1
|
Alva R, Wiebe JE, Stuart JA. Altered hypoxia- and redox-related transcriptional signatures in mitochondrial-DNA-depleted PC-3 cells. Biochem Biophys Res Commun 2025; 742:151108. [PMID: 39632288 DOI: 10.1016/j.bbrc.2024.151108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Rho 0 (ρ0) cells are widely used as a tool to investigate how the absence of respiring mitochondria affects a variety of physiological and pathological processes. Prominently, ρ0 cells have been used to study the role of mitochondrial reactive oxygen species (ROS) production and/or mitochondrial respiration in the stabilization of the hypoxia-inducible factor (HIF) in hypoxia. In this study, we cultured ρ0 and WT PC-3 cells in 5% O2 (physioxia) and Plasmax medium for 2 weeks prior to transcriptomic and functional analyses. RNA-seq showed that ρ0 PC-3 cells exhibit impaired induction of HIF-regulated genes when exposed to hypoxia, compared to wild-type (WT) cells. Surprisingly, when comparing the transcriptomes of ρ0 and WT cells in physioxia (5% O2), we found a strong presence of HIF-related gene signatures in ρ0 cells compared to WT. Among the HIF targets found to be upregulated in ρ0 cells are CA9, EGLN3, EPAS1, HK2, ENO2, and SLC2A1. Moreover, several Nrf2 targets were upregulated in ρ0 cells, including NQO1, HMOX1, GPX2, and SLC7A11, which is in line with ρ0 cells showing a significantly higher H2O2 efflux rate than WT cells. Given the alterations in HIF-dependent and Nrf2-dependent gene expression and basal ROS production observed in ρ0 PC-3 cells, we conclude that caution should be taken when interpreting the results from experiments that focus on ROS production and HIF signaling using ρ0 cells as a model.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - Jacob E Wiebe
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
2
|
Jang JH, Zhou M, Makita K, Sun R, El-Hajjar M, Fonseca G, Lauzon AM, Martin JG. Induction of a memory-like CD4 + T-cell phenotype by airway smooth muscle cells. Eur J Immunol 2024; 54:e2249800. [PMID: 38334162 DOI: 10.1002/eji.202249800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
In asthma, CD4+ T-cell interaction with airway smooth muscle (ASM) may enhance its contractile properties and promote its proliferation. However, less is known about the effects of this interaction on T cells. To explore the consequences of interaction of CD4+ T cells with ASM we placed the cells in co-culture and analyzed the phenotypic and functional changes in the T cells. Effector status as well as cytokine expression was assessed by flow cytometry. An increase in CD45RA-CD45RO+ memory T cells was observed after co-culture; however, these cells were not more responsive to CD3/28 restimulation. A reduction in mitochondrial coupling and an increase in the production of mitochondrial reactive oxygen species by CD4+ T cells post-restimulation suggested altered mitochondrial metabolism after co-culture. RNA sequencing analysis of the T cells revealed characteristic downregulation of effector T-cell-associated genes, but a lack of upregulation of memory T-cell-associated genes. The results of this study demonstrate that ASM cells can induce a phenotypic shift in CD4+ T cells into memory-like T cells but with reduced capacity for activation.
Collapse
Affiliation(s)
- Joyce H Jang
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - Michael Zhou
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - Kosuke Makita
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rui Sun
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - Mikal El-Hajjar
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - Gregory Fonseca
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| | - James G Martin
- Meakins-Christie Laboratories, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Alajroush DR, Smith CB, Anderson BF, Oyeyemi IT, Beebe SJ, Holder AA. A Comparison of In Vitro Studies between Cobalt(III) and Copper(II) Complexes with Thiosemicarbazone Ligands to Treat Triple Negative Breast Cancer. Inorganica Chim Acta 2024; 562:121898. [PMID: 38282819 PMCID: PMC10810091 DOI: 10.1016/j.ica.2023.121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Metal complexes have gained significant attention as potential anti-cancer agents. The anti-cancer activity of [Co(phen)2(MeATSC)](NO3)3•1.5H2O•C2H5OH 1 (where phen = 1,10-phenanthroline and MeATSC = 9-anthraldehyde-N(4)-methylthiosemicarbazone) and [Cu(acetylethTSC)Cl]Cl•0.25C2H5OH 2 (where acetylethTSC = (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide) was investigated by analyzing DNA cleavage activity. The cytotoxic effect was analyzed using CCK-8 viability assay. The activities of caspase 3/7, 9, and 1, reactive oxygen species (ROS) production, cell cycle arrest, and mitochondrial function were further analyzed to study the cell death mechanisms. Complex 2 induced a significant increase in nicked DNA. The IC50 values of complex 1 were 17.59 μM and 61.26 μM in cancer and non-cancer cells, respectively. The IC50 values of complex 2 were 5.63 and 12.19 μM for cancer and non-cancer cells, respectively. Complex 1 induced an increase in ROS levels, mitochondrial dysfunction, and activated caspases 3/7, 9, and 1, which indicated the induction of intrinsic apoptotic pathway and pyroptosis. Complex 2 induced cell cycle arrest in the S phase, ROS generation, and caspase 3/7 activation. Thus, complex 1 induced cell death in the breast cancer cell line via activation of oxidative stress which induced apoptosis and pyroptosis while complex 2 induced cell cycle arrest through the induction of DNA cleavage.
Collapse
Affiliation(s)
- Duaa R. Alajroush
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| | - Chloe B. Smith
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| | - Brittney F. Anderson
- Department of Biological Sciences, University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, U.S.A
| | - Ifeoluwa T. Oyeyemi
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
- Department of Biological Sciences, University of Medical Sciences, Ondo City, Nigeria
| | - Stephen J. Beebe
- Frank Reidy Research center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, U.S.A
| | - Alvin A. Holder
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, U.S.A
| |
Collapse
|
4
|
Tagliatti E, Desiato G, Mancinelli S, Bizzotto M, Gagliani MC, Faggiani E, Hernández-Soto R, Cugurra A, Poliseno P, Miotto M, Argüello RJ, Filipello F, Cortese K, Morini R, Lodato S, Matteoli M. Trem2 expression in microglia is required to maintain normal neuronal bioenergetics during development. Immunity 2024; 57:86-105.e9. [PMID: 38159572 PMCID: PMC10783804 DOI: 10.1016/j.immuni.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Triggering receptor expressed on myeloid cells 2 (Trem2) is a myeloid cell-specific gene expressed in brain microglia, with variants that are associated with neurodegenerative diseases, including Alzheimer's disease. Trem2 is essential for microglia-mediated synaptic refinement, but whether Trem2 contributes to shaping neuronal development remains unclear. Here, we demonstrate that Trem2 plays a key role in controlling the bioenergetic profile of pyramidal neurons during development. In the absence of Trem2, developing neurons in the hippocampal cornus ammonis (CA)1 but not in CA3 subfield displayed compromised energetic metabolism, accompanied by reduced mitochondrial mass and abnormal organelle ultrastructure. This was paralleled by the transcriptional rearrangement of hippocampal pyramidal neurons at birth, with a pervasive alteration of metabolic, oxidative phosphorylation, and mitochondrial gene signatures, accompanied by a delay in the maturation of CA1 neurons. Our results unveil a role of Trem2 in controlling neuronal development by regulating the metabolic fitness of neurons in a region-specific manner.
Collapse
Affiliation(s)
- Erica Tagliatti
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Sara Mancinelli
- Humanitas University, Department of Biomedical Sciences, Via Levi Montalicini 4, Pieve Emanuele 20072 Milan, Italy
| | - Matteo Bizzotto
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Humanitas University, Department of Biomedical Sciences, Via Levi Montalicini 4, Pieve Emanuele 20072 Milan, Italy
| | - Maria C Gagliani
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine (DIMES), Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
| | - Elisa Faggiani
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | | | - Andrea Cugurra
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Paola Poliseno
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Matteo Miotto
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Rafael J Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Fabia Filipello
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine (DIMES), Human Anatomy, Università di Genova, Via Antonio de Toni 14, 16132 Genova, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Simona Lodato
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Humanitas University, Department of Biomedical Sciences, Via Levi Montalicini 4, Pieve Emanuele 20072 Milan, Italy
| | - Michela Matteoli
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089 Milan, Italy; Institute of Neuroscience - National Research Council, 20139 Milan, Italy.
| |
Collapse
|
5
|
Makhlouf M, Souza DG, Kurian S, Bellaver B, Ellis H, Kuboki A, Al-Naama A, Hasnah R, Venturin GT, Costa da Costa J, Venugopal N, Manoel D, Mennella J, Reisert J, Tordoff MG, Zimmer ER, Saraiva LR. Short-term consumption of highly processed diets varying in macronutrient content impair the sense of smell and brain metabolism in mice. Mol Metab 2024; 79:101837. [PMID: 37977411 PMCID: PMC10724696 DOI: 10.1016/j.molmet.2023.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
OBJECTIVE Food processing greatly contributed to increased food safety, diversity, and accessibility. However, the prevalence of highly palatable and highly processed food in our modern diet has exacerbated obesity rates and contributed to a global health crisis. While accumulating evidence suggests that chronic consumption of such foods is detrimental to sensory and neural physiology, it is unclear whether its short-term intake has adverse effects. Here, we assessed how short-term consumption (<2 months) of three diets varying in composition and macronutrient content influence olfaction and brain metabolism in mice. METHODS The diets tested included a grain-based standard chow diet (CHOW; 54% carbohydrate, 32% protein, 14% fat; #8604 Teklad Rodent diet , Envigo Inc.), a highly processed control diet (hpCTR; 70% carbohydrate, 20% protein, 10% fat; #D12450B, Research Diets Inc.), and a highly processed high-fat diet (hpHFD; 20% carbohydrate, 20% protein, 60% fat; #D12492, Research Diets Inc.). We performed behavioral and metabolic phenotyping, electro-olfactogram (EOG) recordings, brain glucose metabolism imaging, and mitochondrial respirometry in different brain regions. We also performed RNA-sequencing (RNA-seq) in the nose and across several brain regions, and conducted differential expression analysis, gene ontology, and network analysis. RESULTS We show that short-term consumption of the two highly processed diets, but not the grain-based diet, regardless of macronutrient content, adversely affects odor-guided behaviors, physiological responses to odorants, transcriptional profiles in the olfactory mucosa and brain regions, and brain glucose metabolism and mitochondrial respiration. CONCLUSIONS Even short periods of highly processed food consumption are sufficient to cause early olfactory and brain abnormalities, which has the potential to alter food choices and influence the risk of developing metabolic disease.
Collapse
Affiliation(s)
| | - Débora G Souza
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Hillary Ellis
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Akihito Kuboki
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | | - Reem Hasnah
- Sidra Medicine, PO Box 26999, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Gianina Teribele Venturin
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Julie Mennella
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Michael G Tordoff
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil; Department of Pharmacology, UFRGS, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Brazil; McGill Centre for Studies in Aging, Montreal, Canada.
| | - Luis R Saraiva
- Sidra Medicine, PO Box 26999, Doha, Qatar; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
6
|
Cadart C, Bartz J, Oaks G, Liu MZ, Heald R. Polyploidy in Xenopus lowers metabolic rate by decreasing total cell surface area. Curr Biol 2023; 33:1744-1752.e7. [PMID: 37080197 PMCID: PMC10184464 DOI: 10.1016/j.cub.2023.03.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Although polyploidization is frequent in development, cancer, and evolution, impacts on animal metabolism are poorly understood. In Xenopus frogs, the number of genome copies (ploidy) varies across species and can be manipulated within a species. Here, we show that triploid tadpoles contain fewer, larger cells than diploids and consume oxygen at a lower rate. Drug treatments revealed that the major processes accounting for tadpole energy expenditure include cell proliferation, biosynthesis, and maintenance of plasma membrane potential. While inhibiting cell proliferation did not abolish the oxygen consumption difference between diploids and triploids, treatments that altered cellular biosynthesis or electrical potential did. Combining these results with a simple mathematical framework, we propose that the decrease in total cell surface area lowered production and activity of plasma membrane components including the Na+/K+ ATPase, reducing energy consumption in triploids. Comparison of Xenopus species that evolved through polyploidization revealed that metabolic differences emerged during development when cell size scaled with genome size. Thus, ploidy affects metabolism by altering the cell surface area to volume ratio in a multicellular organism.
Collapse
Affiliation(s)
- Clotilde Cadart
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | - Julianne Bartz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Gillian Oaks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Martin Ziyuan Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
7
|
The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells. Biomolecules 2023; 13:biom13010144. [PMID: 36671528 PMCID: PMC9856076 DOI: 10.3390/biom13010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics.
Collapse
|
8
|
Guette-Marquet S, Roques C, Bergel A. Direct electrochemical detection of trans-plasma membrane electron transfer: A possible alternative pathway for cell respiration. Biosens Bioelectron 2022; 220:114896. [DOI: 10.1016/j.bios.2022.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
9
|
Zheng X, Zhao J, Wang S, Hu L. Research Progress of Antioxidant Nanomaterials for Acute Pancreatitis. Molecules 2022; 27:7238. [PMID: 36364064 PMCID: PMC9658789 DOI: 10.3390/molecules27217238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a complex inflammatory disease caused by multiple etiologies, the pathogenesis of which has not been fully elucidated. Oxidative stress is important for the regulation of inflammation-related signaling pathways, the recruitment of inflammatory cells, the release of inflammatory factors, and other processes, and plays a key role in the occurrence and development of AP. In recent years, antioxidant therapy that suppresses oxidative stress by scavenging reactive oxygen species has become a research highlight of AP. However, traditional antioxidant drugs have problems such as poor drug stability and low delivery efficiency, which limit their clinical translation and applications. Nanomaterials bring a brand-new opportunity for the antioxidant treatment of AP. This review focuses on the multiple advantages of nanomaterials, including small size, good stability, high permeability, and long retention effect, which can be used not only as effective carriers of traditional antioxidant drugs but also directly as antioxidants. In this review, after first discussing the association between oxidative stress and AP, we focused on summarizing the literature related to antioxidant nanomaterials for the treatment of AP and highlighting the effects of these nanomaterials on the indicators related to oxidative stress in pathological states, aiming to provide references for follow-up research and promote clinical application.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Ningxia Medical University, Postgraduate Training Base in Shanghai Gongli Hospital, Pudong New Area, No. 219 Miao Pu Road, Shanghai 200135, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
10
|
Goudie L, Mancini NL, Shutt TE, Holloway GP, Mu C, Wang A, McKay DM, Shearer J. Impact of experimental colitis on mitochondrial bioenergetics in intestinal epithelial cells. Sci Rep 2022; 12:7453. [PMID: 35523978 PMCID: PMC9076608 DOI: 10.1038/s41598-022-11123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Intestinal homeostasis is highly dependent on optimal epithelial barrier function and permeability. Intestinal epithelial cells (IEC) regulate these properties acting as cellular gatekeepers by selectively absorbing nutrients and controlling the passage of luminal bacteria. These functions are energy demanding processes that are presumably met through mitochondrial-based processes. Routine methods for examining IEC mitochondrial function remain sparse, hence, our objective is to present standardized methods for quantifying mitochondrial energetics in an immortalized IEC line. Employing the murine IEC4.1 cell line, we present adapted methods and protocols to examine mitochondrial function using two well-known platforms: the Seahorse Extracellular Flux Analyzer and Oxygraph-2 k. To demonstrate the applicability of these protocols and instruments, IEC were treated with and without the murine colitogenic agent, dextran sulfate sodium (DSS, 2% w/v). Profound impairments with DSS treatment were found with both platforms, however, the Oxygraph-2 k allowed greater resolution of affected pathways including short-chain fatty acid metabolism. Mitochondrial functional analysis is a novel tool to explore the relationship between IEC energetics and functional consequences within the contexts of health and disease. The outlined methods offer an introductory starting point for such assessment and provide the investigator with insights into platform-specific capabilities.
Collapse
Affiliation(s)
- Luke Goudie
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Nicole L Mancini
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Timothy E Shutt
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Departments of Medical Genetics and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, HMRB 228, Alberta, Canada
| | - Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Chunlong Mu
- Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Departments of Medical Genetics and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, HMRB 228, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Jane Shearer
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada. .,Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Departments of Medical Genetics and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, HMRB 228, Alberta, Canada.
| |
Collapse
|
11
|
Sim SW, Jang Y, Park TS, Park BC, Lee YM, Jun HS. Molecular mechanisms of aberrant neutrophil differentiation in glycogen storage disease type Ib. Cell Mol Life Sci 2022; 79:246. [PMID: 35437689 PMCID: PMC11071875 DOI: 10.1007/s00018-022-04267-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
Glycogen storage disease type Ib (GSD-Ib), characterized by impaired glucose homeostasis, neutropenia, and neutrophil dysfunction, is caused by a deficiency in glucose-6-phosphate transporter (G6PT). Neutropenia in GSD-Ib has been known to result from enhanced apoptosis of neutrophils. However, it has also been raised that neutrophil maturation arrest in the bone marrow would contribute to neutropenia. We now show that G6pt-/- mice exhibit severe neutropenia and impaired neutrophil differentiation in the bone marrow. To investigate the role of G6PT in myeloid progenitor cells, the G6PT gene was mutated using CRISPR/Cas9 system, and single cell-derived G6PT-/- human promyelocyte HL-60 cell lines were established. The G6PT-/- HL-60s exhibited impaired neutrophil differentiation, which is associated with two mechanisms: (i) abnormal lipid metabolism causing a delayed metabolic reprogramming and (ii) reduced nuclear transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ) in G6PT-/- HL-60s. In this study, we demonstrated that G6PT is essential for neutrophil differentiation of myeloid progenitor cells and regulates PPARγ activity.
Collapse
Affiliation(s)
- Sang Wan Sim
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 339-700, Republic of Korea
| | - Yuyeon Jang
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 339-700, Republic of Korea
| | - Tae Sub Park
- Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon, 25354, Republic of Korea
| | - Byung-Chul Park
- Graduate School of International Agricultural Technology, and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon, 25354, Republic of Korea
| | - Young Mok Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Hyun Sik Jun
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, 339-700, Republic of Korea.
| |
Collapse
|
12
|
Wang L, Wang X, Wang T, Zhuang Y, Wang G. Multi-omics analysis defines 5-fluorouracil drug resistance in 3D HeLa carcinoma cell model. BIORESOUR BIOPROCESS 2021; 8:135. [PMID: 38650282 PMCID: PMC10991626 DOI: 10.1186/s40643-021-00486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022] Open
Abstract
Cervical cancer is a serious health problem in women around the globe. However, the use of clinical drug is seriously dampened by the development of drug resistance. Efficient in vitro tumor model is essential to improve the efficiency of drug screening and the accuracy of clinical application. Multicellular tumor spheroids (MTSs) can in a way recapitulates tumor traits in vivo, thereby representing a powerful transitional model between 2D monolayer culture and xenograft. In this study, based on the liquid overlay method, a protocol for rapid generation of the MTSs with uniform size and high reproducibility in a high-throughput manner was established. As expected, the cytotoxicity results showed that there was enhanced 5-fluorouracil (5-FU) resistance of HeLa carcinoma cells in 3D MTSs than 2D monolayer culture with a resistance index of 5.72. In order to obtain a holistic view of the molecular mechanisms that drive 5-FU resistance in 3D HeLa carcinoma cells, a multi-omics study was applied to discover hidden biological regularities. It was observed that in the 3D MTSs mitochondrial function-related proteins and the metabolites of the tricarboxylic acid cycle (TCA cycle) were significantly decreased, and the cellular metabolism was shifted towards glycolysis. The differences in the protein synthesis, processing, and transportation between 2D monolayer cultures and 3D MTSs were significant, mainly in the heat shock protein family, with the up-regulation of protein folding function in endoplasmic reticulum (ER), which promoted the maintenance of ER homeostasis in the 3D MTSs. In addition, at the transcript and protein level, the expression of extracellular matrix (ECM) proteins (e.g., laminin and collagen) were up-regulated in the 3D MTSs, which enhanced the physical barrier of drug penetration. Summarizing, this study formulates a rapid, scalable and reproducible in vitro model of 3D MTS for drug screening purposes, and the findings establish a critical role of glycolytic metabolism, ER hemostasis and ECM proteins expression profiling in tumor chemoresistance of HeLa carcinoma cells towards 5-FU.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xueting Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Tong Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
- Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China
| | - Guan Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.
- Qingdao Innovation Institute of East China University of Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Thomas LW, Ashcroft M. The Contextual Essentiality of Mitochondrial Genes in Cancer. Front Cell Dev Biol 2021; 9:695351. [PMID: 34746119 PMCID: PMC8569703 DOI: 10.3389/fcell.2021.695351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondria are key organelles in eukaryotic evolution that perform crucial roles as metabolic and cellular signaling hubs. Mitochondrial function and dysfunction are associated with a range of diseases, including cancer. Mitochondria support cancer cell proliferation through biosynthetic reactions and their role in signaling, and can also promote tumorigenesis via processes such as the production of reactive oxygen species (ROS). The advent of (nuclear) genome-wide CRISPR-Cas9 deletion screens has provided gene-level resolution of the requirement of nuclear-encoded mitochondrial genes (NEMGs) for cancer cell viability (essentiality). More recently, it has become apparent that the essentiality of NEMGs is highly dependent on the cancer cell context. In particular, key tumor microenvironmental factors such as hypoxia, and changes in nutrient (e.g., glucose) availability, significantly influence the essentiality of NEMGs. In this mini-review we will discuss recent advances in our understanding of the contribution of NEMGs to cancer from CRISPR-Cas9 deletion screens, and discuss emerging concepts surrounding the context-dependent nature of mitochondrial gene essentiality.
Collapse
Affiliation(s)
- Luke W. Thomas
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Bekebrede AF, Keijer J, Gerrits WJJ, de Boer VCJ. Mitochondrial and glycolytic extracellular flux analysis optimization for isolated pig intestinal epithelial cells. Sci Rep 2021; 11:19961. [PMID: 34620944 PMCID: PMC8497502 DOI: 10.1038/s41598-021-99460-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal epithelial cells (IECs) are crucial to maintain intestinal function and the barrier against the outside world. To support their function they rely on energy production, and failure to produce enough energy can lead to IEC malfunction and thus decrease intestinal barrier function. However, IEC metabolic function is not often used as an outcome parameter in intervention studies, perhaps because of the lack of available methods. We therefore developed a method to isolate viable IECs, suitable to faithfully measure their metabolic function by determining extracellular glycolytic and mitochondrial flux. First, various methods were assessed to obtain viable IECs. We then adapted a previously in-house generated image-analysis algorithm to quantify the amount of seeded IECs. Correcting basal respiration data of a group of piglets using this algorithm reduced the variation, showing that this algorithm allows for more accurate analysis of metabolic function. We found that delay in metabolic analysis after IEC isolation decreases their metabolic function and should therefore be prevented. The presence of antibiotics during isolation and metabolic assessment also decreased the metabolic function of IECs. Finally, we found that primary pig IECs did not respond to Oligomycin, a drug that inhibits complex V of the electron transport chain, which may be because of the presence of drug exporters. A method was established to faithfully measure extracellular glycolytic and mitochondrial flux of pig primary IECs. This tool is suitable to gain a better understanding of how interventions affect IEC metabolic function.
Collapse
Affiliation(s)
- A F Bekebrede
- Human and Animal Physiology, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands.,Animal Nutrition Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - J Keijer
- Human and Animal Physiology, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - W J J Gerrits
- Animal Nutrition Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - V C J de Boer
- Human and Animal Physiology, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
16
|
A simple indirect colorimetric assay for measuring mitochondrial energy metabolism based on uncoupling sensitivity. Biochem Biophys Rep 2020; 24:100858. [PMID: 33294636 PMCID: PMC7691152 DOI: 10.1016/j.bbrep.2020.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 11/22/2022] Open
Abstract
Purpose Cancer cells rapidly adjust their balance between glycolytic and mitochondrial ATP production in response to changes in their microenvironment and to treatments like radiation and chemotherapy. Reliable, simple, high throughput assays that measure the levels of mitochondrial energy metabolism in cells are useful determinants of treatment effects. Mitochondrial metabolism is routinely determined by measuring the rate of oxygen consumption (OCR). We have previously shown that indirect inhibition of plasma membrane electron transport (PMET) by the mitochondrial uncoupler, FCCP, may also be a reliable measure of mitochondrial energy metabolism. Here, we aimed to validate these earlier findings by exploring the relationship between stimulation of oxygen consumption by FCCP and inhibition of PMET. Methods We measured PMET by reduction of the cell impermeable tetrazolium salt WST-1/PMS. We characterised the effect of different growth conditions on the extent of PMET inhibition by FCCP. Next, we compared FCCP-mediated PMET inhibition with FCCP-mediated stimulation of OCR using the Seahorse XF96e flux analyser, in a panel of cancer cell lines. Results We found a strong inverse correlation between stimulation of OCR and PMET inhibition by FCCP. PMET and OCR were much more severely affected by FCCP in cells that rely on mitochondrial energy production than in cells with a more glycolytic phenotype. Conclusion Indirect inhibition of PMET by FCCP is a reliable, simple and inexpensive high throughput assay to determine the level of mitochondrial energy metabolism in cancer cells. WST-1/PMS dye reduction measures NADH-driven plasma membrane electron transport. FCCP stimulates mitochondrial oxygen consumption and inhibits dye reduction. The FCCP effect on dye reduction and oxygen consumption is inversely correlated. FCCP-mediated inhibition of dye reduction is a measure of mitochondrial metabolism.
Collapse
|
17
|
Kuffner K, Triebelhorn J, Meindl K, Benner C, Manook A, Sudria-Lopez D, Siebert R, Nothdurfter C, Baghai TC, Drexler K, Berneburg M, Rupprecht R, Milenkovic VM, Wetzel CH. Major Depressive Disorder is Associated with Impaired Mitochondrial Function in Skin Fibroblasts. Cells 2020; 9:cells9040884. [PMID: 32260327 PMCID: PMC7226727 DOI: 10.3390/cells9040884] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial malfunction is supposed to be involved in the etiology and pathology of major depressive disorder (MDD). Here, we aimed to identify and characterize the molecular pathomechanisms related to mitochondrial dysfunction in adult human skin fibroblasts, which were derived from MDD patients or non-depressive control subjects. We found that MDD fibroblasts showed significantly impaired mitochondrial functioning: basal and maximal respiration, spare respiratory capacity, non-mitochondrial respiration and adenosine triphosphate (ATP)-related oxygen consumption was lower. Moreover, MDD fibroblasts harbor lower ATP levels and showed hyperpolarized mitochondrial membrane potential. To investigate cellular resilience, we challenged both groups of fibroblasts with hormonal (dexamethasone) or metabolic (galactose) stress for one week, and found that both stressors increased oxygen consumption but lowered ATP content in MDD as well as in non-depressive control fibroblasts. Interestingly, the bioenergetic differences between fibroblasts from MDD or non-depressed subjects, which were observed under non-treated conditions, could not be detected after stress. Our findings support the hypothesis that altered mitochondrial function causes a bioenergetic imbalance, which is associated with the molecular pathophysiology of MDD. The observed alterations in the oxidative phosphorylation system (OXPHOS) and other mitochondria-related properties represent a basis for further investigations of pathophysiological mechanisms and might open new ways to gain insight into antidepressant signaling pathways.
Collapse
Affiliation(s)
- Kerstin Kuffner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Julian Triebelhorn
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Katrin Meindl
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Christoph Benner
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - André Manook
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Daniel Sudria-Lopez
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Ramona Siebert
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Thomas C. Baghai
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Konstantin Drexler
- Department of Dermatology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Vladimir M. Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany; (K.K.); (T.C.B.)
- Correspondence: ; Tel.: +49-941-944-8955
| |
Collapse
|
18
|
Kaneko M, Ishikawa M, Ishihara K, Nakanishi S. Cell-Membrane Permeable Redox Phospholipid Polymers Induce Apoptosis in MDA-MB-231 Human Breast Cancer Cells. Biomacromolecules 2019; 20:4447-4456. [DOI: 10.1021/acs.biomac.9b01184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Masahiro Kaneko
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Graduate School of Engineering Science Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
19
|
Sherman HG, Jovanovic C, Abuawad A, Kim DH, Collins H, Dixon JE, Cavanagh R, Markus R, Stolnik S, Rawson FJ. Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:628-639. [DOI: 10.1016/j.bbabio.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/28/2022]
|
20
|
Hay MP, Shin HN, Wong WW, Sahimi WW, Vaz ATD, Yadav P, Anderson RF, Hicks KO, Wilson WR. Benzotriazine Di-Oxide Prodrugs for Exploiting Hypoxia and Low Extracellular pH in Tumors. Molecules 2019; 24:E2524. [PMID: 31295864 PMCID: PMC6680510 DOI: 10.3390/molecules24142524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022] Open
Abstract
Extracellular acidification is an important feature of tumor microenvironments but has yet to be successfully exploited in cancer therapy. The reversal of the pH gradient across the plasma membrane in cells that regulate intracellular pH (pHi) has potential to drive the selective uptake of weak acids at low extracellular pH (pHe). Here, we investigate the dual targeting of low pHe and hypoxia, another key feature of tumor microenvironments. We prepared eight bioreductive prodrugs based on the benzotriazine di-oxide (BTO) nucleus by appending alkanoic or aminoalkanoic acid sidechains. The BTO acids showed modest selectivity for both low pHe (pH 6.5 versus 7.4, ratios 2 to 5-fold) and anoxia (ratios 2 to 8-fold) in SiHa and FaDu cell cultures. Related neutral BTOs were not selective for acidosis, but had greater cytotoxic potency and hypoxic selectivity than the BTO acids. Investigation of the uptake and metabolism of representative BTO acids confirmed enhanced uptake at low pHe, but lower intracellular concentrations than expected for passive diffusion. Further, the modulation of intracellular reductase activity and competition by the cell-excluded electron acceptor WST-1 suggests that the majority of metabolic reductions of BTO acids occur at the cell surface, compromising the engagement of the resulting free radicals with intracellular targets. Thus, the present study provides support for designing bioreductive prodrugs that exploit pH-dependent partitioning, suggesting, however, that that the approach should be applied to prodrugs with obligate intracellular activation.
Collapse
Affiliation(s)
- Michael P Hay
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand
| | - Hong Nam Shin
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Way Wua Wong
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Wan Wan Sahimi
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Aaron T D Vaz
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Pooja Yadav
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Robert F Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Kevin O Hicks
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand.
| |
Collapse
|
21
|
Herst PM, Grasso C, Berridge MV. Metabolic reprogramming of mitochondrial respiration in metastatic cancer. Cancer Metastasis Rev 2019; 37:643-653. [PMID: 30448881 DOI: 10.1007/s10555-018-9769-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor initiation, progression, and metastasis are tissue context-dependent processes. Cellular and non-cellular factors provide the selective microenvironment that determines the fate of the evolving tumor through mechanisms that include metabolic reprogramming. Genetic and epigenetic changes contribute to this reprogramming process, which is orchestrated through ongoing communication between the mitochondrial and nuclear genomes. Metabolic flexibility, in particular the ability to rapidly adjust the balance between glycolytic and mitochondrial energy production, is a hallmark of aggressive, invasive, and metastatic cancers. Tumor cells sustain damage to both nuclear and mitochondrial DNA during tumorigenesis and as a consequence of anticancer treatments. Nuclear and mitochondrial DNA mutations and polymorphisms are increasingly recognized as factors that influence metabolic reprogramming, tumorigenesis, and tumor progression. Severe mitochondrial DNA damage compromises mitochondrial respiration. When mitochondrial respiration drops below a cell-specific threshold, metabolic reprogramming and plasticity fail to compensate and tumor formation is compromised. In these scenarios, tumorigenesis can be restored by acquisition of respiring mitochondria from surrounding stromal cells. Thus, intercellular mitochondrial transfer has the potential to confer treatment resistance and to promote tumor progression and metastasis. Understanding the constraints of metabolic, and in particular bioenergetic reprogramming, and the role of intercellular mitochondrial transfer in tumorigenesis provides new insights into addressing tumor progression and treatment resistance in highly aggressive cancers.
Collapse
Affiliation(s)
- P M Herst
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.,Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| | - C Grasso
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand
| | - Michael V Berridge
- Malaghan Institute of Medical Research, PO Box 7060, Wellington, 6242, New Zealand.
| |
Collapse
|
22
|
Abstract
A large amount of energy used for nutrient processing and cellular functions is essential for tumorigenesis. Total intracellular adenosine triphosphate (ATP) is mainly generated by glycolysis and mitochondrial oxidative phosphorylation. Here, we provide a protocol for measurements of energy metabolism in cancer cells by using Seahorse XF24 Extracellular Flux analyzer. Specifically, this machine measures glycolysis by analyzing the extracellular acidification rate (ECAR) and measures mitochondrial oxidative phosphorylation on the basis of the oxygen consumption rate (OCR), through real-time and live cell analysis. This protocol is provided for researchers who are unfamiliar with the method and to aid them in carrying out the technique successfully.
Collapse
|
23
|
Sherman HG, Jovanovic C, Stolnik S, Baronian K, Downard AJ, Rawson FJ. New Perspectives on Iron Uptake in Eukaryotes. Front Mol Biosci 2018; 5:97. [PMID: 30510932 PMCID: PMC6254016 DOI: 10.3389/fmolb.2018.00097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
All eukaryotic organisms require iron to function. Malfunctions within iron homeostasis have a range of physiological consequences, and can lead to the development of pathological conditions that can result in an excess of non-transferrin bound iron (NTBI). Despite extensive understanding of iron homeostasis, the links between the “macroscopic” transport of iron across biological barriers (cellular membranes) and the chemistry of redox changes that drive these processes still needs elucidating. This review draws conclusions from the current literature, and describes some of the underlying biophysical and biochemical processes that occur in iron homeostasis. By first taking a broad view of iron uptake within the gut and subsequent delivery to tissues, in addition to describing the transferrin and non-transferrin mediated components of these processes, we provide a base of knowledge from which we further explore NTBI uptake. We provide concise up-to-date information of the transplasma electron transport systems (tPMETSs) involved within NTBI uptake, and highlight how these systems are not only involved within NTBI uptake for detoxification but also may play a role within the reduction of metabolic stress through regeneration of intracellular NAD(P)H/NAD(P)+ levels. Furthermore, we illuminate the thermodynamics that governs iron transport, namely the redox potential cascade and electrochemical behavior of key components of the electron transport systems that facilitate the movement of electrons across the plasma membrane to the extracellular compartment. We also take account of kinetic changes that occur to transport iron into the cell, namely membrane dipole change and their consequent effects within membrane structure that act to facilitate transport of ions.
Collapse
Affiliation(s)
- Harry G Sherman
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | | | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Kim Baronian
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Alison J Downard
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Frankie J Rawson
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
24
|
p53-inducible DPYSL4 associates with mitochondrial supercomplexes and regulates energy metabolism in adipocytes and cancer cells. Proc Natl Acad Sci U S A 2018; 115:8370-8375. [PMID: 30061407 PMCID: PMC6099896 DOI: 10.1073/pnas.1804243115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tumor suppressor p53 regulates multiple cellular functions, including energy metabolism. Metabolic deregulation is implicated in the pathogenesis of some cancers and in metabolic disorders and may result from the inactivation of p53 functions. Using RNA sequencing and ChIP sequencing of cancer cells and preadipocytes, we demonstrate that p53 modulates several metabolic processes via the transactivation of energy metabolism genes including dihydropyrimidinase-like 4 (DPYSL4). DPYSL4 is a member of the collapsin response mediator protein family, which is involved in cancer invasion and progression. Intriguingly, DPYSL4 overexpression in cancer cells and preadipocytes up-regulated ATP production and oxygen consumption, while DPYSL4 knockdown using siRNA or CRISPR/Cas9 down-regulated energy production. Furthermore, DPYSL4 was associated with mitochondrial supercomplexes, and deletion of its dihydropyrimidinase-like domain abolished its association and its ability to stimulate ATP production and suppress the cancer cell invasion. Mouse-xenograft and lung-metastasis models indicated that DPYSL4 expression compromised tumor growth and metastasis in vivo. Consistently, database analyses demonstrated that low DPYSL4 expression was significantly associated with poor survival of breast and ovarian cancers in accordance with its reduced expression in certain types of cancer tissues. Moreover, immunohistochemical analysis using the adipose tissue of obese patients revealed that DPYSL4 expression was positively correlated with INFg and body mass index in accordance with p53 activation. Together, these results suggest that DPYSL4 plays a key role in the tumor-suppressor function of p53 by regulating oxidative phosphorylation and the cellular energy supply via its association with mitochondrial supercomplexes, possibly linking to the pathophysiology of both cancer and obesity.
Collapse
|
25
|
López-Gallardo E, Emperador S, Hernández-Ainsa C, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E. Food derived respiratory complex I inhibitors modify the effect of Leber hereditary optic neuropathy mutations. Food Chem Toxicol 2018; 120:89-97. [PMID: 29991444 DOI: 10.1016/j.fct.2018.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/21/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023]
Abstract
Mitochondrial DNA mutations in genes encoding respiratory complex I polypeptides can cause Leber hereditary optic neuropathy. Toxics affecting oxidative phosphorylation system can also cause mitochondrial optic neuropathy. Some complex I inhibitors found in edible plants might differentially interact with these pathologic mutations and modify their penetrance. To analyze this interaction, we have compared the effect of rotenone, capsaicin and rolliniastatin-1 on cybrids harboring the most frequent Leber hereditary optic neuropathy mutations and found that m.3460G > A mutation increases rotenone resistance but capsaicin and rolliniastatin-1 susceptibility. Thus, to explain the pathogenicity of mitochondrial diseases due to mitochondrial DNA mutations, their potential interactions with environment factors will have to be considered.
Collapse
Affiliation(s)
- Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain.
| | - Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain.
| | - Carmen Hernández-Ainsa
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain.
| | - M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain; Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
26
|
Sherman HG, Jovanovic C, Stolnik S, Rawson FJ. Electrochemical System for the Study of Trans-Plasma Membrane Electron Transport in Whole Eukaryotic Cells. Anal Chem 2018; 90:2780-2786. [DOI: 10.1021/acs.analchem.7b04853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Harry G. Sherman
- Division
of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | | | - Snow Stolnik
- Division
of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Frankie J. Rawson
- Division
of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
27
|
Auger C, Samadi O, Jeschke MG. The biochemical alterations underlying post-burn hypermetabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2633-2644. [PMID: 28219767 PMCID: PMC5563481 DOI: 10.1016/j.bbadis.2017.02.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/22/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
A severe burn can trigger a hypermetabolic state which lasts for years following the injury, to the detriment of the patient. The drastic increase in metabolic demands during this phase renders it difficult to meet the body's nutritional requirements, thus increasing muscle, bone and adipose catabolism and predisposing the patient to a host of disorders such as multi-organ dysfunction and sepsis, or even death. Despite advances in burn care over the last 50 years, due to the multifactorial nature of the hypermetabolic phenomenon it is difficult if not impossible to precisely identify and pharmacologically modulate the biological mediators contributing to this substantial metabolic derangement. Here, we discuss biomarkers and molecules which play a role in the induction and mediation of the hypercatabolic condition post-thermal injury. Furthermore, this thorough review covers the development of the factors released after burns, how they induce cellular and metabolic dysfunction, and how these factors can be targeted for therapeutic interventions to restore a more physiological metabolic phenotype after severe thermal injuries. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Christopher Auger
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Osai Samadi
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada
| | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, M4N 3M5, Canada.
| |
Collapse
|
28
|
Je HJ, Kim MG, Kwon HJ. Bioluminescence Assays for Monitoring Chondrogenic Differentiation and Cartilage Regeneration. SENSORS 2017; 17:s17061306. [PMID: 28587284 PMCID: PMC5492100 DOI: 10.3390/s17061306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/24/2017] [Accepted: 06/02/2017] [Indexed: 02/06/2023]
Abstract
Since articular cartilage has a limited regeneration potential, for developing biological therapies for cartilage regeneration it is important to study the mechanisms underlying chondrogenesis of stem cells. Bioluminescence assays can visualize a wide range of biological phenomena such as gene expression, signaling, metabolism, development, cellular movements, and molecular interactions by using visible light and thus contribute substantially to elucidation of their biological functions. This article gives a concise review to introduce basic principles of bioluminescence assays and applications of the technology to visualize the processes of chondrogenesis and cartilage regeneration. Applications of bioluminescence assays have been highlighted in the methods of real-time monitoring of gene expression and intracellular levels of biomolecules and noninvasive cell tracking within animal models. This review suggests that bioluminescence assays can be applied towards a visual understanding of chondrogenesis and cartilage regeneration.
Collapse
Affiliation(s)
- Hyeon Jeong Je
- Department of Physical Therapy and Rehabilitation Science, College of Health Science, Eulji University, Gyeonggi 13135, Korea.
| | - Min Gu Kim
- Department of Physical Therapy and Rehabilitation Science, College of Health Science, Eulji University, Gyeonggi 13135, Korea.
| | - Hyuck Joon Kwon
- Department of Physical Therapy and Rehabilitation Science, College of Health Science, Eulji University, Gyeonggi 13135, Korea.
| |
Collapse
|
29
|
Raftery TD, Jayasundara N, Di Giulio RT. A bioenergetics assay for studying the effects of environmental stressors on mitochondrial function in vivo in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2017; 192:23-32. [PMID: 27939721 PMCID: PMC5218841 DOI: 10.1016/j.cbpc.2016.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 01/29/2023]
Abstract
Mitochondria, an integral component of cellular energy metabolism and other key functions, are extremely vulnerable to damage by environmental stressors. Although methods to measure mitochondrial function in vitro exist, sensitive, medium- to high-throughput assays that assess respiration within physiologically-relevant whole organisms are needed to identify drugs and/or chemicals that disrupt mitochondrial function, particularly at sensitive early developmental stages. Consequently, we have developed and optimized an assay to measure mitochondrial bioenergetics in zebrafish larvae using the XFe24 Extracellular Flux Analyzer. To prevent larval movement from confounding oxygen consumption measurements, we relied on MS-222-based anesthetization. We obtained stable measurement values in the absence of effects on average oxygen consumption rate and subsequently optimized the use of pharmacological agents for metabolic partitioning. To confirm assay reproducibility we demonstrated that triclosan, a positive control, significantly decreased spare respiratory capacity. We then exposed zebrafish from 5 hours post-fertilization (hpf) to 6days post-fertilization (dpf) to three polycyclic aromatic hydrocarbons (PAHs) - benzo(a)pyrene (BaP), phenanthrene (Phe), and fluoranthene (FL) - and measured various fundamental parameters of mitochondrial respiratory chain function, including maximal respiration, spare respiratory capacity, mitochondrial and non-mitochondrial respiration. Exposure to all three PAHs decreased spare respiratory capacity and maximal respiration. Additionally, Phe exposure increased non-mitochondrial respiration and FL exposure decreased mitochondrial respiration and increased non-mitochondrial respiration. Overall, this whole organism-based assay provides a platform for examining mitochondrial dysfunction in vivo at critical developmental stages. It has important implications in biomedical sciences, toxicology and ecophysiology, particularly to examine the effects of environmental chemicals and/or drugs on mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Tara D Raftery
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States.
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| | - Richard T Di Giulio
- Nicholas School of the Environment, Duke University, Durham, NC 27708, United States
| |
Collapse
|
30
|
Herst PM, Rowe MR, Carson GM, Berridge MV. Functional Mitochondria in Health and Disease. Front Endocrinol (Lausanne) 2017; 8:296. [PMID: 29163365 PMCID: PMC5675848 DOI: 10.3389/fendo.2017.00296] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023] Open
Abstract
The ability to rapidly adapt cellular bioenergetic capabilities to meet rapidly changing environmental conditions is mandatory for normal cellular function and for cancer progression. Any loss of this adaptive response has the potential to compromise cellular function and render the cell more susceptible to external stressors such as oxidative stress, radiation, chemotherapeutic drugs, and hypoxia. Mitochondria play a vital role in bioenergetic and biosynthetic pathways and can rapidly adjust to meet the metabolic needs of the cell. Increased demand is met by mitochondrial biogenesis and fusion of individual mitochondria into dynamic networks, whereas a decrease in demand results in the removal of superfluous mitochondria through fission and mitophagy. Effective communication between nucleus and mitochondria (mito-nuclear cross talk), involving the generation of different mitochondrial stress signals as well as the nuclear stress response pathways to deal with these stressors, maintains bioenergetic homeostasis under most conditions. However, when mitochondrial DNA (mtDNA) mutations accumulate and mito-nuclear cross talk falters, mitochondria fail to deliver critical functional outputs. Mutations in mtDNA have been implicated in neuromuscular and neurodegenerative mitochondriopathies and complex diseases such as diabetes, cardiovascular diseases, gastrointestinal disorders, skin disorders, aging, and cancer. In some cases, drastic measures such as acquisition of new mitochondria from donor cells occurs to ensure cell survival. This review starts with a brief discussion of the evolutionary origin of mitochondria and summarizes how mutations in mtDNA lead to mitochondriopathies and other degenerative diseases. Mito-nuclear cross talk, including various stress signals generated by mitochondria and corresponding stress response pathways activated by the nucleus are summarized. We also introduce and discuss a small family of recently discovered hormone-like mitopeptides that modulate body metabolism. Under conditions of severe mitochondrial stress, mitochondria have been shown to traffic between cells, replacing mitochondria in cells with damaged and malfunctional mtDNA. Understanding the processes involved in cellular bioenergetics and metabolic adaptation has the potential to generate new knowledge that will lead to improved treatment of many of the metabolic, degenerative, and age-related inflammatory diseases that characterize modern societies.
Collapse
Affiliation(s)
- Patries M. Herst
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
- *Correspondence: Patries M. Herst, ; Michael V. Berridge,
| | - Matthew R. Rowe
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Georgia M. Carson
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Michael V. Berridge
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- *Correspondence: Patries M. Herst, ; Michael V. Berridge,
| |
Collapse
|
31
|
Poljsak B, Milisav I. NAD+ as the Link Between Oxidative Stress, Inflammation, Caloric Restriction, Exercise, DNA Repair, Longevity, and Health Span. Rejuvenation Res 2016; 19:406-415. [PMID: 26725653 DOI: 10.1089/rej.2015.1767] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Oxidative stress and decreased DNA damage repair in vertebrates increase with age also due to lowered cellular NAD+. NAD+ depletion may play a major role in the aging process at the cellular level by limiting (1) energy production, (2) DNA repair, and (3) genomic signaling. In this study, we hypothesize that it is not NAD+ as a cofactor in redox reactions and coenzyme in metabolic processes that has the ultimate role in aging, but rather the role of NAD+ in cellular signaling when used as substrate for sirtuins (SIRT1-7 in mammals) and PARPs [Poly(ADP-ribose) polymerases]. Both sirtuins and PARPs influence many transcription factors and can affect gene expression. As a signaling molecule, NAD+ is consumed in the reaction donating ADP-ribose and releasing nicotinamide (NAM) as a by-product. It seems that aging at the cellular level is associated with a decline of NAD+ and that NAD+ restoration can reverse phenotypes of aging by inducing cellular repair and stress resistance. Adequate intracellular NAD+ concentrations may be an important longevity assurance factor, while lowered cellular NAD+ concentration may negatively influence the life span.
Collapse
Affiliation(s)
- Borut Poljsak
- 1 Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana , Ljubljana, Slovenia
| | - Irina Milisav
- 1 Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana , Ljubljana, Slovenia .,2 Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
32
|
Jahn K, Buschmann V, Hille C. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells. Sci Rep 2015; 5:14334. [PMID: 26390855 PMCID: PMC4585718 DOI: 10.1038/srep14334] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution.
Collapse
Affiliation(s)
- Karolina Jahn
- Physical Chemistry/ALS ComBi, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | | | - Carsten Hille
- Physical Chemistry/ALS ComBi, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
33
|
Lee SR, Heo HJ, Jeong SH, Kim HK, Song IS, Ko KS, Rhee BD, Kim N, Han J. Low abundance of mitochondrial DNA changes mitochondrial status and renders cells resistant to serum starvation and sodium nitroprusside insult. Cell Biol Int 2015; 39:865-72. [DOI: 10.1002/cbin.10473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/16/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Hye Jin Heo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Seung Hun Jeong
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - In Sung Song
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology; College of Medicine; Cardiovascular and Metabolic Disease Center; Inje University; Bokji-Ro 75 Busanjin-gu Busan 614 735 Republic of Korea
| |
Collapse
|
34
|
Shen Y, Tian Y, Shi X, Yang J, Ouyang L, Gao J, Lu J. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes. Cell Biochem Funct 2014; 32:530-7. [PMID: 25077445 DOI: 10.1002/cbf.3047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 11/06/2022]
Abstract
Astrocytes play a key role in removing the synaptically released glutamate from the extracellular space and maintaining the glutamate below neurotoxic level in the brain. However, high concentration of glutamate leads to toxicity in astrocytes, and the underlying mechanisms are unclear. The purpose of this study was to investigate whether energy metabolism disorder, especially impairment of mitochondrial respiration, is involved in the glutamate-induced gliotoxicity. Exposure to 10-mM glutamate for 48 h stimulated glycolysis and respiration in astrocytes. However, the increased oxygen consumption was used for proton leak and non-mitochondrial respiration, but not for oxidative phosphorylation and ATP generation. When the exposure time extended to 72 h, glycolysis was still activated for ATP generation, but the mitochondrial ATP-linked respiration of astrocytes was reduced. The glutamate-induced astrocyte damage can be mimicked by the non-metabolized substrate d-aspartate but reversed by the non-selective glutamate transporter inhibitor TBOA. In addition, the glutamate toxicity can be partially reversed by vitamin E. These findings demonstrate that changes of bioenergetic profile occur in cultured cortical astrocytes exposed to high concentration of glutamate and highlight the role of mitochondria respiration in glutamate-induced gliotoxicity in cortical astrocytes.
Collapse
Affiliation(s)
- Yao Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
There is growing evidence in the basic science field that aberrant metabolism plays an important role in tumorigenesis. Therefore, it is imperative to perform investigations in human subjects to determine (1) whether the metabolic observations made in model systems are applicable to humans; and (2) if indeed applicable, whether the metabolic alterations are clinically significant for cancer development. As an initial step, here we describe methods for measuring the mitochondrial metabolism of blood lymphocytes and skeletal muscle myoblasts that can be obtained from human subjects.
Collapse
Affiliation(s)
- Ju-Gyeong Kang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping-yuan Wang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul M Hwang
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
36
|
Yu J, Xiao Y, Liu J, Ji Y, Liu H, Xu J, Jin X, Liu L, Guan MX, Jiang P. Loss of MED1 triggers mitochondrial biogenesis in C2C12 cells. Mitochondrion 2013; 14:18-25. [PMID: 24368311 DOI: 10.1016/j.mito.2013.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 10/31/2013] [Accepted: 12/12/2013] [Indexed: 01/09/2023]
Abstract
Under stress conditions transcription factors, including their coactivators, play major roles in mitochondrial biogenesis and oxidative phosphorylation. MED1 (Mediator complex subunit 1) functions as a coactivator of several transcription factors and is implicated in adipogenesis of the lipid and glucose metabolism. This suggests that MED1 may play a role in mitochondrial function. In this study, we found that both the mtDNA content and mitochondrial mass were markedly increased and cell proliferation markedly suppressed in MED1-deficient cells. Upon MED1 loss, Nrf1 and its downstream target genes involved in mitochondrial biogenesis (Tfam, Plormt, Tfb1m), were up-regulated as were those genes in the OXPHOS pathway. Moreover, the knockdown of MED1 resulted in significant changes in the profile of mitochondrial respiration, accompanied by a prominent decrease in the generation of ATP. Collectively, these observations strongly suggest that MED1 has an important affect on mitochondrial function. This further elucidates the role of MED1, particularly its role in the energy metabolism.
Collapse
Affiliation(s)
- Jialing Yu
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yun Xiao
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junxia Liu
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Liu
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Xu
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaofen Jin
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Liu
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pingping Jiang
- Department of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
37
|
Kwon HJ, Ohmiya Y, Yasuda K. Simultaneous monitoring of intracellular ATP and oxygen levels in chondrogenic differentiation using a dual-color bioluminescence reporter. LUMINESCENCE 2013; 29:1194-8. [PMID: 24150901 DOI: 10.1002/bio.2598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 07/17/2013] [Accepted: 09/09/2013] [Indexed: 01/08/2023]
Abstract
A number of assay methods which measure cellular metabolic activity have only measured intracellular ATP levels because it has been speculated that ATP production and oxygen consumption are obligatorily coupled to each other under normal conditions. However, there exist many cases in which ATP production and oxygen consumption are uncoupled. Therefore, measurement of only intracellular ATP levels has a limit for understanding the overall metabolic states during various cellular functions. Here, we report a novel system for simultaneously monitoring intracellular ATP and oxygen levels using a red-emitting Phrixothrix hirtus luciferase (PxRe) and a blue-emitting Renilla luciferase (Rluc). Using this system, we monitored the dynamic changes in both intracellular ATP and oxygen levels during chondrogenesis. We found that the oxygen level oscillated at twice the frequency of ATP in chondrogenesis and the oxygen oscillations have an antiphase mode to the ATP oscillations; we also found an independent mode for the ATP oscillations. This result indicates that both mitochondrial and non-mitochondrial respiration oscillate and thus play a role in chondrogenesis. This dual-color monitoring system is useful for studying metabolic regulations that underlie diverse cellular processes.
Collapse
Affiliation(s)
- Hyuck Joon Kwon
- Department of Physical Therapy, College of Health Science, Eulji University, Gyeonggi-do, Korea
| | | | | |
Collapse
|
38
|
Grasso C, Larsen L, McConnell M, Smith RAJ, Berridge MV. Anti-Leukemic Activity of Ubiquinone-Based Compounds Targeting Trans-plasma Membrane Electron Transport. J Med Chem 2013; 56:3168-76. [DOI: 10.1021/jm301585z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Carole Grasso
- Malaghan Institute of Medical Research, P.O. Box 7060,
Wellington, New Zealand
| | - Lesley Larsen
- Department
of Chemistry, University of Otago, P.O.
Box 56, Dunedin, New Zealand
| | - Melanie McConnell
- Malaghan Institute of Medical Research, P.O. Box 7060,
Wellington, New Zealand
| | - Robin A. J. Smith
- Department
of Chemistry, University of Otago, P.O.
Box 56, Dunedin, New Zealand
| | - Michael V. Berridge
- Malaghan Institute of Medical Research, P.O. Box 7060,
Wellington, New Zealand
| |
Collapse
|
39
|
Maléth J, Rakonczay Z, Venglovecz V, Dolman NJ, Hegyi P. Central role of mitochondrial injury in the pathogenesis of acute pancreatitis. Acta Physiol (Oxf) 2013; 207:226-35. [PMID: 23167280 DOI: 10.1111/apha.12037] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis is an inflammatory disease with no specific treatment. One of the main reasons behind the lack of specific therapy is that the pathogenesis of acute pancreatitis is poorly understood. During the development of acute pancreatitis, the disease-inducing factors can damage both cell types of the exocrine pancreas, namely the acinar and ductal cells. Because damage of either of the cell types can contribute to the inflammation, it is crucial to find common intracellular mechanisms that can be targeted by pharmacological therapies. Despite the many differences, recent studies revealed that the most common factors that induce pancreatitis cause mitochondrial damage with the consequent breakdown of bioenergetics, that is, ATP depletion in both cell types. In this review, we summarize our knowledge of mitochondrial function and damage within both pancreatic acinar and ductal cells. We also suggest that colloidal ATP delivery systems for pancreatic energy supply may be able to protect acinar and ductal cells from cellular damage in the early phase of the disease. An effective energy delivery system combined with the prevention of further mitochondrial damage may, for the first time, open up the possibility of pharmacological therapy for acute pancreatitis, leading to reduced disease severity and mortality.
Collapse
Affiliation(s)
- J. Maléth
- First Department of Medicine; University of Szeged; Szeged; Hungary
| | - Z. Rakonczay
- First Department of Medicine; University of Szeged; Szeged; Hungary
| | - V. Venglovecz
- Department of Pharmacology and Pharmacotherapy; University of Szeged; Szeged; Hungary
| | - N. J. Dolman
- Molecular Probes Labelling and Detection Technologies; Life Technologies Corporation; Eugene; OR; USA
| | - P. Hegyi
- First Department of Medicine; University of Szeged; Szeged; Hungary
| |
Collapse
|
40
|
Ogoshi M, Kato K, Takahashi H, Ikeuchi T, Abe T, Sakamoto T. Growth, energetics and the cortisol-hepatic glucocorticoid receptor axis of medaka (Oryzias latipes) in various salinities. Gen Comp Endocrinol 2012; 178:175-9. [PMID: 22613673 DOI: 10.1016/j.ygcen.2012.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 05/03/2012] [Accepted: 05/10/2012] [Indexed: 11/25/2022]
Abstract
We examined growth of euryhaline Japanese medaka (Oryzias latipes) after transfer to freshwater or seawater from isotonic saline. Growth was unaffected by the different salinities for 1 week, but the body weight increase and BMI of fish kept in freshwater for 2-3 weeks were significantly higher than those in the isotonic controls. These results may reflect the usual habitat of this species. To assess the basis for the difference in growth, energetics and the hepatic stress axis were evaluated 1 week after the transfer. Unexpectedly, despite the higher growth rate, the rate of routine oxygen consumption was significantly higher in freshwater. Plasma cortisol levels in freshwater were significantly higher than those in seawater, and the mRNA levels of the glucocorticoid receptor (GR1) in the liver were significantly lower in freshwater and seawater, compared to that in isotonic saline. Branchial Na(+)/K(+)-ATPase activities were also reduced significantly in freshwater and seawater, compared to that in isotonic saline. The higher levels of hepatic GR1 expression and branchial Na(+)/K(+)-ATPase activity in isotonic salinity than those in freshwater and seawater for 1 week may account for the lower growth rate under the isotonic condition. After 3 weeks, however, the Na(+)/K(+)-ATPase activity in seawater was significantly higher than that in freshwater. No significant difference in growth rate between freshwater and seawater groups indicates that medaka is a good model for studies of hypo- and hyperosmotic adaptations, since osmoregulation is not strongly associated with size and growth.
Collapse
Affiliation(s)
- Maho Ogoshi
- Ushimado Marine Institute, Faculty of Science, Okayama University, 130-17 Kashino, Ushimado, Okayama 701-4303, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Schwartz L, Guais A, Israël M, Junod B, Steyaert JM, Crespi E, Baronzio G, Abolhassani M. Tumor regression with a combination of drugs interfering with the tumor metabolism: efficacy of hydroxycitrate, lipoic acid and capsaicin. Invest New Drugs 2012; 31:256-64. [DOI: 10.1007/s10637-012-9849-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/12/2012] [Indexed: 12/20/2022]
|
42
|
Mitochondrial genome-knockout cells demonstrate a dual mechanism of action for the electron transport complex I inhibitor mycothiazole. Mar Drugs 2012; 10:900-917. [PMID: 22690150 PMCID: PMC3366682 DOI: 10.3390/md10040900] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 01/31/2023] Open
Abstract
Mycothiazole, a polyketide metabolite isolated from the marine sponge Cacospongia mycofijiensis, is a potent inhibitor of metabolic activity and mitochondrial electron transport chain complex I in sensitive cells, but other cells are relatively insensitive to the drug. Sensitive cell lines (IC(50) 0.36-13.8 nM) include HeLa, P815, RAW 264.7, MDCK, HeLa S3, 143B, 4T1, B16, and CD4/CD8 T cells. Insensitive cell lines (IC(50) 12.2-26.5 μM) include HL-60, LN18, and Jurkat. Thus, there is a 34,000-fold difference in sensitivity between HeLa and HL-60 cells. Some sensitive cell lines show a biphasic response, suggesting more than one mechanism of action. Mitochondrial genome-knockout ρ(0) cell lines are insensitive to mycothiazole, supporting a conditional mitochondrial site of action. Mycothiazole is cytostatic rather than cytotoxic in sensitive cells, has a long lag period of about 12 h, and unlike the complex I inhibitor, rotenone, does not cause G(2)/M cell cycle arrest. Mycothiazole decreases, rather than increases the levels of reactive oxygen species after 24 h. It is concluded that the cytostatic inhibitory effects of mycothiazole on mitochondrial electron transport function in sensitive cell lines may depend on a pre-activation step that is absent in insensitive cell lines with intact mitochondria, and that a second lower-affinity cytotoxic target may also be involved in the metabolic and growth inhibition of cells.
Collapse
|
43
|
Synchronized ATP oscillations have a critical role in prechondrogenic condensation during chondrogenesis. Cell Death Dis 2012; 3:e278. [PMID: 22402602 PMCID: PMC3317342 DOI: 10.1038/cddis.2012.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The skeletal elements of embryonic limb are prefigured by prechondrogenic condensation in which secreted molecules such as adhesion molecules and extracellular matrix have crucial roles. However, how the secreted molecules are controlled to organize the condensation remains unclear. In this study, we examined metabolic regulation of secretion in prechondrogenic condensation, using bioluminescent monitoring systems. We here report on ATP oscillations in the early step of chondrogenesis. The ATP oscillations depended on both glycolysis and mitochondrial respiration, and their synchronization among cells were achieved via gap junctions. In addition, the ATP oscillations were driven by Ca(2+) oscillations and led to oscillatory secretion in chondrogenesis. Blockade of the ATP oscillations prevented cellular condensation. Furthermore, the degree of cellular condensation increased with the frequency of ATP oscillations. We conclude that ATP oscillations have a critical role in prechondrogenic condensation by inducing oscillatory secretion.
Collapse
|
44
|
Irwin RW, Yao J, To J, Hamilton RT, Cadenas E, Brinton RD. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function. J Neuroendocrinol 2012; 24:236-48. [PMID: 22070562 PMCID: PMC3264398 DOI: 10.1111/j.1365-2826.2011.02251.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mitochondrial energy-transducing capacity of the brain is important for long-term neurological health and is influenced by endocrine hormone responsiveness. The present study aimed to determine the role of oestrogen receptor (ER) subtypes in regulating mitochondrial function using selective agonists for ERα (propylpyrazoletriol; PPT) and ERβ (diarylpropionitrile; DPN). Ovariectomised female rats were treated with 17β-oestradiol (E(2) ), PPT, DPN or vehicle control. Both ER selective agonists significantly increased the mitochondrial respiratory control ratio and cytochrome oxidase (COX) activity relative to vehicle. Western blots of purified whole brain mitochondria detected ERα and, to a greater extent, ERβ localisation. Pre-treatment with DPN, an ERβ agonist, significantly increased ERβ association with mitochondria. In the hippocampus, DPN activated mitochondrial DNA-encoded COX I expression, whereas PPT was ineffective, indicating that mechanistically ERβ, and not ERα, activated mitochondrial transcriptional machinery. Both selective ER agonists increased protein expression of nuclear DNA-encoded COX IV, suggesting that activation of ERβ or ERα is sufficient. Selective ER agonists up-regulated a panel of bioenergetic enzymes and antioxidant defence proteins. Up-regulated proteins included pyruvate dehydrogenase, ATP synthase, manganese superoxide dismutase and peroxiredoxin V. In vitro, whole cell metabolism was assessed in live primary cultured hippocampal neurones and mixed glia. The results of analyses conducted in vitro were consistent with data obtained in vivo. Furthermore, lipid peroxides, accumulated as a result of hormone deprivation, were significantly reduced by E(2) , PPT and DPN. These findings suggest that the activation of both ERα and ERβ is differentially required to potentiate mitochondrial function in brain. As active components in hormone therapy, synthetically designed oestrogens as well as natural phyto-oestrogen cocktails can be tailored to improve brain mitochondrial endpoints.
Collapse
Affiliation(s)
- Ronald W. Irwin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Jimmy To
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Ryan T. Hamilton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
- Program in Neuroscience, University of Southern California, Los Angeles, California, 90033
- Address correspondence to: Roberta Diaz Brinton, Ph.D., Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, 1985 Zonal Avenue, Los Angeles, California, 90089, Tel. 323-442-1428; Fax. 323-442-1489;
| |
Collapse
|
45
|
Booth DM, Mukherjee R, Sutton R, Criddle DN. Calcium and reactive oxygen species in acute pancreatitis: friend or foe? Antioxid Redox Signal 2011; 15:2683-98. [PMID: 21861696 PMCID: PMC3183657 DOI: 10.1089/ars.2011.3983] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Acute pancreatitis (AP) is a debilitating and, at times, lethal inflammatory disease, the causes and progression of which are incompletely understood. Disruption of Ca(2+) homeostasis in response to precipitants of AP leads to loss of mitochondrial integrity and cellular necrosis. RECENT ADVANCES While oxidative stress has been implicated as a major player in the pathogenesis of this disease, its precise roles remain to be defined. Recent developments are challenging the perception of reactive oxygen species (ROS) as nonspecific cytotoxic agents, suggesting that ROS promote apoptosis that may play a vital protective role in cellular stress since necrosis is avoided. CRITICAL ISSUES Fresh clinical findings have indicated that antioxidant treatment does not ameliorate AP and may actually worsen the outcome. This review explores the complex links between cellular Ca(2+) signaling and the intracellular redox environment, with particular relevance to AP. FUTURE DIRECTIONS Recent publications have underlined the importance of both Ca(2+) and ROS within the pathogenesis of AP, particularly in the determination of cell fate. Future research should elucidate the subtle interplay between Ca(2+) and redox mechanisms that operate to modulate mitochondrial function, with a view to devising strategies for the preservation of organellar function.
Collapse
Affiliation(s)
- David M Booth
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | |
Collapse
|
46
|
Stackley KD, Beeson CC, Rahn JJ, Chan SSL. Bioenergetic profiling of zebrafish embryonic development. PLoS One 2011; 6:e25652. [PMID: 21980518 PMCID: PMC3183059 DOI: 10.1371/journal.pone.0025652] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 09/09/2011] [Indexed: 11/23/2022] Open
Abstract
Many debilitating conditions are linked to bioenergetic defects. Developing screens to probe the genetic and/or chemical basis for such links has proved intractable. Furthermore, there is a need for a physiologically relevant assay of bioenergetics in whole organisms, especially for early stages in life where perturbations could increase disease susceptibility with aging. Thus, we asked whether we could screen bioenergetics and mitochondrial function in the developing zebrafish embryo. We present a multiplexed method to assay bioenergetics in zebrafish embryos from the blastula period (3 hours post-fertilization, hpf) through to hatching (48 hpf). In proof of principle experiments, we measured respiration and acid extrusion of developing zebrafish embryos. We quantified respiratory coupling to various bioenergetic functions by using specific pharmacological inhibitors of bioenergetic pathways. We demonstrate that changes in the coupling to ATP turnover and proton leak are correlated with developmental stage. The multiwell format of this assay enables the user to screen for the effects of drugs and environmental agents on bioenergetics in the zebrafish embryo with high sensitivity and reproducibility.
Collapse
Affiliation(s)
- Krista D. Stackley
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Craig C. Beeson
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jennifer J. Rahn
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sherine S. L. Chan
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|
47
|
Cha C, Kim SR, Jin YS, Kong H. Tuning structural durability of yeast-encapsulating alginate gel beads with interpenetrating networks for sustained bioethanol production. Biotechnol Bioeng 2011; 109:63-73. [DOI: 10.1002/bit.23258] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/16/2011] [Accepted: 06/20/2011] [Indexed: 11/11/2022]
|
48
|
Xu D, Guo H, Xu X, Lu Z, Fassett J, Hu X, Xu Y, Tang Q, Hu D, Somani A, Geurts AM, Ostertag E, Bache RJ, Weir EK, Chen Y. Exacerbated pulmonary arterial hypertension and right ventricular hypertrophy in animals with loss of function of extracellular superoxide dismutase. Hypertension 2011; 58:303-9. [PMID: 21730301 DOI: 10.1161/hypertensionaha.110.166819] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Studies have demonstrated that increased oxidative stress contributes to the pathogenesis and the development of pulmonary artery hypertension (PAH). Extracellular superoxide dismutase (SOD3) is essential for removing extracellular superoxide anions, and it is highly expressed in lung tissue. However, it is not clear whether endogenous SOD3 can influence the development of PAH. Here we examined the effect of SOD3 knockout on hypoxia-induced PAH in mice and a loss-of-function SOD3 gene mutation (SOD3(E124D)) on monocrotaline (40 mg/kg)-induced PAH in rats. SOD3 knockout significantly exacerbated 2 weeks of hypoxia-induced right ventricular (RV) pressure and RV hypertrophy, whereas RV pressure in SOD3 knockout mice under normoxic conditions is similar to wild-type controls. In untreated control rats at age of 8 weeks, there was no significant difference between wild-type and SOD3(E124D) rats in RV pressure and the ratio of RV weight:left ventricular weight (0.25±0.02 in wild-type rats versus 0.25±0.01 in SOD3(E124D) rats). However, monocrotaline caused significantly greater increases of RV pressure in SOD3(E124D) rats (48.6±1.8 mm Hg in wild-type versus 57.5±3.1 mm Hg in SOD3(E124D) rats), of the ratio of RV weight:left ventricular weight (0.41±0.01 versus 0.50±0.09; P<0.05), and of the percentage of fully muscularized small arterioles in SOD3(E124D) rats (55.2±2.3% versus 69.9±2.6%; P<0.05). Together, these findings indicate that the endogenous SOD3 has no role in the development of PAH under control conditions but plays an important role in protecting the lung from the development of PAH under stress conditions.
Collapse
Affiliation(s)
- Dachun Xu
- Lillehei Heart Institute and Cardiovascular Division, University of Minnesota, 420 Delaware St SE, MMC 508, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The reduction of water-soluble tetrazolium salt reagent on the plasma membrane of epidermal keratinocytes is oxygen dependent. Anal Biochem 2011; 414:31-7. [DOI: 10.1016/j.ab.2011.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/31/2011] [Accepted: 02/18/2011] [Indexed: 02/07/2023]
|
50
|
Del Principe D, Avigliano L, Savini I, Catani MV. Trans-plasma membrane electron transport in mammals: functional significance in health and disease. Antioxid Redox Signal 2011; 14:2289-318. [PMID: 20812784 DOI: 10.1089/ars.2010.3247] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trans-plasma membrane electron transport (t-PMET) has been established since the 1960s, but it has only been subject to more intensive research in the last decade. The discovery and characterization at the molecular level of its novel components has increased our understanding of how t-PMET regulates distinct cellular functions. This review will give an update on t-PMET, with particular emphasis on how its malfunction relates to some diseases, such as cancer, abnormal cell death, cardiovascular diseases, aging, obesity, neurodegenerative diseases, pulmonary fibrosis, asthma, and genetically linked pathologies. Understanding these relationships may provide novel therapeutic approaches for pathologies associated with unbalanced redox state.
Collapse
Affiliation(s)
- Domenico Del Principe
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | |
Collapse
|