1
|
Hemker F, Ammelburger N, Jahns P. Intervening dark periods negatively affect the photosynthetic performance of Chlamydomonas reinhardtii during growth under fluctuating high light. PLANT, CELL & ENVIRONMENT 2024; 47:4246-4258. [PMID: 38946377 DOI: 10.1111/pce.15020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The acclimation of the green algae Chlamydomoas reinhardtii to high light (HL) has been studied predominantly under continuous illumination of the cells. Here, we investigated the impact of fluctuating HL in alternation with either low light (LL) or darkness on photosynthetic performance and on photoprotective responses. Compared to intervening LL phases, dark phases led to (1) more pronounced reduction of the photosystem II quantum efficiency, (2) reduced degradation of the PsbS protein, (3) lower energy dissipation capacity and (4) an increased pool size of the xanthophyll cycle pigments. These characteristics indicate increased photo-oxidative stress when HL periods are interrupted by dark phases instead of LL phases. This overall trend was similar when comparing long (8 h) and short (30 min) HL phases being interrupted by long (16 h) and short (60 min) phases of dark or low light, respectively. Only the degradation of PsbS was clearly more efficient during long (16 h) LL phases when compared to short (60 min) LL phases.
Collapse
Affiliation(s)
- Fritz Hemker
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nicolas Ammelburger
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Jahns
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
2
|
Lee TY, Lam L, Patel-Tupper D, Roy PP, Ma SA, Lam HE, Lucas-DeMott A, Karavolias NG, Iwai M, Niyogi KK, Fleming GR. Chlorophyll to zeaxanthin energy transfer in nonphotochemical quenching: An exciton annihilation-free transient absorption study. Proc Natl Acad Sci U S A 2024; 121:e2411620121. [PMID: 39378097 PMCID: PMC11494355 DOI: 10.1073/pnas.2411620121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 10/10/2024] Open
Abstract
Zeaxanthin (Zea) is a key component in the energy-dependent, rapidly reversible, nonphotochemical quenching process (qE) that regulates photosynthetic light harvesting. Previous transient absorption (TA) studies suggested that Zea can participate in direct quenching via chlorophyll (Chl) to Zea energy transfer. However, the contamination of intrinsic exciton-exciton annihilation (EEA) makes the assignment of TA signal ambiguous. In this study, we present EEA-free TA data using Nicotiana benthamiana thylakoid membranes, including the wild type and three NPQ mutants (npq1, npq4, and lut2) generated by CRISPR/Cas9 mutagenesis. The results show a strong correlation between excitation energy transfer from excited Chl Qy to Zea S1 and the xanthophyll cycle during qE activation. Notably, a Lut S1 signal is absent in the npq1 thylakoids which lack zeaxanthin. Additionally, the fifth-order response analysis shows a reduction in the exciton diffusion length (LD) from 62 ± 6 nm to 43 ± 3 nm under high light illumination, consistent with the reduced range of exciton motion being a key aspect of plants' response to excess light.
Collapse
Affiliation(s)
- Tsung-Yen Lee
- Department of Chemistry, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Lam Lam
- Department of Chemistry, University of California, Berkeley, CA94720
- Graduate Group in Biophysics, University of California, Berkeley, CA94720
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
| | - Partha Pratim Roy
- Department of Chemistry, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Sophia A. Ma
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Henry E. Lam
- Department of Chemistry, University of California, Berkeley, CA94720
| | - Aviva Lucas-DeMott
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Nicholas G. Karavolias
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
| | - Masakazu Iwai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
| | - Krishna K. Niyogi
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA94720
- HHMI, University of California, Berkeley, CA94720
- Innovative Genomics Institute, University of California, Berkeley, CA94720
| | - Graham R. Fleming
- Department of Chemistry, University of California, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Kavli Energy Nanoscience Institute, Berkeley, CA94720
| |
Collapse
|
3
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Brünje A, Füßl M, Eirich J, Boyer JB, Heinkow P, Neumann U, Konert M, Ivanauskaite A, Seidel J, Ozawa SI, Sakamoto W, Meinnel T, Schwarzer D, Mulo P, Giglione C, Finkemeier I. The Plastidial Protein Acetyltransferase GNAT1 Forms a Complex With GNAT2, yet Their Interaction Is Dispensable for State Transitions. Mol Cell Proteomics 2024; 23:100850. [PMID: 39349166 DOI: 10.1016/j.mcpro.2024.100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 08/18/2024] [Indexed: 10/02/2024] Open
Abstract
Protein N-acetylation is one of the most abundant co- and post-translational modifications in eukaryotes, extending its occurrence to chloroplasts within vascular plants. Recently, a novel plastidial enzyme family comprising eight acetyltransferases that exhibit dual lysine and N-terminus acetylation activities was unveiled in Arabidopsis. Among these, GNAT1, GNAT2, and GNAT3 reveal notable phylogenetic proximity, forming a subgroup termed NAA90. Our study focused on characterizing GNAT1, closely related to the state transition acetyltransferase GNAT2. In contrast to GNAT2, GNAT1 did not prove essential for state transitions and displayed no discernible phenotypic difference compared to the wild type under high light conditions, while gnat2 mutants were severely affected. However, gnat1 mutants exhibited a tighter packing of the thylakoid membranes akin to gnat2 mutants. In vitro studies with recombinant GNAT1 demonstrated robust N-terminus acetylation activity on synthetic substrate peptides. This activity was confirmed in vivo through N-terminal acetylome profiling in two independent gnat1 knockout lines. This attributed several acetylation sites on plastidial proteins to GNAT1, reflecting a subset of GNAT2's substrate spectrum. Moreover, co-immunoprecipitation coupled with mass spectrometry revealed a robust interaction between GNAT1 and GNAT2, as well as a significant association of GNAT2 with GNAT3 - the third acetyltransferase within the NAA90 subfamily. This study unveils the existence of at least two acetyltransferase complexes within chloroplasts, whereby complex formation might have a critical effect on the fine-tuning of the overall acetyltransferase activities. These findings introduce a novel layer of regulation in acetylation-dependent adjustments in plastidial metabolism.
Collapse
Affiliation(s)
- Annika Brünje
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Magdalena Füßl
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Paulina Heinkow
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany
| | - Ulla Neumann
- Central Microscopy, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Minna Konert
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Aiste Ivanauskaite
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Julian Seidel
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Shin-Ichiro Ozawa
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources (IPSR) Okayama University, Kurashiki, Okayama, Japan
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Paula Mulo
- Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, Finland
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, Germany.
| |
Collapse
|
5
|
Fuente D, Orlando M, Bailleul B, Jullien L, Lazár D, Nedbal L. A mathematical model to simulate the dynamics of photosynthetic light reactions under harmonically oscillating light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109138. [PMID: 39481198 DOI: 10.1016/j.plaphy.2024.109138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/12/2024] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
Alternating electric current and alternating electromagnetic fields revolutionized physics and engineering and led to many technologies that shape modern life. Despite these undisputable achievements that have been reached using stimulation by harmonic oscillations over centuries, applications in biology remain rare. Photosynthesis research is uniquely suited to unleash this potential because light can be modulated as a harmonic function, here sinus. Understanding the response of photosynthetic organisms to sinusoidal light is hindered by the complexity of dynamics that such light elicits, and by the mathematical apparatus required for understanding the signals in the frequency domain which, although well-established and simple, is outside typical curricula in biology. Here, we approach these challenges by presenting a mathematical model that was designed specifically to simulate the response of photosynthetic light reactions to light which oscillates with periods that often occur in nature. The independent variables of the model are the plastoquinone pool, the photosystem I donors, lumen pH, ATP, and the chlorophyll fluorescence (ChlF) quencher that is responsible for the qE non-photochemical quenching. Dynamics of ChlF emission, rate of oxygen evolution, and non-photochemical quenching are approximated by dependent model variables. The model is used to explain the essentials of the frequency-domain approaches up to the level of presenting Bode plots of frequency-dependence of ChlF. The model simulations were found satisfactory when compared with the Bode plots of ChlF response of the green alga Chlamydomonas reinhardtii to light that was oscillating with a small amplitude and frequencies between 7.8 mHz and 64 Hz.
Collapse
Affiliation(s)
- David Fuente
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, 77900, Olomouc, Czech Republic
| | - Marcelo Orlando
- Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Paris, France
| | - Benjamin Bailleul
- Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Paris, France
| | - Ludovic Jullien
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, 77900, Olomouc, Czech Republic
| | - Ladislav Nedbal
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, 77900, Olomouc, Czech Republic.
| |
Collapse
|
6
|
Sun X, Kaiser E, Zhang Y, Marcelis LFM, Li T. Quantifying the Photosynthetic Quantum Yield of Ultraviolet-A1 Radiation. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248578 DOI: 10.1111/pce.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Although it powers photosynthesis, ultraviolet-A1 radiation (UV-A1) is usually not defined as photosynthetically active radiation (PAR). However, the quantum yield (QY) with which UV-A1 drives net photosynthesis rate (A) is unknown, as are the kinetics of A and chlorophyll fluorescence under constant UV-A1 exposure. We measured A in leaves of six genotypes at four spectra peaking at 365, 385, 410 and 450 nm, at intensities spanning 0-300 μmol m s-1. All treatments powered near-linear increases in A in a wavelength-dependent manner. QY at 365 and 385 nm was linked to the apparent concentration of flavonoids, implicating the pigment in reductions of photosynthetic efficiency under UV-A1; in several genotypes, A under 365 and 385 nm was negative regardless of illumination intensity, suggesting very small contributions of UV-A1 radiation to CO2 fixation. Exposure to treatment spectra for 30 min caused slow increases in nonphotochemical quenching, transient reductions in A and dark-adapted maximum quantum yield of photosystem II, that depended on wavelength and intensity, but were generally stronger the lower the peak wavelength was. We conclude that UV-A1 generally powers A, but its definition as PAR requires additional evidence of its capacity to significantly increase whole-canopy carbon uptake in nature.
Collapse
Affiliation(s)
- Xuguang Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Zhang M, Ming Y, Wang HB, Jin HL. Strategies for adaptation to high light in plants. ABIOTECH 2024; 5:381-393. [PMID: 39279858 PMCID: PMC11399379 DOI: 10.1007/s42994-024-00164-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 09/18/2024]
Abstract
Plants absorb light energy for photosynthesis via photosystem complexes in their chloroplasts. However, excess light can damage the photosystems and decrease photosynthetic output, thereby inhibiting plant growth and development. Plants have developed a series of light acclimation strategies that allow them to withstand high light. In the first line of defense against excess light, leaves and chloroplasts move away from the light and the plant accumulates compounds that filter and reflect the light. In the second line of defense, known as photoprotection, plants dissipate excess light energy through non-photochemical quenching, cyclic electron transport, photorespiration, and scavenging of excess reactive oxygen species. In the third line of defense, which occurs after photodamage, plants initiate a cycle of photosystem (mainly photosystem II) repair. In addition to being the site of photosynthesis, chloroplasts sense stress, especially light stress, and transduce the stress signal to the nucleus, where it modulates the expression of genes involved in the stress response. In this review, we discuss current progress in our understanding of the strategies and mechanisms employed by plants to withstand high light at the whole-plant, cellular, physiological, and molecular levels across the three lines of defense.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Yu Ming
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Hong-Bin Wang
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006 China
| | - Hong-Lei Jin
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510375 China
| |
Collapse
|
8
|
Khan N, Choi SH, Lee CH, Qu M, Jeon JS. Photosynthesis: Genetic Strategies Adopted to Gain Higher Efficiency. Int J Mol Sci 2024; 25:8933. [PMID: 39201620 PMCID: PMC11355022 DOI: 10.3390/ijms25168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The global challenge of feeding an ever-increasing population to maintain food security requires novel approaches to increase crop yields. Photosynthesis, the fundamental energy and material basis for plant life on Earth, is highly responsive to environmental conditions. Evaluating the operational status of the photosynthetic mechanism provides insights into plants' capacity to adapt to their surroundings. Despite immense effort, photosynthesis still falls short of its theoretical maximum efficiency, indicating significant potential for improvement. In this review, we provide background information on the various genetic aspects of photosynthesis, explain its complexity, and survey relevant genetic engineering approaches employed to improve the efficiency of photosynthesis. We discuss the latest success stories of gene-editing tools like CRISPR-Cas9 and synthetic biology in achieving precise refinements in targeted photosynthesis pathways, such as the Calvin-Benson cycle, electron transport chain, and photorespiration. We also discuss the genetic markers crucial for mitigating the impact of rapidly changing environmental conditions, such as extreme temperatures or drought, on photosynthesis and growth. This review aims to pinpoint optimization opportunities for photosynthesis, discuss recent advancements, and address the challenges in improving this critical process, fostering a globally food-secure future through sustainable food crop production.
Collapse
Affiliation(s)
- Naveed Khan
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
| | - Seok-Hyun Choi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| | - Choon-Hwan Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| |
Collapse
|
9
|
Hoh D, Froehlich JE, Kramer DM. Redox regulation in chloroplast thylakoid lumen: The pmf changes everything, again. PLANT, CELL & ENVIRONMENT 2024; 47:2749-2765. [PMID: 38111217 DOI: 10.1111/pce.14789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Photosynthesis is the foundation of life on Earth. However, if not well regulated, it can also generate excessive reactive oxygen species (ROS), which can cause photodamage. Regulation of photosynthesis is highly dynamic, responding to both environmental and metabolic cues, and occurs at many levels, from light capture to energy storage and metabolic processes. One general mechanism of regulation involves the reversible oxidation and reduction of protein thiol groups, which can affect the activity of enzymes and the stability of proteins. Such redox regulation has been well studied in stromal enzymes, but more recently, evidence has emerged of redox control of thylakoid lumenal enzymes. This review/hypothesis paper summarizes the latest research and discusses several open questions and challenges to achieving effective redox control in the lumen, focusing on the distinct environments and regulatory components of the thylakoid lumen, including the need to transport electrons across the thylakoid membrane, the effects of pH changes by the proton motive force (pmf) in the stromal and lumenal compartments, and the observed differences in redox states. These constraints suggest that activated oxygen species are likely to be major regulatory contributors to lumenal thiol redox regulation, with key components and processes yet to be discovered.
Collapse
Affiliation(s)
- Donghee Hoh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - John E Froehlich
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Lazzarin M, Driever S, Wassenaar M, Marcelis LFM, van Ieperen W. Shining light on diurnal variation of non-photochemical quenching: Impact of gradual light intensity patterns on short-term NPQ over a day. PHYSIOLOGIA PLANTARUM 2024; 176:e14410. [PMID: 38945685 DOI: 10.1111/ppl.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
Maximal sunlight intensity varies diurnally due to the earth's rotation. Whether this slow diurnal pattern influences the photoprotective capacity of plants throughout the day is unknown. We investigated diurnal variation in NPQ, along with NPQ capacity, induction, and relaxation kinetics after transitions to high light, in tomato plants grown under diurnal parabolic (DP) or constant (DC) light intensity regimes. DP light intensity peaked at midday (470 μmol m-2 s-1) while DC stayed constant at 300 μmol m-2 s-1 at a similar 12-hour photoperiod and daily light integral. NPQs were higher in the morning and afternoon at lower light intensities in DP compared to DC, except shortly after dawn. NPQ capacity increased from midday to the end of the day, with higher values in DP than in DC. At high light ΦPSII did not vary throughout the day, while ΦNPQ varied consistently with NPQ capacity. Reduced ΦNO suggested less susceptibility to photodamage at the end of the day. NPQ induction was faster at midday than at the start of the day and in DC than in DP, with overshoot occurring in the morning and midday but not at the end of the day. NPQ relaxation was faster in DP than in DC. The xanthophyll de-epoxidation state and reduced demand for photochemistry could not explain the observed diurnal variations in photoprotective capacity. In conclusion, this study showed diurnal variation in regulated photoprotective capacity at moderate growth light intensity, which was not explained by instantaneous light intensity or increasing photoinhibition over the day and was influenced by acclimation to constant light intensity.
Collapse
Affiliation(s)
- Martina Lazzarin
- Horticulture and Product Physiology, Wageningen University, Wageningen, AA, The Netherlands
| | - Steven Driever
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, AA, The Netherlands
| | - Maarten Wassenaar
- Horticulture and Product Physiology, Wageningen University, Wageningen, AA, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Wageningen University, Wageningen, AA, The Netherlands
| | - Wim van Ieperen
- Horticulture and Product Physiology, Wageningen University, Wageningen, AA, The Netherlands
| |
Collapse
|
11
|
Madireddi SK, Yadav RM, Zamal MY, Bag P, Gunasekaran JX, Subramanyam R. Exploring LHCSR3 expression and its role in Chlamydomonas reinhardtii under osmotic stress: Implications for non-photochemical quenching mechanism. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 256:112941. [PMID: 38763078 DOI: 10.1016/j.jphotobiol.2024.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Plants have a protective mechanism called non-photochemical quenching to prevent damage caused by excessive sunlight. A critical component of this mechanism is energy-dependent quenching (qE). In Chlamydomonas reinhardtii, the protein expression called light-harvesting complex stress-related protein 3 (LHCSR3) is crucial for the qE mechanism. LHCSR3 expression is observed in various conditions that result in photooxidation, such as exposure to high light or nutrient deprivation, where the amount of captured light surpasses the maximum photosynthetic capacity. Although the role of LHCSR3 has been extensively studied under high light (HL) conditions, its function during nutrient starvation remains unclear. In this study, we demonstrate that LHCSR3 expression can occur under light intensities below saturation without triggering qE, particularly when nutrients are limited. To investigate this, we cultivated C. reinhardtii cells under osmotic stress, which replicates conditions of nutrient scarcity. Furthermore, we examined the photosynthetic membrane complexes of wild-type (WT) and npq4 mutant strains grown under osmotic stress. Our analysis revealed that LHCSR3 expression might modify the interaction between the photosystem II core and its peripheral light-harvesting complex II antennae. This alteration could potentially impede the transfer of excitation energy from the antenna to the reaction center.
Collapse
Affiliation(s)
- Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Mohammad Yusuf Zamal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Pushan Bag
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Jerome Xavier Gunasekaran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
12
|
Matzner M, Launhardt L, Barth O, Humbeck K, Goss R, Heilmann I. Inter-Organellar Effects of Defective ER-Localized Linolenic Acid Formation on Thylakoid Lipid Composition, Non-Photochemical Quenching of Chlorophyll Fluorescence and Xanthophyll Cycle Activity in the Arabidopsis fad3 Mutant. PLANT & CELL PHYSIOLOGY 2024; 65:958-974. [PMID: 37991227 DOI: 10.1093/pcp/pcad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG) is the main lipid constituent of thylakoids and a structural component of photosystems and photosynthesis-related proteo-lipid complexes in green tissues. Previously reported changes in MGDG abundance upon stress treatments are hypothesized to reflect mobilization of MGDG-based polyunsaturated lipid intermediates to maintain extraplastidial membrane integrity. While exchange of lipid intermediates between compartmental membranes is well documented, physiological consequences of mobilizing an essential thylakoid lipid, such as MGDG, for an alternative purpose are not well understood. Arabidopsis seedlings exposed to mild (50 mM) salt treatment displayed significantly increased abundance of both MGDG and the extraplastidial lipid, phosphatidylcholine (PC). Interestingly, similar increases in MGDG and PC were observed in Arabidopsis fad3 mutant seedlings defective in endoplasmic reticulum (ER)-localized linolenic acid formation, in which compensatory plastid-to-ER-directed mobilization of linolenic acid-containing intermediates takes place. The postulated (salt) or evident (fad3) plastid-ER exchange of intermediates concurred with altered thylakoid function according to parameters of photosynthetic performance. While salt treatment of wild-type seedlings inhibited photosynthetic parameters in a dose-dependent manner, interestingly, untreated fad3 mutants did not show overall reduced photosynthetic quantum yield. By contrast, we observed a reduction specifically of non-photochemical quenching (NPQ) under high light, representing only part of observed salt effects. The decreased NPQ in the fad3 mutant was accompanied by reduced activity of the xanthophyll cycle, leading to a reduced concentration of the NPQ-effective pigment zeaxanthin. The findings suggest that altered ER-located fatty acid unsaturation and ensuing inter-organellar compensation impacts on the function of specific thylakoid enzymes, rather than globally affecting thylakoid function.
Collapse
Affiliation(s)
- Monique Matzner
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Science Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale) 06120, Germany
| | - Larissa Launhardt
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Science Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale) 06120, Germany
| | - Olaf Barth
- Department of Plant Physiology, Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale) 06120, Germany
| | - Klaus Humbeck
- Department of Plant Physiology, Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, Halle (Saale) 06120, Germany
| | - Reimund Goss
- Department of Plant Physiology, Institute of Biology, University of Leipzig, Johannisallee 23, Leipzig 04103, Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Charles Tanford Protein Science Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale) 06120, Germany
| |
Collapse
|
13
|
Sahay S, Grzybowski M, Schnable JC, Głowacka K. Genotype-specific nonphotochemical quenching responses to nitrogen deficit are linked to chlorophyll a to b ratios. JOURNAL OF PLANT PHYSIOLOGY 2024; 297:154261. [PMID: 38705078 DOI: 10.1016/j.jplph.2024.154261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Non-photochemical quenching (NPQ) protects plants from photodamage caused by excess light energy. Substantial variation in NPQ has been reported among different genotypes of the same species. However, comparatively little is known about how environmental perturbations, including nutrient deficits, impact natural variation in NPQ kinetics. Here, we analyzed a natural variation in NPQ kinetics of a diversity panel of 225 maize (Zea mays L.) genotypes under nitrogen replete and nitrogen deficient field conditions. Individual maize genotypes from a diversity panel exhibited a range of changes in NPQ in response to low nitrogen. Replicated genotypes exhibited consistent responses across two field experiments conducted in different years. At the seedling and pre-flowering stages, a similar portion of the genotypes (∼33%) showed decrease, no-change or increase in NPQ under low nitrogen relative to control. Genotypes with increased NPQ under low nitrogen also showed greater reductions in dry biomass and photosynthesis than genotypes with stable NPQ when exposed to low nitrogen conditions. Maize genotypes where an increase in NPQ was observed under low nitrogen also exhibited a reduction in the ratio of chlorophyll a to chlorophyll b. Our results underline that since thermal dissipation of excess excitation energy measured via NPQ helps to balance the energy absorbed with energy utilized, the NPQ changes are the reflection of broader molecular and biochemical changes which occur under the stresses such as low soil fertility. Here, we have demonstrated that variation in NPQ kinetics resulted from genetic and environmental factors, are not independent of each other. Natural genetic variation controlling plastic responses of NPQ kinetics to environmental perturbation increases the likelihood it will be possible to optimize NPQ kinetics in crop plants for different environments.
Collapse
Affiliation(s)
- Seema Sahay
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA; Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Marcin Grzybowski
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, 02-096 Warsaw, Poland.
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Katarzyna Głowacka
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA; Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA; Institute of Plant Genetics, Polish Academy of Sciences, 60-479, Poznań, Poland.
| |
Collapse
|
14
|
Liu M, Wang Y, Zhang H, Hao Y, Wu H, Shen H, Zhang P. Mechanisms of photoprotection in overwintering evergreen conifers: Sustained quenching of chlorophyll fluorescence. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108638. [PMID: 38653096 DOI: 10.1016/j.plaphy.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Evergreen conifers growing in high-latitude regions must endure prolonged winters that are characterized by sub-zero temperatures combined with light, conditions that can cause significant photooxidative stress. Understanding overwintering mechanisms is crucial for addressing winter adversity in temperate forest ecosystems and enhancing the ability of conifers to adapt to climate change. This review synthesizes the current understanding of the photoprotective mechanisms that conifers employ to mitigate photooxidative stress, particularly non-photochemical "sustained quenching", the mechanism of which is hypothesized to be a recombination or deformation of the original mechanism employed by conifers in response to short-term low temperature and intense light stress in the past. Based on this hypothesis, scattered studies in this field are assembled and integrated into a complete mechanism of sustained quenching embedded in the adaptation process of plant physiology. It also reveals which parts of the whole system have been verified in conifers and which have only been verified in non-conifers, and proposes specific directions for future research. The functional implications of studies of non-coniferous plant species for the study of coniferous trees are also considered, as a wide range of plant responses lead to sustained quenching, even among different conifer species. In addition, the review highlights the challenges of measuring sustained quenching and discusses the application of ultrafast-time-resolved fluorescence and decay-associated spectra for the elucidation of photosynthetic principles.
Collapse
Affiliation(s)
- Mingyu Liu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Yu Wang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Yuanqin Hao
- College of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Haibo Wu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| | - Hailong Shen
- College of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| | - Peng Zhang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China; Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China.
| |
Collapse
|
15
|
Fukushi Y, Yokochi Y, Hisabori T, Yoshida K. Overexpression of thioredoxin-like protein ACHT2 leads to negative feedback control of photosynthesis in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2024; 137:445-453. [PMID: 38367196 PMCID: PMC11082001 DOI: 10.1007/s10265-024-01519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 02/19/2024]
Abstract
Thioredoxin (Trx) is a small redox mediator protein involved in the regulation of various chloroplast functions by modulating the redox state of Trx target proteins in ever-changing light environments. Using reducing equivalents produced by the photosynthetic electron transport chain, Trx reduces the disulfide bonds on target proteins and generally turns on their activities. While the details of the protein-reduction mechanism by Trx have been well investigated, the oxidation mechanism that counteracts it has long been unclear. We have recently demonstrated that Trx-like proteins such as Trx-like2 and atypical Cys His-rich Trx (ACHT) can function as protein oxidation factors in chloroplasts. Our latest study on transgenic Arabidopsis plants indicated that the ACHT isoform ACHT2 is involved in regulating the thermal dissipation of light energy. To understand the role of ACHT2 in vivo, we characterized phenotypic changes specifically caused by ACHT2 overexpression in Arabidopsis. ACHT2-overexpressing plants showed growth defects, especially under high light conditions. This growth phenotype was accompanied with the impaired reductive activation of Calvin-Benson cycle enzymes, enhanced thermal dissipation of light energy, and decreased photosystem II activity. Overall, ACHT2 overexpression promoted protein oxidation that led to the inadequate activation of Calvin-Benson cycle enzymes in light and consequently induced negative feedback control of the photosynthetic electron transport chain. This study highlights the importance of the balance between protein reduction and oxidation in chloroplasts for optimal photosynthetic performance and plant growth.
Collapse
Affiliation(s)
- Yuka Fukushi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yuichi Yokochi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
- International Research Frontier Initiative, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Keisuke Yoshida
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
16
|
Kim M, Cazzaniga S, Jang J, Pivato M, Kim G, Ballottari M, Jin E. Photoautotrophic cultivation of a Chlamydomonas reinhardtii mutant with zeaxanthin as the sole xanthophyll. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:41. [PMID: 38486329 PMCID: PMC10941483 DOI: 10.1186/s13068-024-02483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/24/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Photosynthetic microalgae are known for their sustainable and eco-friendly potential to convert carbon dioxide into valuable products. Nevertheless, the challenge of self-shading due to high cell density has been identified as a drawback, hampering productivity in sustainable photoautotrophic mass cultivation. To address this issue, mutants with altered pigment composition have been proposed to allow a more efficient light diffusion but further study on the role of the different pigments is still needed to correctly engineer this process. RESULTS We here investigated the Chlamydomonas reinhardtii Δzl mutant with zeaxanthin as the sole xanthophyll. The Δzl mutant displayed altered pigment composition, characterized by lower chlorophyll content, higher chlorophyll a/b ratio, and lower chlorophyll/carotenoid ratio compared to the wild type (Wt). The Δzl mutant also exhibited a significant decrease in the light-harvesting complex II/Photosystem II ratio (LHCII/PSII) and the absence of trimeric LHCIIs. This significantly affects the organization and stability of PSII supercomplexes. Consequently, the estimated functional antenna size of PSII in the Δzl mutant was approximately 60% smaller compared to that of Wt, and reduced PSII activity was evident in this mutant. Notably, the Δzl mutant showed impaired non-photochemical quenching. However, the Δzl mutant compensated by exhibiting enhanced cyclic electron flow compared to Wt, seemingly offsetting the impaired PSII functionality. Consequently, the Δzl mutant achieved significantly higher cell densities than Wt under high-light conditions. CONCLUSIONS Our findings highlight significant changes in pigment content and pigment-protein complexes in the Δzl mutant compared to Wt, resulting in an advantage for high-density photoautotrophic cultivation. This advantage is attributed to the decreased chlorophyll content of the Δzl mutant, allowing better light penetration. In addition, the accumulated zeaxanthin in the mutant could serve as an antioxidant, offering protection against reactive oxygen species generated by chlorophylls.
Collapse
Affiliation(s)
- Minjae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | | | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Matteo Pivato
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Gueeda Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | | | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
17
|
Hemker F, Zielasek F, Jahns P. Combined high light and salt stress enhances accumulation of PsbS and zeaxanthin in Chlamydomonas reinhardtii. PHYSIOLOGIA PLANTARUM 2024; 176:e14233. [PMID: 38433102 DOI: 10.1111/ppl.14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
The performance and acclimation strategies of Chlamydomonas reinhardtii under stress conditions are typically studied in response to single stress factors. Under natural conditions, however, organisms rarely face only one stressor at a time. Here, we investigated the impact of combined salt and high light stress on the photoprotective response of C. reinhardtii. Compared to the single stress factors, the combination of both stressors decreased the photosynthetic performance, while the activation of energy dissipation remained unaffected. However, the PsbS protein was strongly accumulated and the conversion of violaxanthin to zeaxanthin was enhanced. These results support an important photoprotective function of PsbS and zeaxanthin independently of energy dissipation under combined salt and high light stress in C. reinhardtii.
Collapse
Affiliation(s)
- Fritz Hemker
- Photosynthesis and Stress Physiology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fabian Zielasek
- Photosynthesis and Stress Physiology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Jahns
- Photosynthesis and Stress Physiology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Morelli L, Havurinne V, Madeira D, Martins P, Cartaxana P, Cruz S. Photoprotective mechanisms in Elysia species hosting Acetabularia chloroplasts shed light on host-donor compatibility in photosynthetic sea slugs. PHYSIOLOGIA PLANTARUM 2024; 176:e14273. [PMID: 38566156 DOI: 10.1111/ppl.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Sacoglossa sea slugs have garnered attention due to their ability to retain intracellular functional chloroplasts from algae, while degrading other algal cell components. While protective mechanisms that limit oxidative damage under excessive light are well documented in plants and algae, the photoprotective strategies employed by these photosynthetic sea slugs remain unresolved. Species within the genus Elysia are known to retain chloroplasts from various algal sources, but the extent to which the metabolic processes from the donor algae can be sustained by the sea slugs is unclear. By comparing responses to high-light conditions through kinetic analyses, molecular techniques, and biochemical assays, this study shows significant differences between two photosynthetic Elysia species with chloroplasts derived from the green alga Acetabularia acetabulum. Notably, Elysia timida displayed remarkable tolerance to high-light stress and sophisticated photoprotective mechanisms such as an active xanthophyll cycle, efficient D1 protein recycling, accumulation of heat-shock proteins and α-tocopherol. In contrast, Elysia crispata exhibited absence or limitations in these photoprotective strategies. Our findings emphasize the intricate relationship between the host animal and the stolen chloroplasts, highlighting different capacities to protect the photosynthetic organelle from oxidative damage.
Collapse
Affiliation(s)
- Luca Morelli
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Vesa Havurinne
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Patrícia Martins
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Paulo Cartaxana
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sónia Cruz
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
19
|
Su P, Ding S, Wang D, Kan W, Yuan M, Chen X, Tang C, Hou J, Wu L. Plant morphology, secondary metabolites and chlorophyll fluorescence of Artemisia argyi under different LED environments. PHOTOSYNTHESIS RESEARCH 2024; 159:153-164. [PMID: 37204684 PMCID: PMC10197053 DOI: 10.1007/s11120-023-01026-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Different light spectra from light-emitting diodes (LEDs) trigger species-specific adaptive responses in plants. We exposed Artemisia argyi (A. argyi) to four LED spectra: white (the control group), monochromatic red light (R), monochromatic blue light (B), or a mixture of R and B light of photon flux density ratio is 3 (RB), with equivalent photoperiod (14 h) and light intensity (160 μmol s-1 m-2). R light accelerated photomorphogenesis but decreased biomass, while B light significantly increased leaf area and short-term exposure (7 days) to B light increased total phenols and flavonoids. HPLC identified chlorogenic acid, 3,5-dicaffeoylquinic acid, gallic acid, jaceosidin, eupatilin, and taxol compounds, with RB and R light significantly accumulating chlorogenic acid, 3,5-dicaffeoylquinic acid, and gallic acid, and B light promoting jaceosidin, eupatilin, and taxol. OJIP measurements showed that B light had the least effect on the effective quantum yield ΦPSII, with higher rETR(II), Fv/Fm, qL and PIabs, followed by RB light. R light led to faster photomorphology but lower biomass than RB and B lights and produced the most inadaptability, as shown by reduced ΦPSII and enlarged ΦNPQ and ΦNO. Overall, short-term B light promoted secondary metabolite production while maintaining effective quantum yield and less energy dissipation.
Collapse
Affiliation(s)
- Pengfei Su
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Shuangshuang Ding
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Wenjie Kan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Meng Yuan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Xue Chen
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Caiguo Tang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Jinyan Hou
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
- Zhongke Taihe Experimental Station, Taihe, 236626, Anhui, People's Republic of China.
| |
Collapse
|
20
|
Marulanda Valencia W, Pandit A. Photosystem II Subunit S (PsbS): A Nano Regulator of Plant Photosynthesis. J Mol Biol 2024; 436:168407. [PMID: 38109993 DOI: 10.1016/j.jmb.2023.168407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/26/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Light is required for photosynthesis, but plants are often exposed to excess light, which can lead to photodamage and eventually cell death. To prevent this, they evolved photoprotective feedback mechanisms that regulate photosynthesis and trigger processes that dissipate light energy as heat, called non-photochemical quenching (NPQ). In excess light conditions, the light reaction and activity of Photosystem II (PSII) generates acidification of the thylakoid lumen, which is sensed by special pH-sensitive proteins called Photosystem II Subunit S (PsbS), actuating a photoprotective "switch" in the light-harvesting antenna. Despite its central role in regulating photosynthetic energy conversion, the molecular mechanism of PsbS as well as its interaction with partner proteins are not well understood. This review summarizes the current knowledge on the molecular structure and mechanistic aspects of the light-stress sensor PsbS and addresses open questions and challenges in the field regarding a full understanding of its functional mechanism and role in NPQ.
Collapse
Affiliation(s)
| | - Anjali Pandit
- Leiden Inst. of Chemistry, Gorlaeus Laboratory, Einsteinweg 55, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
21
|
Zhang Z, Guo J, Han S, Jin S, Zhang L. Establishing a Gross Primary Productivity Model by SIF and PRI on the Rice Canopy. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0144. [PMID: 38304301 PMCID: PMC10832794 DOI: 10.34133/plantphenomics.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/06/2024] [Indexed: 02/03/2024]
Abstract
Solar-induced chlorophyll fluorescence (SIF) has shown remarkable results in estimating vegetation carbon cycles, and combining it with the photochemical reflectance index (PRI) has great potential for estimating gross primary productivity (GPP). However, few studies have used SIF combined with PRI to estimate crop canopy GPP. Large temporal and spatial variability between SIF, PRI, and GPP has also been found in remote sensing observations, and the observed PRI and SIF are influenced by the ratio of different observed information (e.g., background, direct sunlit, and shaded leaves) and the physiological state of the vegetation. In this study, the PRI and SIF from a multi-angle spectrometer and the GPP from an eddy covariance system were used to assess the ability of the PRI to enhance the SIF-GPP estimation model. A semi-empirical kernel-driven Bidirectional Reflectance Distribution Function (BRDF) model was used to describe the hotspot PRI/SIF (PRIhs/SIFhs), and a modified two-leaf model was used to calculate the total canopy PRI/SIF (PRItot/SIFtot). We compared the accuracies of PRIhs/SIFhs and PRItot/SIFtot in estimating GPP. The results indicated that the PRItot+SIFtot-GPP model performed the best, with a correlation coefficient (R2) of the validation dataset of 0.88, a root mean square error (RMSE) of 3.74, and relative prediction deviation (RPD) of 2.71. The leaf area index (LAI) had a linear effect on the PRI/SIF estimation of GPP, but the temperature and vapor pressure differences had nonlinear effects. Compared with hotspot PRIhs/SIFhs, PRItot/SIFtot exhibited better consistency with GPP across different time series. Our research demonstrates that PRI is effective in enhancing SIF and PRI for estimating GPP on the rice canopy and also suggests that the two-leaf model would contribute to the vegetation index tracking the real-time crop productivity.
Collapse
Affiliation(s)
- Zhanhao Zhang
- School of Ecology and Applied Meteorology,
Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianmao Guo
- School of Ecology and Applied Meteorology,
Nanjing University of Information Science & Technology, Nanjing 210044, China
- Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing 210044, China
| | - Shihui Han
- School of Ecology and Applied Meteorology,
Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shuyuan Jin
- School of Ecology and Applied Meteorology,
Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lei Zhang
- National Meteorological Centre, China Meteorological Administration, Beijing 100081, China
| |
Collapse
|
22
|
Sezginer Y, Campbell D, Pillai S, Tortell P. Fluorescence-based primary productivity estimates are influenced by non-photochemical quenching dynamics in Arctic phytoplankton. Front Microbiol 2023; 14:1294521. [PMID: 38143865 PMCID: PMC10741645 DOI: 10.3389/fmicb.2023.1294521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
Chlorophyll fluorescence-based estimates of primary productivity typically include dark or low-light pre-treatments to relax non-photochemical quenching (NPQ), a process that influences the relationship between PSII photochemistry and fluorescence yields. The time-scales of NPQ relaxation vary significantly between phytoplankton taxa and across environmental conditions, creating uncertainty in field-based productivity measurements derived from fluorescence. To address this practical challenge, we used fast repetition rate fluorometry to characterize NPQ relaxation kinetics in Arctic Ocean phytoplankton assemblages across a range of hydrographic regimes. Applying numerical fits to our data, we derived NPQ relaxation life times, and determined the relative contributions of various quenching components to the total NPQ signature across the different assemblages. Relaxation kinetics were best described as a combination of fast-, intermediate- and slow-relaxing processes, operating on time-scales of seconds, minutes, and hours, respectively. Across sampling locations and depths, total fluorescence quenching was dominated by the intermediate quenching component. Our results demonstrated an average NPQ relaxation life time of 20 ± 1.9 min, with faster relaxation among high light acclimated surface samples relative to lowlight acclimated sub-surface samples. We also used our results to examine the influence of NPQ relaxation on estimates of photosynthetic electron transport rates (ETR), testing the commonly held assumption that NPQ exerts proportional effects on light absorption (PSII functional absorption cross section, σPSII) and photochemical quantum efficiency (FV/FM). This assumption was violated in a number of phytoplankton assemblages that showed a significant decoupling of σPSII and FV/FM during NPQ relaxation, and an associated variability in ETR estimates. Decoupling of σPSII and FV/FM was most prevalent in samples displaying symptoms photoinhibition. Our results provide insights into the mechanisms and kinetics of NPQ in Arctic phytoplankton assemblages, with important implications for the use of FRRF to derive non-invasive, high-resolution estimates of photosynthetic activity in polar marine waters.
Collapse
Affiliation(s)
- Yayla Sezginer
- Department of Earth Oceans and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Douglas Campbell
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| | - Sacchinandan Pillai
- Department of Earth Oceans and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Philippe Tortell
- Department of Earth Oceans and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Trojak M, Skowron E. Growth Light Quality Influences Leaf Surface Temperature by Regulating the Rate of Non-Photochemical Quenching Thermal Dissipation and Stomatal Conductance. Int J Mol Sci 2023; 24:16911. [PMID: 38069235 PMCID: PMC10706689 DOI: 10.3390/ijms242316911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Significant efforts have been made to optimise spectrum quality in indoor farming to maximise artificial light utilisation and reduce water loss. For such an improvement, green (G) light supplementation to a red-blue (RB) background was successfully employed in our previous studies to restrict both non-photochemical quenching (NPQ) and stomatal conductance (gs). At the same time, however, the downregulation of NPQ and gs had the opposite influence on leaf temperature (Tleaf). Thus, to determine which factor plays the most prominent role in Tleaf regulation and whether such a response is temporal or permanent, we investigated the correlation between NPQ and gs and, subsequently, Tleaf. To this end, we analysed tomato plants (Solanum lycopersicum L. cv. Malinowy Ozarowski) grown solely under monochromatic LED lamps (435, 520, or 662 nm; 80 µmol m-2 s-1) or a mixed RGB spectrum (1:1:1; 180 µmol m-2 s-1) and simultaneously measured gs and Tleaf with an infrared gas analyser and a thermocouple or an infrared thermal camera (FLIR) during thermal imaging analyses. The results showed that growth light quality significantly modifies Tleaf and that such a response is not temporal. Furthermore, we found that the actual adaxial leaf surface temperature of plants is more closely related to NPQ amplitude, while the temperature of the abaxial surface corresponds to gs.
Collapse
Affiliation(s)
- Magdalena Trojak
- Department of Environmental Biology, Jan Kochanowski University of Kielce, Uniwersytecka 7, 25-406 Kielce, Poland;
| | | |
Collapse
|
24
|
Shomali A, Aliniaeifard S, Mohammadian M, Lotfi M, Kalaji HM. Genotype-dependent Strategies to "Overcome" Excessive Light: Insights into Non-Photochemical Quenching under High Light Intensity. PHYSIOLOGIA PLANTARUM 2023; 175:e14077. [PMID: 38148223 DOI: 10.1111/ppl.14077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
High light (HL) intensities have a significant impact on energy flux and distribution within photosynthetic apparatus. To understand the effect of high light intensity (HL) on the HL tolerance mechanisms in tomatoes, we examined the response of the photosynthesis apparatus of 12 tomato genotypes to HL. A reduced electron transfer per reaction center (ET0 /RC), an increased energy dissipation (DI0 /RC) and non-photochemical quenching (NPQ), along with a reduced maximum quantum yield of photosystem II (FV /FM ), and performance index per absorbed photon (PIABS ) were common HL-induced responses among genotypes; however, the magnitude of those responses was highly genotype-dependent. Tolerant and sensitive genotypes were distinguished based on chlorophyll fluorescence and energy-quenching responses to HL. Tolerant genotypes alleviated excess light through energy-dependent quenching (qE ), resulting in smaller photoinhibitory quenching (qI ) compared to sensitive genotypes. Quantum yield components also shifted under HL, favoring the quantum yield of NPQ (ՓNPQ ) and the quantum yield of basal energy loss (ՓN0 ), while reducing the efficient quantum yield of PSII (ՓPSII ). The impact of HL on tolerant genotypes was less pronounced. While the energy partitioning ratio did not differ significantly between sensitive and tolerant genotypes, the ratio of NPQ components, especially qI , affected plant resilience against HL. These findings provide insights into different patterns of HL-induced NPQ components in tolerant and sensitive genotypes, aiding the development of resilient crops for heterogeneous light conditions.
Collapse
Affiliation(s)
- Aida Shomali
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, Iran
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, Iran
- Controlled Environment Agriculture Center, College of Agriculture and natural resources, University of Tehran, Tehran, Iran
| | - Mohammad Mohammadian
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, Iran
| | - Mahmoud Lotfi
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht, Iran
| | - Hazem M Kalaji
- Institute of Technology and Life Sciences, National Research Institute, Raszyn, Poland
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Warsaw, Poland
| |
Collapse
|
25
|
Short A, Fay TP, Crisanto T, Mangal R, Niyogi KK, Limmer DT, Fleming GR. Kinetics of the xanthophyll cycle and its role in photoprotective memory and response. Nat Commun 2023; 14:6621. [PMID: 37857617 PMCID: PMC10587229 DOI: 10.1038/s41467-023-42281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Efficiently balancing photochemistry and photoprotection is crucial for survival and productivity of photosynthetic organisms in the rapidly fluctuating light levels found in natural environments. The ability to respond quickly to sudden changes in light level is clearly advantageous. In the alga Nannochloropsis oceanica we observed an ability to respond rapidly to sudden increases in light level which occur soon after a previous high-light exposure. This ability implies a kind of memory. In this work, we explore the xanthophyll cycle in N. oceanica as a short-term photoprotective memory system. By combining snapshot fluorescence lifetime measurements with a biochemistry-based quantitative model, we show that short-term memory arises from the xanthophyll cycle. In addition, the model enables us to characterize the relative quenching abilities of the three xanthophyll cycle components. Given the ubiquity of the xanthophyll cycle in photosynthetic organisms the model described here will be of utility in improving our understanding of vascular plant and algal photoprotection with important implications for crop productivity.
Collapse
Affiliation(s)
- Audrey Short
- Graduate Group in Biophysics, University of California, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Kavli Energy Nanoscience Institute, Berkeley, CA, 94720, USA
| | - Thomas P Fay
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Thien Crisanto
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - Ratul Mangal
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Krishna K Niyogi
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA
| | - David T Limmer
- Kavli Energy Nanoscience Institute, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA
- Chemical Science Division Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Material Science Division Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Graham R Fleming
- Graduate Group in Biophysics, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Kavli Energy Nanoscience Institute, Berkeley, CA, 94720, USA.
- Department of Chemistry, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
26
|
Küster L, Lücke R, Brabender C, Bethmann S, Jahns P. The Amount of Zeaxanthin Epoxidase But Not the Amount of Violaxanthin De-Epoxidase Is a Critical Determinant of Zeaxanthin Accumulation in Arabidopsis thaliana and Nicotiana tabacum. PLANT & CELL PHYSIOLOGY 2023; 64:1220-1230. [PMID: 37556318 DOI: 10.1093/pcp/pcad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
The generation of violaxanthin (Vx) de-epoxidase (VDE), photosystem II subunit S (PsbS) and zeaxanthin (Zx) epoxidase (ZEP) (VPZ) lines, which simultaneously overexpress VDE, PsbS and ZEP, has been successfully used to accelerate the kinetics of the induction and relaxation of non-photochemical quenching (NPQ). Here, we studied the impact of the overexpression of VDE and ZEP on the conversion of the xanthophyll cycle pigments in VPZ lines of Arabidopsis thaliana and Nicotiana tabacum. The protein amount of both VDE and ZEP was determined to be increased to about 3- to 5-fold levels of wild-type (WT) plants for both species. Compared to WT plants, the conversion of Vx to Zx, and hence VDE activity, was only marginally accelerated in VPZ lines, whereas the conversion of Zx to Vx, and thus ZEP activity, was strongly increased in VPZ lines. This indicates that the amount of ZEP but not the amount of VDE is a critical determinant of the equilibrium of the de-epoxidation state of xanthophyll cycle pigments under saturating light conditions. Comparing the two steps of epoxidation, particularly the second step (antheraxanthin to Vx) was found to be accelerated in VPZ lines, implying that the intermediate Ax is released into the membrane during epoxidation by ZEP.
Collapse
Affiliation(s)
- Lukas Küster
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Universitaetsstr. 1, Düsseldorf 40225, Germany
| | - Rebecca Lücke
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Universitaetsstr. 1, Düsseldorf 40225, Germany
| | - Christin Brabender
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Universitaetsstr. 1, Düsseldorf 40225, Germany
| | - Stephanie Bethmann
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Universitaetsstr. 1, Düsseldorf 40225, Germany
| | - Peter Jahns
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Universitaetsstr. 1, Düsseldorf 40225, Germany
| |
Collapse
|
27
|
Sulli M, Dall'Osto L, Ferrante P, Guardini Z, Gomez RL, Mini P, Demurtas OC, Aprea G, Nicolia A, Bassi R, Giuliano G. Generation and physiological characterization of genome-edited Nicotiana benthamiana plants containing zeaxanthin as the only leaf xanthophyll. PLANTA 2023; 258:93. [PMID: 37796356 PMCID: PMC10556183 DOI: 10.1007/s00425-023-04248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
MAIN CONCLUSION Simultaneous genome editing of the two homeologous LCYe and ZEP genes of Nicotiana benthamiana results in plants in which all xanthophylls are replaced by zeaxanthin. Plant carotenoids act both as photoreceptors and photoprotectants in photosynthesis and as precursors of apocarotenoids, which include signaling molecules such as abscisic acid (ABA). As dietary components, the xanthophylls lutein and zeaxanthin have photoprotective functions in the human macula. We developed transient and stable combinatorial genome editing methods, followed by direct LC-MS screening for zeaxanthin accumulation, for the simultaneous genome editing of the two homeologous Lycopene Epsilon Cyclase (LCYe) and the two Zeaxanthin Epoxidase (ZEP) genes present in the allopolyploid Nicotiana benthamiana genome. Editing of the four genes resulted in plants in which all leaf xanthophylls were substituted by zeaxanthin, but with different ABA levels and growth habits, depending on the severity of the ZEP1 mutation. In high-zeaxanthin lines, the abundance of the major photosystem II antenna LHCII was reduced with respect to wild-type plants and the LHCII trimeric state became unstable upon thylakoid solubilization. Consistent with the depletion in LHCII, edited plants underwent a compensatory increase in PSII/PSI ratios and a loss of the large-size PSII supercomplexes, while the level of PSI-LHCI supercomplex was unaffected. Reduced activity of the photoprotective mechanism NPQ was shown in high-zeaxanthin plants, while PSII photoinhibition was similar for all genotypes upon exposure to excess light, consistent with the antioxidant and photoprotective role of zeaxanthin in vivo.
Collapse
Affiliation(s)
- Maria Sulli
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy.
| | - Luca Dall'Osto
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Paola Ferrante
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Zeno Guardini
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Rodrigo Lionel Gomez
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Campo Experimental Villarino CC No 14, Zavalla - Santa Fe, Argentina
| | - Paola Mini
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Olivia Costantina Demurtas
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Giuseppe Aprea
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Alessandro Nicolia
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops (CREA), Via Cavalleggeri 25, 84098, Pontecagnano, Italy
| | - Roberto Bassi
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Giovanni Giuliano
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy.
| |
Collapse
|
28
|
Cantrell M, Ware MA, Peers G. Characterizing compensatory mechanisms in the absence of photoprotective qE in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2023; 158:23-39. [PMID: 37488319 DOI: 10.1007/s11120-023-01037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
Rapid fluctuations in the quantity and quality of natural light expose photosynthetic organisms to conditions when the capacity to utilize absorbed quanta is insufficient. These conditions can result in the production of reactive oxygen species and photooxidative damage. Non-photochemical quenching (NPQ) and alternative electron transport are the two most prominent mechanisms which synergistically function to minimize the overreduction of photosystems. In the green alga Chlamydomonas reinhardtii, the stress-related light-harvesting complex (LHCSR) is a required component for the rapid induction and relaxation of NPQ in the light-harvesting antenna. Here, we use simultaneous chlorophyll fluorescence and oxygen exchange measurements to characterize the acclimation of the Chlamydomonas LHCSR-less mutant (npq4lhcsr1) to saturating light conditions. We demonstrate that, in the absence of NPQ, Chlamydomonas does not acclimate to sinusoidal light through increased light-dependent oxygen consumption. We also show that the npq4lhcsr1 mutant has an increased sink capacity downstream of PSI and this energy flow is likely facilitated by cyclic electron transport. Furthermore, we show that the timing of additions of mitochondrial inhibitors has a major influence on plastid/mitochondrial coupling experiments.
Collapse
Affiliation(s)
- Michael Cantrell
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Maxwell A Ware
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
29
|
Bethmann S, Haas AK, Melzer M, Jahns P. The impact of long-term acclimation to different growth light intensities on the regulation of zeaxanthin epoxidase in different plant species. PHYSIOLOGIA PLANTARUM 2023; 175:e13998. [PMID: 37882279 DOI: 10.1111/ppl.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 10/27/2023]
Abstract
Proper short- and long-term acclimation to different growth light intensities is essential for the survival and competitiveness of plants in the field. High light exposure is known to induce the down-regulation and photoinhibition of photosystem II (PSII) activity to reduce photo-oxidative stress. The xanthophyll zeaxanthin (Zx) serves central photoprotective functions in these processes. We have shown in recent work with different plant species (Arabidopsis, tobacco, spinach and pea) that photoinhibition of PSII and degradation of the PSII reaction center protein D1 is accompanied by the inactivation and degradation of zeaxanthin epoxidase (ZEP), which catalyzes the reconversion of Zx to violaxanthin. Different high light sensitivity of the above-mentioned species correlated with differential down-regulation of both PSII and ZEP activity. Applying light and electron microscopy, chlorophyll fluorescence, and protein and pigment analyses, we investigated the acclimation properties of these species to different growth light intensities with respect to the ability to adjust their photoprotective strategies. We show that the species differ in phenotypic plasticity in response to short- and long-term high light conditions at different morphological and physiological levels. However, the close co-regulation of PSII and ZEP activity remains a common feature in all species and under all conditions. This work supports species-specific acclimation strategies and properties in response to high light stress and underlines the central role of the xanthophyll Zx in photoprotection.
Collapse
Affiliation(s)
- Stephanie Bethmann
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ann-Kathrin Haas
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Michael Melzer
- Structural Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Peter Jahns
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
30
|
Feng L, Wang Z, Jia D, Zou X, Rao M, Huang Z, Kuang C, Ye J, Chen C, Huang C, Zhang M, Cheng J. Functional metabolism pathways of significantly regulated genes in Nannochloropsis oceanica with various nitrogen/phosphorus nutrients for CO 2 fixation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163318. [PMID: 37030370 DOI: 10.1016/j.scitotenv.2023.163318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 06/03/2023]
Abstract
To determine the optimal CO2 concentration for microalgal biomass cultivated with industrial flue gas and improve carbon fixation capacity and biomass production. Functional metabolism pathways of significantly regulated genes in Nannochloropsis oceanica (N. oceanica) with various nitrogen/phosphorus (N/P) nutrients for CO2 fixation were comprehensively clarified. At 100 % N/P nutrients, the optimum CO2 concentration was 70 % and the maximum biomass production of microalgae was 1.57 g/L. The optimum CO2 concentration was 50 % for N or P deficiency and 30 % for both N and P deficiency. The optimal combination of CO2 concentration and N/P nutrients caused significant up regulation of proteins related to photosynthesis and cellular respiration in the microalgae, enhancing photosynthetic electron transfer efficiency and carbon metabolism. Microalgal cells with P deficiency and optimal CO2 concentration expressed many phosphate transporter proteins to enhance P metabolism and N metabolism to maintain a high carbon fixation capacity. However, inappropriate combination of N/P nutrients and CO2 concentrations caused more errors in DNA replication and protein synthesis, generating more lysosomes and phagosomes. This inhibited carbon fixation and biomass production in the microalgae with increased cell apoptosis.
Collapse
Affiliation(s)
- Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Zhenyi Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Dongwei Jia
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Xiangbo Zou
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd., Guangzhou 510630, China
| | - Mumin Rao
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd., Guangzhou 510630, China
| | - Zhimin Huang
- Guangdong Yudean Zhanjiang Biomass Power Co., Ltd., Zhanjiang 524300, China
| | - Cao Kuang
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd., Guangzhou 510630, China
| | - Ji Ye
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd., Guangzhou 510630, China
| | - Chuangting Chen
- Guangdong Energy Group Science and Technology Research Institute Co. Ltd., Guangzhou 510630, China
| | - Cong Huang
- Guangdong Yudean Zhanjiang Biomass Power Co., Ltd., Zhanjiang 524300, China
| | - Maoqiang Zhang
- Guangdong Yudean Zhanjiang Biomass Power Co., Ltd., Zhanjiang 524300, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
31
|
Niu Y, Lazár D, Holzwarth AR, Kramer DM, Matsubara S, Fiorani F, Poorter H, Schrey SD, Nedbal L. Plants cope with fluctuating light by frequency-dependent nonphotochemical quenching and cyclic electron transport. THE NEW PHYTOLOGIST 2023. [PMID: 37429324 DOI: 10.1111/nph.19083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
In natural environments, plants are exposed to rapidly changing light. Maintaining photosynthetic efficiency while avoiding photodamage requires equally rapid regulation of photoprotective mechanisms. We asked what the operation frequency range of regulation is in which plants can efficiently respond to varying light. Chlorophyll fluorescence, P700, plastocyanin, and ferredoxin responses of wild-types Arabidopsis thaliana were measured in oscillating light of various frequencies. We also investigated the npq1 mutant lacking violaxanthin de-epoxidase, the npq4 mutant lacking PsbS protein, and the mutants crr2-2, and pgrl1ab impaired in different pathways of the cyclic electron transport. The fastest was the PsbS-regulation responding to oscillation periods longer than 10 s. Processes involving violaxanthin de-epoxidase dampened changes in chlorophyll fluorescence in oscillation periods of 2 min or longer. Knocking out the PGR5/PGRL1 pathway strongly reduced variations of all monitored parameters, probably due to congestion in the electron transport. Incapacitating the NDH-like pathway only slightly changed the photosynthetic dynamics. Our observations are consistent with the hypothesis that nonphotochemical quenching in slow light oscillations involves violaxanthin de-epoxidase to produce, presumably, a largely stationary level of zeaxanthin. We interpret the observed dynamics of photosystem I components as being formed in slow light oscillations partially by thylakoid remodeling that modulates the redox rates.
Collapse
Affiliation(s)
- Yuxi Niu
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Alfred R Holzwarth
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1105, NL-1081 HV, Amsterdam, the Netherlands
| | - David M Kramer
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Shizue Matsubara
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Fabio Fiorani
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Hendrik Poorter
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Silvia D Schrey
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences/Plant Sciences, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428, Jülich, Germany
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| |
Collapse
|
32
|
Duan S, Dong B, Chen Z, Hong L, Zhang P, Yang Z, Wang HB, Jin HL. HHL1 and SOQ1 synergistically regulate nonphotochemical quenching in Arabidopsis. J Biol Chem 2023; 299:104670. [PMID: 37024091 PMCID: PMC10173003 DOI: 10.1016/j.jbc.2023.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Nonphotochemical quenching (NPQ) is an important photoprotective mechanism that quickly dissipates excess light energy as heat. NPQ can be induced in a few seconds to several hours; most studies of this process have focused on the rapid induction of NPQ. Recently, a new, slowly induced form of NPQ, called qH, was found during the discovery of the quenching inhibitor suppressor of quenching 1 (SOQ1). However, the specific mechanism of qH remains unclear. Here, we found that hypersensitive to high light 1 (HHL1)-a damage repair factor of photosystem II-interacts with SOQ1. The enhanced NPQ phenotype of the hhl1 mutant is similar to that of the soq1 mutant, which is not related to energy-dependent quenching or other known NPQ components. Furthermore, the hhl1 soq1 double mutant showed higher NPQ than the single mutants, but its pigment content and composition were similar to those of the wildtype. Overexpressing HHL1 decreased NPQ in hhl1 to below wildtype levels, whereas NPQ in hhl1 plants overexpressing SOQ1 was lower than that in hhl1 but higher than that in the wildtype. Moreover, we found that HHL1 promotes the SOQ1-mediated inhibition of plastidial lipoprotein through its von Willebrand factor type A domain. We propose that HHL1 and SOQ1 synergistically regulate NPQ.
Collapse
Affiliation(s)
- Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Beibei Dong
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziqi Chen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liu Hong
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengxiang Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyue Yang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
33
|
Chen CI, Lin KH, Lin TC, Huang MY, Chen YC, Huang CC, Wang CW. Responses of photosynthesis and chlorophyll fluorescence during light induction in different seedling ages of Mahonia oiwakensis. BOTANICAL STUDIES 2023; 64:5. [PMID: 36890306 PMCID: PMC9995626 DOI: 10.1186/s40529-023-00369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The aim of this study was to determine the actual state of the photosynthetic apparatus and exhibit distinguishable differences in the chlorophyll fluorescence (ChlF) components in different seedling ages of M. oiwakensis plants subjected to different light intensity (LI). Potted 6-month-old greenhouse seedlings and field collected 2.4-year-old seedlings with 5 cm heights were selected and randomly separated into seven groups for photosynthesis measurements illuminated with 50, 100 (assigned as low LI), 300, 500, 1,000 (as moderate LI), 1,500 and 2,000 (as high LI) μmol m-2 s-1 photosynthetic photon flux density (PPFD) treatments. RESULTS n 6-month-old seedlings, as LI increased from 50 to 2,000 PPFD, the values of non-photochemical quenching and photo-inhibitory quenching (qI) increased but potential quantum efficiency of PSII (Fv/Fm) and photochemical efficiency of photosystem II (ΦPSII) values decreased. High electron transport rate and percentage of actual PSII efficiency by Fv/Fm values were observed in 2.4-year-old seedlings at high LI conditions. Furthermore, higher ΦPSII was detected under low LI conditions, with lower energy-dependent quenching (qE) and qI values and photo-inhibition % decreased as well. However, qE and qI increased as ΦPSII decreased and photo-inhibition% increased under high LI treatments. CONCLUSIONS These results could be useful for predicting the changes in growth and distribution of Mahonia species grown in controlled environments and open fields with various combinations of varying light illuminations, and ecological monitoring of their restoration and habitat creation is important for provenance conservation and helps to formulate better conservation strategies for the seedlings.
Collapse
Affiliation(s)
- Chung-I Chen
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Tzu-Chao Lin
- Endemic Species Research Institute, Jiji Township, No.1, Minsheng E. Rd, Nantou County, 55244, Taiwan
| | - Meng-Yuan Huang
- Department of Life Sciences and Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yung-Chih Chen
- College of Bio-Resources and Agriculture, The Experimental Forest, National Taiwan University, Nantou, 557, Taiwan
| | - Chau-Ching Huang
- Endemic Species Research Institute, Jiji Township, No.1, Minsheng E. Rd, Nantou County, 55244, Taiwan
| | - Ching-Wen Wang
- Endemic Species Research Institute, Jiji Township, No.1, Minsheng E. Rd, Nantou County, 55244, Taiwan.
| |
Collapse
|
34
|
Yue X, Ke X, Shi Y, Li Y, Zhang C, Wang Y, Hou X. Chloroplast inner envelope protein FtsH11 is involved in the adjustment of assembly of chloroplast ATP synthase under heat stress. PLANT, CELL & ENVIRONMENT 2023; 46:850-864. [PMID: 36573466 DOI: 10.1111/pce.14525] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The maintenance of a proton gradient across the thylakoid membrane is an integral aspect of photosynthesis that is mainly established by the splitting of water molecules in photosystem II and plastoquinol oxidation at the cytochrome complex, and it is necessary for the generation of ATP in the last step of photophosphorylation. Although environmental stresses, such as high temperatures, are known to disrupt this fundamental process, only a few studies have explored the molecular mechanisms underlying proton gradient regulation during stress. The present study identified a heat-sensitive mutant that displays aberrant photosynthesis at high temperatures. This mutation was mapped to AtFtsH11, which encodes an ATP-dependent AAA-family metalloprotease. We showed that AtFtsH11 localizes to the chloroplast inner envelope membrane and is capable of degrading the ATP synthase assembly factor BFA3 under heat stress. We posit that this function limits the amount of ATP synthase integrated into the thylakoid membrane to regulate proton efflux from the lumen to the stroma. Our data also suggest that AtFtsH11 is critical in stabilizing photosystem II and cytochrome complexes at high temperatures, and additional studies can further elucidate the specific molecular functions of this critical regulator of photosynthetic thermotolerance.
Collapse
Affiliation(s)
- Xiaohong Yue
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiangsheng Ke
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yafei Shi
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenhao Zhang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yetao Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Colpo A, Demaria S, Baldisserotto C, Pancaldi S, Brestič M, Živčak M, Ferroni L. Long-Term Alleviation of the Functional Phenotype in Chlorophyll-Deficient Wheat and Impact on Productivity: A Semi-Field Phenotyping Experiment. PLANTS (BASEL, SWITZERLAND) 2023; 12:822. [PMID: 36840171 PMCID: PMC9964019 DOI: 10.3390/plants12040822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Wheat mutants with a reduced chlorophyll synthesis are affected by a defective control of the photosynthetic electron flow, but tend to recover a wild-type phenotype. The sensitivity of some mutants to light fluctuations suggested that cultivation outdoors could significantly impact productivity. Six mutant lines of Triticum durum or Triticum aestivum with their respective wild-type cultivars were cultivated with a regular seasonal cycle (October-May) in a semi-field experiment. Leaf chlorophyll content and fluorescence parameters were analysed at the early (November) and late (May) developmental stages, and checked for correlation with morphometric and grain-production parameters. The alleviation of the phenotype severity concerned primarily the recovery of the photosynthetic-membrane functionality, but not the leaf chlorophyll content. Photosystem II (PSII) was less photoprotected in the mutants, but a moderate PSII photoinhibition could help control the electron flow into the chain. The accumulation of interchain electron carriers was a primary acclimative response towards the naturally fluctuating environment, maximally exploited by the mature durum-wheat mutants. The mutation itself and/or the energy-consuming compensatory mechanisms markedly influenced the plant morphogenesis, leading especially to reduced tillering, which in turn resulted in lower grain production per plant. Consistently with the interrelation between early photosynthetic phenotype and grain-yield per plant, chlorophyll-fluorescence indexes related to the level of photoprotective thermal dissipation (pNPQ), photosystem II antenna size (ABS/RC), and pool of electron carriers (Sm) are proposed as good candidates for the in-field phenotyping of chlorophyll-deficient wheat.
Collapse
Affiliation(s)
- Andrea Colpo
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Sara Demaria
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| | - Marian Brestič
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Marek Živčak
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Lorenzo Ferroni
- Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44121 Ferrara, Italy
| |
Collapse
|
36
|
The Functions of Chloroplastic Ascorbate in Vascular Plants and Algae. Int J Mol Sci 2023; 24:ijms24032537. [PMID: 36768860 PMCID: PMC9916717 DOI: 10.3390/ijms24032537] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Ascorbate (Asc) is a multifunctional metabolite essential for various cellular processes in plants and animals. The best-known property of Asc is to scavenge reactive oxygen species (ROS), in a highly regulated manner. Besides being an effective antioxidant, Asc also acts as a chaperone for 2-oxoglutarate-dependent dioxygenases that are involved in the hormone metabolism of plants and the synthesis of various secondary metabolites. Asc also essential for the epigenetic regulation of gene expression, signaling and iron transport. Thus, Asc affects plant growth, development, and stress resistance via various mechanisms. In this review, the intricate relationship between Asc and photosynthesis in plants and algae is summarized in the following major points: (i) regulation of Asc biosynthesis by light, (ii) interaction between photosynthetic and mitochondrial electron transport in relation to Asc biosynthesis, (iii) Asc acting as an alternative electron donor of photosystem II, (iv) Asc inactivating the oxygen-evolving complex, (v) the role of Asc in non-photochemical quenching, and (vi) the role of Asc in ROS management in the chloroplast. The review also discusses differences in the regulation of Asc biosynthesis and the effects of Asc on photosynthesis in algae and vascular plants.
Collapse
|
37
|
Alameldin HF, Montgomery BL. Plasticity of Arabidopsis rosette transcriptomes and photosynthetic responses in dynamic light conditions. PLANT DIRECT 2023; 7:e475. [PMID: 36628154 PMCID: PMC9822700 DOI: 10.1002/pld3.475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
With the high variability of natural growth environments, plants exhibit flexibility and resilience in regard to the strategies they employ to maintain overall fitness, including maximizing light use for photosynthesis, while simultaneously limiting light-associated damage. We measured distinct parameters of photosynthetic performance of Arabidopsis thaliana plants under dynamic light regimes. Plants were grown to maturity then subjected to the following 5-day (16 h light, 8 h dark) regime: Day 1 at constant light (CL) intensity during light period, representative of a common lab growth condition; Day 2 under sinusoidal variation in light intensity (SL) during the light period that is representative of changes occurring during a clear sunny day; Day 3 under fluctuating light (FL) intensity during the light period that simulates sudden changes that might occur with the movements of clouds in and out of the view of the sun; Day 4, repeat of CL; and Day 5, repeat of FL. We also examined the global transcriptome profile in these growth conditions based on obtaining RNA-sequencing (RNA-seq) data for whole plant rosettes. Our transcriptomic analyses indicated downregulation of photosystem I (PSI) and II (PSII) associated genes, which were correlated with elevated levels of photoinhibition as indicated by measurements of nonphotochemical quenching (NPQ), energy-dependent quenching (qE), and inhibitory quenching (qI) under both SL and FL conditions. Furthermore, our transcriptomic results indicated downregulation of tetrapyrrole biosynthesis associated genes, coupled with reduced levels of chlorophyll under both SL and FL compared with CL, as well as downregulation of photorespiration-associated genes under SL. We also noticed an enrichment of the stress response gene ontology (GO) terms for genes differentially regulated under FL when compared with SL. Collectively, our phenotypic and transcriptome analyses serve as useful resources for probing the underlying molecular mechanisms associated with plant acclimation to rapid light intensity changes in the natural environment.
Collapse
Affiliation(s)
- Hussien F. Alameldin
- DOE‐Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- Agricultural Genetic Engineering Research Institute (AGERI)Agriculture Research Center (ARC)GizaEgypt
| | - Beronda L. Montgomery
- DOE‐Plant Research LaboratoryMichigan State UniversityEast LansingMichiganUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
- Department of BiologyGrinnell CollegeGrinnellIowaUSA
| |
Collapse
|
38
|
von Bismarck T, Korkmaz K, Ruß J, Skurk K, Kaiser E, Correa Galvis V, Cruz JA, Strand DD, Köhl K, Eirich J, Finkemeier I, Jahns P, Kramer DM, Armbruster U. Light acclimation interacts with thylakoid ion transport to govern the dynamics of photosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2023; 237:160-176. [PMID: 36378135 DOI: 10.1111/nph.18534] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Understanding photosynthesis in natural, dynamic light environments requires knowledge of long-term acclimation, short-term responses, and their mechanistic interactions. To approach the latter, we systematically determined and characterized light-environmental effects on thylakoid ion transport-mediated short-term responses during light fluctuations. For this, Arabidopsis thaliana wild-type and mutants of the Cl- channel VCCN1 and the K+ exchange antiporter KEA3 were grown under eight different light environments and characterized for photosynthesis-associated parameters and factors in steady state and during light fluctuations. For a detailed characterization of selected light conditions, we monitored ion flux dynamics at unprecedented high temporal resolution by a modified spectroscopy approach. Our analyses reveal that daily light intensity sculpts photosynthetic capacity as a main acclimatory driver with positive and negative effects on the function of KEA3 and VCCN1 during high-light phases, respectively. Fluctuations in light intensity boost the accumulation of the photoprotective pigment zeaxanthin (Zx). We show that KEA3 suppresses Zx accumulation during the day, which together with its direct proton transport activity accelerates photosynthetic transition to lower light intensities. In summary, both light-environment factors, intensity and variability, modulate the function of thylakoid ion transport in dynamic photosynthesis with distinct effects on lumen pH, Zx accumulation, photoprotection, and photosynthetic efficiency.
Collapse
Affiliation(s)
| | - Kübra Korkmaz
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Jeremy Ruß
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Kira Skurk
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Elias Kaiser
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | | | - Jeffrey A Cruz
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Deserah D Strand
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, 48149, Münster, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - David M Kramer
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ute Armbruster
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| |
Collapse
|
39
|
Sapeta H, Yokono M, Takabayashi A, Ueno Y, Cordeiro AM, Hara T, Tanaka A, Akimoto S, Oliveira MM, Tanaka R. Reversible down-regulation of photosystems I and II leads to fast photosynthesis recovery after long-term drought in Jatropha curcas. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:336-351. [PMID: 36269314 DOI: 10.1093/jxb/erac423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Jatropha curcas is a drought-tolerant plant that maintains its photosynthetic pigments under prolonged drought, and quickly regains its photosynthetic capacity when water is available. It has been reported that drought stress leads to increased thermal dissipation in PSII, but that of PSI has been barely investigated, perhaps due to technical limitations in measuring the PSI absolute quantum yield. In this study, we combined biochemical analysis and spectroscopic measurements using an integrating sphere, and verified that the quantum yields of both photosystems are temporarily down-regulated under drought. We found that the decrease in the quantum yield of PSII was accompanied by a decrease in the core complexes of PSII while light-harvesting complexes are maintained under drought. In addition, in drought-treated plants, we observed a decrease in the absolute quantum yield of PSI as compared with the well-watered control, while the amount of PSI did not change, indicating that non-photochemical quenching occurs in PSI. The down-regulation of both photosystems was quickly lifted in a few days upon re-watering. Our results indicate, that in J. curcas under drought, the down-regulation of both PSII and PSI quantum yield protects the photosynthetic machinery from uncontrolled photodamage.
Collapse
Affiliation(s)
- Helena Sapeta
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal
| | - Makio Yokono
- Division of Environmental Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies, Sokendai, Okazaki 444-8585, Japan
| | - Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Yoshifumi Ueno
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - André M Cordeiro
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal
| | - Toshihiko Hara
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Seiji Akimoto
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - M Margarida Oliveira
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier, Genomics of Plant Stress, Av. da República, 2780-157 Oeiras, Portugal
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| |
Collapse
|
40
|
Rudenko NN, Permyakova NV, Ignatova LK, Nadeeva EM, Zagorskaya AA, Deineko EV, Ivanov BN. The Role of Carbonic Anhydrase αCA4 in Photosynthetic Reactions in Arabidopsis thaliana Studied, Using the Cas9 and T-DNA Induced Mutations in Its Gene. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233303. [PMID: 36501340 PMCID: PMC9735932 DOI: 10.3390/plants11233303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 05/27/2023]
Abstract
An homozygous mutant line of Arabidopsis thaliana with a knocked out At4g20990 gene encoding thylakoid carbonic anhydrase αCA4 was created using a CRISPR/Cas9 genome editing system. The effects of the mutation were compared with those in two mutant lines obtained by the T-DNA insertion method. In αCA4 knockouts of all three lines, non-photochemical quenching of chlorophyll a fluorescence was lower than in the wild type (WT) plants due to a decrease in its energy-dependent component. The αCA4 knockout also affected the level of expression of the genes encoding all proteins of the PSII light harvesting antennae, the genes encoding cytoplasmic and thylakoid CAs and the genes induced by plant immune signals. The production level of starch synthesis during the light period, as well as the level of its utilization during the darkness, were significantly higher in these mutants than in WT plants. These data confirm that the previously observed differences between insertional mutants and WT plants were not the result of the negative effects of T-DNA insertion transgenesis but the results of αCA4 gene knockout. Overall, the data indicate the involvement of αCA4 in the photosynthetic reactions in the thylakoid membrane, in particular in processes associated with the protection of higher plants' photosynthetic apparatus from photoinhibition.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| | - Natalya V. Permyakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Lyudmila K. Ignatova
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| | - Elena M. Nadeeva
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| | - Alla A. Zagorskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V. Deineko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Boris N. Ivanov
- Institute of Basic Biological Problems, Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences» Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
41
|
Acebron K, Salvatori N, Alberti G, Muller O, Peressotti A, Rascher U, Matsubara S. Elucidating the photosynthetic responses in chlorophyll-deficient soybean (Glycine max, L.) Cultivar. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
42
|
Holzmann D, Bethmann S, Jahns P. Zeaxanthin Epoxidase Activity Is Downregulated by Hydrogen Peroxide. PLANT & CELL PHYSIOLOGY 2022; 63:1091-1100. [PMID: 35674150 DOI: 10.1093/pcp/pcac081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The xanthophyll zeaxanthin (Zx) serves important photoprotective functions in chloroplasts and is particularly involved in the dissipation of excess light energy as heat in the antenna of photosystem II (PSII). Zx accumulates under high-light (HL) conditions in thylakoid membranes and is reconverted to violaxanthin by Zx epoxidase (ZEP) in low light or darkness. ZEP activity is completely inhibited under long-lasting HL stress, and the ZEP protein becomes degraded along with the PSII subunit D1 during photoinhibition of PSII. This ZEP inactivation ensures that high levels of Zx are maintained under harsh HL stress. The mechanism of ZEP inactivation is unknown. Here, we investigated ZEP inactivation by reactive oxygen species (ROS) under in vitro conditions. Our results show that ZEP activity is completely inhibited by hydrogen peroxide (H2O2), whereas inhibition by singlet oxygen or superoxide seems rather unlikely. Due to the limited information about the amount of singlet oxygen and superoxide accumulating under the applied experimental conditions, however, a possible inhibition of ZEP activity by these two ROS cannot be generally excluded. Despite this limitation, our data support the hypothesis that the accumulation of ROS, in particular H2O2, might be responsible for HL-induced inactivation of ZEP under in vivo conditions.
Collapse
Affiliation(s)
- Dimitrij Holzmann
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Stephanie Bethmann
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Peter Jahns
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
43
|
Steen CJ, Burlacot A, Short AH, Niyogi KK, Fleming GR. Interplay between LHCSR proteins and state transitions governs the NPQ response in Chlamydomonas during light fluctuations. PLANT, CELL & ENVIRONMENT 2022; 45:2428-2445. [PMID: 35678230 PMCID: PMC9540987 DOI: 10.1111/pce.14372] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 05/19/2023]
Abstract
Photosynthetic organisms use sunlight as the primary energy source to fix CO2 . However, in nature, light energy is highly variable, reaching levels of saturation for periods ranging from milliseconds to hours. In the green microalga Chlamydomonas reinhardtii, safe dissipation of excess light energy by nonphotochemical quenching (NPQ) is mediated by light-harvesting complex stress-related (LHCSR) proteins and redistribution of light-harvesting antennae between the photosystems (state transition). Although each component underlying NPQ has been documented, their relative contributions to NPQ under fluctuating light conditions remain unknown. Here, by monitoring NPQ in intact cells throughout high light/dark cycles of various illumination periods, we find that the dynamics of NPQ depend on the timescales of light fluctuations. We show that LHCSRs play a major role during the light phases of light fluctuations and describe their role in growth under rapid light fluctuations. We further reveal an activation of NPQ during the dark phases of all high light/dark cycles and show that this phenomenon arises from state transition. Finally, we show that LHCSRs and state transition synergistically cooperate to enable NPQ response during light fluctuations. These results highlight the dynamic functioning of photoprotection under light fluctuations and open a new way to systematically characterize the photosynthetic response to an ever-changing light environment.
Collapse
Affiliation(s)
- Collin J. Steen
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
| | - Adrien Burlacot
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | - Audrey H. Short
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
- Graduate Group in BiophysicsUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Krishna K. Niyogi
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Graham R. Fleming
- Department of ChemistryUniversity of CaliforniaBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging Division Lawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- Kavli Energy Nanoscience InstituteBerkeleyCaliforniaUSA
- Graduate Group in BiophysicsUniversity of CaliforniaBerkeleyCaliforniaUSA
| |
Collapse
|
44
|
Kochetova GV, Avercheva OV, Bassarskaya EM, Zhigalova TV. Light quality as a driver of photosynthetic apparatus development. Biophys Rev 2022; 14:779-803. [PMID: 36124269 PMCID: PMC9481803 DOI: 10.1007/s12551-022-00985-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/13/2022] [Indexed: 12/18/2022] Open
Abstract
Light provides energy for photosynthesis and also acts as an important environmental signal. During their evolution, plants acquired sophisticated sensory systems for light perception and light-dependent regulation of their growth and development in accordance with the local light environment. Under natural conditions, plants adapted by using their light sensors to finely distinguish direct sunlight and dark in the soil, deep grey shade under the upper soil layer or litter, green shade under the canopy and even lateral green reflectance from neighbours. Light perception also allows plants to evaluate in detail the weather, time of day, day length and thus the season. However, in artificial lighting conditions, plants are confronted with fundamentally different lighting conditions. The advent of new light sources - light-emitting diodes (LEDs), which emit narrow-band light - allows growing plants with light of different spectral bands or their combinations. This sets the task of finding out how light of different quality affects the development and functioning of plants, and in particular, their photosynthetic apparatus (PSA), which is one of the basic processes determining plant yield. In this review, we briefly describe how plants perceive environment light signals by their five families of photoreceptors and by the PSA as a particular light sensor, and how they use this information to form their PSA under artificial narrow-band LED-based lighting of different spectral composition. We consider light regulation of the biosynthesis of photosynthetic pigments, photosynthetic complexes and chloroplast ATP synthase function, PSA photoprotection mechanisms, carbon assimilation reactions and stomatal development and function.
Collapse
|
45
|
Yu G, Hao J, Pan X, Shi L, Zhang Y, Wang J, Fan H, Xiao Y, Yang F, Lou J, Chang W, Malnoë A, Li M. Structure of Arabidopsis SOQ1 lumenal region unveils C-terminal domain essential for negative regulation of photoprotective qH. NATURE PLANTS 2022; 8:840-855. [PMID: 35798975 DOI: 10.1038/s41477-022-01177-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Non-photochemical quenching (NPQ) plays an important role for phototrophs in decreasing photo-oxidative damage. qH is a sustained form of NPQ and depends on the plastid lipocalin (LCNP). A thylakoid membrane-anchored protein SUPPRESSOR OF QUENCHING1 (SOQ1) prevents qH formation by inhibiting LCNP. SOQ1 suppresses qH with its lumen-located thioredoxin (Trx)-like and NHL domains. Here we report structural data, genetic modification and biochemical characterization of Arabidopsis SOQ1 lumenal domains. Our results show that the Trx-like and NHL domains are associated together, with the cysteine motif located at their interface. Residue E859, required for SOQ1 function, is pivotal for maintaining the Trx-NHL association. Importantly, the C-terminal region of SOQ1 forms an independent β-stranded domain that has structural homology to the N-terminal domain of bacterial disulfide bond protein D and is essential for negative regulation of qH. Furthermore, SOQ1 is susceptible to cleavage at the loops connecting the neighbouring lumenal domains both in vitro and in vivo, which could be a regulatory process for its suppression function of qH.
Collapse
Affiliation(s)
- Guimei Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jingfang Hao
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Science, Capital Normal University, Beijing, China
| | - Lifang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jifeng Wang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Hongcheng Fan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yang Xiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Fuquan Yang
- University of Chinese Academy of Sciences, Beijing, P.R. China
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Jizhong Lou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Wenrui Chang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Alizée Malnoë
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China.
| |
Collapse
|
46
|
Redekop P, Sanz-Luque E, Yuan Y, Villain G, Petroutsos D, Grossman AR. Transcriptional regulation of photoprotection in dark-to-light transition-More than just a matter of excess light energy. SCIENCE ADVANCES 2022; 8:eabn1832. [PMID: 35658034 PMCID: PMC9166400 DOI: 10.1126/sciadv.abn1832] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/18/2022] [Indexed: 05/22/2023]
Abstract
In nature, photosynthetic organisms are exposed to different light spectra and intensities depending on the time of day and atmospheric and environmental conditions. When photosynthetic cells absorb excess light, they induce nonphotochemical quenching to avoid photodamage and trigger expression of "photoprotective" genes. In this work, we used the green alga Chlamydomonas reinhardtii to assess the impact of light intensity, light quality, photosynthetic electron transport, and carbon dioxide on induction of the photoprotective genes (LHCSR1, LHCSR3, and PSBS) during dark-to-light transitions. Induction (mRNA accumulation) occurred at very low light intensity and was independently modulated by blue and ultraviolet B radiation through specific photoreceptors; only LHCSR3 was strongly controlled by carbon dioxide levels through a putative enhancer function of CIA5, a transcription factor that controls genes of the carbon concentrating mechanism. We propose a model that integrates inputs of independent signaling pathways and how they may help the cells anticipate diel conditions and survive in a dynamic light environment.
Collapse
Affiliation(s)
- Petra Redekop
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama St, Stanford, CA 94305, USA
- Corresponding author. (E.S.-L.); (P.R.)
| | - Emanuel Sanz-Luque
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama St, Stanford, CA 94305, USA
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14071 Cordoba, Spain
- Corresponding author. (E.S.-L.); (P.R.)
| | - Yizhong Yuan
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38000 Grenoble, France
| | - Gaelle Villain
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38000 Grenoble, France
| | - Dimitris Petroutsos
- Université Grenoble Alpes, CNRS, CEA, INRAe, IRIG-LPCV, 38000 Grenoble, France
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, 260 Panama St, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
47
|
Loss of a single chlorophyll in CP29 triggers re-organization of the Photosystem II supramolecular assembly. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148555. [PMID: 35378087 DOI: 10.1016/j.bbabio.2022.148555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/21/2022]
Abstract
In land plants, both efficient light capture and photoprotective dissipation of chlorophyll excited states in excess require proper assembly of Photosystem II supercomplexes PSII-LHCs. These include a dimeric core moiety and a peripheral antenna system made of trimeric LHCII proteins connected to the core through monomeric LHC subunits. Regulation of light harvesting involves re-organization of the PSII supercomplex, including dissociation of its LHCII-CP24-CP29 domain under excess light. The Chl a603-a609-a616 chromophore cluster within CP29 was recently identified as responsible for the fast component of Non-Photochemical Quenching of chlorophyll fluorescence. Here, we pinpointed a chlorophyll-protein domain of CP29 involved in the macro-organization of PSII-LHCs. By complementing an Arabidopsis knock-out mutant with CP29 sequences deleted in the residue binding chlorophyll b614/b3-binding, we found that the site is promiscuous for chlorophyll a and b. By plotting NPQ amplitude vs. CP29 content we observed that quenching activity was significantly reduced in mutants compared to the wild type. Analysis of pigment-binding supercomplexes showed that the missing Chl did hamper the assembly of PSII-LHCs supercomplexes, while observation by electron microscopy of grana membranes highlighted the PSII particles were organized in two-dimensional arrays in mutant grana partitions. As an effect of such array formation electron transport rate between QA and QB reduced, likely due to restricted plastoquinone diffusion. We conclude that chlorophyll b614, rather being part of pigment cluster responsible for quenching, is needed to maintain full rate of electron flow in the thylakoids by controlling protein-protein interactions between PSII units in grana partitions.
Collapse
|
48
|
Hickey K, Wood M, Sexton T, Sahin Y, Nazarov T, Fisher J, Sanguinet KA, Cousins A, Kirchhoff H, Smertenko A. Drought Tolerance Strategies and Autophagy in Resilient Wheat Genotypes. Cells 2022; 11:1765. [PMID: 35681460 PMCID: PMC9179661 DOI: 10.3390/cells11111765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 01/18/2023] Open
Abstract
Drought resiliency strategies combine developmental, physiological, cellular, and molecular mechanisms. Here, we compare drought responses in two resilient spring wheat (Triticum aestivum) genotypes: a well-studied drought-resilient Drysdale and a resilient genotype from the US Pacific North-West Hollis. While both genotypes utilize higher water use efficiency through the reduction of stomatal conductance, other mechanisms differ. First, Hollis deploys the drought escape mechanism to a greater extent than Drysdale by accelerating the flowering time and reducing root growth. Second, Drysdale uses physiological mechanisms such as non-photochemical quenching (NPQ) to dissipate the excess of harvested light energy and sustain higher Fv/Fm and ϕPSII, whereas Hollis maintains constant NPQ but lower Fv/Fm and ϕPSII values. Furthermore, more electron donors of the electron transport chain are in the oxidized state in Hollis than in Drysdale. Third, many ROS homeostasis parameters, including peroxisome abundance, transcription of peroxisome biogenesis genes PEX11 and CAT, catalase protein level, and enzymatic activity, are higher in Hollis than in Drysdale. Fourth, transcription of autophagy flux marker ATG8.4 is upregulated to a greater degree in Hollis than in Drysdale under drought, whereas relative ATG8 protein abundance under drought stress is lower in Hollis than in Drysdale. These data demonstrate the activation of autophagy in both genotypes and a greater autophagic flux in Hollis. In conclusion, wheat varieties utilize different drought tolerance mechanisms. Combining these mechanisms within one genotype offers a promising strategy to advance crop resiliency.
Collapse
Affiliation(s)
- Kahleen Hickey
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Magnus Wood
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Tom Sexton
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Yunus Sahin
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Jessica Fisher
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Karen A. Sanguinet
- Department of Crop and Soil Sciences, Washington State University, P.O. Box 646420, Pullman, WA 99164, USA;
| | - Asaph Cousins
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, WA 99164, USA; (T.S.); (A.C.)
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, 1772 NE Stadium Way, P.O. Box 99163, Pullman, WA 99164, USA; (K.H.); (M.W.); (Y.S.); (T.N.); (J.F.)
| |
Collapse
|
49
|
Burnett AC, Kromdijk J. Can we improve the chilling tolerance of maize photosynthesis through breeding? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3138-3156. [PMID: 35143635 PMCID: PMC9126739 DOI: 10.1093/jxb/erac045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/02/2022] [Indexed: 05/11/2023]
Abstract
Chilling tolerance is necessary for crops to thrive in temperate regions where cold snaps and lower baseline temperatures place limits on life processes; this is particularly true for crops of tropical origin such as maize. Photosynthesis is often adversely affected by chilling stress, yet the maintenance of photosynthesis is essential for healthy growth and development, and most crucially for yield. In this review, we describe the physiological basis for enhancing chilling tolerance of photosynthesis in maize by examining nine key responses to chilling stress. We synthesize current knowledge of genetic variation for photosynthetic chilling tolerance in maize with respect to each of these traits and summarize the extent to which genetic mapping and candidate genes have been used to understand the genomic regions underpinning chilling tolerance. Finally, we provide perspectives on the future of breeding for photosynthetic chilling tolerance in maize. We advocate for holistic and high-throughput approaches to screen for chilling tolerance of photosynthesis in research and breeding programmes in order to develop resilient crops for the future.
Collapse
Affiliation(s)
- Angela C Burnett
- Department of Plant Sciences, University of CambridgeCambridge, UK
| | | |
Collapse
|
50
|
Long SP, Taylor SH, Burgess SJ, Carmo-Silva E, Lawson T, De Souza AP, Leonelli L, Wang Y. Into the Shadows and Back into Sunlight: Photosynthesis in Fluctuating Light. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:617-648. [PMID: 35595290 DOI: 10.1146/annurev-arplant-070221-024745] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is an important remaining opportunity for further improvement in the genetic yield potential of our major crops. Measurement, analysis, and improvement of leaf CO2 assimilation (A) have focused largely on photosynthetic rates under light-saturated steady-state conditions. However, in modern crop canopies of several leaf layers, light is rarely constant, and the majority of leaves experience marked light fluctuations throughout the day. It takes several minutes for photosynthesis to regain efficiency in both sun-shade and shade-sun transitions, costing a calculated 10-40% of potential crop CO2 assimilation. Transgenic manipulations to accelerate the adjustment in sun-shade transitions have already shown a substantial productivity increase in field trials. Here, we explore means to further accelerate these adjustments and minimize these losses through transgenic manipulation, gene editing, and exploitation of natural variation. Measurement andanalysis of photosynthesis in sun-shade and shade-sun transitions are explained. Factors limiting speeds of adjustment and how they could be modified to effect improved efficiency are reviewed, specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.
Collapse
Affiliation(s)
- Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Steven J Burgess
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Lauriebeth Leonelli
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|