127, China
| |
Collapse
|
2
|
Wu M, Yu S, Yan S, Wu M, Zhang L, Chen S, Shi D, Liu S, Fan Y, Lin X, Shen J. Peroxynitrite reduces Treg cell expansion and function by mediating IL-2R nitration and aggravates multiple sclerosis pathogenesis. Redox Biol 2024; 75:103240. [PMID: 38889621 PMCID: PMC11231601 DOI: 10.1016/j.redox.2024.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
T-helper 17 cells and regulatory T cells (Treg) are critical regulators in the pathogenesis of multiple sclerosis (MS) but the factors affecting Treg/Th17 balance remains largely unknown. Redox balance is crucial to maintaining immune homeostasis and reducing the severity of MS but the underlying mechanisms are unclear yet. Herein, we tested the hypothesis that peroxynitrite, a representative molecule of reactive nitrogen species (RNS), could inhibit peripheral Treg cells, disrupt Treg/Th17 balance and aggravate MS pathology by inducing nitration of interleukin-2 receptor (IL-2R) and down-regulating RAS/JNK-AP-1 signalling pathway. Experimental autoimmune encephalomyelitis (EAE) mouse model and serum samples of MS patients were used in the study. We found that the increases of 3-nitrotyrosine and IL-2R nitration in Treg cells were coincided with disease severity in the active EAE mice. Mechanistically, peroxynitrite-induced IL-2R nitration down-regulated RAS/JNK signalling pathway, subsequently impairing peripheral Treg expansion and function, increasing Teff infiltration into the central nerve system (CNS), aggravating demyelination and neurological deficits in the EAE mice. Those changes were abolished by peroxynitrite decomposition catalyst (PDC) treatment. Furthermore, transplantation of the PDC-treated-autologous Treg cells from donor EAE mice significantly decreased Th17 cells in both axillary lymph nodes and lumbar spinal cord, and ameliorated the neuropathology of the recipient EAE mice. Those results suggest that peroxynitrite could disrupt peripheral Treg/Th17 balance, and aggravate neuroinflammation and neurological deficit in active EAE/MS pathogenesis. The underlying mechanisms are related to induce the nitration of IL-2R and inhibit the RAS/JNK-AP-1 signalling pathway in Treg cells. The study highlights that targeting peroxynitrite-mediated peripheral IL-2R nitration in Treg cells could be a novel therapeutic strategy to restore Treg/Th17 balance and ameliorate MS/EAE pathogenesis. The study provides valuable insights into potential role of peripheral redox balance in maintaining CNS immune homeostasis.
Collapse
MESH Headings
- Peroxynitrous Acid/metabolism
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/immunology
- Mice
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Humans
- Receptors, Interleukin-2/metabolism
- Female
- Signal Transduction/drug effects
- Disease Models, Animal
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Male
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Meiling Wu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Sulan Yu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Shenyu Yan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Minghui Wu
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Lu Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Shuang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Dongyun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200000, China
| | - Shanlin Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200000, China; Free Radical Regulation and Application Research Center of Fudan University, Shanghai, 200000, China
| | - Yongping Fan
- Department of Traditional Chinese Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xiang Lin
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China.
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR 999077, China.
| |
Collapse
|
3
|
Guo C, Dai X, Du Y, Xiong X, Gui X. Preclinical development of a novel CCR8/CTLA-4 bispecific antibody for cancer treatment by disrupting CTLA-4 signaling on CD8 T cells and specifically depleting tumor-resident Tregs. Cancer Immunol Immunother 2024; 73:210. [PMID: 39123089 PMCID: PMC11315865 DOI: 10.1007/s00262-024-03794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Anti-CTLA-4 antibodies faced challenges due to frequent adverse events and limited efficacy, which spurred the exploration of next-generation CTLA-4 therapeutics to balance regulatory T cells (Tregs) depletion and CD8 T cells activation. CCR8, identified primarily on tumor-infiltrating Tregs, has become a target of interest due to the anti-tumor effects demonstrated by CCR8 antibody-mediated Tregs depletion. Single-cell RNA sequencing analysis reveals that CCR8-positive Tregs constitute a small subset, with concurrent expression of CCR8 and CTLA-4. Consequently, we proposed a novel bispecific antibody targeting CCR8 and CTLA-4 that had the potential to enhance T cell activation while selectively depleting intratumor Tregs. The candidate molecule 2MW4691 was developed in a tetravalent symmetric format, maintaining a strong binding affinity for CCR8 while exhibiting relatively weaker CTLA-4 binding. This selective binding ability allowed 2MW4691 to target and deplete tumor-infiltrating Tregs with higher specificity. In vitro assays verified the antibody's capacity for antibody-dependent cellular cytotoxicity (ADCC) to Tregs with high level of CTLA-4 expression, but not CD8 T cells with relatively low level of CTLA-4 on cell surface. Also, 2MW4691 inhibited the CTLA-4 pathway and enhanced T cell activation. The in vivo therapeutic efficacy of 2MW4691 was further demonstrated using hCCR8 or hCTLA-4 humanized mouse models and hCCR8/hCTLA-4 double knock-in mouse models. In cynomolgus monkeys, 2MW4691 was well-tolerated, exhibited the anticipated pharmacokinetic profile, and had a minimal impact on the peripheral T cell population. The promising preclinical results supported the further evaluation of 2MW4691 as a next-generation Treg-based therapeutics in clinical trials.
Collapse
Affiliation(s)
- Cuicui Guo
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xiaodong Dai
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Yulei Du
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xiumei Xiong
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xun Gui
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| |
Collapse
|
4
|
Wang Q, Yang Y, Chen Z, Li B, Niu Y, Li X. Lymph Node-on-Chip Technology: Cutting-Edge Advances in Immune Microenvironment Simulation. Pharmaceutics 2024; 16:666. [PMID: 38794327 PMCID: PMC11124897 DOI: 10.3390/pharmaceutics16050666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Organ-on-a-chip technology is attracting growing interest across various domains as a crucial platform for drug screening and testing and is set to play a significant role in precision medicine research. Lymph nodes, being intricately structured organs essential for the body's adaptive immune responses to antigens and foreign particles, are pivotal in assessing the immunotoxicity of novel pharmaceuticals. Significant progress has been made in research on the structure and function of the lymphatic system. However, there is still an urgent need to develop prospective tools and techniques to delve deeper into its role in various diseases' pathological and physiological processes and to develop corresponding immunotherapeutic therapies. Organ chips can accurately reproduce the specific functional areas in lymph nodes to better simulate the complex microstructure of lymph nodes and the interactions between different immune cells, which is convenient for studying specific biological processes. This paper reviews existing lymph node chips and their design approaches. It discusses the applications of the above systems in modeling immune cell motility, cell-cell interactions, vaccine responses, drug testing, and cancer research. Finally, we summarize the challenges that current research faces in terms of structure, cell source, and extracellular matrix simulation of lymph nodes, and we provide an outlook on the future direction of integrated immune system chips.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Q.W.); (Y.Y.); (Z.C.); (B.L.); (Y.N.)
| |
Collapse
|
5
|
Guo J, Si G, Si F. Treg cells as a protective factor for Hashimoto`s thyroiditis: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1347695. [PMID: 38524638 PMCID: PMC10957564 DOI: 10.3389/fendo.2024.1347695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Background and objectives Hashimoto's thyroiditis (HT), a chronic autoimmune disorder impacting thyroid function, is a growing public health concern. The relationship between Treg cells and HT has been extensively studied, with Treg cells considered crucial in suppressing HT progression. However, these studies have mainly been observational, limiting our understanding of Treg cells' impact on HT risk. Leveraging large datasets, we utilized Mendelian randomization (MR) analysis to examine the causal association between Treg cell biomarkers and HT, providing additional validation for these relationships. Methods Comprehensive two-sample Mendelian randomization analysis was performed to determine the causal association between Treg cells signatures and HT in this study. Based on publicly available genetic data, we explored causal associations between 165 Treg cells signatures and HT risk. Results The European cohort study has identified five Treg cell phenotypes that causally protect against HT risk. Resting Treg %CD4 (OR = 0.975, 95% CI = 0.954~0.998, P = 0.030); CD4 on resting Treg (OR = 0.938, 95% CI = 0.882~0.997, P = 0.041; CD28- CD8dim %CD8dim (OR = 0.983, 95% CI = 0.969~0.998, P = 0.030); CD25 on CD39+ resting Treg (OR = 0.926, 95% CI = 0.864~0.991, P = 0.026); 5) CD28 on activated & secreting Treg (OR = 0.969, 95% CI = 0.942~0.996, P = 0.025). The Asian cohort study has identified four Treg cell phenotypes negatively correlated with the risk of HT. CD25hi %T cell (OR = 0.635, 95% CI = 0.473~852, P = 0.002); CD4 Treg %CD4 (OR = 0.829, 95% CI = 0.687~1.000, P = 0.050); CD127-CD8br %T cell (OR = 0.463, 95% CI =0.311~0.687, P< 0.001); CD3 on resting Treg (OR = 0.786, 95% CI = 0.621~0.994, P = 0.044). Conclusion Our study has demonstrated the close connection between Treg cells and HT by genetic means, thus providing foundational basis for future research.
Collapse
Affiliation(s)
- Jinzhou Guo
- Academy of Zhongjing, Henan University of Chinese Medicine, Zhengzhou, China
- Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Prescription Signaling, Academy of Zhongjing, Zhengzhou, China
- Henan Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Prescription Signaling, Henan International Joint, Zhengzhou, China
| | - Gao Si
- Department of Orthopedic, Peking University Third Hospital, Beijing, China
| | - Fuchun Si
- Academy of Zhongjing, Henan University of Chinese Medicine, Zhengzhou, China
- Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Prescription Signaling, Academy of Zhongjing, Zhengzhou, China
- Henan Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Prescription Signaling, Henan International Joint, Zhengzhou, China
| |
Collapse
|
6
|
Saulle I, Gidaro A, Donadoni M, Vanetti C, Mutti A, Romano ME, Clerici M, Cogliati C, Biasin M. Immunological Profiles in Parry-Romberg Syndrome: A Case-Control Study. J Clin Med 2024; 13:1219. [PMID: 38592689 PMCID: PMC10932088 DOI: 10.3390/jcm13051219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Parry-Romberg syndrome (PRS) is a rare craniofacial disorder. The aim of this study is to provide information on the immunological profile of this pathology. Since PRS can be included in a wider spectrum of sclerodermic diseases, we propose a case-control study comparing a patient affected by PRS with one with a diagnosis of scleroderma, herein used as control (CTR). Methods: B lymphocyte, T lymphocyte, and monocyte phenotypes and functions were assessed by flow cytometry in influenza (Flu)- or anti cluster differentiation (CD)3/CD28-stimulated peripheral blood mononuclear cells (PBMCs). Cytokine concentration was evaluated as well in PBMC supernatants, plasma, and saliva by Luminex assay. Results: T and B lymphocytes were similarly activated in unstimulated PRS and CTR cells but differed following antigen stimulation. T helper (Th)17 lymphocytes were expanded in PRS compared to CTR; this increase correlated with higher interleukin (IL)-17 concentration. Conclusions: Our case-control study is the first to compare the immunological profiles of PRS and scleroderma patients. The higher percentage of Th17 cells in PRS suggests the use of anti-IL17 receptor monoclonal antibody in this rare disease; however, further studies with larger numbers of patients are needed to confirm our findings.
Collapse
Affiliation(s)
- Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Antonio Gidaro
- Department of Rheumatology, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Mattia Donadoni
- Department of Rheumatology, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Claudia Vanetti
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Alessandra Mutti
- Department of Rheumatology, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Maria Eva Romano
- Department of Rheumatology, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Don C. Gnocchi Foundation, IRCCS, 20122 Milan, Italy
| | - Chiara Cogliati
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| |
Collapse
|
7
|
Sikking MA, Stroeks SL, Marelli-Berg F, Heymans SR, Ludewig B, Verdonschot JA. Immunomodulation of Myocardial Fibrosis. JACC Basic Transl Sci 2023; 8:1477-1488. [PMID: 38093747 PMCID: PMC10714184 DOI: 10.1016/j.jacbts.2023.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/27/2024]
Abstract
Immunotherapy is a potential cornerstone in the treatment of myocardial fibrosis. During a myocardial insult or heart failure, danger signals stimulate innate immune cells to produce chemokines and profibrotic cytokines, which initiate self-escalating inflammatory processes by attracting and stimulating adaptive immune cells. Stimulation of fibroblasts by inflammatory processes and the need to replace damaged cardiomyocytes fosters reshaping of the cardiac fibroblast landscape. In this review, we discuss new immunomodulatory strategies that manipulate and direct cardiac fibroblast activation and differentiation. In particular, we highlight immunomodulatory strategies that target fibroblasts such as chimeric antigen receptor T cells, interleukin-11, and invariant natural killer T-cells. Moreover, we discuss the potential of manipulating both innate and adaptive immune system components for the translation into clinical validation. Clearly, multiple pathways should be considered to develop innovative approaches to ameliorate myocardial fibrosis and hence to reduce the risk of heart failure.
Collapse
Affiliation(s)
- Maurits A. Sikking
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Sophie L.V.M. Stroeks
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Federica Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Stephane R.B. Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
- Department of Cardiovascular Research, University of Leuven, Leuven, Belgium
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Job A.J. Verdonschot
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| |
Collapse
|
8
|
La Cava A. Low-dose interleukin-2 therapy in systemic lupus erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:150-156. [PMID: 37781677 PMCID: PMC10538619 DOI: 10.2478/rir-2023-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023]
Abstract
In systemic lupus erythematosus (SLE), T regulatory cells (Tregs) contribute to the inhibition of autoimmune responses by suppressing self-reactive immune cells. Interleukin (IL)-2 plays an essential role in the generation, function and homeostasis of the Tregs and is reduced in SLE. Several clinical studies, including randomized trials, have shown that low-dose IL-2 therapy in SLE patients is safe and effective and can reduce disease manifestations. This review discusses the rationale for the use of low-dose IL-2 therapy in SLE, the clinical responses in patients, and the effects of this therapy on different types of T cells. Considerations are made on the current and future directions of use of low-dose IL-2 regimens in SLE.
Collapse
Affiliation(s)
- Antonio La Cava
- Department of Medicine, University of California Los Angeles, Los Angeles, CA90095, USA
| |
Collapse
|
9
|
Osuna-Gómez R, Castellví I, Mulet M, Ortiz MÀ, Brough DE, Sabzevari H, Semnani RT, Vidal S. Impaired Regulation by IL-35 in Systemic Sclerosis. Int J Mol Sci 2023; 24:10567. [PMID: 37445745 DOI: 10.3390/ijms241310567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
This study investigated the role of IL-35 in systemic sclerosis (SSc) patients, focusing on CD4+ T cell response and immunomodulatory cytokine production. By comparing the cytokine levels in healthy donors (HD) and SSc patients using ELISAs, we found a significantly lower plasma IL-35 concentration in the SSc patients (52.1 ± 5.6 vs. 143 ± 11.1, p < 0.001). Notably, the IL-35 levels showed a negative correlation with TGF-β (p < 0.001) and IL-17 (p = 0.04). Assessing the IL-35R expression across cell types in the SSc patients and HDs via flow cytometry, we found higher levels on monocytes (40.7 + 5.7 vs. 20.3 ± 1.9, p < 0.001) and lower levels on CD8+ T cells (61.8 ± 9.2 vs. 83.4 ± 0.8, p < 0.05) in the SSc patients. The addition of recombinant IL-35 to stimulated peripheral blood mononuclear cells reduced the IL-17+CD4+ T cell percentage (9.0 ± 1.5 vs. 4.8 ± 0.7, p < 0.05) and increased the IL-35+CD4+ T percentage (4.1 ± 2.3 vs. 10.2 ± 0.8, p < 0.001). In a Treg:Tresponder cell Sco-culture assay with HD and SSc samples, rIL35 decreased the cell proliferation and levels of IL-17A (178.2 ± 30.5 pg/mL vs. 37.4 ± 6.4 pg/mL, p < 0.001) and TGF-β (4194 ± 777 pg/mL vs. 2413 ± 608 pg/mL, p < 0.01). Furthermore, we observed a positive correlation between the modified Rodnan skin score (mRSS) and TGF-β (p < 0.001), while there was a negative correlation between mRSS and IL-35 (p = 0.004). Interestingly, higher levels of plasmatic IL-35 were detected in individuals with limited disease compared to those with diffuse disease (60.1 ± 8.0 vs. 832.3 ± 4.1, p < 0.05). These findings suggest that IL-35 exhibits anti-inflammatory properties in SSc and it may serve as a marker for disease severity and a therapeutic target.
Collapse
Affiliation(s)
- Rubén Osuna-Gómez
- Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Ivan Castellví
- Department of Rheumatology and Systemic Autoimmune Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Maria Mulet
- Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Mª Àngels Ortiz
- Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | | | | | | | - Silvia Vidal
- Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| |
Collapse
|
10
|
Hu QL, Han B, He WH, Yang C, Chen M. [Allogeneic unrelated non HLA matched umbilical cord blood transfusion for refractory immune cytopenia: results of a phase I clinical trial]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:431-435. [PMID: 37550196 PMCID: PMC10440616 DOI: 10.3760/cma.j.issn.0253-2727.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 08/09/2023]
Affiliation(s)
- Q L Hu
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - B Han
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - W H He
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - C Yang
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - M Chen
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
11
|
Ghobadinezhad F, Ebrahimi N, Mozaffari F, Moradi N, Beiranvand S, Pournazari M, Rezaei-Tazangi F, Khorram R, Afshinpour M, Robino RA, Aref AR, Ferreira LMR. The emerging role of regulatory cell-based therapy in autoimmune disease. Front Immunol 2022; 13:1075813. [PMID: 36591309 PMCID: PMC9795194 DOI: 10.3389/fimmu.2022.1075813] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Autoimmune disease, caused by unwanted immune responses to self-antigens, affects millions of people each year and poses a great social and economic burden to individuals and communities. In the course of autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and multiple sclerosis, disturbances in the balance between the immune response against harmful agents and tolerance towards self-antigens lead to an immune response against self-tissues. In recent years, various regulatory immune cells have been identified. Disruptions in the quality, quantity, and function of these cells have been implicated in autoimmune disease development. Therefore, targeting or engineering these cells is a promising therapeutic for different autoimmune diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid suppressor cells, and some subsets of innate lymphoid cells are arising as important players among this class of cells. Here, we review the roles of each suppressive cell type in the immune system during homeostasis and in the development of autoimmunity. Moreover, we discuss the current and future therapeutic potential of each one of these cell types for autoimmune diseases.
Collapse
Affiliation(s)
- Farbod Ghobadinezhad
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran,Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Mozaffari
- Department of Nutrition, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Neda Moradi
- Division of Biotechnology, Department of Cell and Molecular Biology and Microbiology, Nourdanesh Institute of Higher Education, University of Meymeh, Isfahan, Iran
| | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Shahrekord, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Afshinpour
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,Xsphera Biosciences, Boston, MA, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| |
Collapse
|
12
|
Jin W, Zheng Y, Zhu P. T cell abnormalities in systemic sclerosis. Autoimmun Rev 2022; 21:103185. [PMID: 36031049 DOI: 10.1016/j.autrev.2022.103185] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/02/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease with a poor prognosis. To date, the pathogenesis of SSc is still unclear; moreover, its pathological conditions include microvascular damage, inflammation, and immune abnormalities. Different types of T cells may cause vasculitis and fibrosis in SSc by means of up- and down-regulation of cell surface molecules, abnormal release of pro-fibrotic or pro-inflammatory cytokines and direct contact with fibroblasts. These T cells, which are mainly CD4 + T cells, include the subtypes, T follicular helper (Tfh) cells, regulatory T Cells (Treg), interleukin-17 (IL-17)-producing Th17 cells, CD4+ cytotoxic T lymphocytes (CTLs), and angiogenic T (Tang) cells. In addition to the Th1/Th2 imbalance, which has long been established, there is also a Th17/Treg imbalance in SSc. This imbalance may be closely related to the abnormal immune status of SSc. There is mounting evidence that suggest T cell abnormalities may be crucial to the pathogenesis of SSc. In terms of treatment, existing therapies that target T cells, such as immunosuppressive therapy (tacrolimus), Janus kinase(JAK) inhibitors, and biologics(abatacept), have had some success. Other non-drug therapies, including Mesenchymal stem cells (MSCs), have extensive and complex mechanisms of action actually including T cell regulation. Based on the current evidence, we believe that the study of T cells will further our understanding of the pathogenesis of SSc, and may lead to more targeted treatment optionsfor patients with SSc.
Collapse
Affiliation(s)
- Wei Jin
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yan Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China; National Translational Science Center for Molecular Medicine, Xi'an, PR China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China; National Translational Science Center for Molecular Medicine, Xi'an, PR China.
| |
Collapse
|
13
|
Short-term and low-dose IL-2 therapy increases the reduced Treg cells in patients with microscopic polyangiitis. Clin Exp Rheumatol 2022; 21:103156. [PMID: 35896124 DOI: 10.1016/j.autrev.2022.103156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The breakdown of immune tolerance mediated by the reduced regulatory T (Treg) cell contributes to autoimmune diseases, which can be recovered by the shortterm and low-dose interleukin 2 (IL-2). However, the role of Treg cells in microscopic polyangiitis (MPA) and the efficacy of short-term and low-dose IL-2 for MPA remain unclear. Therefore, we performed a retrospective study to explore the role of Treg cells and evaluate the efficacy of short-term and low-dose IL-2 therapy in MPA. METHODS 52 MPA were collected as research objects, and 15 of them voluntarily received short-term and low-dose IL-2 subcutaneous injection combined with conventional therapy. 60 volunteers were recruited as health controls (HC) according to the inclusion and exclusion criteria. The number of circulating CD4 + T cell subsets was detected by flow cytometry. RESULTS Patients with MPA had reduced circulating Treg cells than HCs (P < 0.001), and the level of Treg cells were reduced in MPA-activity and ANCA-positive group (P = 0.018 and P = 0.008 respectively). The patients with lower Treg cells had the higher incidence of the organ involvement (P = 0.006). The level of Treg cells in MPA was doubled after the short-term and low-dose IL-2 combined with conventional therapy (P = 0.001), and the disease activity indicators such as ESR and CRP were improved (P < 0.05) with no apparent side effects. CONCLUSION Patients with MPA had reduced circulating Treg cells, especially in the MPA-activity and ANCA-positive patients. And the patients with lower Treg cells were more likely to exhibit the organ involvement. Short-term and low-dose IL-2 therapy increased the reduced Treg cells and promoted the remission of the disease at a certain extent with well tolerance.
Collapse
|
14
|
The Regulatory-T-Cell Memory Phenotype: What We Know. Cells 2022; 11:cells11101687. [PMID: 35626725 PMCID: PMC9139615 DOI: 10.3390/cells11101687] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 01/25/2023] Open
Abstract
In immunology, the discovery of regulatory T (Treg) cells was a major breakthrough. Treg cells play a key role in pregnancy maintenance, in the prevention of autoimmune responses, and in the control of all immune responses, including responses to self cells, cancer, infection, and a transplant. It is currently unclear whether Treg cells are capable of long-term memory of an encounter with an antigen. Although the term “immunological memory” usually means an enhanced ability to protect the body from reinfection, the memory of the suppressive activity of Treg cells helps to avoid the state of generalized immunosuppression that may result from the second activation of the immune system. In this review, we would like to discuss the concept of regulatory memory and in which tissues memory Treg cells can perform their functions.
Collapse
|
15
|
Fang Y, Zhang Q, Yuan X, Lv C, Zhang J, Zhu Y, Wei Z, Xia Y, Dai Y. Tetrandrine, an immunosuppressive alkaloid isolated from
Steohania tetrandra
S. Moore, induces the generation of Treg cells through enhancing fatty acid oxidation. Immunology 2022; 166:492-506. [DOI: 10.1111/imm.13500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/23/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yulai Fang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| | - Qin Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| | - Xusheng Yuan
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| | - Changjun Lv
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| | - Jing Zhang
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| | - Yanrong Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| |
Collapse
|
16
|
Liu HY, Shi ZY, Fan D, Zhang SX, Wu LX, Lu KY, Yang SY, Li WT, kang JF, Li CH, Cheng ZH, Xue Y, Wu ZF, Li XF, Li SJ. Absolute reduction in peripheral regulatory T cells in patients with Graves’ disease and post-treatment recovery. Mol Immunol 2022; 144:49-57. [DOI: 10.1016/j.molimm.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 11/25/2022]
|
17
|
Gao YL, Liu YC, Zhang X, Shou ST, Chai YF. Insight Into Regulatory T Cells in Sepsis-Associated Encephalopathy. Front Neurol 2022; 13:830784. [PMID: 35370925 PMCID: PMC8965708 DOI: 10.3389/fneur.2022.830784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse central nervous system (CNS) dysfunction during sepsis, and is associated with increased mortality and poor outcomes in septic patients. Despite the high incidence and clinical relevance, the exact mechanisms driving SAE pathogenesis are not yet fully understood, and no specific therapeutic strategies are available. Regulatory T cells (Tregs) have a role in SAE pathogenesis, thought to be related with alleviation of sepsis-induced hyper-inflammation and immune responses, promotion of T helper (Th) 2 cells functional shift, neuroinflammation resolution, improvement of the blood-brain barrier (BBB) function, among others. Moreover, in a clinical point of view, these cells have the potential value of improving neurological and psychiatric/mental symptoms in SAE patients. This review aims to provide a general overview of SAE from its initial clinical presentation to long-term cognitive impairment and summarizes the main features of its pathogenesis. Additionally, a detailed overview on the main mechanisms by which Tregs may impact SAE pathogenesis is given. Finally, and considering that Tregs may be a novel target for immunomodulatory intervention in SAE, different therapeutic options, aiming to boost peripheral and brain infiltration of Tregs, are discussed.
Collapse
Affiliation(s)
- Yu-lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Yu-lei Gao
| | - Yan-cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People's Hospital of Shandong Province, Rizhao, China
| | - Song-tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Yan-fen Chai
| |
Collapse
|
18
|
T Cells, Interleukin-2 and Systemic Lupus Erythematosus—From Pathophysiology to Therapy. Cells 2022; 11:cells11060980. [PMID: 35326431 PMCID: PMC8946767 DOI: 10.3390/cells11060980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
The phenotypic and functional complexities of T cells engender complicated and often confusing concepts as to how T cells ignite, accelerate and brake the inflammatory processes involved in systemic lupus erythematosus (SLE), let alone the plasticity of T cells that takes place under different immunological contexts. Nevertheless, being one of the prime survival factors of T cells, interleukin (IL)-2 plays a potentially critical role in many immunological scenarios during the pathophysiological process of SLE. Here, the pathophysiology of lupus T cells and current, as well as ongoing, therapeutic approaches of SLE that involve low-dose IL-2 administration will be highlighted. The mechanisms of IL-2 deficiency in SLE pathophysiology, the effects of low-dose IL-2 on T cells and restoration of lupus manifestations in murine SLE models, as well as the efficacy and safety of clinical trials that evaluated low-dose IL-2-containing regimens in patients with SLE will be discussed.
Collapse
|
19
|
Li N, Li X, Su R, Wu R, Niu HQ, Luo J, Gao C, Li X, Wang C. Low-Dose Interleukin-2 Altered Gut Microbiota and Ameliorated Collagen-Induced Arthritis. J Inflamm Res 2022; 15:1365-1379. [PMID: 35241924 PMCID: PMC8887675 DOI: 10.2147/jir.s344393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Purpose Low-dose interleukin-2 (ld-IL-2) has been shown to regulate the balance between effector T and regulatory T (Treg) cells and has been used in several clinical trials to treat autoimmune diseases including rheumatoid arthritis (RA). In this study, we investigated the effects of ld-IL-2 on collagen-induced arthritis (CIA) in mice. Methods Arthritis severity in CIA mice was measured using the arthritis index (AI), radiographs, and hematoxylin and eosin staining. Cytokines were detected using enzyme-linked immunosorbent assay. Gut microbiota alterations and short-chain fatty acid production were analyzed through 16S rRNA sequencing and gas chromatography. Results The AI scores of CIA mice treated with ld-IL-2 were significantly lower compared to the model group, which significantly reduced the severity of arthritis. Ld-IL-2 also altered the gut microbiota in CIA mice. The diversity, composition, and dominant species of gut microbiota were altered by ld-IL-2 treatment. Ld-IL-2 also increased short-chain fatty acid levels. There was a strong correlation between ld-IL-2 treatment and improved gut microbiota. Conclusion Ld-IL-2 significantly ameliorated joint inflammation and bone damage and improved gut microbial dysbiosis in CIA, indicating that it may be a promising therapy for RA patients.
Collapse
Affiliation(s)
- Na Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xuefei Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Hong-Qing Niu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Jing Luo
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women’s Hospital/Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Correspondence: Caihong Wang, Tel +8613603515399, Fax +863513365551, Email
| |
Collapse
|
20
|
Liu Y, Rang X, Zou X, Wang X, Zhang X, Wang Y, Xu C, Fu J. Identification of common susceptibility genes and drug target genes in multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis and its value to guide clinical treatment. Mult Scler Relat Disord 2022; 58:103504. [PMID: 35030369 DOI: 10.1016/j.msard.2022.103504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/11/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune-mediated demyelinating disease of the white matter in the central nervous system (CNS). In clinical practice, it was found that MS is associated with a variety of autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA). The aim of this study was to identify common susceptibility genes and drug target genes in MS, SLE, and RA and to provide new insights into treatment. METHODS The common susceptibility genes of MS, SLE, and RA were obtained by searching the GWAS database and using microarray data to validate. The Genome Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed, and the common KEGG pathways were selected. All the genes enriched in the common pathways were obtained and intersected with the susceptibility genes of MS, SLE, and RA to obtain the pathway genes of them respectively, and found the common pathogenesis-related genes of the three diseases. By reviewing the literature and the DrugBank database, the drugs and drug target genes that have been approved for the treatment of the three diseases were obtained. Finally, the DGIdb database was searched to predict potential drugs or molecular compounds that interact with susceptibility genes common to MS, SLE, and RA. RESULTS In MS, SLE, and RA, there were 46 common susceptibility genes, of which 23 were significantly differentially expressed in the microarray expression profile. Then, 2117 genes were obtained in the 42 common pathways, among which 17 pathogenesis-related genes were common in MS, SLE, and RA. The Drugbank database was used to obtain 29 drug target genes for MS, 43 drug target genes for RA, and 20 drug target genes for SLE. DHODH is a common drug target gene for MS, SLE, and RA, and its corresponding drugs are Leflunomide and Teriflunomide. A total of 13 genes and 366 potential drugs or molecular compounds were predicted to have interaction relationships after searching the DGIdb database. CONCLUSION The common susceptibility genes and drug target genes among MS, SLE, and RA provide a theoretical basis for the co-morbidity phenomenon of the three diseases in clinical practice and may guide the clinical treatment.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xinming Rang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaowei Zou
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xin Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xuemei Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yifei Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
21
|
Wang MY, Zhu WW, Zhang JY, Yu M, Zhai RD, Liu LK. Tertiary lymphoid structures in oral lichen planus and oral epithelial dysplasia with lichenoid features: A comparative study. Oral Dis 2021; 29:154-164. [PMID: 34897887 DOI: 10.1111/odi.14097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/13/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Tertiary lymphoid structures (TLSs) provide sites for antigen presentation and activation of lymphocytes, promoting their infiltration; thus, enhancing specific immune responses. The aim of this comparative cross-sectional study was to reveal the characteristics and influence of TLSs in oral lichen planus (OLP) and oral epithelial dysplasia (OED) with lichenoid features. METHODS Clinical information and samples of 51 OLP and 19 OED with lichenoid features were collected. Immunohistochemistry was performed, and the structures where CD20+ B cells and CD3+ T cells aggregated with peripheral lymph node addressin positive (PNAd+) vessels were defined as TLSs. The results and clinical information were analysed. RESULT TLS were found in 44 (86.3%) patients with OLP and 19 (100%) patients with OED. The TLS score was higher in OED group (p = 0.023), accompanied by an increased number of PNAd+ vessels. The TLS was significantly correlated with PNAd+ vessels (p = 0.027), CD20+ B (p < 0.001) and CD208+ dendritic cells (p = 0.001). Foxp3+ Treg cells but not CD8+ T cells infiltrated more severely in OED (p = 0.003) and increased when TLS score was high (p = 0.002). CONCLUSIONS This study revealed the widespread development of TLSs in the OLP and OED. The presence of TLSs showed a close relationship with dysplasia and may increase malignant potency by over-inducing Treg cells.
Collapse
Affiliation(s)
- Meng-Yao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Jiangsu, China.,Department of Basic Science of Stomatology, the affiliated Hospital of Stomatology, Nanjing Medical University, Jiangsu, China
| | - Wei-Wen Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Jiangsu, China.,Department of Basic Science of Stomatology, the affiliated Hospital of Stomatology, Nanjing Medical University, Jiangsu, China
| | - Jia-Yi Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Jiangsu, China.,Department of Basic Science of Stomatology, the affiliated Hospital of Stomatology, Nanjing Medical University, Jiangsu, China
| | - Miao Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Jiangsu, China.,Department of Periodontology, the affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Run-Dong Zhai
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Jiangsu, China.,Department of Basic Science of Stomatology, the affiliated Hospital of Stomatology, Nanjing Medical University, Jiangsu, China
| | - Lai-Kui Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Jiangsu, China.,Department of Basic Science of Stomatology, the affiliated Hospital of Stomatology, Nanjing Medical University, Jiangsu, China
| |
Collapse
|
22
|
Linares R, Francés R, Gutiérrez A, Juanola O. Bacterial Translocation as Inflammatory Driver in Crohn's Disease. Front Cell Dev Biol 2021; 9:703310. [PMID: 34557484 PMCID: PMC8452966 DOI: 10.3389/fcell.2021.703310] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 12/26/2022] Open
Abstract
Crohn’s disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract responsible for intestinal lesions. The multifactorial etiology attributed to CD includes a combination of environmental and host susceptibility factors, which result in an impaired host–microbe gut interaction. Bacterial overgrowth and dysbiosis, increased intestinal barrier permeability, and altered inflammatory responses in patients with CD have been described in the past. Those events explain the pathogenesis of luminal translocation of bacteria or its products into the blood, a frequent event in CD, which, in turn, favors a sustained inflammatory response in these patients. In this review, we navigate through the interaction between bacterial antigen translocation, permeability of the intestinal barrier, immunologic response of the host, and genetic predisposition as a combined effect on the inflammatory response observed in CD. Several lines of evidence support that translocation of bacterial products leads to uncontrolled inflammation in CD patients, and as a matter of fact, the presence of gut bacterial genomic fragments at a systemic level constitutes a marker for increased risk of relapse among CD patients. Also, the significant percentage of CD patients who lose response to biologic therapies may be influenced by the translocation of bacterial products, which are well-known drivers of proinflammatory cytokine production by host immune cells. Further mechanistic studies evaluating cellular and humoral immune responses, gut microbiota alterations, and genetic predisposition will help clinicians to better control and personalize the management of CD patients in the future.
Collapse
Affiliation(s)
- Raquel Linares
- Hepatic and Intestinal Immunobiology Group, Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Spain
| | - Rubén Francés
- Hepatic and Intestinal Immunobiology Group, Department of Clinical Medicine, Miguel Hernández University, San Juan de Alicante, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Ana Gutiérrez
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain.,Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Alicante, Spain
| | - Oriol Juanola
- Translational Research Laboratory, Gastroenterology and Hepatology, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Sciences, Universitá della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
23
|
Mahroum N, Zoubi M, Lavine N, Ohayon A, Amital H, Shoenfeld Y. The mosaic of autoimmunity - A taste for more. The 12th international congress of autoimmunity 2021 (AUTO12) virtual. Autoimmun Rev 2021; 20:102945. [PMID: 34509655 DOI: 10.1016/j.autrev.2021.102945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022]
Abstract
Notwithstanding the fact that the 12th international congress of autoimmunity (AUTO12) was held virtual this year, the number of the abstracts submitted and those presented crossed the thousand marks. Leading investigators and researchers from all over the world presented the latest developments of their research in the domain of autoimmunity and its correlation with various diseases. In terms of mechanisms of autoimmunity, an update on the mechanisms behind the association of autoimmunity with systemic diseases focusing on hyperstimulation was presented during AUTO12. In addition, a new mechanism of ASIA syndrome caused by an intrauterine contraceptive device was revealed demonstrating a complete resolution of symptoms following device removal. In regard to the correlation between autoimmunity and neurogenerative diseases, the loss of structural protein integrity as the trigger of immunological response was shown. Schizophrenia as well, and its correlation to pro-inflammatory cytokines was also addressed. Furthermore, and as it was said AUTO12 virtual due to COVID-19 pandemic, various works were dedicated to SARS-CoV-2 infection and COVID-19 in terms of autoimmune mechanisms involved in the pathogenesis, treatment and complications of COVID-19. For instance, the correlation between autoimmunity and the severity of COVID-19 was viewed. Moreover, the presence and association of autoantibodies in COVID-19 was also demonstrated, as well as the clinical outcomes of COVID-19 in patients with rheumatic diseases. Finally, immune-mediated reactions and processes secondary to SARS-CoV-2 vaccination was displayed. Due to the immense importance of all of the topics addressed and while several hundreds of works were presented which cannot be summed up in one paper, we aimed hereby to highlight some of the outstanding abstracts and presentations during AUTO12.
Collapse
Affiliation(s)
- Naim Mahroum
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Magdi Zoubi
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel
| | - Noy Lavine
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel; St. George School of Medicine, University of London, London, UK
| | - Aviran Ohayon
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel; St. George School of Medicine, University of London, London, UK
| | - Howard Amital
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Shoenfeld
- Ariel University, Ariel, Israel; Saint Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
24
|
Zhang X, Zhang X, Qiu C, Shen H, Zhang H, He Z, Song Z, Zhou W. The imbalance of Th17/Treg via STAT3 activation modulates cognitive impairment in P. gingivalis LPS-induced periodontitis mice. J Leukoc Biol 2021; 110:511-524. [PMID: 34342041 DOI: 10.1002/jlb.3ma0521-742rrr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
Periodontitis is one of the most common oral diseases worldwide, and it is associated with various systemic diseases, including cognitive diseases. STAT3 regulates the inflammatory cascade and influences adaptive immunity by modulating Th17/Treg cell differentiation. In this study, we aimed to explore the effect of adaptive immunity inside and outside the brain on the association between periodontitis and cognitive impairment and understand the role of the STAT3 signaling pathway. We established Porphyromonas gingivalis LPS-induced periodontitis mice models by injecting P. gingivalis LPS into the gingival sulcus of mice. Behavioral tests showed that learning and memory abilities were impaired. The flow cytometry data showed an imbalance in the Th17/Treg ratio in the blood and brain samples of the mice. The expression of Th17-related cytokines (IL-1β, IL-17A, IL-21, and IL-22) increased, whereas that of Treg-related cytokines (IL-2 and IL-10) decreased in both the blood and the brain. The level of LPS increased and the STAT3 signaling pathway was activated during this process. These effects were reversed by C188-9, a STAT3 inhibitor. In conclusion, P. gingivalis LPS-induced periodontitis may promote the occurrence and progression of cognitive impairment by modulating the Th17/Treg balance inside and outside the brain. The STAT3 signaling pathway may have immunoregulatory effects on the mouth-to-brain axis.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xuan Zhang
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Che Qiu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hui Shen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Huanyu Zhang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhiyan He
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Wei Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong Univerisity; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
25
|
|
26
|
Sublingual Immunotherapy: How Sublingual Allergen Administration Heals Allergic Diseases; Current Perspective about the Mode of Action. Pathogens 2021; 10:pathogens10020147. [PMID: 33540540 PMCID: PMC7912807 DOI: 10.3390/pathogens10020147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 01/09/2023] Open
Abstract
Owing to the successful application of sublingual immunotherapy (SLIT), allergen immunotherapy (AIT) has become one of the leading treatments for allergic diseases. Similar to the case with other AITs, such as subcutaneous and oral immunotherapies, not only the alleviation of allergic symptoms, but also the curing of the diseases can be expected in patients undergoing SLIT. However, how and why such strong efficacy is obtained by SLIT, in which allergens are simply administered under the tongue, is not clearly known. Various potential mechanisms, including the induction of blocking antibodies, T cell tolerance, regulatory B and T cells, CD103-CD11b+ classical dendritic cells, and CD206+ macrophages, and the reduction of innate lymphoid cells, mast cells, and basophils, have been suggested. Recently, through a comparative analysis between high- and non-responder patients of SLIT, we have successfully proposed several novel mechanisms. Here, we introduce our recent findings and summarize the current understanding of the mechanisms underlying the strong efficacy of SLIT.
Collapse
|