1
|
Recher D, Rohde J, Da Poian G, Henninger M, Brogli L, Huber R, Karlen W, Lustenberger C, Kleim B. Targeted memory reactivation during sleep improves emotional memory modulation following imagery rescripting. Transl Psychiatry 2024; 14:490. [PMID: 39695124 DOI: 10.1038/s41398-024-03192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Targeted Memory Reactivation (TMR) during sleep benefits memory integration and consolidation. In this pre-registered study, we investigated the effects of TMR applied during non-rapid eye movement (NREM) sleep following modulation and updating of aversive autobiographical memories using imagery rescripting (ImR). During 2-5 nights postImR, 80 healthy participants were repeatedly presented with either idiosyncratic words from an ImR updated memory during sleep (experimental group) or with no or neutral words (control groups) using a wearable EEG device (Mobile Health Systems Lab-Sleepband, MHSL-SB) [1] implementing a close-loop cueing procedure. Multivariate analysis were conducted to assess change score trajectories in five key emotional memory characteristics (positive and negative valence, emotional distress, arousal, and vividness) across assessments (timepoints, t) and between the study groups (TMR condition). While ImR showed significant effects on all memory characteristics (d = 0.76-1.66), there were significant additional improvements in the experimental group. Memories were significantly less vivid and afflicted with less emotional distress and arousal following ImR-words cueing. TMR during sleep in individuals' homes was feasible and further improved some ImR's adaptive memory effects. If replicated in clinical samples, TMR may be utilized to augment the effects of ImR and other clinical memory modulation procedures and create personalized treatment options. Such advances in emotional memory treatments are direly needed, as aversive memories are a salient feature across mental disorders, such as post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Dominique Recher
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich, Switzerland.
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
| | - Judith Rohde
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich, Switzerland
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Giulia Da Poian
- Sensory-Motor System Lab, Institute of Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Mirka Henninger
- Psychological Methods, Evaluation and Statistics, Department of Psychology, University of Zurich, Zurich, Switzerland
- Statistics and Data Science, Department of Psychology, University of Basel, Basel, Switzerland
| | - Luzius Brogli
- Institute of Biomedical Engineering, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
- Cognitive Neuroscience of Memory and Consciousness, Department of Psychology, University of Bern, Bern, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Walter Karlen
- Institute of Biomedical Engineering, Faculty of Engineering, Computer Science and Psychology, Ulm University, Ulm, Germany
| | - Caroline Lustenberger
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- Neural Control of Movement Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Birgit Kleim
- Experimental Psychopathology and Psychotherapy, Department of Psychology, University of Zurich, Zurich, Switzerland.
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Bloxham A, Horton CL. Enhancing and advancing the understanding and study of dreaming and memory consolidation: Reflections, challenges, theoretical clarity, and methodological considerations. Conscious Cogn 2024; 123:103719. [PMID: 38941924 DOI: 10.1016/j.concog.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
Empirical investigations that search for a link between dreaming and sleep-dependent memory consolidation have focused on testing for an association between dreaming of what was learned, and improved memory performance for learned material. Empirical support for this is mixed, perhaps owing to the inherent challenges presented by the nature of dreams, and methodological inconsistencies. The purpose of this paper is to address critically prevalent assumptions and practices, with the aim of clarifying and enhancing research on this topic, chiefly by providing a theoretical synthesis of existing models and evidence. Also, it recommends the method of Targeted Memory Reactivation (TMR) as a means for investigating if dream content can be linked to specific cued activations. Other recommendations to enhance research practice and enquiry on this subject are also provided, focusing on the HOW and WHY we search for memory sources in dreams, and what purpose (if any) they might serve.
Collapse
Affiliation(s)
- Anthony Bloxham
- Nottingham Trent University, Nottingham, NG1 4FQ, United Kingdom.
| | | |
Collapse
|
3
|
Guttesen AÁV, Denis D, Gaskell MG, Cairney SA. Delineating memory reactivation in sleep with verbal and non-verbal retrieval cues. Cereb Cortex 2024; 34:bhae183. [PMID: 38745557 PMCID: PMC11094403 DOI: 10.1093/cercor/bhae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Sleep supports memory consolidation via the reactivation of newly formed memory traces. One way to investigate memory reactivation in sleep is by exposing the sleeping brain to auditory retrieval cues; a paradigm known as targeted memory reactivation. To what extent the acoustic properties of memory cues influence the effectiveness of targeted memory reactivation, however, has received limited attention. We addressed this question by exploring how verbal and non-verbal memory cues affect oscillatory activity linked to memory reactivation in sleep. Fifty-one healthy male adults learned to associate visual stimuli with spoken words (verbal cues) and environmental sounds (non-verbal cues). Subsets of the verbal and non-verbal memory cues were then replayed during sleep. The voice of the verbal cues was either matched or mismatched to learning. Memory cues (relative to unheard control cues) prompted an increase in theta/alpha and spindle power, which have been heavily implicated in sleep-associated memory processing. Moreover, verbal memory cues were associated with a stronger increase in spindle power than non-verbal memory cues. There were no significant differences between the matched and mismatched verbal cues. Our findings suggest that verbal memory cues may be most effective for triggering memory reactivation in sleep, as indicated by an amplified spindle response.
Collapse
Affiliation(s)
- Anna á V Guttesen
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Dan Denis
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York YO10 5DD, United Kingdom
| | - M Gareth Gaskell
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York YO10 5DD, United Kingdom
| | - Scott A Cairney
- Department of Psychology, University of York, York YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
4
|
Ojelere BO, Adeoye IA. Sleep pattern and disorders among pregnant women in Ibadan, Southwest Nigeria. BMC Womens Health 2024; 24:250. [PMID: 38643114 PMCID: PMC11031875 DOI: 10.1186/s12905-024-03086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Sleep is essential for pregnant women's and the offspring's health and wellbeing. Poor sleep and disorders have been linked with adverse fetal outcomes and delivery conditions. However, pregnant women often experience several forms of sleep disruption, which has been scarcely reported in low and middle-income countries (LMIC), including Nigeria where the influence of lifestyle factors has also been lacking. We investigated sleep patterns and disorders and the associated factors among pregnant women in Southwest, Nigeria. METHOD A cross-sectional study was conducted among five hundred (500) pregnant women attending Adeoyo Maternity Teaching Hospital. A semi-structured questionnaire was used to examine different domains of sleep and associated disorders, namely sleep quality (Pittsburgh Sleep Quality Index (> 5 and ≤ 5)), insomnia (Insomnia Severity Index (> 8 and ≤ 8)), restless leg syndrome (Restless Leg Syndrome Rating Scale (> 10 and ≤ 10). Significant covariates such as physical activity, minimum dietary diversity, smoking and alcohol intake were also assessed. We conducted bivariate and multivariate analysis at p < 0.05 significance level. RESULTS The mean age of participants was 30.4 ± 4.8 years. The pattern of sleep disorder in pregnant were poor sleep quality (50%), restless leg syndrome (58.2%) and insomnia (33.4%). Being currently married (AOR = 6.13; 95% CI: (1.65-22.23)), increasing gestational age: second trimester (AOR = 8.25;95% CI: (1.78-38.17)) to third trimester (AOR = 10.98; 95% CI: (2.44-49.48)) increased the odds of poor sleep quality. Factors associated with restless leg syndrome were marital status [AOR = 3.60; 95% CI; (1.25-10.35)], religion, rigorous physical activities [AOR = 1.52; 95% CI: (1.05-2.21)] and alcohol consumption [AOR = 3.51; 95% CI: (1.00-12.27)]. Factors associated with insomnia were maternal age [AOR = 1.83; 95% CI: (1.11-3.01)], income [AOR = 2.99 (1.26-7.16)] and rigorous physical activity [AOR = 2.55 (1.61-4.02)]. CONCLUSION Poor sleep quality, restless leg syndrome and insomnia were typical among pregnant women in Ibadan, Southwest Nigeria. Thus, awareness and education on the importance of sleep and its risk and protective factors, such as alcohol consumption, smoking, rigorous activity and spousal and family support, should be increased to reduce poor sleep quality and sleep disorders (restless leg syndrome and insomnia) during the pregnancy period.
Collapse
Affiliation(s)
- Blessing O Ojelere
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ikeola A Adeoye
- Department of Epidemiology and Medical Statistics, Faculty of Public Health, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- Consortium of Advanced Research for Africa (CARTA), Nairobi, Kenya.
| |
Collapse
|
5
|
Billot A, Kiran S. Disentangling neuroplasticity mechanisms in post-stroke language recovery. BRAIN AND LANGUAGE 2024; 251:105381. [PMID: 38401381 PMCID: PMC10981555 DOI: 10.1016/j.bandl.2024.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
A major objective in post-stroke aphasia research is to gain a deeper understanding of neuroplastic mechanisms that drive language recovery, with the ultimate goal of enhancing treatment outcomes. Subsequent to recent advances in neuroimaging techniques, we now have the ability to examine more closely how neural activity patterns change after a stroke. However, the way these neural activity changes relate to language impairments and language recovery is still debated. The aim of this review is to provide a theoretical framework to better investigate and interpret neuroplasticity mechanisms underlying language recovery in post-stroke aphasia. We detail two sets of neuroplasticity mechanisms observed at the synaptic level that may explain functional neuroimaging findings in post-stroke aphasia recovery at the network level: feedback-based homeostatic plasticity and associative Hebbian plasticity. In conjunction with these plasticity mechanisms, higher-order cognitive control processes dynamically modulate neural activity in other regions to meet communication demands, despite reduced neural resources. This work provides a network-level neurobiological framework for understanding neural changes observed in post-stroke aphasia and can be used to define guidelines for personalized treatment development.
Collapse
Affiliation(s)
- Anne Billot
- Center for Brain Recovery, Boston University, Boston, USA; Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Swathi Kiran
- Center for Brain Recovery, Boston University, Boston, USA.
| |
Collapse
|
6
|
Baselgia S, Kasten FH, Herrmann CS, Rasch B, Paβmann S. No Benefit in Memory Performance after Nocturnal Memory Reactivation Coupled with Theta-tACS. Clocks Sleep 2024; 6:211-233. [PMID: 38651390 PMCID: PMC11036246 DOI: 10.3390/clockssleep6020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Targeted memory reactivation (TMR) is an effective technique to enhance sleep-associated memory consolidation. The successful reactivation of memories by external reminder cues is typically accompanied by an event-related increase in theta oscillations, preceding better memory recall after sleep. However, it remains unclear whether the increase in theta oscillations is a causal factor or an epiphenomenon of successful TMR. Here, we used transcranial alternating current stimulation (tACS) to examine the causal role of theta oscillations for TMR during non-rapid eye movement (non-REM) sleep. Thirty-seven healthy participants learned Dutch-German word pairs before sleep. During non-REM sleep, we applied either theta-tACS or control-tACS (23 Hz) in blocks (9 min) in a randomised order, according to a within-subject design. One group of participants received tACS coupled with TMR time-locked two seconds after the reminder cue (time-locked group). Another group received tACS in a continuous manner while TMR cues were presented (continuous group). Contrary to our predictions, we observed no frequency-specific benefit of theta-tACS coupled with TMR during sleep on memory performance, neither for continuous nor time-locked stimulation. In fact, both stimulation protocols blocked the TMR-induced memory benefits during sleep, resulting in no memory enhancement by TMR in both the theta and control conditions. No frequency-specific effect was found on the power analyses of the electroencephalogram. We conclude that tACS might have an unspecific blocking effect on memory benefits typically observed after TMR during non-REM sleep.
Collapse
Affiliation(s)
- Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
| | - Florian H. Kasten
- Centre de Recherche Cerveau & Cognition, CNRS & Université Toulouse III Paul Sabatier, 31062 Toulouse, France;
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky Universität, 26129 Oldenburg, Germany;
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
| | - Sven Paβmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université de Fribourg, 1700 Fribourg, Switzerland;
- Department of Neurology, University Medicine Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
7
|
Navarrete M, Greco V, Rakowska M, Bellesi M, Lewis PA. Auditory stimulation during REM sleep modulates REM electrophysiology and cognitive performance. Commun Biol 2024; 7:193. [PMID: 38365955 PMCID: PMC10873307 DOI: 10.1038/s42003-024-05825-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024] Open
Abstract
REM sleep is critical for memory, emotion, and cognition. Manipulating brain activity during REM could improve our understanding of its function and benefits. Earlier studies have suggested that auditory stimulation in REM might modulate REM time and reduce rapid eye movement density. Building on this, we studied the cognitive effects and electroencephalographic responses related to such stimulation. We used acoustic stimulation locked to eye movements during REM and compared two overnight conditions (stimulation and no-stimulation). We evaluated the impact of this stimulation on REM sleep duration and electrophysiology, as well as two REM-sensitive memory tasks: visual discrimination and mirror tracing. Our results show that this auditory stimulation in REM decreases the rapid eye movements that characterize REM sleep and improves performance on the visual task but is detrimental to the mirror tracing task. We also observed increased beta-band activity and decreased theta-band activity following stimulation. Interestingly, these spectral changes were associated with changes in behavioural performance. These results show that acoustic stimulation can modulate REM sleep and suggest that different memory processes underpin its divergent impacts on cognitive performance.
Collapse
Affiliation(s)
- Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK.
- Psychology and Biobehavioral Sciences Department, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Viviana Greco
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Martyna Rakowska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK
| | - Michele Bellesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032, Camerino (MC), Italy
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
8
|
van Zelst AL, Earle FS. A Matter of Time: A Web-Based Investigation of Rest and Sleep Effects on Speech Motor Learning. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:59-71. [PMID: 38056482 PMCID: PMC11000790 DOI: 10.1044/2023_jslhr-22-00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/07/2022] [Accepted: 09/29/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Here, we examine the possibility that memory consolidation during a period of postpractice rest or nocturnal sleep can bolster speech motor learning in the absence of additional practice or effort. METHOD Using web-administered experiments, 74 typical, American English talkers trained in a nonnative vowel contrast then had a 12-hr delay with (SLEEP) or without nocturnal sleep (REST) or proceeded immediately (IMMEDIATE) to a posttraining production assessment. For ecological validity, 51 native Danish talkers perceptually identified the American English talkers' productions. RESULTS We observed that practice resulted in productions that were more acoustically similar to the Danish target. In addition, we found that rest in the absence of further practice reduced the token-to-token variability of the productions. Last, for vowels produced immediately following training, listeners more accurately identified vowels in the trained context, whereas in the untrained context, listener accuracy improved only for vowels produced by talkers who slept. CONCLUSIONS A single session of speech motor training promotes observable change to speech production behavior. Specifically, practice facilitates acoustic similarity to the target. Moreover, although a 12-hr postpractice period of rest appears to promote productions that are less variable, only the productions of those who slept are perceived as more accurate by listeners. This may point to sleep's role in contextualizing the acoustic goal of the production to the learner's own vocal tract and its role as a protective mechanism during learning. These results are unaccounted for under existing models and offer potential for future educational and clinical applications to maximize speech motor learning. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24707442.
Collapse
Affiliation(s)
- Anne L. van Zelst
- Department of Communication Sciences & Disorders, University of Delaware, Newark
| | - F. Sayako Earle
- Department of Communication Sciences & Disorders, University of Delaware, Newark
| |
Collapse
|
9
|
Wick A, Rasch B. Targeted memory reactivation during slow-wave sleep vs. sleep stage N2: no significant differences in a vocabulary task. Learn Mem 2023; 30:192-200. [PMID: 37726143 PMCID: PMC10547374 DOI: 10.1101/lm.053683.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/24/2023] [Indexed: 09/21/2023]
Abstract
Sleep supports memory consolidation, and slow-wave sleep (SWS) in particular is assumed to benefit the consolidation of verbal learning material. Re-exposure to previously learned words during SWS with a technique known as targeted memory reactivation (TMR) consistently benefits memory. However, TMR has also been successfully applied during sleep stage N2, though a direct comparison between words selectively reactivated during SWS versus N2 is still missing. Here, we directly compared the effects of N2 TMR and SWS TMR on memory performance in a vocabulary learning task in a within-subject design. Thirty-four healthy young participants (21 in the main sample and 13 in an additional sample) learned 120 Dutch-German word pairs before sleep. Participants in the main sample slept for ∼8 h during the night, while participants in the additional sample slept ∼3 h. We reactivated the Dutch words selectively during N2 and SWS in one single night. Forty words were not cued. Participants in the main sample recalled the German translations of the Dutch words after sleep in the morning, while those in the additional sample did so at 2:00 a.m. As expected, we observed no differences in recall performance between words reactivated during N2 and SWS. However, we failed to find an overall memory benefit of reactivated over nonreactivated words. Detailed time-frequency analyses showed that words played during N2 elicited stronger characteristic oscillatory responses in several frequency bands, including spindle and theta frequencies, compared with SWS. These oscillatory responses did not vary with the memory strengths of individual words. Our results question the robustness and replicability of the TMR benefit on memory using our Dutch vocabulary learning task. We discuss potential boundary conditions for vocabulary reactivation paradigms and, most importantly, see the need for further replication studies, ideally including multiple laboratories and larger sample sizes.
Collapse
Affiliation(s)
- Anna Wick
- Department of Psychology, University of Fribourg, Fribourg 1700, Switzerland
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg 1700, Switzerland
| |
Collapse
|
10
|
Abdellahi MEA, Koopman ACM, Treder MS, Lewis PA. Targeted memory reactivation in human REM sleep elicits detectable reactivation. eLife 2023; 12:e84324. [PMID: 37350572 PMCID: PMC10425171 DOI: 10.7554/elife.84324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/22/2023] [Indexed: 06/24/2023] Open
Abstract
It is now well established that memories can reactivate during non-rapid eye movement (non-REM) sleep, but the question of whether equivalent reactivation can be detected in rapid eye movement (REM) sleep is hotly debated. To examine this, we used a technique called targeted memory reactivation (TMR) in which sounds are paired with learned material in wake, and then re-presented in subsequent sleep, in this case REM, to trigger reactivation. We then used machine learning classifiers to identify reactivation of task-related motor imagery from wake in REM sleep. Interestingly, the strength of measured reactivation positively predicted overnight performance improvement. These findings provide the first evidence for memory reactivation in human REM sleep after TMR that is directly related to brain activity during wakeful task performance.
Collapse
Affiliation(s)
- Mahmoud EA Abdellahi
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| | - Anne CM Koopman
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| | - Matthias S Treder
- School of Computer Science and Informatics, Cardiff UniversityCardiffUnited Kingdom
| | - Penelope A Lewis
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC)CardiffUnited Kingdom
| |
Collapse
|
11
|
Knötzele J, Riemann D, Frase L, Feige B, van Elst LT, Kornmeier J. Presenting rose odor during learning, sleep and retrieval helps to improve memory consolidation: a real-life study. Sci Rep 2023; 13:2371. [PMID: 36759589 PMCID: PMC9911722 DOI: 10.1038/s41598-023-28676-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Improving our learning abilities is important for numerous aspects of our life. Several studies found beneficial effects of presenting cues (odor or sounds) during learning and during sleep for memory performance. A recent study applying a real-life paradigm indicated that additional odor cueing during a Final Test can further increase this cueing effect. The present online study builds on these findings with the following questions: (1) Can we replicate beneficial memory effects of additional odor cueing during tests? (2) How many odor cueing learning sessions and odor cueing nights of sleep maximize the learning success? (3) Can odor cueing also reduce the amount of forgetting over time? 160 Participants learned 40 German Japanese word pairs in four groups with separate experimental conditions over three days. Group N received no odor during the whole study. Group LS received odor cueing during learning and sleep, group LT during learning and testing and group LST during learning, sleep and testing. Participants performed intermediate tests after each learning session plus three final tests 1, 7 and 28 days after the last learning session. Results: (1) Group LST learned 8.5% more vocabulary words than the other groups overall. (2) This odor cueing effect increased across the three days of cued learning. (3) We found no clear evidence for effects of odor cueing on the forgetting dynamics. Our findings support the notion of a beneficial effect of odor cueing. They further suggest to use at least 3 days and nights of odor cueing. Overall, this study indicates that there is an easy, efficient and economical way to enhance memory performance in daily life.
Collapse
Affiliation(s)
- Jessica Knötzele
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany.,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Frase
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Kornmeier
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany. .,Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Kim T, Kim S, Kang J, Kwon M, Lee SH. The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front Neurosci 2022; 16:883848. [PMID: 35720688 PMCID: PMC9201256 DOI: 10.3389/fnins.2022.883848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep deprivation is known to have adverse effects on various cognitive abilities. In particular, a lack of sleep has been reported to disrupt memory consolidation and cognitive control functions. Here, focusing on long-term memory and cognitive control processes, we review the consistency and reliability of the results of previous studies of sleep deprivation effects on behavioral performance with variations in the types of stimuli and tasks. Moreover, we examine neural response changes related to these behavioral changes induced by sleep deprivation based on human fMRI studies to determine the brain regions in which neural responses increase or decrease as a consequence of sleep deprivation. Additionally, we discuss about the possibility that light as an environmentally influential factor affects our sleep cycles and related cognitive processes.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sejin Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Sue-Hyun Lee,
| |
Collapse
|
13
|
Hernandez-Reif M, Gungordu N. Infant sleep behaviors relate to their later cognitive and language abilities and morning cortisol stress hormone levels. Infant Behav Dev 2022; 67:101700. [DOI: 10.1016/j.infbeh.2022.101700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/06/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
|
14
|
Ben-Zion D, Gabitov E, Prior A, Bitan T. Effects of Sleep on Language and Motor Consolidation: Evidence of Domain General and Specific Mechanisms. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:180-213. [PMID: 37215556 PMCID: PMC10158628 DOI: 10.1162/nol_a_00060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/21/2021] [Indexed: 05/24/2023]
Abstract
The current study explores the effects of time and sleep on the consolidation of a novel language learning task containing both item-specific knowledge and the extraction of grammatical regularities. We also compare consolidation effects in language and motor sequence learning tasks, to ask whether consolidation mechanisms are domain general. Young adults learned to apply plural inflections to novel words based on morphophonological rules embedded in the input, and learned to type a motor sequence using a keyboard. Participants were randomly assigned into one of two groups, practicing each task during either the morning or evening hours. Both groups were retested 12 and 24 hours post-training. Performance on frequent trained items in the language task stabilized only following sleep, consistent with a hippocampal mechanism for item-specific learning. However, regularity extraction, indicated by generalization to untrained items in the linguistic task, as well as performance on motor sequence learning, improved 24 hours post-training, irrespective of the timing of sleep. This consolidation process is consistent with a frontostriatal skill-learning mechanism, common across the language and motor domains. This conclusion is further reinforced by cross-domain correlations at the individual level between improvement across 24 hours in the motor task and in the low-frequency trained items in the linguistic task, which involve regularity extraction. Taken together, our results at the group and individual levels suggest that some aspects of consolidation are shared across the motor and language domains, and more specifically, between motor sequence learning and grammar learning.
Collapse
Affiliation(s)
- Dafna Ben-Zion
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Anat Prior
- Department of Learning Disabilities, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
| | - Tali Bitan
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
- Department of Psychology, University of Haifa, Haifa, Israel
- Department of Speech Language Pathology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Does Where You Live Predict What You Say? Associations between Neighborhood Factors, Child Sleep, and Language Development. Brain Sci 2022; 12:brainsci12020223. [PMID: 35203986 PMCID: PMC8870121 DOI: 10.3390/brainsci12020223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Language ability is strongly related to important child developmental outcomes. Family-level socioeconomic status influences child language ability; it is unclear if, and through which mechanisms, neighborhood-level factors impact child language. The current study investigated the association between neighborhood factors (deprivation and disorder) assessed before birth and child language outcomes at age 5, with sleep duration as a potential underlying pathway. Secondary analysis was conducted on data collected between 2008 and 2018 on a subsample of 2444 participants from the All Our Families cohort study (Calgary, Canada) for whom neighborhood information from pregnancy could be geocoded. Neighborhood deprivation was determined using the Vancouver Area Neighborhood Deprivation Index (VANDIX), and disorder was assessed using crime reports. Mothers reported on their children’s sleep duration and language ability. Multilevel modeling indicated that greater neighborhood deprivation and disorder during pregnancy were predictive of lower scores on the Child Communication Checklist–2 (CCC–2) at 5 years. Path analyses revealed an indirect effect of neighborhood disorder on language through child sleep duration at 12 months. These results add to growing evidence that child development should be considered within the context of multiple systems. Sleep duration as an underlying link between environmental factors and child language ability warrants further study as a potential target for intervention.
Collapse
|
16
|
Batterink LJ, Zhang S. Simple statistical regularities presented during sleep are detected but not retained. Neuropsychologia 2022; 164:108106. [PMID: 34864052 DOI: 10.1016/j.neuropsychologia.2021.108106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 11/28/2021] [Indexed: 12/30/2022]
Abstract
In recent years, there has been growing interest and excitement over the newly discovered cognitive capacities of the sleeping brain, including its ability to form novel associations. These recent discoveries raise the possibility that other more sophisticated forms of learning may also be possible during sleep. In the current study, we tested whether sleeping humans are capable of statistical learning - the process of becoming sensitive to repeating, hidden patterns in environmental input, such as embedded words in a continuous stream of speech. Participants' EEG was recorded while they were presented with one of two artificial languages, composed of either trisyllabic or disyllabic nonsense words, during slow-wave sleep. We used an EEG measure of neural entrainment to assess whether participants became sensitive to the repeating regularities during sleep-exposure to the language. We further probed for long-term memory representations by assessing participants' performance on implicit and explicit tests of statistical learning during subsequent wake. In the disyllabic-but not trisyllabic-language condition, participants' neural entrainment to words increased over time, reflecting a gradual gain in sensitivity to the embedded regularities. However, no significant behavioural effects of sleep-exposure were observed after the nap, for either language. Overall, our results indicate that the sleeping brain can detect simple, repeating pairs of syllables, but not more complex triplet regularities. However, the online detection of these regularities does not appear to produce any durable long-term memory traces that persist into wake - at least none that were revealed by our current measures and sample size. Although some perceptual aspects of statistical learning are preserved during sleep, the lack of memory benefits during wake indicates that exposure to a novel language during sleep may have limited practical value.
Collapse
Affiliation(s)
- Laura J Batterink
- Department of Psychology, Brain and Mind Institute, Western University, London, ON, N6A 5B7, Canada.
| | - Steven Zhang
- Department of Psychology, Brain and Mind Institute, Western University, London, ON, N6A 5B7, Canada
| |
Collapse
|
17
|
Kornmeier J, Sosic-Vasic Z, Joos E. Spacing Learning Units affects both learning and forgetting. Trends Neurosci Educ 2022; 26:100173. [DOI: 10.1016/j.tine.2022.100173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 01/19/2023]
|
18
|
Beck J, Loretz E, Rasch B. Exposure to relaxing words during sleep promotes slow-wave sleep and subjective sleep quality. Sleep 2021; 44:zsab148. [PMID: 34115139 PMCID: PMC8598180 DOI: 10.1093/sleep/zsab148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Our thoughts alter our sleep, but the underlying mechanisms are still unknown. We propose that mental processes are active to a greater or lesser extent during sleep and that this degree of activation affects our sleep depth. We examined this notion by activating the concept of "relaxation" during sleep using relaxation-related words in 50 healthy participants. In support of our hypothesis, playing relaxing words during non-rapid eye movement sleep extended the time spent in slow-wave sleep, increased power in the slow-wave activity band after the word cue, and abolished an asymmetrical sleep depth during the word presentation period. In addition, participants reported a higher sleep quality and elevated subjective alertness. Our results support the notion that the activation of mental concepts during sleep can influence sleep depth. They provide a basis for interventions using targeted activations to promote sleep depth and sleep quality to foster well-being and health.
Collapse
Affiliation(s)
- Jonas Beck
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Erna Loretz
- The Siesta Group Schlafanalyse GmbH, Vienna, Austria
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
19
|
Abstract
This review will explore the role of memory consolidation in speech-motor learning. Existing frameworks of speech-motor control account for the protracted time course of building the speech-motor representation. These perspectives converge on the speech-motor representation as a multimodal unit that is comprised of auditory, motor, and linguistic information. Less is known regarding the memory mechanisms that support the emergence of a generalized speech-motor unit from instances of speech production. Here, we consider the broader learning and memory consolidation literature and how it may apply to speech-motor learning. We discuss findings from relevant domains on the stabilization, enhancement, and generalization of learned information. Based on this literature, we provide our predictions for the division of labor between conscious and unconscious memory systems in speech-motor learning, and the subsequent effects of time and sleep to memory consolidation. We identify both the methodological challenges, as well as the practical importance, of advancing this work empirically. This discussion provides a foundation for building a memory-based framework for speech-motor learning.
Collapse
|
20
|
Zhang J, Yetton B, Whitehurst LN, Naji M, Mednick SC. The effect of zolpidem on memory consolidation over a night of sleep. Sleep 2021; 43:5824815. [PMID: 32330272 DOI: 10.1093/sleep/zsaa084] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Nonrapid eye movement sleep boosts hippocampus-dependent, long-term memory formation more so than wake. Studies have pointed to several electrophysiological events that likely play a role in this process, including thalamocortical sleep spindles (12-15 Hz). However, interventional studies that directly probe the causal role of spindles in consolidation are scarce. Previous studies have used zolpidem, a GABA-A agonist, to increase sleep spindles during a daytime nap and promote hippocampal-dependent episodic memory. The current study investigated the effect of zolpidem on nighttime sleep and overnight improvement of episodic memories. METHODS We used a double-blind, placebo-controlled within-subject design to test the a priori hypothesis that zolpidem would lead to increased memory performance on a word-paired associates task by boosting spindle activity. We also explored the impact of zolpidem across a range of other spectral sleep features, including slow oscillations (0-1 Hz), delta (1-4 Hz), theta (4-8 Hz), sigma (12-15 Hz), as well as spindle-SO coupling. RESULTS We showed greater memory improvement after a night of sleep with zolpidem, compared to placebo, replicating a prior nap study. Additionally, zolpidem increased sigma power, decreased theta and delta power, and altered the phase angle of spindle-SO coupling, compared to placebo. Spindle density, theta power, and spindle-SO coupling were associated with next-day memory performance. CONCLUSIONS These results are consistent with the hypothesis that sleep, specifically the timing and amount of sleep spindles, plays a causal role in the long-term formation of episodic memories. Furthermore, our results emphasize the role of nonrapid eye movement theta activity in human memory consolidation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cognitive Sciences, University of California, Irvine
| | - Ben Yetton
- Department of Cognitive Sciences, University of California, Irvine
| | | | - Mohsen Naji
- Department of Medicine, University of California, San Diego
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine
| |
Collapse
|
21
|
Arican P, Gencpinar P, Olgac Dundar N, Tekgul H. Electrical Status Epilepticus During Slow-wave Sleep (ESES): Current Perspectives. J Pediatr Neurosci 2021; 16:91-96. [PMID: 35018175 PMCID: PMC8706590 DOI: 10.4103/jpn.jpn_137_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
Electrical status epilepticus during slow-wave sleep (ESES) is an epilepsy syndrome with sleep-induced epileptic discharges and acquired impairment of cognition or behavior. Since the disease’s original description in 1971, no clear consensus has emerged on diagnostic criteria or optimal treatment. The treatment of ESES can be challenging, often including numerous antiepileptic drugs, immunomodulatory agents, and even surgical interventions. There is little evidence to guide treatment because only retrospective studies and case reports on the efficacy of treatment of ESES are present in literature. In this paper, we aim to analyze the etiopathogenesis of ESES in the new genetic era and to evaluate the treatment modalities in accordance with the genetic data and electroclinic spectrum of ESES.
Collapse
Affiliation(s)
- Pinar Arican
- Department of Pediatric Neurology, Kahramanmaraş Necip Fazil Hospital, Kahramanmaraş, Turkey
| | - Pinar Gencpinar
- Department of Pediatric Neurology, Izmir Katip Celebi University, Izmir, Turkey
| | - Nihal Olgac Dundar
- Department of Pediatric Neurology, Izmir Katip Celebi University, Izmir, Turkey
| | - Hasan Tekgul
- Department of Pediatric Neurology, Ege University, Izmır, Turkey
| |
Collapse
|
22
|
Earle FS, Ullman MT. Deficits of Learning in Procedural Memory and Consolidation in Declarative Memory in Adults With Developmental Language Disorder. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2021; 64:531-541. [PMID: 33524264 PMCID: PMC8632504 DOI: 10.1044/2020_jslhr-20-00292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Purpose This study examined procedural and declarative learning and consolidation abilities in adults with developmental language disorder (DLD) relative to their typical language (TD) peers. Method A total of 100 young adults (age 18-24 years) with (n = 21) and without (n = 79) DLD participated across two sites. Performance measures on a recognition memory task and a serial reaction time task were used to assess declarative and procedural memory, respectively. Performance was measured shortly after learning (8 a.m.) and again after a 12-hr, overnight delay (8 a.m.). Results Linear mixed-effects modeling was used to examine the effects of time and group membership on task performance. For the serial reaction time task, there were significant effects of group (TD > DLD) and time (Day 1 > Day 2), but no interaction between them. For the recognition memory task, there was a significant interaction between group and time, driven by overnight gains in the TD group, combined with stable performance across days by those with DLD. Conclusions In procedural memory, adults with DLD demonstrate a learning deficit relative to adults without DLD, but appear to have comparable retention of learned information. In declarative memory, adults with DLD demonstrate a deficit in the overnight enhancement of memory retrieval, despite typical-like learning exhibited when tested shortly after encoding. Supplemental Material https://doi.org/10.23641/asha.13626485.
Collapse
Affiliation(s)
- F. Sayako Earle
- Department of Communication Sciences and Disorders, University of Delaware, Newark
| | | |
Collapse
|
23
|
Schreiner T, Staudigl T. Electrophysiological signatures of memory reactivation in humans. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190293. [PMID: 32248789 PMCID: PMC7209925 DOI: 10.1098/rstb.2019.0293] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The reactivation of neural activity that was present during the encoding of an event is assumed to be essential for human episodic memory retrieval and the consolidation of memories during sleep. Pioneering animal work has already established a crucial role of memory reactivation to prepare and guide behaviour. Research in humans is now delineating the neural processes involved in memory reactivation during both wakefulness and sleep as well as their functional significance. Focusing on the electrophysiological signatures of memory reactivation in humans during both memory retrieval and sleep-related consolidation, this review provides an overview of the state of the art in the field. We outline recent advances, methodological developments and open questions and specifically highlight commonalities and differences in the neuronal signatures of memory reactivation during the states of wakefulness and sleep. This article is part of the Theo Murphy meeting issue ‘Memory reactivation: replaying events past, present and future’.
Collapse
Affiliation(s)
- Thomas Schreiner
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
24
|
No effect of targeted memory reactivation during sleep on retention of vocabulary in adolescents. Sci Rep 2020; 10:4255. [PMID: 32144326 PMCID: PMC7060261 DOI: 10.1038/s41598-020-61183-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/23/2020] [Indexed: 11/08/2022] Open
Abstract
Re-exposure of newly acquired vocabulary during sleep improves later memory recall in healthy adults. The success of targeted memory reactivation (TMR) during sleep presumably depends on the presence of slow oscillations (i.e., EEG activity at a frequency of about 0.75 Hz). As slow oscillating activity is at its maximum during adolescence, we hypothesized that TMR is even more beneficial at this developmental stage. In the present study, adolescents aged 11 to 13 learnt Dutch vocabulary in the evening and were tested on recall performance the next morning. Half of the words were presented via loudspeakers during post-learning periods of NREM (Non Rapid Eye Movement) sleep in order to stimulate memory reactivation. Unexpectedly, TMR during sleep did not improve memory on the behavioral level in adolescents. On the oscillatory level, successful reactivation during sleep resulted in the characteristic increase in theta power over frontal brain regions, as reported in adults. However, we observed no increase in spindle power during successful reactivation. Possible factors that may explain the lacking effect of TMR in adolescents in this study such as differences in learning abilities and pre-sleep performance levels are discussed.
Collapse
|
25
|
Hu X, Cheng LY, Chiu MH, Paller KA. Promoting memory consolidation during sleep: A meta-analysis of targeted memory reactivation. Psychol Bull 2020; 146:218-244. [PMID: 32027149 PMCID: PMC7144680 DOI: 10.1037/bul0000223] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeted memory reactivation (TMR) is a methodology employed to manipulate memory processing during sleep. TMR studies have great potential to advance understanding of sleep-based memory consolidation and corresponding neural mechanisms. Research making use of TMR has developed rapidly, with over 70 articles published in the last decade, yet no quantitative analysis exists to evaluate the overall effects. Here we present the first meta-analysis of sleep TMR, compiled from 91 experiments with 212 effect sizes (N = 2,004). Based on multilevel modeling, overall sleep TMR was highly effective (Hedges' g = 0.29, 95% CI [0.21, 0.38]), with a significant effect for two stages of non-rapid-eye-movement (NREM) sleep (Stage NREM 2: Hedges' g = 0.32, 95% CI [0.04, 0.60]; and slow-wave sleep: Hedges' g = 0.27, 95% CI [0.20, 0.35]). In contrast, TMR was not effective during REM sleep nor during wakefulness in the present analyses. Several analysis strategies were used to address the potential relevance of publication bias. Additional analyses showed that TMR improved memory across multiple domains, including declarative memory and skill acquisition. Given that TMR can reinforce many types of memory, it could be useful for various educational and clinical applications. Overall, the present meta-analysis provides substantial support for the notion that TMR can influence memory storage during NREM sleep, and that this method can be useful for understanding neurocognitive mechanisms of memory consolidation. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Xiaoqing Hu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The State Key Lab of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Larry Y. Cheng
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Man Hey Chiu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Ken A. Paller
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Cognitive Neuroscience Program, Northwestern University, Evanston, IL, USA
| |
Collapse
|
26
|
How odor cues help to optimize learning during sleep in a real life-setting. Sci Rep 2020; 10:1227. [PMID: 31988352 PMCID: PMC6985213 DOI: 10.1038/s41598-020-57613-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/02/2020] [Indexed: 11/24/2022] Open
Abstract
Effortless learning during sleep is everybody’s dream. Several studies found that presenting odor cues during learning and selectively during slow wave sleep increases learning success. The current study extends previous research in three aspects to test for optimization and practical applicability of this cueing effect: We (1) performed a field study of vocabulary-learning in a regular school setting, (2) stimulated with odor cues during the whole night without sleep monitoring, and (3) applied the odor additionally as retrieval cue in a subsequent test. We found an odor cueing effect with comparable effect sizes (d between 0.6 and 1.2) as studies with sleep monitoring and selective cueing. Further, we observed some (non-significant) indication for a further performance benefit with additional cueing during the recall test. Our results replicate previous findings and provide important extensions: First, the odor effect also works outside the lab. Second, continuous cueing at night produces similar effect sizes as a study with selective cueing in specific sleep stages. Whether odor cueing during memory recall further increases memory performance hast to be shown in future studies. Overall, our results extend the knowledge on odor cueing effects and provide a realistic practical perspective on it.
Collapse
|
27
|
Ullman MT, Earle FS, Walenski M, Janacsek K. The Neurocognition of Developmental Disorders of Language. Annu Rev Psychol 2020; 71:389-417. [DOI: 10.1146/annurev-psych-122216-011555] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Developmental disorders of language include developmental language disorder, dyslexia, and motor-speech disorders such as articulation disorder and stuttering. These disorders have generally been explained by accounts that focus on their behavioral rather than neural characteristics; their processing rather than learning impairments; and each disorder separately rather than together, despite their commonalities and comorbidities. Here we update and review a unifying neurocognitive account—the Procedural circuit Deficit Hypothesis (PDH). The PDH posits that abnormalities of brain structures underlying procedural memory (learning and memory that rely on the basal ganglia and associated circuitry) can explain numerous brain and behavioral characteristics across learning and processing, in multiple disorders, including both commonalities and differences. We describe procedural memory, examine its role in various aspects of language, and then present the PDH and relevant evidence across language-related disorders. The PDH has substantial explanatory power, and both basic research and translational implications.
Collapse
Affiliation(s)
- Michael T. Ullman
- Brain and Language Lab, Department of Neuroscience, Georgetown University, Washington, DC 20057, USA
| | - F. Sayako Earle
- Department of Communication Sciences and Disorders, University of Delaware, Newark, Delaware 19713, USA
| | - Matthew Walenski
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois 60208, USA
| | - Karolina Janacsek
- Institute of Psychology, Eotvos Lorand University (ELTE), H-1071 Budapest, Hungary
- Brain, Memory, and Language Lab; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary
| |
Collapse
|
28
|
A review of neurobiological factors underlying the selective enhancement of memory at encoding, consolidation, and retrieval. Prog Neurobiol 2019; 179:101615. [DOI: 10.1016/j.pneurobio.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/08/2019] [Accepted: 04/29/2019] [Indexed: 11/23/2022]
|
29
|
Abstract
Is it really possible to learn new information during deep sleep? A new study suggests that implicit vocabulary binding can occur while we are snoozing. It also seems that the success of learning depends heavily upon the timing of such 'sleepy stimulation'.
Collapse
Affiliation(s)
- Miguel Navarrete
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Penelope A Lewis
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK.
| |
Collapse
|
30
|
Increased neuronal signatures of targeted memory reactivation during slow-wave up states. Sci Rep 2019; 9:2715. [PMID: 30804371 PMCID: PMC6389952 DOI: 10.1038/s41598-019-39178-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/18/2019] [Indexed: 11/29/2022] Open
Abstract
It is assumed that slow oscillatory up-states represent crucial time windows for memory reactivation and consolidation during sleep. We tested this assumption by utilizing closed-loop targeted memory reactivation: Participants were re-exposed to prior learned foreign vocabulary during up- and down-states of slow oscillations. While presenting memory cues during slow oscillatory up-states improved recall performance, down-state cueing did not result in a clear behavioral benefit. Still, no robust behavioral benefit of up- as compared to down-state cueing was observable. At the electrophysiological level however, successful memory reactivation during up-states was associated with a characteristic power increase in the theta and sleep spindle band. No oscillatory changes were observable for down-state cues. Our findings provide experimental support for the assumption that slow oscillatory up-states may represent privileged time windows for memory reactivation, while the interplay of slow oscillations, theta and sleep spindle activity promotes successful memory consolidation during sleep.
Collapse
|
31
|
Batterink LJ, Paller KA. Statistical learning of speech regularities can occur outside the focus of attention. Cortex 2019; 115:56-71. [PMID: 30771622 DOI: 10.1016/j.cortex.2019.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/06/2018] [Accepted: 01/10/2019] [Indexed: 11/19/2022]
Abstract
Statistical learning, the process of extracting regularities from the environment, plays an essential role in many aspects of cognition, including speech segmentation and language acquisition. A key component of statistical learning in a linguistic context is the perceptual binding of adjacent individual units (e.g., syllables) into integrated composites (e.g., multisyllabic words). A second, conceptually dissociable component of statistical learning is the memory storage of these integrated representations. Here we examine whether these two dissociable components of statistical learning are differentially impacted by top-down, voluntary attentional resources. Learners' attention was either focused towards or diverted from a speech stream made up of repeating nonsense words. Building on our previous findings, we quantified the online perceptual binding of individual syllables into component words using an EEG-based neural entrainment measure. Following exposure, statistical learning was assessed using offline tests, sensitive to both perceptual binding and memory storage. Neural measures verified that our manipulation of selective attention successfully reduced limited-capacity resources to the speech stream. Diverting attention away from the speech stream did not alter neural entrainment to the component words or post-exposure familiarity ratings, but did impact performance on an indirect reaction-time based memory test. We conclude that theoretically dissociable components of statistically learning are differentially impacted by attention and top-down processing resources. A reduction in attention to the speech stream may impede memory storage of the component words. In contrast, the moment-by-moment perceptual binding of speech regularities can occur even while learners' attention is focused on a demanding concurrent task, and we found no evidence that selective attention modulates this process. These results suggest that learners can acquire basic statistical properties of language without directly focusing on the speech input, potentially opening up previously overlooked opportunities for language learning, particularly in adult learners.
Collapse
Affiliation(s)
- Laura J Batterink
- Western University, Department of Psychology, Brain & Mind Institute, London, ON, Canada; Northwestern University, Department of Psychology, Evanston, IL, USA.
| | - Ken A Paller
- Northwestern University, Department of Psychology, Evanston, IL, USA.
| |
Collapse
|
32
|
Ai S, Yin Y, Chen Y, Wang C, Sun Y, Tang X, Lu L, Zhu L, Shi J. Promoting subjective preferences in simple economic choices during nap. eLife 2018; 7:e40583. [PMID: 30520732 PMCID: PMC6294547 DOI: 10.7554/elife.40583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023] Open
Abstract
Sleep is known to benefit consolidation of memories, especially those of motivational relevance. Yet, it remains largely unknown the extent to which sleep influences reward-associated behavior, in particular, whether and how sleep modulates reward evaluation that critically underlies value-based decisions. Here, we show that neural processing during sleep can selectively bias preferences in simple economic choices when the sleeper is stimulated by covert, reward-associated cues. Specifically, presenting the spoken name of a familiar, valued snack item during midday nap significantly improves the preference for that item relative to items not externally cued. The cueing-specific preference enhancement is sleep-dependent and can be predicted by cue-induced neurophysiological signals at the subject and item level. Computational modeling further suggests that sleep cueing accelerates evidence accumulation for cued options during the post-sleep choice process in a manner consistent with the preference shift. These findings suggest that neurocognitive processing during sleep contributes to the fine-tuning of subjective preferences in a flexible, selective manner.
Collapse
Affiliation(s)
- Sizhi Ai
- National Institute on Drug DependencePeking UniversityBeijingChina
- Department of Cardiology, Heart Center, Henan Key Laboratory of NeurorestoratologyThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Yunlu Yin
- School of Psychological and Cognitive SciencesPeking UniversityBeijingChina
- Faculty of Business and EconomicsThe University of Hong KongHong Kong SARChina
| | - Yu Chen
- National Institute on Drug DependencePeking UniversityBeijingChina
| | - Cong Wang
- Peking-Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
| | - Yan Sun
- National Institute on Drug DependencePeking UniversityBeijingChina
| | - Xiangdong Tang
- Sleep Medicine Center, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lin Lu
- National Institute on Drug DependencePeking UniversityBeijingChina
- Peking-Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
- Institute of Mental Health, National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health and Peking University Sixth HospitalPeking UniversityBeijingChina
| | - Lusha Zhu
- School of Psychological and Cognitive SciencesPeking UniversityBeijingChina
- Peking-Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
- Key Laboratory of Machine Perception, Ministry of Education; Beijing Key Laboratory of Behavior and Mental HealthPeking UniversityBeijingChina
| | - Jie Shi
- National Institute on Drug DependencePeking UniversityBeijingChina
- Beijing Key Laboratory on Drug Dependence ResearchBeijingChina
- The State Key Laboratory of Natural and Biomimetic DrugsBeijingChina
- The Key Laboratory for Neuroscience of the Ministry of Education and HealthPeking UniversityBeijingChina
| |
Collapse
|
33
|
Cellini N, Mednick SC. Stimulating the sleeping brain: Current approaches to modulating memory-related sleep physiology. J Neurosci Methods 2018; 316:125-136. [PMID: 30452977 DOI: 10.1016/j.jneumeth.2018.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND One of the most audacious proposals throughout the history of psychology was the potential ability to learn while we sleep. The idea penetrated culture via sci-fi movies and inspired the invention of devices that claimed to teach foreign languages, facts, and even quit smoking by simply listening to audiocassettes or other devices during sleep. However, the promises from this endeavor didn't stand up to experimental scrutiny, and the dream was shunned from the scientific community. Despite the historic evidence that the sleeping brain cannot learn new complex information (i.e., words, images, facts), a new wave of current interventions are demonstrating that sleep can be manipulated to strengthen recent memories. NEW METHOD Several recent approaches have been developed that play with the sleeping brain in order to modify ongoing memory processing. Here, we provide an overview of the available techniques to non-invasively modulate memory-related sleep physiology, including sensory, vestibular and electrical stimulation, as well as pharmacological approaches. RESULTS N/A. COMPARISON WITH EXISTING METHODS N/A. CONCLUSIONS Although the results are encouraging, suggesting that in general the sleeping brain may be optimized for better memory performance, the road to bring these techniques in free-living conditions is paved with unanswered questions and technical challenges that need to be carefully addressed.
Collapse
Affiliation(s)
- Nicola Cellini
- Department of General Psychology, University of Padova, Padova, Italy.
| | - Sara C Mednick
- Department of Cognitive Sciences, University of California, Irvine, United States
| |
Collapse
|
34
|
Léger D, Debellemaniere E, Rabat A, Bayon V, Benchenane K, Chennaoui M. Slow-wave sleep: From the cell to the clinic. Sleep Med Rev 2018; 41:113-132. [DOI: 10.1016/j.smrv.2018.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
35
|
No effect of vocabulary reactivation in older adults. Neuropsychologia 2018; 119:253-261. [DOI: 10.1016/j.neuropsychologia.2018.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/07/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022]
|
36
|
Ngo HVV, Seibold M, Boche DC, Mölle M, Born J. Insights on auditory closed-loop stimulation targeting sleep spindles in slow oscillation up-states. J Neurosci Methods 2018; 316:117-124. [PMID: 30194953 DOI: 10.1016/j.jneumeth.2018.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND The consolidation of sleep-dependent memories is mediated by an interplay of cortical slow oscillations (SOs) and thalamo-cortical sleep spindles. Whereas an enhancement of SOs with auditory closed-loop stimulation has been proven highly successful, the feasibility to induce and boost sleep spindles with auditory stimulation remains unknown thus far. NEW METHOD Here we tested the possibility to enhance spindle activity during endogenous SOs and thereby to promote memory consolidation. Performing a sleep study in healthy humans, we applied an auditory Spindle stimulation and compared it with an Arrhythmic stimulation and a control condition comprising no stimulation (Sham). RESULTS With Spindle stimulation we were not able to directly entrain endogenous spindle activity during SO up-states. Instead, both Spindle and Arrhythmic stimulation evoked a resonant SO response accompanied by an increase in spindle power phase-locked to the SO up-state. Assessment of overnight retention of declarative word-pairs revealed no difference between all conditions. COMPARISON WITH EXISTING METHODS Our Spindle stimulation produced oscillatory evoked responses (i.e., increases in SOs and spindle activity during SO up-states) quite similar to those observed after the auditory closed-loop stimulation of SOs in previous studies, lacking however the beneficial effects on memory retention. CONCLUSION Our findings put the endeavour for a selective enhancement of spindle activity via auditory pathways into perspective and reveal central questions with regard to the stimulation efficacy on both an electrophysiological and a neurobehavioral level.
Collapse
Affiliation(s)
- Hong-Viet V Ngo
- School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom; Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Mitja Seibold
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Désirée C Boche
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Matthias Mölle
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen 72076, Germany; Centre for Integrative Neuroscience, University of Tübingen, Tübingen 72076, Germany.
| |
Collapse
|
37
|
Laventure S, Pinsard B, Lungu O, Carrier J, Fogel S, Benali H, Lina JM, Boutin A, Doyon J. Beyond spindles: interactions between sleep spindles and boundary frequencies during cued reactivation of motor memory representations. Sleep 2018; 41:5077412. [PMID: 30137521 PMCID: PMC6132625 DOI: 10.1093/sleep/zsy142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 06/01/2018] [Indexed: 11/13/2022] Open
Abstract
There is now ample evidence that sleep spindles play a critical role in the consolidation of newly acquired motor sequences. Previous studies have also revealed that the interplay between different types of sleep oscillations (e.g. spindles, slow waves, sharp-wave ripples) promotes the consolidation process of declarative memories. Yet the functional contribution of this type of frequency-specific interactions to motor memory consolidation remains unknown. Thus, this study sought to investigate whether spindle oscillations are associated with low- or high-frequency activity at the regional (local) and interregional (connectivity) levels. Using an olfactory-targeted memory reactivation paradigm paired to a motor sequence learning task, we compared the effect of cuing (Cond) to no-cuing (NoCond) on frequency interactions during sleep spindles. Time-frequency decomposition analyses revealed that cuing induced significant differential and localized changes in delta (1-4 Hz) and theta (4-8 Hz) frequencies before, during, and after spindles, as well as changes in high-beta (20-30 Hz) during the spindle oscillation. Finally, coherence analyses yielded significant increases in connectivity during sleep spindles in both theta and sigma (11-17 Hz) bands in the cued group only. These results support the notion that the synchrony between spindle and associated low- or high-frequency rhythmic activity is an integral part of the memory reactivation process. Furthermore, they highlight the importance of not only measuring spindles' characteristics, but to investigate such oscillations in both time and frequency domains when assessing memory consolidation-related changes.
Collapse
Affiliation(s)
- Samuel Laventure
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, QC, Canada
| | - Basile Pinsard
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’Imagerie Biomédicale (LIB), 75013 Paris, France
| | - Ovidiu Lungu
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Julie Carrier
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, QC, Canada
- Center for Advanced Research in Sleep Medicine, Montreal, QC, Canada
| | - Stuart Fogel
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Habib Benali
- PERFORM Centre, Electrical and Computer Engineering Department, Concordia University, Montreal, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Montreal, QC, Canada
- École de technologie supérieure, Department of Electrical Engineering, Montreal, Canada
| | - Arnaud Boutin
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Julien Doyon
- Department of Psychology, University of Montreal, Montreal, QC, Canada
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
38
|
Mirković J, Vinals L, Gaskell MG. The role of complementary learning systems in learning and consolidation in a quasi-regular domain. Cortex 2018; 116:228-249. [PMID: 30149965 DOI: 10.1016/j.cortex.2018.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
We examine the role of off-line memory consolidation processes in the learning and retention of a new quasi-regular linguistic system similar to the English past tense. Quasi-regular systems are characterized by a dominance of systematic, regular forms (e.g., walk-walked, jump-jumped) alongside a smaller number of high frequency irregulars (e.g., sit-sat, go-went), and are found across many cognitive domains, from spelling-sound mappings to inflectional morphology to semantic cognition. Participants were trained on the novel morphological system using an artificial language paradigm, and then tested after different delays. Based on a complementary systems account of memory, we predicted that irregular forms would show stronger off-line changes due to consolidation processes. Across two experiments, participants were tested either immediately after learning, 12 h later with or without sleep, or 24 h later. Testing involved generalization of the morphological patterns to previously unseen words (both experiments) as well as recall of the trained words (Experiment 2). In generalization, participants showed 'default' regularization across a range of novel forms, as well as irregularization for previously unseen items that were similar to unique high-frequency irregular trained forms. Both patterns of performance remained stable across the delays. Generalizations involving competing tendencies to regularize and irregularize were balanced between the two immediately after learning. Crucially, at both 12-h delays the tendency to irregularize in these cases was strengthened, with further strengthening after 24 h. Consolidated knowledge of both regular and irregular trained items contributed significantly to generalization performance, with evidence of strengthening of irregular forms and weakening of regular forms. We interpret these findings in the context of a complementary systems model, and discuss how maintenance, strengthening, and forgetting of the new memories across sleep and wake can play a role in acquiring quasi-regular systems.
Collapse
Affiliation(s)
- Jelena Mirković
- School of Psychological and Social Sciences, York St John University, York, United Kingdom; Department of Psychology, University of York, York, United Kingdom.
| | - Lydia Vinals
- Department of Psychology, Royal Holloway, University of London, Egham, United Kingdom.
| | - M G Gaskell
- Department of Psychology, University of York, York, United Kingdom.
| |
Collapse
|
39
|
Cellini N, Capuozzo A. Shaping memory consolidation via targeted memory reactivation during sleep. Ann N Y Acad Sci 2018; 1426:52-71. [PMID: 29762867 DOI: 10.1111/nyas.13855] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/24/2022]
Abstract
Recent studies have shown that the reactivation of specific memories during sleep can be modulated using external stimulation. Specifically, it has been reported that matching a sensory stimulus (e.g., odor or sound cue) with target information (e.g., pairs of words, pictures, and motor sequences) during wakefulness, and then presenting the cue alone during sleep, facilitates memory of the target information. Thus, presenting learned cues while asleep may reactivate related declarative, procedural, and emotional material, and facilitate the neurophysiological processes underpinning memory consolidation in humans. This paradigm, which has been named targeted memory reactivation, has been successfully used to improve visuospatial and verbal memories, strengthen motor skills, modify implicit social biases, and enhance fear extinction. However, these studies also show that results depend on the type of memory investigated, the task employed, the sensory cue used, and the specific sleep stage of stimulation. Here, we present a review of how memory consolidation may be shaped using noninvasive sensory stimulation during sleep.
Collapse
Affiliation(s)
- Nicola Cellini
- Department of General Psychology, University of Padova, Padova, Italy
| | - Alessandra Capuozzo
- International School for Advanced Studies - SISSA, Neuroscience Area, Trieste, Italy
| |
Collapse
|
40
|
Cross ZR, Kohler MJ, Schlesewsky M, Gaskell MG, Bornkessel-Schlesewsky I. Sleep-Dependent Memory Consolidation and Incremental Sentence Comprehension: Computational Dependencies during Language Learning as Revealed by Neuronal Oscillations. Front Hum Neurosci 2018; 12:18. [PMID: 29445333 PMCID: PMC5797781 DOI: 10.3389/fnhum.2018.00018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/15/2018] [Indexed: 12/19/2022] Open
Abstract
We hypothesize a beneficial influence of sleep on the consolidation of the combinatorial mechanisms underlying incremental sentence comprehension. These predictions are grounded in recent work examining the effect of sleep on the consolidation of linguistic information, which demonstrate that sleep-dependent neurophysiological activity consolidates the meaning of novel words and simple grammatical rules. However, the sleep-dependent consolidation of sentence-level combinatorics has not been studied to date. Here, we propose that dissociable aspects of sleep neurophysiology consolidate two different types of combinatory mechanisms in human language: sequence-based (order-sensitive) and dependency-based (order-insensitive) combinatorics. The distinction between the two types of combinatorics is motivated both by cross-linguistic considerations and the neurobiological underpinnings of human language. Unifying this perspective with principles of sleep-dependent memory consolidation, we posit that a function of sleep is to optimize the consolidation of sequence-based knowledge (the when) and the establishment of semantic schemas of unordered items (the what) that underpin cross-linguistic variations in sentence comprehension. This hypothesis builds on the proposal that sleep is involved in the construction of predictive codes, a unified principle of brain function that supports incremental sentence comprehension. Finally, we discuss neurophysiological measures (EEG/MEG) that could be used to test these claims, such as the quantification of neuronal oscillations, which reflect basic mechanisms of information processing in the brain.
Collapse
Affiliation(s)
- Zachariah R Cross
- Centre for Cognitive and Systems Neuroscience, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - Mark J Kohler
- Centre for Cognitive and Systems Neuroscience, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia.,Sleep and Chronobiology Laboratory, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - Matthias Schlesewsky
- Centre for Cognitive and Systems Neuroscience, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - M G Gaskell
- Department of Psychology, University of York, York, United Kingdom
| | - Ina Bornkessel-Schlesewsky
- Centre for Cognitive and Systems Neuroscience, School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
41
|
Heim S, Klann J, Schattka KI, Bauhoff S, Borcherding G, Nosbüsch N, Struth L, Binkofski FC, Werner CJ. A Nap But Not Rest or Activity Consolidates Language Learning. Front Psychol 2017; 8:665. [PMID: 28559856 PMCID: PMC5432759 DOI: 10.3389/fpsyg.2017.00665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
Recent evidence suggests that a period of sleep after a motor learning task is a relevant factor for memory consolidation. However, it is yet open whether this also holds true for language-related learning. Therefore, the present study compared the short- and long-term effects of a daytime nap, rest, or an activity task after vocabulary learning on learning outcome. Thirty healthy subjects were divided into three treatment groups. Each group received a pseudo-word learning task in which pictures of monsters were associated with unique pseudo-word names. At the end of the learning block a first test was administered. Then, one group went for a 90-min nap, one for a waking rest period, and one for a resting session with interfering activity at the end during which a new set of monster names was to be learned. After this block, all groups performed a first re-test of the names that they initially learned. On the morning of the following day, a second re-test was administered to all groups. The nap group showed significant improvement from test to re-test and a stable performance onto the second re-test. In contrast, the rest and the interference groups showed decline in performance from test to re-test, with persistently low performance at re-test 2. The 3 (GROUP) × 3 (TIME) ANOVA revealed a significant interaction, indicating that the type of activity (nap/rest/interfering action) after initial learning actually had an influence on the memory outcome. These data are discussed with respect to translation to clinical settings with suggestions for improvement of intervention outcome after speech-language therapy if it is followed by a nap rather than interfering activity.
Collapse
Affiliation(s)
- Stefan Heim
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen UniversityAachen, Germany
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1)Jülich, Germany
| | - Juliane Klann
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
- SRH University of Applied Health Sciences GeraGera, Germany
| | - Kerstin I. Schattka
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
| | - Sonja Bauhoff
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
| | - Gesa Borcherding
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
| | - Nicole Nosbüsch
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
| | - Linda Struth
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
| | - Ferdinand C. Binkofski
- Division for Clinical Cognitive Sciences, Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4)Jülich, Germany
| | - Cornelius J. Werner
- Department of Neurology, Medical Faculty, RWTH Aachen UniversityAachen, Germany
| |
Collapse
|
42
|
Göldi M, Schreiner T. Clicking the brain into deep sleep. Commentary on Weigenandet al. (). Eur J Neurosci 2017; 45:629-630. [DOI: 10.1111/ejn.13494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maurice Göldi
- Department of Psychology; University of Fribourg; Fribourg Switzerland
- Institute of Psychology; University of Zurich; Zurich Switzerland
| | - Thomas Schreiner
- Zurich Center for Interdisciplinary Sleep Research (ZiS); Zurich Switzerland
- Donders Institute for Brain, Cognition and Behaviour; Radboud University; Kapittelweg 29 6525 Nijmegen The Netherlands
| |
Collapse
|
43
|
Prior knowledge is essential for the beneficial effect of targeted memory reactivation during sleep. Sci Rep 2017; 7:39763. [PMID: 28051138 PMCID: PMC5209656 DOI: 10.1038/srep39763] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/28/2016] [Indexed: 11/30/2022] Open
Abstract
Prior knowledge speeds up system consolidation and accelerates integration of newly acquired memories into existing neocortical knowledge networks. By using targeted memory reactivations, we demonstrate that prior knowledge is also essential for successful reactivation and consolidation of memories during sleep, both on the behavioral and oscillatory level (i.e., theta and fast spindle activity). Thus, prior knowledge is a prerequisite for new memories to enter processes of system consolidation during sleep.
Collapse
|
44
|
Emotional arousal modulates oscillatory correlates of targeted memory reactivation during NREM, but not REM sleep. Sci Rep 2016; 6:39229. [PMID: 27982120 PMCID: PMC5159847 DOI: 10.1038/srep39229] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/18/2016] [Indexed: 11/23/2022] Open
Abstract
Rapid eye movement (REM) sleep is considered to preferentially reprocess emotionally arousing memories. We tested this hypothesis by cueing emotional vs. neutral memories during REM and NREM sleep and wakefulness by presenting associated verbal memory cues after learning. Here we show that cueing during NREM sleep significantly improved memory for emotional pictures, while no cueing benefit was observed during REM sleep. On the oscillatory level, successful memory cueing during NREM sleep resulted in significant increases in theta and spindle oscillations with stronger responses for emotional than neutral memories. In contrast during REM sleep, solely cueing of neutral (but not emotional) memories was associated with increases in theta activity. Our results do not support a preferential role of REM sleep for emotional memories, but rather suggest that emotional arousal modulates memory replay and consolidation processes and their oscillatory correlates during NREM sleep.
Collapse
|