1
|
Morgan AM, Devinsky O, Doyle WK, Dugan P, Friedman D, Flinker A. Decoding words during sentence production: Syntactic role encoding and structure-dependent dynamics revealed by ECoG. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.30.621177. [PMID: 39554006 PMCID: PMC11565881 DOI: 10.1101/2024.10.30.621177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Sentence production is the uniquely human ability to transform complex thoughts into strings of words. Despite the importance of this process, language production research has primarily focused on single words. However, it remains a largely untested assumption that the principles of word production generalize to more naturalistic utterances like sentences. Here, we investigate this using high-resolution neurosurgical recordings (ECoG) and an overt production experiment where patients produced six words in isolation (picture naming) and in sentences (scene description). We trained machine learning classifiers to identify the unique brain activity patterns for each word during picture naming, and used these patterns to decode which words patients were processing while they produced sentences. Our findings confirm that words share cortical representations across tasks, but reveal a division of labor within the language network. In sensorimotor cortex, words were consistently activated in the order in which they were said in the sentence. However, in inferior and middle frontal gyri (IFG and MFG), the order in which words were processed depended on the syntactic structure of the sentence. Deeper analysis of this pattern revealed a spatial code for representing a word's position in the sentence, with subjects selectively encoded in IFG and objects in MFG. Finally, we argue that the processes we observe in prefrontal cortex may impose a subtle pressure on language evolution, explaining why nearly all the world's languages position subjects before objects.
Collapse
Affiliation(s)
| | - Orrin Devinsky
- Neurosurgery Department, NYU Grossman School of Medicine
| | | | | | | | - Adeen Flinker
- Neurology Department, NYU Grossman School of Medicine
- Biomedical Engineering Department, NYU Tandon School of Engineering
| |
Collapse
|
2
|
Zheng Y, Zhang B. 25-year neuroimaging research on spoken language processing: a bibliometric analysis. Front Hum Neurosci 2024; 18:1461505. [PMID: 39668910 PMCID: PMC11635769 DOI: 10.3389/fnhum.2024.1461505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Spoken language processing is of huge interest to cognitive and neural scientists, as it is the dominant channel for everyday verbal communication. The aim of this study is to depict the dynamics of publications in the field of neuroimaging research on spoken language processing between 2000 and 2024. Methods A bibliometric analysis was conducted to probe this particular subject matter based on data retrieved from Web of Science. A total of 8,085 articles were found, which were analyzed together with their authors, journals of publication, citations and countries of origin. Results Results showed a steady increase of publication volume and a relatively high academic visibility of this research field indexed by total citations in the first 25 years of the 21st century. Maps of frequent keywords, institutional collaboration network show that cooperations mainly happen between institutions in the United States, the United Kingdom and Germany. Future trends based on burst detection predict that classification, Alzheimer's disease and oscillations are potential hot topics. Discussion Possible reasons for the result include the aging of the population in developed countries, and the rapid growth of artificial intelligence in the past decade. Finally, specific research avenues were proposed which might benefit future studies.
Collapse
Affiliation(s)
- Yuxuan Zheng
- School of Interpreting and Translation, Beijing International Studies University, Beijing, China
- AI and Cognition Laboratory, Beijing International Studies University, Beijing, China
| | - Boning Zhang
- School of English Studies, Beijing International Studies University, Beijing, China
| |
Collapse
|
3
|
Liu X, Wu X, Feng Y, Yang J, Gu N, Mei L. Neural representations of phonological information in bilingual language production. Cereb Cortex 2024; 34:bhae451. [PMID: 39545691 DOI: 10.1093/cercor/bhae451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Previous research has explored the neural mechanisms of bilinguals' language production, but most studies focused on neural mechanisms of cognitive control during language production. Therefore, it is unclear which brain regions represent lexical information (especially phonological information) during production and how they are affected by language context. To address those questions, we used representational similarity analysis to explore neural representations of phonological information in native (L1) and second languages (L2) in the single- and mixed-language contexts, respectively. Results showed that Chinese-English bilinguals behaviorally performed worse and exhibited more activations in brain regions associated with language processing and cognitive control in the mixed-language context relative to the single-language context. Further representational similarity analysis revealed that phonological representations of L1 were detected in the left pars opercularis, middle frontal gyrus, and anterior supramarginal gyrus, while phonological representations of L2 were detected in the bilateral occipitotemporal cortex regardless of the target language. More interestingly, robust phonological representations of L1 were observed in brain areas related to phonological processing during L2 production regardless of language context. These results provide direct neuroimaging evidence for the nonselective processing hypothesis and highlight the superiority of phonological representations in the dominant language during bilingual language production.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- School of Psychology, Zhejiang Normal University, 688 Yingbin Road, 321000 Jinhua, China
| | - Xiaoyan Wu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- School of Psychology, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
| | - Yuan Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- School of Psychology, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
| | - Jingyu Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- School of Psychology, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
| | - Nannan Gu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- School of Psychology, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
- School of Psychology, South China Normal University, 55 West of Zhongshan Avenue, 510631 Guangzhou, China
| |
Collapse
|
4
|
Ahtam B, Yun HJ, Vyas R, Pienaar R, Wilson JH, Goswami CP, Berto LF, Warfield SK, Sahin M, Grant PE, Peters JM, Im K. Morphological Features of Language Regions in Individuals with Tuberous Sclerosis Complex. J Autism Dev Disord 2024; 54:3155-3175. [PMID: 37222965 DOI: 10.1007/s10803-023-06004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/25/2023]
Abstract
A significant number of individuals with tuberous sclerosis complex (TSC) exhibit language difficulties. Here, we examined the language-related brain morphometry in 59 participants (7 participants with TSC and comorbid autism spectrum disorder (ASD) (TSC + ASD), 13 with TSC but no ASD (TSC-ASD), 10 with ASD-only (ASD), and 29 typically developing (TD) controls). A hemispheric asymmetry was noted in surface area and gray matter volume of several cortical language areas in TD, ASD, and TSC-ASD groups, but not in TSC + ASD group. TSC + ASD group demonstrated increased cortical thickness and curvature values in multiple language regions for both hemispheres, compared to other groups. After controlling for tuber load in the TSC groups, within-group differences stayed the same but the differences between TSC-ASD and TSC + ASD were no longer statistically significant. These preliminary findings suggest that comorbid ASD in TSC as well as tuber load in TSC is associated with changes in the morphometry of language regions. Future studies with larger sample sizes will be needed to confirm these findings.
Collapse
Affiliation(s)
- Banu Ahtam
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| | - Hyuk Jin Yun
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Rutvi Vyas
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Rudolph Pienaar
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Josephine H Wilson
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Caroline P Goswami
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Laura F Berto
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, 02115, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Kiho Im
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Kang K, Xiao Y, Yu H, Diaz MT, Zhang H. Multilingual Language Diversity Protects Native Language Production under Different Control Demands. Brain Sci 2023; 13:1587. [PMID: 38002547 PMCID: PMC10670415 DOI: 10.3390/brainsci13111587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The use of multiple languages has been found to influence individuals' cognitive abilities. Although some studies have also investigated the effect of multilingualism on non-native language proficiency, fewer studies have focused on how multilingual experience affects native language production. This study investigated the effect of multilingualism on native language production, specifically examining control demands through a semantic Go/No-Go picture naming task. The multilingual experience was quantified using language entropy, which measures the uncertainty and diversity of language use. Control demands were achieved by manipulating the proportion of Go (i.e., naming) trials in different conditions. Results showed that as control demands increased, multilingual individuals exhibited poorer behavioral performance and greater brain activation throughout the brain. Moreover, more diverse language use was associated with higher accuracy in naming and more interconnected brain networks with greater involvement of domain-general neural resources and less domain-specific neural resources. Notably, the varied and balanced use of multiple languages enabled multilingual individuals to respond more efficiently to increased task demands during native language production.
Collapse
Affiliation(s)
- Keyi Kang
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
- Department of Psychology, University of Macau, Taipa, Macau SAR, China
| | - Yumeng Xiao
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Hanxiang Yu
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
| | - Michele T. Diaz
- Department of Psychology, The Pennsylvania State University, State College, PA 16801, USA
| | - Haoyun Zhang
- Centre for Cognitive and Brain Sciences, University of Macau, Taipa, Macau SAR, China
- Department of Psychology, University of Macau, Taipa, Macau SAR, China
| |
Collapse
|
6
|
Jackson RL, Humphreys GF, Rice GE, Binney RJ, Lambon Ralph MA. A network-level test of the role of the co-activated default mode network in episodic recall and social cognition. Cortex 2023; 165:141-159. [PMID: 37285763 PMCID: PMC10284259 DOI: 10.1016/j.cortex.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 06/09/2023]
Abstract
Resting-state network research is extremely influential, yet the functions of many networks remain unknown. In part, this is due to typical (e.g., univariate) analyses independently testing the function of individual regions and not examining the full set of regions that form a network whilst co-activated. Connectivity is dynamic and the function of a region may change based on its current connections. Therefore, determining the function of a network requires assessment at this network-level. Yet popular theories implicating the default mode network (DMN) in episodic memory and social cognition, rest principally upon analyses performed at the level of individual brain regions. Here we use independent component analysis to formally test the role of the DMN in episodic and social processing at the network level. As well as an episodic retrieval task, two independent datasets were employed to assess DMN function across the breadth of social cognition; a person knowledge judgement and a theory of mind task. Each task dataset was separated into networks of co-activated regions. In each, the co-activated DMN, was identified through comparison to an a priori template and its relation to the task model assessed. This co-activated DMN did not show greater activity in episodic or social tasks than high-level baseline conditions. Thus, no evidence was found to support hypotheses that the co-activated DMN is involved in explicit episodic or social tasks at a network-level. The networks associated with these processes are described. Implications for prior univariate findings and the functional significance of the co-activated DMN are considered.
Collapse
Affiliation(s)
- Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, York, UK; MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Gina F Humphreys
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Grace E Rice
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
7
|
Leisman G, Melillo R, Melillo T. Prefrontal Functional Connectivities in Autism Spectrum Disorders: A Connectopathic Disorder Affecting Movement, Interoception, and Cognition. Brain Res Bull 2023; 198:65-76. [PMID: 37087061 DOI: 10.1016/j.brainresbull.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
The prefrontal cortex is included in a neuronal system that includes the basal ganglia, the thalamus, and the cerebellum. Most of the higher and more complex motor, cognitive, and emotional behavioral functions are thought to be found primarily in the frontal lobes. Insufficient connectivity between the medial prefrontal cortex (mPFC) and other regions of the brain that are distant from each other involved in top-down information processing rely on the global integration of data from multiple input sources and enhance low level perception processes (bottom-up information processing). The reduced deactivation in mPFC and in the rest of the Default Network during global task processing is consistent with the integrative modulatory role served by the mPFC. We stress the importance of understanding the degree to which sensory and movement anomalies in individuals with autism spectrum disorder (ASD) can contribute to social impairment. Further investigation on the neurobiological basis of sensory symptoms and its relationship to other clinical features found in ASD is required Treatment perhaps should not be first behaviorally based but rather based on facilitating sensory motor development.
Collapse
Affiliation(s)
- Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel; University of the Medical Sciences of Havana, Department of Clinical Neurophysiology, Institute of Neurology and Neurosurgery, Havana, Cuba.
| | - Robert Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| | - Ty Melillo
- Northeast College of the Health Sciencs, Seneca Falls, NY USA
| |
Collapse
|
8
|
Humphreys GF, Jung J, Lambon Ralph MA. The convergence and divergence of episodic and semantic functions across lateral parietal cortex. Cereb Cortex 2022; 32:5664-5681. [PMID: 35196706 PMCID: PMC9753060 DOI: 10.1093/cercor/bhac044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/22/2021] [Accepted: 01/22/2022] [Indexed: 01/25/2023] Open
Abstract
Decades of research have highlighted the importance of lateral parietal cortex (LPC) across a myriad of cognitive domains. Yet, the underlying function of LPC remains unclear. Two domains that have emphasized LPC involvement are semantic memory and episodic memory retrieval. From each domain, sophisticated functional models have been proposed, as well as the more domain-general assumption that LPC is engaged by any form of internally directed cognition (episodic/semantic retrieval being examples). Here we used a combination of functional magnetic resonance imaging, functional connectivity, and diffusion tensor imaging white-matter connectivity to show that (i) ventral LPC (angular gyrus [AG]) was positively engaged during episodic retrieval but disengaged during semantic memory retrieval and (ii) activity negatively varied with task difficulty in the semantic task whereas episodic activation was independent of difficulty. In contrast, dorsal LPC (intraparietal sulcus) showed domain general activation that was positively correlated with task difficulty. Finally, (iii) a dorsal-ventral and anterior-posterior gradient of functional and structural connectivity was found across the AG (e.g. mid-AG connected with episodic retrieval). We propose a unifying model in which LPC as a whole might share a common underlying neurocomputation (multimodal buffering) with variations in the emergent cognitive functions across subregions arising from differences in the underlying connectivity.
Collapse
Affiliation(s)
- Gina F Humphreys
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham NG9 2RD, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition & Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| |
Collapse
|
9
|
Ladthavorlaphatt K, Surti FBS, Beishon LC, Panerai RB, Robinson TG. Challenging neurovascular coupling through complex and variable duration cognitive paradigms: A subcomponent analysis. Med Eng Phys 2022; 110:103921. [PMID: 36564144 DOI: 10.1016/j.medengphy.2022.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
A similar pattern of cerebral blood velocity (CBv) response has been observed for neurovascular coupling (NVC) assessment with cognitive tasks of varying complexity and duration. This lack of specificity could result from parallel changes in arterial blood pressure (BP) and PaCO2, which could confound the estimates of NVC integrity. Healthy participants (n = 16) underwent recordings at rest (5 min sitting) and during randomized paradigms of different complexity (naming words (NW) beginning with P-, R-, V- words and serial subtractions (SS) of 100-2, 100-7, 1000-17, with durations of 5, 30 and 60 s). Bilateral CBv (middle cerebral arteries, transcranial Doppler), end-tidal CO2 (EtCO2, capnography), blood pressure (BP, Finapres) and heart rate (HR, ECG) were recorded continuously. The bilateral CBv response to all paradigms was classified under objective criteria to select only responders, then the repeated data were averaged between visits. Bilateral CBv change to tasks was decomposed into the relative contributions (subcomponents) of arterial BP (VBP; neurogenic), critical closing pressure (VCrCP; metabolic) and resistance area product (VRAP; myogenic). A temporal effect was demonstrated in bilateral VBP and VRAP during all tasks (p<0.002), increased VBP early (between 0 and 10 s) and followed by decreases of VRAP late (25-35 s) in the response. VCrCP varied by complexity and duration (p<0.046). The main contributions to CBv responses to cognitive tasks of different complexity and duration were VBP and VRAP, whilst a smaller contribution from VCrCP would suggest sensitivity to metabolic demands. Further studies are needed to assess the influence of different paradigms, ageing and cerebrovascular conditions.
Collapse
Affiliation(s)
- Kannaphob Ladthavorlaphatt
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom; Medical Diagnostics Unit, Thammasat University Hospital, Thammasat University, Pathumthani, Thailand.
| | - Farhaana B S Surti
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, College of Life Sciences, Leicester Royal Infirmary, University of Leicester, Level 4, Robert Kilpatrick Clinical Sciences Building, Leicester LE2 7LX, United Kingdom; NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
10
|
Meng D, Wang S, Wong PCM, Feng G. Generalizable predictive modeling of semantic processing ability from functional brain connectivity. Hum Brain Mapp 2022; 43:4274-4292. [PMID: 35611721 PMCID: PMC9435002 DOI: 10.1002/hbm.25953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/11/2022] [Accepted: 05/06/2022] [Indexed: 11/08/2022] Open
Abstract
Semantic processing (SP) is one of the critical abilities of humans for representing and manipulating conceptual and meaningful information. Neuroimaging studies of SP typically collapse data from many subjects, but its neural organization and behavioral performance vary between individuals. It is not yet understood whether and how the individual variabilities in neural network organizations contribute to the individual differences in SP behaviors. We aim to identify the neural signatures underlying SP variabilities by analyzing functional connectivity (FC) patterns based on a large‐sample Human Connectome Project (HCP) dataset and rigorous predictive modeling. We used a two‐stage predictive modeling approach to build an internally cross‐validated model and to test the model's generalizability with unseen data from different HCP samples and other out‐of‐sample datasets. FC patterns within a putative semantic brain network were significantly predictive of individual SP scores summarized from five SP‐related behavioral tests. This cross‐validated model can be used to predict unseen HCP data. The model generalizability was enhanced in the language task compared with other tasks used during scanning and was better for females than males. The model constructed from the HCP dataset can be partially generalized to two independent cohorts that participated in different semantic tasks. FCs connecting to the Perisylvian language network show the most reliable contributions to predictive modeling and the out‐of‐sample generalization. These findings contribute to our understanding of the neural sources of individual differences in SP, which potentially lay the foundation for personalized education for healthy individuals and intervention for SP and language deficits patients.
Collapse
Affiliation(s)
- Danting Meng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Suiping Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou, China
| | - Patrick C M Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gangyi Feng
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China.,Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Amgalan A, Maher AS, Imms P, Ha MY, Fanelle TA, Irimia A. Functional Connectome Dynamics After Mild Traumatic Brain Injury According to Age and Sex. Front Aging Neurosci 2022; 14:852990. [PMID: 35663576 PMCID: PMC9158471 DOI: 10.3389/fnagi.2022.852990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
Neural and cognitive deficits after mild traumatic brain injury (mTBI) are paralleled by changes in resting state functional correlation (FC) networks that mirror post-traumatic pathophysiology effects on functional outcomes. Using functional magnetic resonance images acquired both acutely and chronically after injury (∼1 week and ∼6 months post-injury, respectively), we map post-traumatic FC changes across 136 participants aged 19-79 (52 females), both within and between the brain's seven canonical FC networks: default mode, dorsal attention, frontoparietal, limbic, somatomotor, ventral attention, and visual. Significant sex-dependent FC changes are identified between (A) visual and limbic, and between (B) default mode and somatomotor networks. These changes are significantly associated with specific functional recovery patterns across all cognitive domains (p < 0.05, corrected). Changes in FC between default mode, somatomotor, and ventral attention networks, on the one hand, and both temporal and occipital regions, on the other hand, differ significantly by age group (p < 0.05, corrected), and are paralleled by significant sex differences in cognitive recovery independently of age at injury (p < 0.05, corrected). Whereas females' networks typically feature both significant (p < 0.036, corrected) and insignificant FC changes, males more often exhibit significant FC decreases between networks (e.g., between dorsal attention and limbic, visual and limbic, default-mode and somatomotor networks, p < 0.0001, corrected), all such changes being accompanied by significantly weaker recovery of cognitive function in males, particularly older ones (p < 0.05, corrected). No significant FC changes were found across 35 healthy controls aged 66-92 (20 females). Thus, male sex and older age at injury are risk factors for significant FC alterations whose patterns underlie post-traumatic cognitive deficits. This is the first study to map, systematically, how mTBI impacts FC between major human functional networks.
Collapse
Affiliation(s)
- Anar Amgalan
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Alexander S. Maher
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Phoebe Imms
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Michelle Y. Ha
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Timothy A. Fanelle
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Zhang W, Xiang M, Wang S. The role of left angular gyrus in the representation of linguistic composition relations. Hum Brain Mapp 2022; 43:2204-2217. [PMID: 35064707 PMCID: PMC8996362 DOI: 10.1002/hbm.25781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Language comprehension is compositional: individual words are combined structurally to form larger meaning representations. The neural basis for compositionality is at the center of a growing body of recent research. Previous work has largely used univariate analysis to investigate the question, a technique that could potentially lead to the loss of fined‐grained information due to the procedure of averaging over neural responses. In a functional magnetic resonance imaging experiment, the present study examined different types of composition relations in Chinese phrases, using a 1‐back composition relation probe (CRP) task and a 1‐back word probe (WP) task. We first analyzed the data using the multivariate representation similarity analysis, which better captures the fine‐grained representational differences in the stimuli. The results showed that the left angular gyrus (AG) represents different types of composition relations in the CRP task, but no brain areas were identified in the WP task. We also conducted a traditional univariate analysis and found greater activations in the bilateral inferior frontal gyrus in the CRP task relative to the WP task. We discuss the methodological and theoretical implications of our findings in the context of the larger language neural network identified in previous studies. Our findings highlight the role of left AG in representing and distinguishing fine‐grained linguistic composition relations.
Collapse
Affiliation(s)
- Wenjia Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University) Ministry of Education Guangzhou China
- School of Psychology South China Normal University Guangzhou China
| | - Ming Xiang
- Department of Linguistics University of Chicago Chicago Illinois USA
| | - Suiping Wang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University) Ministry of Education Guangzhou China
| |
Collapse
|
13
|
Feng C, Gu R, Li T, Wang L, Zhang Z, Luo W, Eickhoff SB. Separate neural networks of implicit emotional processing between pictures and words: A coordinate-based meta-analysis of brain imaging studies. Neurosci Biobehav Rev 2021; 131:331-344. [PMID: 34562542 DOI: 10.1016/j.neubiorev.2021.09.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 02/02/2023]
Abstract
Both pictures and words are frequently employed as experimental stimuli to investigate the neurocognitive mechanisms of emotional processing. However, it remains unclear whether emotional picture processing and emotional word processing share neural underpinnings. To address this issue, we focus on neuroimaging studies examining the implicit processing of affective words and pictures, which require participants to meet cognitive task demands under the implicit influence of emotional pictorial or verbal stimuli. A coordinate-based activation likelihood estimation meta-analysis was conducted on these studies, which revealed no common activation maximum between the picture and word conditions. Specifically, implicit negative picture processing (35 experiments, 393 foci, and 932 subjects) engages the bilateral amygdala, left hippocampus, fusiform gyri, and right insula, which are mainly located in the subcortical network and visual network associated with bottom-up emotional responses. In contrast, implicit negative word processing (34 experiments, 316 foci, and 799 subjects) engages the default mode network and fronto-parietal network including the ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, and dorsomedial prefrontal cortex, indicating the involvement of top-down semantic processing and emotion regulation. Our findings indicate that affective pictures (that intrinsically have an affective valence) and affective words (that inherit the affective valence from their object) modulate implicit emotional processing in different ways, and therefore recruit distinct brain systems.
Collapse
Affiliation(s)
- Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China; Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China.
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Ting Li
- Institute of Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou, China
| | - Li Wang
- Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing, China
| | - Zhixing Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Guangzhou, China; Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
14
|
Buciuc M, Whitwell JL, Kasanuki K, Graff-Radford J, Machulda MM, Duffy JR, Strand EA, Lowe VJ, Graff-Radford NR, Rush BK, Franczak MB, Flanagan ME, Baker MC, Rademakers R, Ross OA, Ghetti BF, Parisi JE, Raghunathan A, Reichard RR, Bigio EH, Dickson DW, Josephs KA. Lewy Body Disease is a Contributor to Logopenic Progressive Aphasia Phenotype. Ann Neurol 2021; 89:520-533. [PMID: 33274526 PMCID: PMC8040336 DOI: 10.1002/ana.25979] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The objective of this study was to describe clinical features, [18 F]-fluorodeoxyglucose (FDG)-positron emission tomography (PET) metabolism and digital pathology in patients with logopenic progressive aphasia (LPA) and pathologic diagnosis of diffuse Lewy body disease (DLBD) and compare to patients with LPA with other pathologies, as well as patients with classical features of probable dementia with Lewy bodies (pDLB). METHODS This is a clinicopathologic case-control study of 45 patients, including 20 prospectively recruited patients with LPA among whom 6 were diagnosed with LPA-DLBD. We analyzed clinical features and compared FDG-PET metabolism in LPA-DLBD to an independent group of patients with clinical pDLB and regional α-synuclein burden on digital pathology to a second independent group of autopsied patients with DLBD pathology and antemortem pDLB (DLB-DLBD). RESULTS All patients with LPA-DLBD were men. Neurological, speech, and neuropsychological characteristics were similar across LPA-DLBD, LPA-Alzheimer's disease (LPA-AD), and LPA-frontotemporal lobar degeneration (LPA-FTLD). Genetic screening of AD, DLBD, and FTLD linked genes were negative with the exception of APOE ε4 allele present in 83% of LPA-DLBD patients. Seventy-five percent of the patients with LPA-DLBD showed a parietal-dominant pattern of hy pometabolism; LPA-FTLD - temporal-dominant pattern, whereas LPA-AD showed heterogeneous patterns of hypometabolism. LPA-DLBD had more asymmetrical hypometabolism affecting frontal lobes, with relatively spared occipital lobe in the nondominantly affected hemisphere, compared to pDLB. LPA-DLBD had minimal atrophy on gross brain examination, higher cortical Lewy body counts, and higher α-synuclein burden in the middle frontal and inferior parietal cortices compared to DLB-DLBD. INTERPRETATION Whereas AD is the most frequent underlying pathology of LPA, DLBD can also be present and may contribute to the LPA phenotype possibly due to α-synuclein-associated functional impairment of the dominant parietal lobe. ANN NEUROL 2021;89:520-533.
Collapse
Affiliation(s)
- Marina Buciuc
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neuropsychiatry, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Beth K. Rush
- Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Margaret E. Flanagan
- Department of Pathology, Cognitive Neurology and Alzheimer’s Disease Centre, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Bernardino F. Ghetti
- Department of Pathology & Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Joseph E. Parisi
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Aditya Raghunathan
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - R. Ross Reichard
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Eileen H. Bigio
- Department of Pathology, Cognitive Neurology and Alzheimer’s Disease Centre, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
15
|
Humphreys GF, Lambon Ralph MA, Simons JS. A Unifying Account of Angular Gyrus Contributions to Episodic and Semantic Cognition. Trends Neurosci 2021; 44:452-463. [PMID: 33612312 DOI: 10.1016/j.tins.2021.01.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
The angular gyrus (AG) region of lateral parietal cortex has been implicated in a wide variety of tasks and functions, generating numerous influential theories. However, these theories largely fail to explain why so many apparently distinct cognitive activities implicate common parietal structures. We propose a unifying model, based on a set of central principles, to account for coalescences of cognitive task activations across AG. To illustrate the proposed framework, we show how these principles account for findings from studies of episodic and semantic memory that have independently implicated the same AG regions but thus far been considered from largely domain-specific perspectives. We conclude that AG computations, as part of a wider lateral parietal system, enable the online dynamic buffering of multisensory spatiotemporally extended representations.
Collapse
Affiliation(s)
- Gina F Humphreys
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 3EF, UK
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge CB2 3EF, UK.
| |
Collapse
|
16
|
Rodríguez-Aranda C, Castro-Chavira SA, Espenes R, Barrios FA, Waterloo K, Vangberg TR. The Role of Moderating Variables on BOLD fMRI Response During Semantic Verbal Fluency and Finger Tapping in Active and Educated Healthy Seniors. Front Hum Neurosci 2020; 14:203. [PMID: 32581748 PMCID: PMC7290010 DOI: 10.3389/fnhum.2020.00203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/06/2020] [Indexed: 11/28/2022] Open
Abstract
Semantic verbal fluency is among the most employed tasks in cognitive aging research and substantial work is devoted to understanding the underlying mechanisms behind age-related differences at the neural and behavioral levels. The present investigation aimed to evaluate the role of moderating variables, such as age, sex, MMSE, and proxies of cognitive reserve (CR) on the hemodynamic response evoked by semantic verbal fluency in healthy young and healthy older adults. So far, no study has been conducted to this end. To elucidate the exclusive effect of the mentioned variables on brain activation during semantic fluency, finger tapping was included as a control task. Results showed that disregarding adjustments for age, older adults displayed important parietal activations during semantic fluency as well as during finger-tapping. Specifically, the anterior intra-parietal sulcus (IPS) and left inferior parietal lobule (IPL) were areas activated in both tasks in the older group. Younger adults, only displayed parietal activations related to age and sex when these demographics were employed as predictors. Concerning proxies of CR in semantic fluency, the only vocabulary was an important moderator in both age groups. Higher vocabulary scores were associated with lesser activation in occipital areas. Education did not show significant correlations with brain activity during semantic fluency in any of the groups. However, both CR proxies were significantly correlated to brain activations of older adults during finger tapping. Specifically, vocabulary was associated with frontal regions, while education correlated with parietal lobe and cingulate gyrus. Finally, the effects of MMSE were mostly observed on brain activation of older adults in both tasks. These findings demonstrate that the effects of moderating variables on shaping brain activation are intricate and not exclusive of complex verbal tasks. Thus, before adjusting for “nuisance variables,” their importance needs to be established. This is especially true for samples including older adults for whom a motor task may be a demanding operation due to normal age-related processes of dedifferentiation.
Collapse
Affiliation(s)
- Claudia Rodríguez-Aranda
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Susana A Castro-Chavira
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ragna Espenes
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Fernando A Barrios
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Knut Waterloo
- Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| | - Torgil R Vangberg
- Department of Radiology and Nuclear Medicine, University Hospital of North Norway, Tromsø, Norway.,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
17
|
Diachek E, Blank I, Siegelman M, Affourtit J, Fedorenko E. The Domain-General Multiple Demand (MD) Network Does Not Support Core Aspects of Language Comprehension: A Large-Scale fMRI Investigation. J Neurosci 2020; 40:4536-4550. [PMID: 32317387 PMCID: PMC7275862 DOI: 10.1523/jneurosci.2036-19.2020] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 03/02/2020] [Accepted: 04/05/2020] [Indexed: 11/21/2022] Open
Abstract
Aside from the language-selective left-lateralized frontotemporal network, language comprehension sometimes recruits a domain-general bilateral frontoparietal network implicated in executive functions: the multiple demand (MD) network. However, the nature of the MD network's contributions to language comprehension remains debated. To illuminate the role of this network in language processing in humans, we conducted a large-scale fMRI investigation using data from 30 diverse word and sentence comprehension experiments (481 unique participants [female and male], 678 scanning sessions). In line with prior findings, the MD network was active during many language tasks. Moreover, similar to the language-selective network, which is robustly lateralized to the left hemisphere, these responses were stronger in the left-hemisphere MD regions. However, in contrast with the language-selective network, the MD network responded more strongly (1) to lists of unconnected words than to sentences, and (2) in paradigms with an explicit task compared with passive comprehension paradigms. Indeed, many passive comprehension tasks failed to elicit a response above the fixation baseline in the MD network, in contrast to strong responses in the language-selective network. Together, these results argue against a role for the MD network in core aspects of sentence comprehension, such as inhibiting irrelevant meanings or parses, keeping intermediate representations active in working memory, or predicting upcoming words or structures. These results align with recent evidence of relatively poor tracking of the linguistic signal by the MD regions during naturalistic comprehension, and instead suggest that the MD network's engagement during language processing reflects effort associated with extraneous task demands.SIGNIFICANCE STATEMENT Domain-general executive processes, such as working memory and cognitive control, have long been implicated in language comprehension, including in neuroimaging studies that have reported activation in domain-general multiple demand (MD) regions for linguistic manipulations. However, much prior evidence has come from paradigms where language interpretation is accompanied by extraneous tasks. Using a large fMRI dataset (30 experiments/481 participants/678 sessions), we demonstrate that MD regions are engaged during language comprehension in the presence of task demands, but not during passive reading/listening, conditions that strongly activate the frontotemporal language network. These results present a fundamental challenge to proposals whereby linguistic computations, such as inhibiting irrelevant meanings, keeping representations active in working memory, or predicting upcoming elements, draw on domain-general executive resources.
Collapse
Affiliation(s)
- Evgeniia Diachek
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203
| | - Idan Blank
- Department of Psychology, University of California at Los Angeles, Los Angeles, California 90095
| | - Matthew Siegelman
- Department of Psychology, Columbia University, New York, New York 10027
| | - Josef Affourtit
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| |
Collapse
|
18
|
Liu D, Dai G, Liu C, Guo Z, Xu Z, Jones JA, Liu P, Liu H. Top–Down Inhibitory Mechanisms Underlying Auditory–Motor Integration for Voice Control: Evidence by TMS. Cereb Cortex 2020; 30:4515-4527. [PMID: 32147719 DOI: 10.1093/cercor/bhaa054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The dorsolateral prefrontal cortex (DLPFC) has been implicated in auditory–motor integration for accurate control of vocal production, but its precise role in this feedback-based process remains largely unknown. To this end, the present event-related potential study applied a transcranial magnetic stimulation (TMS) protocol, continuous theta-burst stimulation (c-TBS), to disrupt cortical activity in the left DLPFC as young adults vocalized vowel sounds while hearing their voice unexpectedly shifted upwards in pitch. The results showed that, as compared to the sham condition, c-TBS over left DLPFC led to significantly larger vocal compensations for pitch perturbations that were accompanied by significantly smaller cortical P2 responses. Source localization analyses revealed that this brain activity pattern was the result of reduced activation in the left superior frontal gyrus and right inferior parietal lobule (supramarginal gyrus). These findings demonstrate c-TBS-induced modulatory effects of DLPFC on the neurobehavioral processing of vocal pitch regulation, suggesting that disrupting prefrontal function may impair top–down inhibitory control mechanisms that prevent speech production from being excessively influenced by auditory feedback, resulting in enhanced vocal compensations for feedback perturbations. This is the first study that provides direct evidence for a causal role of the left DLPFC in auditory feedback control of vocal production.
Collapse
Affiliation(s)
- Dongxu Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Guangyan Dai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Churong Liu
- Rehabilitation Training Center, Guangzhou 999 Brain Hospital, Guangzhou 510510, China
| | - Zhiqiang Guo
- Department of Computer Science and Technology, Zhuhai College of Jilin University, Zhuhai 519041, China
| | - Zhiqin Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
19
|
Xiang B, Yang J, Zhang J, Yu M, Huang C, He W, Lei W, Chen J, Liu K. The role of genes affected by human evolution marker GNA13 in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109764. [PMID: 31676466 DOI: 10.1016/j.pnpbp.2019.109764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 11/20/2022]
Abstract
Numerous variants associated with increased risk for SCZ have undergone positive selection and were associated with human brain development, but which brain regions and developmental stages were influenced by the positive selection for SCZ risk alleles are unclear. We analyzed SCZ using summary statistics from a genome-wide association study (GWAS) from the Psychiatric Genomics Consortium (PGC). Machine-learning scores were used to investigate two natural-selection scenarios: complete selection (loci where a selected allele has reached fixation) and incomplete selection (loci where a selected allele has not yet reached fixation). Based on the p value of single nucleotide polymorphisms (SNPs) with selection scores in the top 5%, we formed five subgroups: p < 0.0001, 0.001, 0.01, 0.05, or 0.1. We found that 48 and 29 genes (p < 0.0001) in complete and incomplete selection, respectively, were enrichedfor the transcriptionalco-expressionprofilein theprenatal dorsolateral prefrontal cortex (DFC), inferior parietal cortex (IPC), and ventrolateral prefrontal cortex (VFC). Core genes (GNA13, TBC1D19, and ZMYM4) involved in regulating early brain development were identified in these three brain regions. RNA sequencing for primary cortical neurons that were transfected Gna13 overexpressed lentivirus demonstrated that 135 gene expression levels changed in the Gna13 overexpressed groups compared with the controls. Gene-set analysis identified important associations among common variants of these 13 genes, which were associated with neurodevelopment and putamen volume [p = 0.031; family-wise error correction (FWEC)], SCZ (p = 0.022; FWEC). The study indicate that certain SCZ risk alleles were likely to undergo positive selection during human evolution due to their involvement in the development of prenatal DFC, IPC and VFC, and suggest that SCZ is related to abnormal neurodevelopment.
Collapse
Affiliation(s)
- Bo Xiang
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China.
| | - Juanjuan Yang
- Department of cell Biology, School of Biology and Basic Medical, Soochow University, Suzhou, Jiangsu Province, China
| | - Jin Zhang
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Minglan Yu
- Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chaohua Huang
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Wenying He
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Wei Lei
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Chen
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kezhi Liu
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
20
|
Janssen N, Meij MVD, López-Pérez PJ, Barber HA. Exploring the temporal dynamics of speech production with EEG and group ICA. Sci Rep 2020; 10:3667. [PMID: 32111868 PMCID: PMC7048769 DOI: 10.1038/s41598-020-60301-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 02/11/2020] [Indexed: 12/22/2022] Open
Abstract
Speech production is a complex skill whose neural implementation relies on a large number of different regions in the brain. How neural activity in these different regions varies as a function of time during the production of speech remains poorly understood. Previous MEG studies on this topic have concluded that activity proceeds from posterior to anterior regions of the brain in a sequential manner. Here we tested this claim using the EEG technique. Specifically, participants performed a picture naming task while their naming latencies and scalp potentials were recorded. We performed group temporal Independent Component Analysis (group tICA) to obtain temporally independent component timecourses and their corresponding topographic maps. We identified fifteen components whose estimated neural sources were located in various areas of the brain. The trial-by-trial component timecourses were predictive of the naming latency, implying their involvement in the task. Crucially, we computed the degree of concurrent activity of each component timecourse to test whether activity was sequential or parallel. Our results revealed that these fifteen distinct neural sources exhibit largely concurrent activity during speech production. These results suggest that speech production relies on neural activity that takes place in parallel networks of distributed neural sources.
Collapse
Affiliation(s)
- Niels Janssen
- Departamento de Psicología, Universidad de la Laguna, La Laguna, Spain. .,Instituto de Tecnologías Biomedicas, Universidad de la Laguna, La Laguna, Spain. .,Instituto de Neurociencias, Universidad de la Laguna, La Laguna, Spain.
| | | | | | - Horacio A Barber
- Departamento de Psicología, Universidad de la Laguna, La Laguna, Spain.,Instituto de Tecnologías Biomedicas, Universidad de la Laguna, La Laguna, Spain.,Instituto de Neurociencias, Universidad de la Laguna, La Laguna, Spain.,Basque Center on Cognition, Brain and Language (BCBL), Donostia, Spain
| |
Collapse
|
21
|
Zhang H, Eppes A, Diaz MT. Task difficulty modulates age-related differences in the behavioral and neural bases of language production. Neuropsychologia 2019; 124:254-273. [PMID: 30513288 PMCID: PMC6392062 DOI: 10.1016/j.neuropsychologia.2018.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
Older adults typically show decline in a variety of cognitive functions including inhibitory control and language production, with corresponding age-related increases in fMRI activation. However, it remains unclear whether such increases are compensatory or whether they reflect neural decline. One factor that may influence these brain-behavior relationships is difficulty. The current study investigated the effect of difficulty on age-related differences in the behavioral and neural bases of language production and inhibitory control using a phonological Go/No-Go picture naming task. Task demands were manipulated by varying the proportion of naming trials (Go trials) and inhibition trials (No-Go trials) across runs. All participants showed task-difficulty related declines in behavioral performance and increases in fMRI activation. Behaviorally, older adults were more sensitive to task difficulty, and elicited more fMRI activation than younger adults. Older adults were less neurally responsive to additional task demands (i.e., picture naming alone vs. Go/No-Go picture naming), but interestingly showed similar within-task increases as younger adults (e.g., Go Bias vs. No-Go Bias). Moreover, the relationships between fMRI activation and behavioral performance in older adults were multifaceted and the strength of these relations changed as a function of task difficulty. Specifically, activation in pre- and post- central gyri, right supramarginal and angular gyri was negatively correlated with naming reaction times, suggesting that activation in these regions may help mitigate age-related declines in language production. These findings are partially consistent with the CRUNCH model, highlighting the important influence of task difficulty on older adults' behavioral performance and their patterns of fMRI activation during language production.
Collapse
Affiliation(s)
- Haoyun Zhang
- Pennsylvania State University, University Park, PA 16801, USA
| | - Anna Eppes
- Pennsylvania State University, University Park, PA 16801, USA; The University of Texas at Dallas, TX 75080, USA
| | - Michele T Diaz
- Pennsylvania State University, University Park, PA 16801, USA.
| |
Collapse
|
22
|
Walenski M, Europa E, Caplan D, Thompson CK. Neural networks for sentence comprehension and production: An ALE-based meta-analysis of neuroimaging studies. Hum Brain Mapp 2019; 40:2275-2304. [PMID: 30689268 DOI: 10.1002/hbm.24523] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 12/14/2018] [Accepted: 12/26/2018] [Indexed: 12/24/2022] Open
Abstract
Comprehending and producing sentences is a complex endeavor requiring the coordinated activity of multiple brain regions. We examined three issues related to the brain networks underlying sentence comprehension and production in healthy individuals: First, which regions are recruited for sentence comprehension and sentence production? Second, are there differences for auditory sentence comprehension vs. visual sentence comprehension? Third, which regions are specifically recruited for the comprehension of syntactically complex sentences? Results from activation likelihood estimation (ALE) analyses (from 45 studies) implicated a sentence comprehension network occupying bilateral frontal and temporal lobe regions. Regions implicated in production (from 15 studies) overlapped with the set of regions associated with sentence comprehension in the left hemisphere, but did not include inferior frontal cortex, and did not extend to the right hemisphere. Modality differences between auditory and visual sentence comprehension were found principally in the temporal lobes. Results from the analysis of complex syntax (from 37 studies) showed engagement of left inferior frontal and posterior temporal regions, as well as the right insula. The involvement of the right hemisphere in the comprehension of these structures has potentially important implications for language treatment and recovery in individuals with agrammatic aphasia following left hemisphere brain damage.
Collapse
Affiliation(s)
- Matthew Walenski
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois
| | - Eduardo Europa
- Department of Neurology, University of California, San Francisco
| | - David Caplan
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Cynthia K Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, Illinois.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, Illinois.,Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois
| |
Collapse
|
23
|
Jackson RL, Cloutman LL, Lambon Ralph MA. Exploring distinct default mode and semantic networks using a systematic ICA approach. Cortex 2019; 113:279-297. [PMID: 30716610 PMCID: PMC6459395 DOI: 10.1016/j.cortex.2018.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/26/2018] [Accepted: 12/22/2018] [Indexed: 11/20/2022]
Abstract
Resting-state networks (RSNs; groups of regions consistently co-activated without an explicit task) are hugely influential in modern brain research. Despite this popularity, the link between specific RSNs and their functions remains elusive, limiting the impact on cognitive neuroscience (where the goal is to link cognition to neural systems). Here we present a series of logical steps to formally test the relationship between a coherent RSN with a cognitive domain. This approach is applied to a challenging and significant test-case; extracting a recently-proposed semantic RSN, determining its relation with a well-known RSN, the default mode network (DMN), and assessing their roles in semantic cognition. Results showed the DMN and semantic network are two distinct coherent RSNs. Assessing the cognitive signature of these spatiotemporally coherent networks directly (and therefore accounting for overlapping networks) showed involvement of the proposed semantic network, but not the DMN, in task-based semantic cognition. Following the steps presented here, researchers could formally test specific hypotheses regarding the function of RSNs, including other possible functions of the DMN.
Collapse
Affiliation(s)
- Rebecca L Jackson
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Lauren L Cloutman
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience & Experimental Psychology (Zochonis Building), University of Manchester, Manchester, UK
| | | |
Collapse
|
24
|
Zhang H, Eppes A, Beatty-Martínez A, Navarro-Torres C, Diaz MT. Task difficulty modulates brain-behavior correlations in language production and cognitive control: Behavioral and fMRI evidence from a phonological go/no-go picture-naming paradigm. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2018; 18:964-981. [PMID: 29923097 PMCID: PMC6301137 DOI: 10.3758/s13415-018-0616-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Language production and cognitive control are complex processes that involve distinct yet interacting brain networks. However, the extent to which these processes interact and their neural bases have not been thoroughly examined. Here, we investigated the neural and behavioral bases of language production and cognitive control via a phonological go/no-go picture-naming task. Naming difficulty and cognitive control demands (i.e., conflict monitoring and response inhibition) were manipulated by varying the proportion of naming trials (go trials) and inhibition trials (no-go trials) across task runs. The results demonstrated that as task demands increased, participants' behavioral performance declined (i.e., longer reaction times on naming trials, more commission errors on inhibition trials) whereas brain activation generally increased. Increased activation was found not only within the language network but also in domain-general control regions. Additionally, right superior and inferior frontal and left supramarginal gyri were sensitive to increased task difficulty during both language production and response inhibition. We also found both positive and negative brain-behavior correlations. Most notably, increased activation in sensorimotor regions, such as precentral and postcentral gyri, was associated with better behavioral performance, in both successful picture naming and successful inhibition. Moreover, comparing the strength of correlations across conditions indicated that the brain-behavior correlations in sensorimotor regions that were associated with improved performance became stronger as task demands increased. Overall, our results suggest that cognitive control demands affect language production, and that successfully coping with increases in task difficulty relies on both language-specific and domain-general cognitive control regions.
Collapse
Affiliation(s)
- Haoyun Zhang
- Pennsylvania State University, University Park, PA, 16802, USA
| | - Anna Eppes
- Pennsylvania State University, University Park, PA, 16802, USA
| | | | | | - Michele T Diaz
- Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
25
|
Humphreys GF, Lambon Ralph MA. Mapping Domain-Selective and Counterpointed Domain-General Higher Cognitive Functions in the Lateral Parietal Cortex: Evidence from fMRI Comparisons of Difficulty-Varying Semantic Versus Visuo-Spatial Tasks, and Functional Connectivity Analyses. Cereb Cortex 2018; 27:4199-4212. [PMID: 28472382 DOI: 10.1093/cercor/bhx107] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 11/13/2022] Open
Abstract
Numerous cognitive domains have been associated with the lateral parietal cortex, yet how these disparate functions are packed into this region remains unclear. Whilst areas within the dorsal and the ventral parietal cortex (DPC and VPC) show differential function, there is considerable disagreement as to what these functions might be. Studies focussed on individual domains have plotted out variations of function across the region. Direct cross-domain comparisons are rare yet, when they have been undertaken, at least some regions (particularly the intraparietal sulcus [IPS] and core angular gyrus [AG]) appear to have contrastive domain-general qualities. In order to pursue this parietal puzzle, this study utilized both functional and resting-state magnetic resonance imaging to investigate a potential unifying neurocomputational framework-in which both domain general as well as domain-selective regions arise from differential patterns of connectivity into subregions of the lateral parietal cortex. Specifically we found that, consistent with their contrastive patterns of functional connectivity, subregions of DPC (anterior IPS) and VPC (AG) exhibit counterpointed functions sensitive to task/item-difficulty irrespective of cognitive domain. We propose that these regions serve as top-down executively penetrated and automatic bottom-up domain-general buffers of active information, respectively. In contrast, other parietal and nonparietal regions are tuned toward specific domains.
Collapse
Affiliation(s)
- Gina F Humphreys
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, ManchesterM13 9PL, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, ManchesterM13 9PL, UK
| |
Collapse
|
26
|
Wilson SM, Bautista A, McCarron A. Convergence of spoken and written language processing in the superior temporal sulcus. Neuroimage 2018; 171:62-74. [PMID: 29277646 PMCID: PMC5857434 DOI: 10.1016/j.neuroimage.2017.12.068] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022] Open
Abstract
Spoken and written language processing streams converge in the superior temporal sulcus (STS), but the functional and anatomical nature of this convergence is not clear. We used functional MRI to quantify neural responses to spoken and written language, along with unintelligible stimuli in each modality, and employed several strategies to segregate activations on the dorsal and ventral banks of the STS. We found that intelligible and unintelligible inputs in both modalities activated the dorsal bank of the STS. The posterior dorsal bank was able to discriminate between modalities based on distributed patterns of activity, pointing to a role in encoding of phonological and orthographic word forms. The anterior dorsal bank was agnostic to input modality, suggesting that this region represents abstract lexical nodes. In the ventral bank of the STS, responses to unintelligible inputs in both modalities were attenuated, while intelligible inputs continued to drive activation, indicative of higher level semantic and syntactic processing. Our results suggest that the processing of spoken and written language converges on the posterior dorsal bank of the STS, which is the first of a heterogeneous set of language regions within the STS, with distinct functions spanning a broad range of linguistic processes.
Collapse
Affiliation(s)
- Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Alexa Bautista
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, AZ, USA
| | - Angelica McCarron
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
27
|
Bourguignon NJ, Ohashi H, Nguyen D, Gracco VL. The neural dynamics of competition resolution for language production in the prefrontal cortex. Hum Brain Mapp 2018; 39:1391-1402. [PMID: 29265695 PMCID: PMC5807142 DOI: 10.1002/hbm.23927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/14/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022] Open
Abstract
Previous research suggests a pivotal role of the prefrontal cortex (PFC) in word selection during tasks of confrontation naming (CN) and verb generation (VG), both of which feature varying degrees of competition between candidate responses. However, discrepancies in prefrontal activity have also been reported between the two tasks, in particular more widespread and intense activation in VG extending into (left) ventrolateral PFC, the functional significance of which remains unclear. We propose that these variations reflect differences in competition resolution processes tied to distinct underlying lexico-semantic operations: Although CN involves selecting lexical entries out of limited sets of alternatives, VG requires exploration of possible semantic relations not readily evident from the object itself, requiring prefrontal areas previously shown to be recruited in top-down retrieval of information from lexico-semantic memory. We tested this hypothesis through combined independent component analysis of functional imaging data and information-theoretic measurements of variations in selection competition associated with participants' performance in overt CN and VG tasks. Selection competition during CN engaged the anterior insula and surrounding opercular tissue, while competition during VG recruited additional activity of left ventrolateral PFC. These patterns remained after controlling for participants' speech onset latencies indicative of possible task differences in mental effort. These findings have implications for understanding the neural-computational dynamics of cognitive control in language production and how it relates to the functional architecture of adaptive behavior.
Collapse
Affiliation(s)
| | | | - Don Nguyen
- Centre for Research on Brain, Language and MusicMcGill UniversityMontrealCanada
| | - Vincent L. Gracco
- Haskins LaboratoriesNew HavenConnecticut
- Centre for Research on Brain, Language and MusicMcGill UniversityMontrealCanada
- School of Communication Sciences and DisordersMcGill UniversityMontrealCanada
| |
Collapse
|
28
|
Deroche MLD, Nguyen DL, Gracco VL. Modulation of Speech Motor Learning with Transcranial Direct Current Stimulation of the Inferior Parietal Lobe. Front Integr Neurosci 2017; 11:35. [PMID: 29326563 PMCID: PMC5737029 DOI: 10.3389/fnint.2017.00035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/29/2017] [Indexed: 12/01/2022] Open
Abstract
The inferior parietal lobe (IPL) is a region of the cortex believed to participate in speech motor learning. In this study, we investigated whether transcranial direct current stimulation (tDCS) of the IPL could influence the extent to which healthy adults (1) adapted to a sensory alteration of their own auditory feedback, and (2) changed their perceptual representation. Seventy subjects completed three tasks: a baseline perceptual task that located the phonetic boundary between the vowels /e/ and /a/; a sensorimotor adaptation task in which subjects produced the word “head” under conditions of altered or unaltered feedback; and a post-adaptation perceptual task identical to the first. Subjects were allocated to four groups which differed in current polarity and feedback manipulation. Subjects who received anodal tDCS to their IPL (i.e., presumably increasing cortical excitability) lowered their first formant frequency (F1) by 10% in opposition to the upward shift in F1 in their auditory feedback. Subjects who received the same stimulation with unaltered feedback did not change their production. Subjects who received cathodal tDCS to their IPL (i.e., presumably decreasing cortical excitability) showed a 5% adaptation to the F1 alteration similar to subjects who received sham tDCS. A subset of subjects returned a few days later to reiterate the same protocol but without tDCS, enabling assessment of any facilitatory effects of the previous tDCS. All subjects exhibited a 5% adaptation effect. In addition, across all subjects and for the two recording sessions, the phonetic boundary was shifted toward the vowel /e/ being repeated, consistently with the selective adaptation effect, but a correlation between perception and production suggested that anodal tDCS had enhanced this perceptual shift. In conclusion, we successfully demonstrated that anodal tDCS could (1) enhance the motor adaptation to a sensory alteration, and (2) potentially affect the perceptual representation of those sounds, but we failed to demonstrate the reverse effect with the cathodal configuration. Overall, tDCS of the left IPL can be used to enhance speech performance but only under conditions in which new or adaptive learning is required.
Collapse
Affiliation(s)
- Mickael L D Deroche
- Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Don L Nguyen
- Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Vincent L Gracco
- Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada.,Haskins Laboratories, New Haven, CT, United States
| |
Collapse
|
29
|
Roy B, Woo MA, Wang DJJ, Fonarow GC, Harper RM, Kumar R. Reduced regional cerebral blood flow in patients with heart failure. Eur J Heart Fail 2017; 19:1294-1302. [PMID: 28560737 DOI: 10.1002/ejhf.874] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/13/2017] [Accepted: 04/04/2017] [Indexed: 01/01/2023] Open
Abstract
AIMS Heart failure (HF) patients show significant lateralized neural injury, accompanied by autonomic, mood and cognitive deficits. Both gray and white matter damage occurs and probably develops from altered cerebral blood flow (CBF), a consequence of impaired cardiac output. However, the distribution of regional CBF changes in HF patients is unknown, but is an issue in determining mechanisms of neural injury. Our aim was to compare regional CBF changes in HF with CBF in control subjects using non-invasive pseudo-continuous arterial spin labelling (ASL) procedures. METHODS AND RESULTS We collected pseudo-continuous ASL data from 19 HF patients [mean age 55.5 ± 9.1 years; mean body mass index 27.7 ± 5.3 kg/m2 ; 13 male) and 29 control subjects (mean age 51.4 ± 5.3 years; mean body mass index 25.7 ± 3.6 kg/m2 ; 18 male), using a 3.0-Tesla magnetic resonance imaging (MRI) scanner. Whole-brain CBF maps were calculated, normalized to a common space, smoothed and compared between groups using ANCOVA (covariates; age, gender and gray matter volume). Reduced CBF appeared in multiple sites in HF patients in comparison with controls, with principally lateralized lower flow in temporal, parietal and occipital regions. Areas with decreased CBF included the bilateral prefrontal, frontal, temporal and occipital cortex, thalamus, cerebellum, corona radiate, corpus callosum, hippocampus and amygdala. CONCLUSIONS Heart failure patients showed lower, and largely lateralized, CBF in multiple autonomic, mood and cognitive regulatory sites. The reduced CBF is likely to contribute to the lateralized brain injury, leading to the autonomic and neuropsychological deficits found in the condition.
Collapse
Affiliation(s)
- Bhaswati Roy
- School of Nursing, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Mary A Woo
- School of Nursing, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Danny J J Wang
- Departments of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Gregg C Fonarow
- Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Ronald M Harper
- Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Brain Research Institute, UCLA, Los Angeles, CA, USA
| | - Rajesh Kumar
- Brain Research Institute, UCLA, Los Angeles, CA, USA.,Anaesthesiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Radiological Sciences and David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Bioengineering, and David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
30
|
Barbeau EB, Chai XJ, Chen JK, Soles J, Berken J, Baum S, Watkins KE, Klein D. The role of the left inferior parietal lobule in second language learning: An intensive language training fMRI study. Neuropsychologia 2017; 98:169-176. [DOI: 10.1016/j.neuropsychologia.2016.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/15/2016] [Accepted: 10/06/2016] [Indexed: 11/28/2022]
|
31
|
Xu Y, Lin Q, Han Z, He Y, Bi Y. Intrinsic functional network architecture of human semantic processing: Modules and hubs. Neuroimage 2016; 132:542-555. [DOI: 10.1016/j.neuroimage.2016.03.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/18/2015] [Accepted: 03/03/2016] [Indexed: 02/02/2023] Open
|
32
|
Geranmayeh F, Leech R, Wise RJS. Network dysfunction predicts speech production after left hemisphere stroke. Neurology 2016; 86:1296-1305. [PMID: 26962070 DOI: 10.1212/wnl.0000000000002537] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/12/2015] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To investigate the role of multiple distributed brain networks, including the default mode, fronto-temporo-parietal, and cingulo-opercular networks, which mediate domain-general and task-specific processes during speech production after aphasic stroke. METHODS We conducted an observational functional MRI study to investigate the effects of a previous left hemisphere stroke on functional connectivity within and between distributed networks as patients described pictures. Study design included various baseline tasks, and we compared results to those of age-matched healthy participants performing the same tasks. We used independent component and psychophysiological interaction analyses. RESULTS Although activity within individual networks was not predictive of speech production, relative activity between networks was a predictor of both within-scanner and out-of-scanner language performance, over and above that predicted from lesion volume, age, sex, and years of education. Specifically, robust functional imaging predictors were the differential activity between the default mode network and both the left and right fronto-temporo-parietal networks, respectively activated and deactivated during speech. We also observed altered between-network functional connectivity of these networks in patients during speech production. CONCLUSIONS Speech production is dependent on complex interactions among widely distributed brain networks, indicating that residual speech production after stroke depends on more than the restoration of local domain-specific functions. Our understanding of the recovery of function following focal lesions is not adequately captured by consideration of ipsilesional or contralesional brain regions taking over lost domain-specific functions, but is perhaps best considered as the interaction between what remains of domain-specific networks and domain-general systems that regulate behavior.
Collapse
Affiliation(s)
- Fatemeh Geranmayeh
- From the Computational Cognitive and Clinical Neuroimaging Laboratory, Imperial College, Hammersmith Hospital Campus, London, UK.
| | - Robert Leech
- From the Computational Cognitive and Clinical Neuroimaging Laboratory, Imperial College, Hammersmith Hospital Campus, London, UK
| | - Richard J S Wise
- From the Computational Cognitive and Clinical Neuroimaging Laboratory, Imperial College, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
33
|
A trade-off between somatosensory and auditory related brain activity during object naming but not reading. J Neurosci 2015; 35:4751-9. [PMID: 25788691 DOI: 10.1523/jneurosci.2292-14.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The parietal operculum, particularly the cytoarchitectonic area OP1 of the secondary somatosensory area (SII), is involved in somatosensory feedback. Using fMRI with 58 human subjects, we investigated task-dependent differences in SII/OP1 activity during three familiar speech production tasks: object naming, reading and repeatedly saying "1-2-3." Bilateral SII/OP1 was significantly suppressed (relative to rest) during object naming, to a lesser extent when repeatedly saying "1-2-3" and not at all during reading. These results cannot be explained by task difficulty but the contrasting difference between naming and reading illustrates how the demands on somatosensory activity change with task, even when motor output (i.e., production of object names) is matched. To investigate what determined SII/OP1 deactivation during object naming, we searched the whole brain for areas where activity increased as that in SII/OP1 decreased. This across subject covariance analysis revealed a region in the right superior temporal sulcus (STS) that lies within the auditory cortex, and is activated by auditory feedback during speech production. The tradeoff between activity in SII/OP1 and STS was not observed during reading, which showed significantly more activation than naming in both SII/OP1 and STS bilaterally. These findings suggest that, although object naming is more error prone than reading, subjects can afford to rely more or less on somatosensory or auditory feedback during naming. In contrast, fast and efficient error-free reading places more consistent demands on both types of feedback, perhaps because of the potential for increased competition between lexical and sublexical codes at the articulatory level.
Collapse
|
34
|
Reduced regional brain cortical thickness in patients with heart failure. PLoS One 2015; 10:e0126595. [PMID: 25962164 PMCID: PMC4427362 DOI: 10.1371/journal.pone.0126595] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/06/2015] [Indexed: 11/19/2022] Open
Abstract
AIMS Autonomic, cognitive, and neuropsychologic deficits appear in heart failure (HF) subjects, and these compromised functions depend on cerebral cortex integrity in addition to that of subcortical and brainstem sites. Impaired autoregulation, low cardiac output, sleep-disordered-breathing, hypertension, and diabetic conditions in HF offer considerable potential to affect cortical areas by loss of neurons and glia, which would be expressed as reduced cortical thicknesses. However, except for gross descriptions of cortical volume loss/injury, regional cortical thickness integrity in HF is unknown. Our goal was to assess regional cortical thicknesses across the brain in HF, compared to control subjects. METHODS AND RESULTS We examined localized cortical thicknesses in 35 HF and 61 control subjects with high-resolution T1-weighted images (3.0-Tesla MRI) using FreeSurfer software, and assessed group differences with analysis-of-covariance (covariates; age, gender; p<0.05; FDR). Significantly-reduced cortical thicknesses appeared in HF over controls in multiple areas, including the frontal, parietal, temporal, and occipital lobes, more markedly on the left side, within areas that control autonomic, cognitive, affective, language, and visual functions. CONCLUSION Heart failure subjects show reduced regional cortical thicknesses in sites that control autonomic, cognitive, affective, language, and visual functions that are deficient in the condition. The findings suggest chronic tissue alterations, with regional changes reflecting loss of neurons and glia, and presumably are related to earlier-described axonal changes. The pathological mechanisms contributing to reduced cortical thicknesses likely include hypoxia/ischemia, accompanying impaired cerebral perfusion from reduced cardiac output and sleep-disordered-breathing and other comorbidities in HF.
Collapse
|
35
|
Simonyan K, Fuertinger S. Speech networks at rest and in action: interactions between functional brain networks controlling speech production. J Neurophysiol 2015; 113:2967-78. [PMID: 25673742 DOI: 10.1152/jn.00964.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/06/2015] [Indexed: 01/08/2023] Open
Abstract
Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network.
Collapse
Affiliation(s)
- Kristina Simonyan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York; Department Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Stefan Fuertinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
36
|
Geranmayeh F, Leech R, Wise RJS. Semantic retrieval during overt picture description: Left anterior temporal or the parietal lobe? Neuropsychologia 2014; 76:125-35. [PMID: 25497693 PMCID: PMC4582804 DOI: 10.1016/j.neuropsychologia.2014.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 11/15/2022]
Abstract
Retrieval of semantic representations is a central process during overt speech production. There is an increasing consensus that an amodal semantic 'hub' must exist that draws together modality-specific representations of concepts. Based on the distribution of atrophy and the behavioral deficit of patients with the semantic variant of fronto-temporal lobar degeneration, it has been proposed that this hub is localized within both anterior temporal lobes (ATL), and is functionally connected with verbal 'output' systems via the left ATL. An alternative view, dating from Geschwind's proposal in 1965, is that the angular gyrus (AG) is central to object-based semantic representations. In this fMRI study we examined the connectivity of the left ATL and parietal lobe (PL) with whole brain networks known to be activated during overt picture description. We decomposed each of these two brain volumes into 15 regions of interest (ROIs), using independent component analysis. A dual regression analysis was used to establish the connectivity of each ROI with whole brain-networks. An ROI within the left anterior superior temporal sulcus (antSTS) was functionally connected to other parts of the left ATL, including anterior ventromedial left temporal cortex (partially attenuated by signal loss due to susceptibility artifact), a large left dorsolateral prefrontal region (including 'classic' Broca's area), extensive bilateral sensory-motor cortices, and the length of both superior temporal gyri. The time-course of this functionally connected network was associated with picture description but not with non-semantic baseline tasks. This system has the distribution expected for the production of overt speech with appropriate semantic content, and the auditory monitoring of the overt speech output. In contrast, the only left PL ROI that showed connectivity with brain systems most strongly activated by the picture-description task, was in the superior parietal lobe (supPL). This region showed connectivity with predominantly posterior cortical regions required for the visual processing of the pictorial stimuli, with additional connectivity to the dorsal left AG and a small component of the left inferior frontal gyrus. None of the other PL ROIs that included part of the left AG were activated by Speech alone. The best interpretation of these results is that the left antSTS connects the proposed semantic hub (specifically localized to ventral anterior temporal cortex based on clinical neuropsychological studies) to posterior frontal regions and sensory-motor cortices responsible for the overt production of speech.
Collapse
Affiliation(s)
- Fatemeh Geranmayeh
- Computational Cognitive and Clinical Neuroimaging Laboratory, Imperial College, Hammersmith Hospital, London W12 0NN, UK.
| | - Robert Leech
- Computational Cognitive and Clinical Neuroimaging Laboratory, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| | - Richard J S Wise
- Computational Cognitive and Clinical Neuroimaging Laboratory, Imperial College, Hammersmith Hospital, London W12 0NN, UK
| |
Collapse
|
37
|
Sensory-motor integration during speech production localizes to both left and right plana temporale. J Neurosci 2014; 34:12963-72. [PMID: 25253845 DOI: 10.1523/jneurosci.0336-14.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Speech production relies on fine voluntary motor control of respiration, phonation, and articulation. The cortical initiation of complex sequences of coordinated movements is thought to result in parallel outputs, one directed toward motor neurons while the "efference copy" projects to auditory and somatosensory fields. It is proposed that the latter encodes the expected sensory consequences of speech and compares expected with actual postarticulatory sensory feedback. Previous functional neuroimaging evidence has indicated that the cortical target for the merging of feedforward motor and feedback sensory signals is left-lateralized and lies at the junction of the supratemporal plane with the parietal operculum, located mainly in the posterior half of the planum temporale (PT). The design of these studies required participants to imagine speaking or generating nonverbal vocalizations in response to external stimuli. The resulting assumption is that verbal and nonverbal vocal motor imagery activates neural systems that integrate the sensory-motor consequences of speech, even in the absence of primary motor cortical activity or sensory feedback. The present human functional magnetic resonance imaging study used univariate and multivariate analyses to investigate both overt and covert (internally generated) propositional and nonpropositional speech (noun definition and counting, respectively). Activity in response to overt, but not covert, speech was present in bilateral anterior PT, with no increased activity observed in posterior PT or parietal opercula for either speech type. On this evidence, the response of the left and right anterior PTs better fulfills the criteria for sensory target and state maps during overt speech production.
Collapse
|
38
|
Geranmayeh F, Brownsett SLE, Wise RJS. Task-induced brain activity in aphasic stroke patients: what is driving recovery? Brain 2014; 137:2632-48. [PMID: 24974382 PMCID: PMC4163030 DOI: 10.1093/brain/awu163] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/03/2014] [Accepted: 04/27/2014] [Indexed: 12/24/2022] Open
Abstract
The estimated prevalence of aphasia in the UK and the USA is 250 000 and 1 000 000, respectively. The commonest aetiology is stroke. The impairment may improve with behavioural therapy, and trials using cortical stimulation or pharmacotherapy are undergoing proof-of-principle investigation, but with mixed results. Aphasia is a heterogeneous syndrome, and the simple classifications according to the Broca-Wernicke-Lichtheim model inadequately describe the diverse communication difficulties with which patients may present. Greater knowledge of how intact neural networks promote recovery after aphasic stroke, either spontaneously or in response to interventions, will result in clearer hypotheses about how to improve the treatment of aphasia. Twenty-five years ago, a pioneering study on healthy participants heralded the introduction of functional neuroimaging to the study of mechanisms of recovery from aphasia. Over the ensuing decades, such studies have been interpreted as supporting one of three hypotheses, which are not mutually exclusive. The first two predate the introduction of functional neuroimaging: that recovery is the consequence of the reconstitution of domain-specific language systems in tissue around the lesion (the 'perilesional' hypothesis), or by homotopic cortex in the contralateral hemisphere (the 'laterality-shift' hypothesis). The third is that loss of transcallosal inhibition to contralateral homotopic cortex hinders recovery (the 'disinhibition' hypothesis). These different hypotheses at times give conflicting views about rehabilitative intervention; for example, should one attempt to activate or inhibit a contralateral homotopic region with cortical stimulation techniques to promote recovery? This review proposes that although the functional imaging data are statistically valid in most cases, their interpretation has often favoured one explanation while ignoring plausible alternatives. In our view, this is particularly evident when recovery is attributed to activity in 'language networks' occupying sites not observed in healthy participants. In this review we will argue that much of the distribution of what has often been interpreted as language-specific activity, particularly in midline and contralateral cortical regions, is an upregulation of activity in intact domain-general systems for cognitive control and attention, responding in a task-dependent manner to the increased 'effort' when damaged downstream domain-specific language networks are impaired. We further propose that it is an inability fully to activate these systems that may result in sub optimal recovery in some patients. Interpretation of the data in terms of activity in domain-general networks affords insights into novel approaches to rehabilitation.
Collapse
Affiliation(s)
- Fatemeh Geranmayeh
- Computational Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Sonia L E Brownsett
- Computational Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Richard J S Wise
- Computational Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| |
Collapse
|
39
|
Abstract
Spoken language production is a complex brain function that relies on large-scale networks. These include domain-specific networks that mediate language-specific processes, as well as domain-general networks mediating top-down and bottom-up attentional control. Language control is thought to involve a left-lateralized fronto-temporal-parietal (FTP) system. However, these regions do not always activate for language tasks and similar regions have been implicated in nonlinguistic cognitive processes. These inconsistent findings suggest that either the left FTP is involved in multidomain cognitive control or that there are multiple spatially overlapping FTP systems. We present evidence from an fMRI study using multivariate analysis to identify spatiotemporal networks involved in spoken language production in humans. We compared spoken language production (Speech) with multiple baselines, counting (Count), nonverbal decision (Decision), and "rest," to pull apart the multiple partially overlapping networks that are involved in speech production. A left-lateralized FTP network was activated during Speech and deactivated during Count and nonverbal Decision trials, implicating it in cognitive control specific to sentential spoken language production. A mirror right-lateralized FTP network was activated in the Count and Decision trials, but not Speech. Importantly, a second overlapping left FTP network showed relative deactivation in Speech. These three networks, with distinct time courses, overlapped in the left parietal lobe. Contrary to the standard model of the left FTP as being dominant for speech, we revealed a more complex pattern within the left FTP, including at least two left FTP networks with competing functional roles, only one of which was activated in speech production.
Collapse
|
40
|
Jenson D, Bowers AL, Harkrider AW, Thornton D, Cuellar M, Saltuklaroglu T. Temporal dynamics of sensorimotor integration in speech perception and production: independent component analysis of EEG data. Front Psychol 2014; 5:656. [PMID: 25071633 PMCID: PMC4091311 DOI: 10.3389/fpsyg.2014.00656] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 06/08/2014] [Indexed: 11/17/2022] Open
Abstract
Activity in anterior sensorimotor regions is found in speech production and some perception tasks. Yet, how sensorimotor integration supports these functions is unclear due to a lack of data examining the timing of activity from these regions. Beta (~20 Hz) and alpha (~10 Hz) spectral power within the EEG μ rhythm are considered indices of motor and somatosensory activity, respectively. In the current study, perception conditions required discrimination (same/different) of syllables pairs (/ba/ and /da/) in quiet and noisy conditions. Production conditions required covert and overt syllable productions and overt word production. Independent component analysis was performed on EEG data obtained during these conditions to (1) identify clusters of μ components common to all conditions and (2) examine real-time event-related spectral perturbations (ERSP) within alpha and beta bands. 17 and 15 out of 20 participants produced left and right μ-components, respectively, localized to precentral gyri. Discrimination conditions were characterized by significant (pFDR < 0.05) early alpha event-related synchronization (ERS) prior to and during stimulus presentation and later alpha event-related desynchronization (ERD) following stimulus offset. Beta ERD began early and gained strength across time. Differences were found between quiet and noisy discrimination conditions. Both overt syllable and word productions yielded similar alpha/beta ERD that began prior to production and was strongest during muscle activity. Findings during covert production were weaker than during overt production. One explanation for these findings is that μ-beta ERD indexes early predictive coding (e.g., internal modeling) and/or overt and covert attentional/motor processes. μ-alpha ERS may index inhibitory input to the premotor cortex from sensory regions prior to and during discrimination, while μ-alpha ERD may index sensory feedback during speech rehearsal and production.
Collapse
Affiliation(s)
- David Jenson
- Department of Audiology and Speech Pathology, University of Tennessee Health Science CenterKnoxville, TN, USA
| | - Andrew L. Bowers
- Department of Communication Disorders, University of ArkansasFayetteville, AR, USA
| | - Ashley W. Harkrider
- Department of Audiology and Speech Pathology, University of Tennessee Health Science CenterKnoxville, TN, USA
| | - David Thornton
- Department of Audiology and Speech Pathology, University of Tennessee Health Science CenterKnoxville, TN, USA
| | - Megan Cuellar
- Speech-Language Pathology Program, College of Health Sciences, Midwestern UniversityChicago, IL, USA
| | - Tim Saltuklaroglu
- Department of Audiology and Speech Pathology, University of Tennessee Health Science CenterKnoxville, TN, USA
| |
Collapse
|
41
|
Fedorenko E. The role of domain-general cognitive control in language comprehension. Front Psychol 2014; 5:335. [PMID: 24803909 PMCID: PMC4009428 DOI: 10.3389/fpsyg.2014.00335] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/31/2014] [Indexed: 01/15/2023] Open
Abstract
What role does domain-general cognitive control play in understanding linguistic input? Although much evidence has suggested that domain-general cognitive control and working memory resources are sometimes recruited during language comprehension, many aspects of this relationship remain elusive. For example, how frequently do cognitive control mechanisms get engaged when we understand language? And is this engagement necessary for successful comprehension? I here (a) review recent brain imaging evidence for the neural separability of the brain regions that support high-level linguistic processing vs. those that support domain-general cognitive control abilities; (b) define the space of possibilities for the relationship between these sets of brain regions; and (c) review the available evidence that constrains these possibilities to some extent. I argue that we should stop asking whether domain-general cognitive control mechanisms play a role in language comprehension, and instead focus on characterizing the division of labor between the cognitive control brain regions and the more functionally specialized language regions.
Collapse
Affiliation(s)
- Evelina Fedorenko
- Psychiatry Department, Massachusetts General HospitalCharlestown, MA, USA
| |
Collapse
|
42
|
Nielsen JA, Zielinski BA, Fletcher PT, Alexander AL, Lange N, Bigler ED, Lainhart JE, Anderson JS. Abnormal lateralization of functional connectivity between language and default mode regions in autism. Mol Autism 2014; 5:8. [PMID: 24502324 PMCID: PMC3922424 DOI: 10.1186/2040-2392-5-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/13/2014] [Indexed: 01/20/2023] Open
Abstract
Background Lateralization of brain structure and function occurs in typical development, and abnormal lateralization is present in various neuropsychiatric disorders. Autism is characterized by a lack of left lateralization in structure and function of regions involved in language, such as Broca and Wernicke areas. Methods Using functional connectivity magnetic resonance imaging from a large publicly available sample (n = 964), we tested whether abnormal functional lateralization in autism exists preferentially in language regions or in a more diffuse pattern across networks of lateralized brain regions. Results The autism group exhibited significantly reduced left lateralization in a few connections involving language regions and regions from the default mode network, but results were not significant throughout left- and right-lateralized networks. There is a trend that suggests the lack of left lateralization in a connection involving Wernicke area and the posterior cingulate cortex associates with more severe autism. Conclusions Abnormal language lateralization in autism may be due to abnormal language development rather than to a deficit in hemispheric specialization of the entire brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jeffrey S Anderson
- Interdepartmental Program in Neuroscience, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132, USA.
| |
Collapse
|
43
|
Berthier ML, Froudist Walsh S, Dávila G, Nabrozidis A, Juárez Y Ruiz de Mier R, Gutiérrez A, De-Torres I, Ruiz-Cruces R, Alfaro F, García-Casares N. Dissociated repetition deficits in aphasia can reflect flexible interactions between left dorsal and ventral streams and gender-dimorphic architecture of the right dorsal stream. Front Hum Neurosci 2013; 7:873. [PMID: 24391569 PMCID: PMC3867969 DOI: 10.3389/fnhum.2013.00873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/29/2013] [Indexed: 01/01/2023] Open
Abstract
Assessment of brain-damaged subjects presenting with dissociated repetition deficits after selective injury to either the left dorsal or ventral auditory pathways can provide further insight on their respective roles in verbal repetition. We evaluated repetition performance and its neural correlates using multimodal imaging (anatomical MRI, DTI, fMRI, and18FDG-PET) in a female patient with transcortical motor aphasia (TCMA) and in a male patient with conduction aphasia (CA) who had small contiguous but non-overlapping left perisylvian infarctions. Repetition in the TCMA patient was fully preserved except for a mild impairment in nonwords and digits, whereas the CA patient had impaired repetition of nonwords, digits and word triplet lists. Sentence repetition was impaired, but he repeated novel sentences significantly better than clichés. The TCMA patient had tissue damage and reduced metabolism in the left sensorimotor cortex and insula. DTI showed damage to the left temporo-frontal and parieto-frontal segments of the arcuate fasciculus (AF) and part of the left ventral stream together with well-developed right dorsal and ventral streams, as has been reported in more than one-third of females. The CA patient had tissue damage and reduced metabolic activity in the left temporoparietal cortex with additional metabolic decrements in the left frontal lobe. DTI showed damage to the left temporo-parietal and temporo-frontal segments of the AF, but the ventral stream was spared. The direct segment of the AF in the right hemisphere was also absent with only vestigial remains of the other dorsal subcomponents present, as is often found in males. fMRI during word and nonword repetition revealed bilateral perisylvian activation in the TCMA patient suggesting recruitment of spared segments of the left dorsal stream and right dorsal stream with propagation of signals to temporal lobe structures suggesting a compensatory reallocation of resources via the ventral streams. The CA patient showed a greater activation of these cortical areas than the TCMA patient, but these changes did not result in normal performance. Repetition of word triplet lists activated bilateral perisylvian cortices in both patients, but activation in the CA patient with very poor performance was restricted to small frontal and posterior temporal foci bilaterally. These findings suggest that dissociated repetition deficits in our cases are probably reliant on flexible interactions between left dorsal stream (spared segments, short tracts remains) and left ventral stream and on gender-dimorphic architecture of the right dorsal stream.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Unit of Cognitive Neurology an Aphasia, Department of Medicine, Centro de Investigaciones Médico-Sanitarias, University of Malaga Malaga, Spain
| | - Seán Froudist Walsh
- Department of Psychosis Studies, Institute of Psychiatry, King's Health Partners, King's College London London, UK
| | - Guadalupe Dávila
- Unit of Cognitive Neurology an Aphasia, Department of Medicine, Centro de Investigaciones Médico-Sanitarias, University of Malaga Malaga, Spain ; Department of Psychobiology and Methodology of Comportamental Sciences, Faculty of Psychology, University of Malaga Malaga, Spain
| | - Alejandro Nabrozidis
- Unit of Molecular Imaging, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of Malaga Malaga, Spain
| | - Rocío Juárez Y Ruiz de Mier
- Unit of Cognitive Neurology an Aphasia, Department of Medicine, Centro de Investigaciones Médico-Sanitarias, University of Malaga Malaga, Spain
| | - Antonio Gutiérrez
- Department of Psychobiology and Methodology of Comportamental Sciences, Faculty of Psychology, University of Malaga Malaga, Spain
| | - Irene De-Torres
- Unit of Cognitive Neurology an Aphasia, Department of Medicine, Centro de Investigaciones Médico-Sanitarias, University of Malaga Malaga, Spain
| | - Rafael Ruiz-Cruces
- Unit of Cognitive Neurology an Aphasia, Department of Medicine, Centro de Investigaciones Médico-Sanitarias, University of Malaga Malaga, Spain
| | - Francisco Alfaro
- Unit of Molecular Imaging, Centro de Investigaciones Médico-Sanitarias, General Foundation of the University of Malaga Malaga, Spain
| | | |
Collapse
|
44
|
Brownsett SLE, Warren JE, Geranmayeh F, Woodhead Z, Leech R, Wise RJS. Cognitive control and its impact on recovery from aphasic stroke. ACTA ACUST UNITED AC 2013; 137:242-54. [PMID: 24163248 PMCID: PMC3891442 DOI: 10.1093/brain/awt289] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aphasic deficits are usually only interpreted in terms of domain-specific language processes. However, effective human communication and tests that probe this complex cognitive skill are also dependent on domain-general processes. In the clinical context, it is a pragmatic observation that impaired attention and executive functions interfere with the rehabilitation of aphasia. One system that is important in cognitive control is the salience network, which includes dorsal anterior cingulate cortex and adjacent cortex in the superior frontal gyrus (midline frontal cortex). This functional imaging study assessed domain-general activity in the midline frontal cortex, which was remote from the infarct, in relation to performance on a standard test of spoken language in 16 chronic aphasic patients both before and after a rehabilitation programme. During scanning, participants heard simple sentences, with each listening trial followed immediately by a trial in which they repeated back the previous sentence. Listening to sentences in the context of a listen–repeat task was expected to activate regions involved in both language-specific processes (speech perception and comprehension, verbal working memory and pre-articulatory rehearsal) and a number of task-specific processes (including attention to utterances and attempts to overcome pre-response conflict and decision uncertainty during impaired speech perception). To visualize the same system in healthy participants, sentences were presented to them as three-channel noise-vocoded speech, thereby impairing speech perception and assessing whether this evokes domain general cognitive systems. As expected, contrasting the more difficult task of perceiving and preparing to repeat noise-vocoded speech with the same task on clear speech demonstrated increased activity in the midline frontal cortex in the healthy participants. The same region was activated in the aphasic patients as they listened to standard (undistorted) sentences. Using a region of interest defined from the data on the healthy participants, data from the midline frontal cortex was obtained from the patients. Across the group and across different scanning sessions, activity correlated significantly with the patients’ communicative abilities. This correlation was not influenced by the sizes of the lesion or the patients’ chronological ages. This is the first study that has directly correlated activity in a domain general system, specifically the salience network, with residual language performance in post-stroke aphasia. It provides direct evidence in support of the clinical intuition that domain-general cognitive control is an essential factor contributing to the potential for recovery from aphasic stroke.
Collapse
Affiliation(s)
- Sonia L E Brownsett
- 1 Cognitive, Clinical and Computational Neuroimaging Group, Imperial College, Hammersmith Hospital, London, W12 0NN, UK
| | | | | | | | | | | |
Collapse
|
45
|
Humphreys GF, Gennari SP. Competitive mechanisms in sentence processing: common and distinct production and reading comprehension networks linked to the prefrontal cortex. Neuroimage 2013; 84:354-66. [PMID: 24012545 DOI: 10.1016/j.neuroimage.2013.08.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/31/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022] Open
Abstract
Despite much interest in language production and comprehension mechanisms, little is known about the relationship between the two. Previous research suggests that linguistic knowledge is shared across these tasks and that the left inferior frontal gyrus (LIFG) may be commonly recruited. However, it remains unclear the extent to which production and comprehension share competition mechanisms. Here we investigate this issue and specifically examine competition in determining the event roles in a sentence (agent or affected participant). We used both behavioral and fMRI methods and compared the reading and production of high- and low-competition sentences, specifically targeting LIFG. We found that activity in pars opercularis (PO), independently identified by a competition-driven localizer, was modulated by competition in both tasks. Psychophysiological interaction analyses seeded in PO revealed task-specific networks: In comprehension, PO only interacted with the posterior temporal lobe, whereas in production, it interacted with a large network including hippocampal, posterior temporal, medial frontal and subcortical structures. Production and comprehension therefore recruit partially distinct functional networks but share competitive processes within fronto-temporal regions. We argue that these common regions store long-term linguistic associations and compute their higher-order contingencies, but competition in production ignites a larger neural network implementing planning, as required by task demands.
Collapse
Affiliation(s)
- Gina F Humphreys
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Zochonis Building 3F, Brunswick St., Manchester M13 9PL, UK
| | | |
Collapse
|
46
|
Simmonds AJ, Wise RJS, Collins C, Redjep O, Sharp DJ, Iverson P, Leech R. Parallel systems in the control of speech. Hum Brain Mapp 2013; 35:1930-43. [PMID: 23723184 DOI: 10.1002/hbm.22303] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/24/2013] [Accepted: 03/19/2013] [Indexed: 11/10/2022] Open
Abstract
Modern neuroimaging techniques have advanced our understanding of the distributed anatomy of speech production, beyond that inferred from clinico-pathological correlations. However, much remains unknown about functional interactions between anatomically distinct components of this speech production network. One reason for this is the need to separate spatially overlapping neural signals supporting diverse cortical functions. We took three separate human functional magnetic resonance imaging (fMRI) datasets (two speech production, one "rest"). In each we decomposed the neural activity within the left posterior perisylvian speech region into discrete components. This decomposition robustly identified two overlapping spatio-temporal components, one centered on the left posterior superior temporal gyrus (pSTG), the other on the adjacent ventral anterior parietal lobe (vAPL). The pSTG was functionally connected with bilateral superior temporal and inferior frontal regions, whereas the vAPL was connected with other parietal regions, lateral and medial. Surprisingly, the components displayed spatial anti-correlation, in which the negative functional connectivity of each component overlapped with the other component's positive functional connectivity, suggesting that these two systems operate separately and possibly in competition. The speech tasks reliably modulated activity in both pSTG and vAPL suggesting they are involved in speech production, but their activity patterns dissociate in response to different speech demands. These components were also identified in subjects at "rest" and not engaged in overt speech production. These findings indicate that the neural architecture underlying speech production involves parallel distinct components that converge within posterior peri-sylvian cortex, explaining, in part, why this region is so important for speech production.
Collapse
Affiliation(s)
- Anna J Simmonds
- Computational, Cognitive and Clinical Neuroimaging Laboratory (C3NL), Division of Brain Sciences, Imperial College London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
47
|
Separable networks for top-down attention to auditory non-spatial and visuospatial modalities. Neuroimage 2013; 74:77-86. [PMID: 23435206 PMCID: PMC3898942 DOI: 10.1016/j.neuroimage.2013.02.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/25/2013] [Accepted: 02/02/2013] [Indexed: 12/20/2022] Open
Abstract
A central question for cognitive neuroscience is whether there is a single neural system controlling the allocation of attention. A dorsal frontoparietal network of brain regions is often proposed as a mediator of top-down attention to all sensory inputs. We used functional magnetic resonance imaging in humans to show that the cortical networks supporting top-down attention are in fact modality-specific, with distinct superior fronto-parietal and fronto-temporal networks for visuospatial and non-spatial auditory attention respectively. In contrast, parts of the right middle and inferior frontal gyri showed a common response to attentional control regardless of modality, providing evidence that the amodal component of attention is restricted to the anterior cortex.
Collapse
|
48
|
Agnew ZK, McGettigan C, Banks B, Scott SK. Articulatory movements modulate auditory responses to speech. Neuroimage 2012; 73:191-9. [PMID: 22982103 PMCID: PMC3708127 DOI: 10.1016/j.neuroimage.2012.08.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 07/19/2012] [Accepted: 08/05/2012] [Indexed: 11/30/2022] Open
Abstract
Production of actions is highly dependent on concurrent sensory information. In speech production, for example, movement of the articulators is guided by both auditory and somatosensory input. It has been demonstrated in non-human primates that self-produced vocalizations and those of others are differentially processed in the temporal cortex. The aim of the current study was to investigate how auditory and motor responses differ for self-produced and externally produced speech. Using functional neuroimaging, subjects were asked to produce sentences aloud, to silently mouth while listening to a different speaker producing the same sentence, to passively listen to sentences being read aloud, or to read sentences silently. We show that that separate regions of the superior temporal cortex display distinct response profiles to speaking aloud, mouthing while listening, and passive listening. Responses in anterior superior temporal cortices in both hemispheres are greater for passive listening compared with both mouthing while listening, and speaking aloud. This is the first demonstration that articulation, whether or not it has auditory consequences, modulates responses of the dorsolateral temporal cortex. In contrast posterior regions of the superior temporal cortex are recruited during both articulation conditions. In dorsal regions of the posterior superior temporal gyrus, responses to mouthing and reading aloud were equivalent, and in more ventral posterior superior temporal sulcus, responses were greater for reading aloud compared with mouthing while listening. These data demonstrate an anterior–posterior division of superior temporal regions where anterior fields are suppressed during motor output, potentially for the purpose of enhanced detection of the speech of others. We suggest posterior fields are engaged in auditory processing for the guidance of articulation by auditory information.
Collapse
Affiliation(s)
- Z K Agnew
- Institute for Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, UK.
| | | | | | | |
Collapse
|
49
|
Seghier ML, Price CJ. Functional Heterogeneity within the Default Network during Semantic Processing and Speech Production. Front Psychol 2012; 3:281. [PMID: 22905029 PMCID: PMC3417693 DOI: 10.3389/fpsyg.2012.00281] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/20/2012] [Indexed: 01/17/2023] Open
Abstract
This fMRI study investigated the functional heterogeneity of the core nodes of the default mode network (DMN) during language processing. The core nodes of the DMN were defined as task-induced deactivations over multiple tasks in 94 healthy subjects. We used a factorial design that manipulated different tasks (semantic matching or speech production) and stimuli (familiar words and objects or unfamiliar stimuli), alternating with periods of fixation/rest. Our findings revealed several consistent effects in the DMN, namely less deactivations in the left inferior parietal lobule during semantic than perceptual matching in parallel with greater deactivations during semantic matching in anterior subdivisions of the posterior cingulate cortex (PCC) and the ventromedial prefrontal cortex (MPFC). This suggests that, when the brain is engaged in effortful semantic tasks, a part of the DMN in the left angular gyrus was less deactivated as five other nodes of the DMN were more deactivated. These five DMN areas, where deactivation was greater for semantic than perceptual matching, were further differentiated because deactivation was greater in (i) posterior ventral MPFC for speech production relative to semantic matching, (ii) posterior precuneus and PCC for perceptual processing relative to speech production, and (iii) right inferior parietal cortex for pictures of objects relative to written words during both naming and semantic decisions. Our results thus highlight that task difficulty alone cannot fully explain the functional variability in task-induced deactivations. Together these results emphasize that core nodes within the DMN are functionally heterogeneous and differentially sensitive to the type of language processing.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London London, UK
| | | |
Collapse
|